Properties

Label 2-7e2-1.1-c23-0-52
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 708.·2-s + 1.98e5·3-s − 7.88e6·4-s + 3.63e7·5-s − 1.40e8·6-s + 1.15e10·8-s − 5.48e10·9-s − 2.57e10·10-s − 2.09e11·11-s − 1.56e12·12-s − 1.80e12·13-s + 7.21e12·15-s + 5.79e13·16-s + 6.17e13·17-s + 3.88e13·18-s + 3.57e14·19-s − 2.86e14·20-s + 1.48e14·22-s + 2.91e14·23-s + 2.28e15·24-s − 1.05e16·25-s + 1.27e15·26-s − 2.95e16·27-s + 6.50e16·29-s − 5.10e15·30-s + 1.04e17·31-s − 1.37e17·32-s + ⋯
L(s)  = 1  − 0.244·2-s + 0.646·3-s − 0.940·4-s + 0.333·5-s − 0.158·6-s + 0.474·8-s − 0.582·9-s − 0.0814·10-s − 0.221·11-s − 0.607·12-s − 0.278·13-s + 0.215·15-s + 0.824·16-s + 0.437·17-s + 0.142·18-s + 0.703·19-s − 0.313·20-s + 0.0540·22-s + 0.0638·23-s + 0.306·24-s − 0.889·25-s + 0.0682·26-s − 1.02·27-s + 0.989·29-s − 0.0526·30-s + 0.735·31-s − 0.676·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 708.T + 8.38e6T^{2} \)
3 \( 1 - 1.98e5T + 9.41e10T^{2} \)
5 \( 1 - 3.63e7T + 1.19e16T^{2} \)
11 \( 1 + 2.09e11T + 8.95e23T^{2} \)
13 \( 1 + 1.80e12T + 4.17e25T^{2} \)
17 \( 1 - 6.17e13T + 1.99e28T^{2} \)
19 \( 1 - 3.57e14T + 2.57e29T^{2} \)
23 \( 1 - 2.91e14T + 2.08e31T^{2} \)
29 \( 1 - 6.50e16T + 4.31e33T^{2} \)
31 \( 1 - 1.04e17T + 2.00e34T^{2} \)
37 \( 1 + 4.18e17T + 1.17e36T^{2} \)
41 \( 1 - 6.10e18T + 1.24e37T^{2} \)
43 \( 1 + 6.48e18T + 3.71e37T^{2} \)
47 \( 1 - 7.19e18T + 2.87e38T^{2} \)
53 \( 1 + 1.00e20T + 4.55e39T^{2} \)
59 \( 1 - 3.01e20T + 5.36e40T^{2} \)
61 \( 1 - 4.76e19T + 1.15e41T^{2} \)
67 \( 1 - 8.72e20T + 9.99e41T^{2} \)
71 \( 1 + 3.00e21T + 3.79e42T^{2} \)
73 \( 1 + 4.53e20T + 7.18e42T^{2} \)
79 \( 1 + 6.15e21T + 4.42e43T^{2} \)
83 \( 1 + 6.71e21T + 1.37e44T^{2} \)
89 \( 1 - 3.62e22T + 6.85e44T^{2} \)
97 \( 1 - 1.11e23T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21189390649461994794338415828, −9.418572287681956284521159568260, −8.451229833832580824424342120550, −7.61109731862684668310774447788, −5.90484547360759199634772379406, −4.85663331170771369271818716235, −3.57958321804786011041845471517, −2.52623558857802003932298096608, −1.15479283817962763496051721819, 0, 1.15479283817962763496051721819, 2.52623558857802003932298096608, 3.57958321804786011041845471517, 4.85663331170771369271818716235, 5.90484547360759199634772379406, 7.61109731862684668310774447788, 8.451229833832580824424342120550, 9.418572287681956284521159568260, 10.21189390649461994794338415828

Graph of the $Z$-function along the critical line