Properties

Label 4896.2.f.d.2449.6
Level $4896$
Weight $2$
Character 4896.2449
Analytic conductor $39.095$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4896,2,Mod(2449,4896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4896, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4896.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.0947568296\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.6
Root \(1.33209 - 0.474920i\) of defining polynomial
Character \(\chi\) \(=\) 4896.2449
Dual form 4896.2.f.d.2449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58069i q^{5} +5.01127 q^{7} +2.65428i q^{11} -6.34060i q^{13} -1.00000 q^{17} +2.44834i q^{19} +2.83821 q^{23} +2.50141 q^{25} -1.58069i q^{29} -1.68293 q^{31} +7.92129i q^{35} +1.16881i q^{37} +3.50141 q^{41} +6.52280i q^{43} +8.82975 q^{47} +18.1129 q^{49} -7.37263i q^{53} -4.19561 q^{55} -10.7815i q^{59} +1.58069i q^{61} +10.0225 q^{65} -9.82097i q^{67} +2.51268 q^{71} -2.52114 q^{73} +13.3013i q^{77} -0.815662 q^{79} +8.22246i q^{83} -1.58069i q^{85} -1.45337 q^{89} -31.7745i q^{91} -3.87008 q^{95} -7.15528 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{7} - 8 q^{17} - 16 q^{23} - 8 q^{25} - 24 q^{31} + 4 q^{47} + 8 q^{49} + 12 q^{55} + 24 q^{65} - 36 q^{71} + 8 q^{73} - 24 q^{79} - 8 q^{89} + 32 q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4896\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(2143\) \(3809\) \(4321\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58069i 0.706908i 0.935452 + 0.353454i \(0.114993\pi\)
−0.935452 + 0.353454i \(0.885007\pi\)
\(6\) 0 0
\(7\) 5.01127 1.89408 0.947042 0.321110i \(-0.104056\pi\)
0.947042 + 0.321110i \(0.104056\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.65428i 0.800297i 0.916450 + 0.400148i \(0.131041\pi\)
−0.916450 + 0.400148i \(0.868959\pi\)
\(12\) 0 0
\(13\) − 6.34060i − 1.75857i −0.476300 0.879283i \(-0.658022\pi\)
0.476300 0.879283i \(-0.341978\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.44834i 0.561688i 0.959753 + 0.280844i \(0.0906144\pi\)
−0.959753 + 0.280844i \(0.909386\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.83821 0.591808 0.295904 0.955218i \(-0.404379\pi\)
0.295904 + 0.955218i \(0.404379\pi\)
\(24\) 0 0
\(25\) 2.50141 0.500281
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1.58069i − 0.293528i −0.989172 0.146764i \(-0.953114\pi\)
0.989172 0.146764i \(-0.0468857\pi\)
\(30\) 0 0
\(31\) −1.68293 −0.302264 −0.151132 0.988514i \(-0.548292\pi\)
−0.151132 + 0.988514i \(0.548292\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.92129i 1.33894i
\(36\) 0 0
\(37\) 1.16881i 0.192151i 0.995374 + 0.0960757i \(0.0306291\pi\)
−0.995374 + 0.0960757i \(0.969371\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.50141 0.546828 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(42\) 0 0
\(43\) 6.52280i 0.994718i 0.867545 + 0.497359i \(0.165697\pi\)
−0.867545 + 0.497359i \(0.834303\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.82975 1.28795 0.643975 0.765046i \(-0.277284\pi\)
0.643975 + 0.765046i \(0.277284\pi\)
\(48\) 0 0
\(49\) 18.1129 2.58755
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.37263i − 1.01271i −0.862326 0.506354i \(-0.830993\pi\)
0.862326 0.506354i \(-0.169007\pi\)
\(54\) 0 0
\(55\) −4.19561 −0.565736
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.7815i − 1.40363i −0.712357 0.701817i \(-0.752372\pi\)
0.712357 0.701817i \(-0.247628\pi\)
\(60\) 0 0
\(61\) 1.58069i 0.202387i 0.994867 + 0.101194i \(0.0322661\pi\)
−0.994867 + 0.101194i \(0.967734\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.0225 1.24314
\(66\) 0 0
\(67\) − 9.82097i − 1.19982i −0.800067 0.599911i \(-0.795203\pi\)
0.800067 0.599911i \(-0.204797\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.51268 0.298200 0.149100 0.988822i \(-0.452362\pi\)
0.149100 + 0.988822i \(0.452362\pi\)
\(72\) 0 0
\(73\) −2.52114 −0.295077 −0.147539 0.989056i \(-0.547135\pi\)
−0.147539 + 0.989056i \(0.547135\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.3013i 1.51583i
\(78\) 0 0
\(79\) −0.815662 −0.0917692 −0.0458846 0.998947i \(-0.514611\pi\)
−0.0458846 + 0.998947i \(0.514611\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.22246i 0.902532i 0.892390 + 0.451266i \(0.149027\pi\)
−0.892390 + 0.451266i \(0.850973\pi\)
\(84\) 0 0
\(85\) − 1.58069i − 0.171450i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.45337 −0.154057 −0.0770286 0.997029i \(-0.524543\pi\)
−0.0770286 + 0.997029i \(0.524543\pi\)
\(90\) 0 0
\(91\) − 31.7745i − 3.33087i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.87008 −0.397062
\(96\) 0 0
\(97\) −7.15528 −0.726508 −0.363254 0.931690i \(-0.618334\pi\)
−0.363254 + 0.931690i \(0.618334\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.67822i 0.863515i 0.901990 + 0.431758i \(0.142106\pi\)
−0.901990 + 0.431758i \(0.857894\pi\)
\(102\) 0 0
\(103\) 7.13273 0.702809 0.351404 0.936224i \(-0.385704\pi\)
0.351404 + 0.936224i \(0.385704\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 5.26701i − 0.509181i −0.967049 0.254590i \(-0.918059\pi\)
0.967049 0.254590i \(-0.0819407\pi\)
\(108\) 0 0
\(109\) 8.35100i 0.799880i 0.916541 + 0.399940i \(0.130969\pi\)
−0.916541 + 0.399940i \(0.869031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.02255 0.754698 0.377349 0.926071i \(-0.376836\pi\)
0.377349 + 0.926071i \(0.376836\pi\)
\(114\) 0 0
\(115\) 4.48634i 0.418354i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.01127 −0.459383
\(120\) 0 0
\(121\) 3.95478 0.359525
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8574i 1.06056i
\(126\) 0 0
\(127\) −13.5014 −1.19806 −0.599028 0.800728i \(-0.704446\pi\)
−0.599028 + 0.800728i \(0.704446\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.90498i 0.515920i 0.966156 + 0.257960i \(0.0830503\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(132\) 0 0
\(133\) 12.2693i 1.06388i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.56636 −0.133824 −0.0669118 0.997759i \(-0.521315\pi\)
−0.0669118 + 0.997759i \(0.521315\pi\)
\(138\) 0 0
\(139\) 3.29225i 0.279245i 0.990205 + 0.139623i \(0.0445889\pi\)
−0.990205 + 0.139623i \(0.955411\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.8297 1.40737
\(144\) 0 0
\(145\) 2.49859 0.207497
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.70203i 0.221359i 0.993856 + 0.110679i \(0.0353027\pi\)
−0.993856 + 0.110679i \(0.964697\pi\)
\(150\) 0 0
\(151\) −2.88982 −0.235170 −0.117585 0.993063i \(-0.537515\pi\)
−0.117585 + 0.993063i \(0.537515\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 2.66020i − 0.213673i
\(156\) 0 0
\(157\) 1.01421i 0.0809428i 0.999181 + 0.0404714i \(0.0128860\pi\)
−0.999181 + 0.0404714i \(0.987114\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.2230 1.12093
\(162\) 0 0
\(163\) 15.5259i 1.21608i 0.793905 + 0.608042i \(0.208045\pi\)
−0.793905 + 0.608042i \(0.791955\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.9011 −1.23046 −0.615232 0.788346i \(-0.710938\pi\)
−0.615232 + 0.788346i \(0.710938\pi\)
\(168\) 0 0
\(169\) −27.2032 −2.09255
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 21.1752i − 1.60992i −0.593331 0.804959i \(-0.702187\pi\)
0.593331 0.804959i \(-0.297813\pi\)
\(174\) 0 0
\(175\) 12.5352 0.947574
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.5913i 1.24009i 0.784566 + 0.620045i \(0.212886\pi\)
−0.784566 + 0.620045i \(0.787114\pi\)
\(180\) 0 0
\(181\) − 11.7859i − 0.876042i −0.898965 0.438021i \(-0.855679\pi\)
0.898965 0.438021i \(-0.144321\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.84753 −0.135833
\(186\) 0 0
\(187\) − 2.65428i − 0.194100i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.96248 0.576145 0.288072 0.957609i \(-0.406986\pi\)
0.288072 + 0.957609i \(0.406986\pi\)
\(192\) 0 0
\(193\) 25.2229 1.81559 0.907793 0.419419i \(-0.137766\pi\)
0.907793 + 0.419419i \(0.137766\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 12.8833i − 0.917895i −0.888463 0.458948i \(-0.848227\pi\)
0.888463 0.458948i \(-0.151773\pi\)
\(198\) 0 0
\(199\) −0.339615 −0.0240747 −0.0120373 0.999928i \(-0.503832\pi\)
−0.0120373 + 0.999928i \(0.503832\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.92129i − 0.555966i
\(204\) 0 0
\(205\) 5.53465i 0.386557i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.49859 −0.449517
\(210\) 0 0
\(211\) 6.36434i 0.438139i 0.975709 + 0.219069i \(0.0703021\pi\)
−0.975709 + 0.219069i \(0.929698\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.3106 −0.703174
\(216\) 0 0
\(217\) −8.43364 −0.572512
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.34060i 0.426515i
\(222\) 0 0
\(223\) −13.0629 −0.874755 −0.437378 0.899278i \(-0.644093\pi\)
−0.437378 + 0.899278i \(0.644093\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 20.3705i − 1.35204i −0.736885 0.676018i \(-0.763704\pi\)
0.736885 0.676018i \(-0.236296\pi\)
\(228\) 0 0
\(229\) 17.9245i 1.18448i 0.805761 + 0.592241i \(0.201757\pi\)
−0.805761 + 0.592241i \(0.798243\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.8926 −1.04116 −0.520580 0.853813i \(-0.674284\pi\)
−0.520580 + 0.853813i \(0.674284\pi\)
\(234\) 0 0
\(235\) 13.9571i 0.910463i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.3537 −1.05783 −0.528916 0.848674i \(-0.677402\pi\)
−0.528916 + 0.848674i \(0.677402\pi\)
\(240\) 0 0
\(241\) 29.6820 1.91199 0.955994 0.293386i \(-0.0947820\pi\)
0.955994 + 0.293386i \(0.0947820\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28.6309i 1.82916i
\(246\) 0 0
\(247\) 15.5240 0.987765
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.7425i 1.49861i 0.662225 + 0.749305i \(0.269612\pi\)
−0.662225 + 0.749305i \(0.730388\pi\)
\(252\) 0 0
\(253\) 7.53342i 0.473622i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.9548 1.18237 0.591183 0.806537i \(-0.298661\pi\)
0.591183 + 0.806537i \(0.298661\pi\)
\(258\) 0 0
\(259\) 5.85723i 0.363951i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.54650 0.588662 0.294331 0.955703i \(-0.404903\pi\)
0.294331 + 0.955703i \(0.404903\pi\)
\(264\) 0 0
\(265\) 11.6539 0.715892
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.3467i 1.24056i 0.784379 + 0.620282i \(0.212982\pi\)
−0.784379 + 0.620282i \(0.787018\pi\)
\(270\) 0 0
\(271\) −28.8748 −1.75402 −0.877011 0.480471i \(-0.840466\pi\)
−0.877011 + 0.480471i \(0.840466\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.63944i 0.400373i
\(276\) 0 0
\(277\) − 10.4151i − 0.625780i −0.949789 0.312890i \(-0.898703\pi\)
0.949789 0.312890i \(-0.101297\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.2032 1.80177 0.900885 0.434057i \(-0.142918\pi\)
0.900885 + 0.434057i \(0.142918\pi\)
\(282\) 0 0
\(283\) − 26.6458i − 1.58393i −0.610568 0.791964i \(-0.709059\pi\)
0.610568 0.791964i \(-0.290941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.5465 1.03574
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.52580i 0.205979i 0.994682 + 0.102990i \(0.0328408\pi\)
−0.994682 + 0.102990i \(0.967159\pi\)
\(294\) 0 0
\(295\) 17.0423 0.992240
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 17.9959i − 1.04073i
\(300\) 0 0
\(301\) 32.6875i 1.88408i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.49859 −0.143069
\(306\) 0 0
\(307\) − 1.34483i − 0.0767534i −0.999263 0.0383767i \(-0.987781\pi\)
0.999263 0.0383767i \(-0.0122187\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 32.5803 1.84746 0.923730 0.383044i \(-0.125124\pi\)
0.923730 + 0.383044i \(0.125124\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 25.8814i − 1.45364i −0.686826 0.726822i \(-0.740996\pi\)
0.686826 0.726822i \(-0.259004\pi\)
\(318\) 0 0
\(319\) 4.19561 0.234909
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 2.44834i − 0.136229i
\(324\) 0 0
\(325\) − 15.8604i − 0.879777i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 44.2483 2.43949
\(330\) 0 0
\(331\) 1.26171i 0.0693499i 0.999399 + 0.0346749i \(0.0110396\pi\)
−0.999399 + 0.0346749i \(0.988960\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.5240 0.848164
\(336\) 0 0
\(337\) 17.8120 0.970279 0.485140 0.874437i \(-0.338769\pi\)
0.485140 + 0.874437i \(0.338769\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 4.46698i − 0.241901i
\(342\) 0 0
\(343\) 55.6896 3.00696
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.34210i 0.233096i 0.993185 + 0.116548i \(0.0371829\pi\)
−0.993185 + 0.116548i \(0.962817\pi\)
\(348\) 0 0
\(349\) 12.4908i 0.668615i 0.942464 + 0.334307i \(0.108502\pi\)
−0.942464 + 0.334307i \(0.891498\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.2782 −0.547055 −0.273527 0.961864i \(-0.588190\pi\)
−0.273527 + 0.961864i \(0.588190\pi\)
\(354\) 0 0
\(355\) 3.97178i 0.210800i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.45826 0.393632 0.196816 0.980440i \(-0.436940\pi\)
0.196816 + 0.980440i \(0.436940\pi\)
\(360\) 0 0
\(361\) 13.0056 0.684506
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 3.98516i − 0.208593i
\(366\) 0 0
\(367\) 6.92083 0.361264 0.180632 0.983551i \(-0.442186\pi\)
0.180632 + 0.983551i \(0.442186\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 36.9463i − 1.91815i
\(372\) 0 0
\(373\) − 22.0882i − 1.14369i −0.820363 0.571843i \(-0.806229\pi\)
0.820363 0.571843i \(-0.193771\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.0225 −0.516187
\(378\) 0 0
\(379\) 35.4430i 1.82058i 0.413968 + 0.910291i \(0.364143\pi\)
−0.413968 + 0.910291i \(0.635857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −28.5493 −1.45880 −0.729401 0.684087i \(-0.760201\pi\)
−0.729401 + 0.684087i \(0.760201\pi\)
\(384\) 0 0
\(385\) −21.0254 −1.07155
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.0218i 0.964443i 0.876049 + 0.482222i \(0.160170\pi\)
−0.876049 + 0.482222i \(0.839830\pi\)
\(390\) 0 0
\(391\) −2.83821 −0.143534
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1.28931i − 0.0648724i
\(396\) 0 0
\(397\) 6.52486i 0.327473i 0.986504 + 0.163737i \(0.0523547\pi\)
−0.986504 + 0.163737i \(0.947645\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.41096 0.270210 0.135105 0.990831i \(-0.456863\pi\)
0.135105 + 0.990831i \(0.456863\pi\)
\(402\) 0 0
\(403\) 10.6708i 0.531550i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.10236 −0.153778
\(408\) 0 0
\(409\) −28.4307 −1.40581 −0.702904 0.711285i \(-0.748114\pi\)
−0.702904 + 0.711285i \(0.748114\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 54.0291i − 2.65860i
\(414\) 0 0
\(415\) −12.9972 −0.638007
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.4224i 0.704581i 0.935891 + 0.352290i \(0.114597\pi\)
−0.935891 + 0.352290i \(0.885403\pi\)
\(420\) 0 0
\(421\) − 21.2645i − 1.03637i −0.855270 0.518183i \(-0.826609\pi\)
0.855270 0.518183i \(-0.173391\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.50141 −0.121336
\(426\) 0 0
\(427\) 7.92129i 0.383338i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.4752 0.889917 0.444958 0.895551i \(-0.353218\pi\)
0.444958 + 0.895551i \(0.353218\pi\)
\(432\) 0 0
\(433\) −27.1580 −1.30513 −0.652564 0.757733i \(-0.726307\pi\)
−0.652564 + 0.757733i \(0.726307\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.94891i 0.332411i
\(438\) 0 0
\(439\) −2.29647 −0.109605 −0.0548023 0.998497i \(-0.517453\pi\)
−0.0548023 + 0.998497i \(0.517453\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 14.9912i − 0.712254i −0.934438 0.356127i \(-0.884097\pi\)
0.934438 0.356127i \(-0.115903\pi\)
\(444\) 0 0
\(445\) − 2.29734i − 0.108904i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.6567 0.974849 0.487425 0.873165i \(-0.337936\pi\)
0.487425 + 0.873165i \(0.337936\pi\)
\(450\) 0 0
\(451\) 9.29372i 0.437624i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 50.2257 2.35462
\(456\) 0 0
\(457\) 26.4206 1.23590 0.617952 0.786216i \(-0.287963\pi\)
0.617952 + 0.786216i \(0.287963\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.2364i 1.82742i 0.406365 + 0.913711i \(0.366796\pi\)
−0.406365 + 0.913711i \(0.633204\pi\)
\(462\) 0 0
\(463\) −7.30774 −0.339620 −0.169810 0.985477i \(-0.554315\pi\)
−0.169810 + 0.985477i \(0.554315\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.3923i 1.12874i 0.825522 + 0.564370i \(0.190881\pi\)
−0.825522 + 0.564370i \(0.809119\pi\)
\(468\) 0 0
\(469\) − 49.2156i − 2.27256i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17.3134 −0.796069
\(474\) 0 0
\(475\) 6.12430i 0.281002i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.68012 −0.305223 −0.152611 0.988286i \(-0.548768\pi\)
−0.152611 + 0.988286i \(0.548768\pi\)
\(480\) 0 0
\(481\) 7.41096 0.337911
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 11.3103i − 0.513575i
\(486\) 0 0
\(487\) −17.2314 −0.780829 −0.390414 0.920639i \(-0.627668\pi\)
−0.390414 + 0.920639i \(0.627668\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 8.73548i − 0.394227i −0.980381 0.197113i \(-0.936843\pi\)
0.980381 0.197113i \(-0.0631567\pi\)
\(492\) 0 0
\(493\) 1.58069i 0.0711909i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.5917 0.564816
\(498\) 0 0
\(499\) 5.23137i 0.234188i 0.993121 + 0.117094i \(0.0373579\pi\)
−0.993121 + 0.117094i \(0.962642\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.39969 0.106997 0.0534984 0.998568i \(-0.482963\pi\)
0.0534984 + 0.998568i \(0.482963\pi\)
\(504\) 0 0
\(505\) −13.7176 −0.610426
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 6.72283i − 0.297984i −0.988838 0.148992i \(-0.952397\pi\)
0.988838 0.148992i \(-0.0476029\pi\)
\(510\) 0 0
\(511\) −12.6341 −0.558901
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.2747i 0.496821i
\(516\) 0 0
\(517\) 23.4367i 1.03074i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23.2754 −1.01971 −0.509857 0.860259i \(-0.670302\pi\)
−0.509857 + 0.860259i \(0.670302\pi\)
\(522\) 0 0
\(523\) − 3.46255i − 0.151407i −0.997130 0.0757034i \(-0.975880\pi\)
0.997130 0.0757034i \(-0.0241202\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.68293 0.0733097
\(528\) 0 0
\(529\) −14.9446 −0.649764
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 22.2010i − 0.961632i
\(534\) 0 0
\(535\) 8.32553 0.359944
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 48.0767i 2.07081i
\(540\) 0 0
\(541\) 9.41268i 0.404683i 0.979315 + 0.202341i \(0.0648551\pi\)
−0.979315 + 0.202341i \(0.935145\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.2004 −0.565442
\(546\) 0 0
\(547\) − 8.92340i − 0.381537i −0.981635 0.190768i \(-0.938902\pi\)
0.981635 0.190768i \(-0.0610980\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.87008 0.164871
\(552\) 0 0
\(553\) −4.08751 −0.173818
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 8.36902i − 0.354607i −0.984156 0.177303i \(-0.943263\pi\)
0.984156 0.177303i \(-0.0567374\pi\)
\(558\) 0 0
\(559\) 41.3585 1.74928
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.1127i 0.510488i 0.966877 + 0.255244i \(0.0821557\pi\)
−0.966877 + 0.255244i \(0.917844\pi\)
\(564\) 0 0
\(565\) 12.6812i 0.533502i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.8542 −0.790411 −0.395206 0.918593i \(-0.629327\pi\)
−0.395206 + 0.918593i \(0.629327\pi\)
\(570\) 0 0
\(571\) − 3.35775i − 0.140517i −0.997529 0.0702587i \(-0.977618\pi\)
0.997529 0.0702587i \(-0.0223825\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.09951 0.296070
\(576\) 0 0
\(577\) −24.7442 −1.03011 −0.515057 0.857156i \(-0.672229\pi\)
−0.515057 + 0.857156i \(0.672229\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 41.2050i 1.70947i
\(582\) 0 0
\(583\) 19.5690 0.810467
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.2517i 1.04225i 0.853481 + 0.521124i \(0.174487\pi\)
−0.853481 + 0.521124i \(0.825513\pi\)
\(588\) 0 0
\(589\) − 4.12039i − 0.169778i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.1581 −0.909924 −0.454962 0.890511i \(-0.650347\pi\)
−0.454962 + 0.890511i \(0.650347\pi\)
\(594\) 0 0
\(595\) − 7.92129i − 0.324741i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.4007 −1.40558 −0.702788 0.711399i \(-0.748062\pi\)
−0.702788 + 0.711399i \(0.748062\pi\)
\(600\) 0 0
\(601\) −25.2908 −1.03163 −0.515817 0.856699i \(-0.672512\pi\)
−0.515817 + 0.856699i \(0.672512\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.25129i 0.254151i
\(606\) 0 0
\(607\) −14.2041 −0.576526 −0.288263 0.957551i \(-0.593078\pi\)
−0.288263 + 0.957551i \(0.593078\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 55.9859i − 2.26495i
\(612\) 0 0
\(613\) 33.8370i 1.36666i 0.730108 + 0.683332i \(0.239470\pi\)
−0.730108 + 0.683332i \(0.760530\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −33.3261 −1.34166 −0.670830 0.741611i \(-0.734062\pi\)
−0.670830 + 0.741611i \(0.734062\pi\)
\(618\) 0 0
\(619\) − 17.9900i − 0.723080i −0.932357 0.361540i \(-0.882251\pi\)
0.932357 0.361540i \(-0.117749\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.28325 −0.291797
\(624\) 0 0
\(625\) −6.23595 −0.249438
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1.16881i − 0.0466035i
\(630\) 0 0
\(631\) 9.75904 0.388501 0.194251 0.980952i \(-0.437773\pi\)
0.194251 + 0.980952i \(0.437773\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 21.3416i − 0.846915i
\(636\) 0 0
\(637\) − 114.846i − 4.55038i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.1525 0.479994 0.239997 0.970774i \(-0.422854\pi\)
0.239997 + 0.970774i \(0.422854\pi\)
\(642\) 0 0
\(643\) − 20.1310i − 0.793890i −0.917842 0.396945i \(-0.870070\pi\)
0.917842 0.396945i \(-0.129930\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.21254 0.322868 0.161434 0.986883i \(-0.448388\pi\)
0.161434 + 0.986883i \(0.448388\pi\)
\(648\) 0 0
\(649\) 28.6172 1.12332
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 39.5293i − 1.54690i −0.633856 0.773451i \(-0.718529\pi\)
0.633856 0.773451i \(-0.281471\pi\)
\(654\) 0 0
\(655\) −9.33396 −0.364708
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.5399i 0.605348i 0.953094 + 0.302674i \(0.0978793\pi\)
−0.953094 + 0.302674i \(0.902121\pi\)
\(660\) 0 0
\(661\) 46.1373i 1.79453i 0.441489 + 0.897267i \(0.354450\pi\)
−0.441489 + 0.897267i \(0.645550\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.3940 −0.752068
\(666\) 0 0
\(667\) − 4.48634i − 0.173712i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.19561 −0.161970
\(672\) 0 0
\(673\) −32.0095 −1.23388 −0.616938 0.787012i \(-0.711627\pi\)
−0.616938 + 0.787012i \(0.711627\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 13.7551i − 0.528650i −0.964434 0.264325i \(-0.914851\pi\)
0.964434 0.264325i \(-0.0851491\pi\)
\(678\) 0 0
\(679\) −35.8571 −1.37607
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 23.7998i − 0.910674i −0.890319 0.455337i \(-0.849519\pi\)
0.890319 0.455337i \(-0.150481\pi\)
\(684\) 0 0
\(685\) − 2.47594i − 0.0946010i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −46.7469 −1.78091
\(690\) 0 0
\(691\) − 37.8178i − 1.43866i −0.694671 0.719328i \(-0.744450\pi\)
0.694671 0.719328i \(-0.255550\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.20404 −0.197401
\(696\) 0 0
\(697\) −3.50141 −0.132625
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.14594i 0.156590i 0.996930 + 0.0782950i \(0.0249476\pi\)
−0.996930 + 0.0782950i \(0.975052\pi\)
\(702\) 0 0
\(703\) −2.86165 −0.107929
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 43.4889i 1.63557i
\(708\) 0 0
\(709\) − 47.2230i − 1.77350i −0.462252 0.886748i \(-0.652959\pi\)
0.462252 0.886748i \(-0.347041\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.77652 −0.178882
\(714\) 0 0
\(715\) 26.6027i 0.994884i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.5647 −0.729642 −0.364821 0.931078i \(-0.618870\pi\)
−0.364821 + 0.931078i \(0.618870\pi\)
\(720\) 0 0
\(721\) 35.7441 1.33118
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 3.95396i − 0.146846i
\(726\) 0 0
\(727\) −2.57406 −0.0954668 −0.0477334 0.998860i \(-0.515200\pi\)
−0.0477334 + 0.998860i \(0.515200\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 6.52280i − 0.241255i
\(732\) 0 0
\(733\) 8.78689i 0.324551i 0.986745 + 0.162276i \(0.0518833\pi\)
−0.986745 + 0.162276i \(0.948117\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 26.0676 0.960214
\(738\) 0 0
\(739\) 21.3574i 0.785643i 0.919615 + 0.392822i \(0.128501\pi\)
−0.919615 + 0.392822i \(0.871499\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.6886 −0.575557 −0.287779 0.957697i \(-0.592917\pi\)
−0.287779 + 0.957697i \(0.592917\pi\)
\(744\) 0 0
\(745\) −4.27108 −0.156480
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 26.3944i − 0.964431i
\(750\) 0 0
\(751\) 19.4799 0.710832 0.355416 0.934708i \(-0.384339\pi\)
0.355416 + 0.934708i \(0.384339\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 4.56792i − 0.166244i
\(756\) 0 0
\(757\) − 18.0194i − 0.654927i −0.944864 0.327463i \(-0.893806\pi\)
0.944864 0.327463i \(-0.106194\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.8671 1.15518 0.577592 0.816326i \(-0.303993\pi\)
0.577592 + 0.816326i \(0.303993\pi\)
\(762\) 0 0
\(763\) 41.8491i 1.51504i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −68.3613 −2.46838
\(768\) 0 0
\(769\) −2.60475 −0.0939296 −0.0469648 0.998897i \(-0.514955\pi\)
−0.0469648 + 0.998897i \(0.514955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 9.40703i − 0.338347i −0.985586 0.169174i \(-0.945890\pi\)
0.985586 0.169174i \(-0.0541099\pi\)
\(774\) 0 0
\(775\) −4.20970 −0.151217
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.57264i 0.307147i
\(780\) 0 0
\(781\) 6.66936i 0.238649i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.60316 −0.0572191
\(786\) 0 0
\(787\) − 3.38310i − 0.120594i −0.998180 0.0602972i \(-0.980795\pi\)
0.998180 0.0602972i \(-0.0192048\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.2032 1.42946
\(792\) 0 0
\(793\) 10.0225 0.355911
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.3351i 0.720307i 0.932893 + 0.360153i \(0.117276\pi\)
−0.932893 + 0.360153i \(0.882724\pi\)
\(798\) 0 0
\(799\) −8.82975 −0.312374
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 6.69183i − 0.236149i
\(804\) 0 0
\(805\) 22.4823i 0.792397i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.1507 −1.55226 −0.776128 0.630576i \(-0.782819\pi\)
−0.776128 + 0.630576i \(0.782819\pi\)
\(810\) 0 0
\(811\) − 7.73677i − 0.271675i −0.990731 0.135837i \(-0.956628\pi\)
0.990731 0.135837i \(-0.0433725\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.5417 −0.859660
\(816\) 0 0
\(817\) −15.9700 −0.558721
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 48.5660i − 1.69496i −0.530824 0.847482i \(-0.678118\pi\)
0.530824 0.847482i \(-0.321882\pi\)
\(822\) 0 0
\(823\) 37.3368 1.30148 0.650740 0.759301i \(-0.274459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 36.3380i − 1.26360i −0.775133 0.631798i \(-0.782317\pi\)
0.775133 0.631798i \(-0.217683\pi\)
\(828\) 0 0
\(829\) 10.6053i 0.368337i 0.982895 + 0.184169i \(0.0589593\pi\)
−0.982895 + 0.184169i \(0.941041\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.1129 −0.627574
\(834\) 0 0
\(835\) − 25.1348i − 0.869824i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.2821 −1.49426 −0.747132 0.664676i \(-0.768570\pi\)
−0.747132 + 0.664676i \(0.768570\pi\)
\(840\) 0 0
\(841\) 26.5014 0.913842
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 42.9999i − 1.47924i
\(846\) 0 0
\(847\) 19.8185 0.680971
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.31733i 0.113717i
\(852\) 0 0
\(853\) − 39.7672i − 1.36160i −0.732467 0.680802i \(-0.761631\pi\)
0.732467 0.680802i \(-0.238369\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9672 0.511271 0.255636 0.966773i \(-0.417715\pi\)
0.255636 + 0.966773i \(0.417715\pi\)
\(858\) 0 0
\(859\) − 47.5063i − 1.62090i −0.585811 0.810448i \(-0.699224\pi\)
0.585811 0.810448i \(-0.300776\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.9221 −0.712198 −0.356099 0.934448i \(-0.615893\pi\)
−0.356099 + 0.934448i \(0.615893\pi\)
\(864\) 0 0
\(865\) 33.4715 1.13806
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 2.16500i − 0.0734426i
\(870\) 0 0
\(871\) −62.2708 −2.10997
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 59.4208i 2.00879i
\(876\) 0 0
\(877\) 29.6926i 1.00265i 0.865260 + 0.501324i \(0.167153\pi\)
−0.865260 + 0.501324i \(0.832847\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.1976 0.545710 0.272855 0.962055i \(-0.412032\pi\)
0.272855 + 0.962055i \(0.412032\pi\)
\(882\) 0 0
\(883\) − 37.4853i − 1.26148i −0.775993 0.630741i \(-0.782751\pi\)
0.775993 0.630741i \(-0.217249\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.05161 −0.270347 −0.135173 0.990822i \(-0.543159\pi\)
−0.135173 + 0.990822i \(0.543159\pi\)
\(888\) 0 0
\(889\) −67.6592 −2.26922
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21.6182i 0.723427i
\(894\) 0 0
\(895\) −26.2257 −0.876630
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.66020i 0.0887227i
\(900\) 0 0
\(901\) 7.37263i 0.245618i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.6300 0.619281
\(906\) 0 0
\(907\) 33.3609i 1.10773i 0.832606 + 0.553865i \(0.186848\pi\)
−0.832606 + 0.553865i \(0.813152\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.7866 −0.854347 −0.427174 0.904170i \(-0.640491\pi\)
−0.427174 + 0.904170i \(0.640491\pi\)
\(912\) 0 0
\(913\) −21.8247 −0.722293
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.5915i 0.977196i
\(918\) 0 0
\(919\) 25.8720 0.853440 0.426720 0.904384i \(-0.359669\pi\)
0.426720 + 0.904384i \(0.359669\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 15.9319i − 0.524404i
\(924\) 0 0
\(925\) 2.92367i 0.0961297i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40.6849 −1.33483 −0.667413 0.744687i \(-0.732599\pi\)
−0.667413 + 0.744687i \(0.732599\pi\)
\(930\) 0 0
\(931\) 44.3465i 1.45340i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.19561 0.137211
\(936\) 0 0
\(937\) −0.426795 −0.0139428 −0.00697140 0.999976i \(-0.502219\pi\)
−0.00697140 + 0.999976i \(0.502219\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.4487i 0.699208i 0.936898 + 0.349604i \(0.113684\pi\)
−0.936898 + 0.349604i \(0.886316\pi\)
\(942\) 0 0
\(943\) 9.93772 0.323617
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 45.9708i − 1.49385i −0.664908 0.746925i \(-0.731529\pi\)
0.664908 0.746925i \(-0.268471\pi\)
\(948\) 0 0
\(949\) 15.9856i 0.518913i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28.3714 −0.919038 −0.459519 0.888168i \(-0.651978\pi\)
−0.459519 + 0.888168i \(0.651978\pi\)
\(954\) 0 0
\(955\) 12.5862i 0.407281i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.84948 −0.253473
\(960\) 0 0
\(961\) −28.1677 −0.908637
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 39.8697i 1.28345i
\(966\) 0 0
\(967\) 29.4541 0.947180 0.473590 0.880745i \(-0.342958\pi\)
0.473590 + 0.880745i \(0.342958\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38.8816i 1.24777i 0.781516 + 0.623885i \(0.214446\pi\)
−0.781516 + 0.623885i \(0.785554\pi\)
\(972\) 0 0
\(973\) 16.4984i 0.528914i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −51.5465 −1.64912 −0.824559 0.565775i \(-0.808577\pi\)
−0.824559 + 0.565775i \(0.808577\pi\)
\(978\) 0 0
\(979\) − 3.85766i − 0.123291i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.7261 1.26707 0.633533 0.773716i \(-0.281604\pi\)
0.633533 + 0.773716i \(0.281604\pi\)
\(984\) 0 0
\(985\) 20.3645 0.648868
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.5131i 0.588682i
\(990\) 0 0
\(991\) −8.01408 −0.254576 −0.127288 0.991866i \(-0.540627\pi\)
−0.127288 + 0.991866i \(0.540627\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 0.536828i − 0.0170186i
\(996\) 0 0
\(997\) 18.6589i 0.590934i 0.955353 + 0.295467i \(0.0954753\pi\)
−0.955353 + 0.295467i \(0.904525\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4896.2.f.d.2449.6 8
3.2 odd 2 544.2.c.b.273.7 8
4.3 odd 2 1224.2.f.c.613.7 8
8.3 odd 2 1224.2.f.c.613.8 8
8.5 even 2 inner 4896.2.f.d.2449.3 8
12.11 even 2 136.2.c.b.69.2 yes 8
24.5 odd 2 544.2.c.b.273.2 8
24.11 even 2 136.2.c.b.69.1 8
48.5 odd 4 4352.2.a.bb.1.7 8
48.11 even 4 4352.2.a.bf.1.2 8
48.29 odd 4 4352.2.a.bb.1.2 8
48.35 even 4 4352.2.a.bf.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.1 8 24.11 even 2
136.2.c.b.69.2 yes 8 12.11 even 2
544.2.c.b.273.2 8 24.5 odd 2
544.2.c.b.273.7 8 3.2 odd 2
1224.2.f.c.613.7 8 4.3 odd 2
1224.2.f.c.613.8 8 8.3 odd 2
4352.2.a.bb.1.2 8 48.29 odd 4
4352.2.a.bb.1.7 8 48.5 odd 4
4352.2.a.bf.1.2 8 48.11 even 4
4352.2.a.bf.1.7 8 48.35 even 4
4896.2.f.d.2449.3 8 8.5 even 2 inner
4896.2.f.d.2449.6 8 1.1 even 1 trivial