Properties

Label 1224.2.f.c.613.8
Level $1224$
Weight $2$
Character 1224.613
Analytic conductor $9.774$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1224,2,Mod(613,1224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1224.613"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,0,1,0,0,-12,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 613.8
Root \(1.33209 + 0.474920i\) of defining polynomial
Character \(\chi\) \(=\) 1224.613
Dual form 1224.2.f.c.613.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33209 + 0.474920i) q^{2} +(1.54890 + 1.26527i) q^{4} -1.58069i q^{5} -5.01127 q^{7} +(1.46237 + 2.42105i) q^{8} +(0.750703 - 2.10562i) q^{10} +2.65428i q^{11} +6.34060i q^{13} +(-6.67544 - 2.37995i) q^{14} +(0.798200 + 3.91955i) q^{16} -1.00000 q^{17} +2.44834i q^{19} +(2.00000 - 2.44834i) q^{20} +(-1.26057 + 3.53573i) q^{22} -2.83821 q^{23} +2.50141 q^{25} +(-3.01127 + 8.44622i) q^{26} +(-7.76198 - 6.34060i) q^{28} +1.58069i q^{29} +1.68293 q^{31} +(-0.798200 + 5.60026i) q^{32} +(-1.33209 - 0.474920i) q^{34} +7.92129i q^{35} -1.16881i q^{37} +(-1.16277 + 3.26140i) q^{38} +(3.82694 - 2.31156i) q^{40} +3.50141 q^{41} +6.52280i q^{43} +(-3.35838 + 4.11123i) q^{44} +(-3.78074 - 1.34792i) q^{46} -8.82975 q^{47} +18.1129 q^{49} +(3.33209 + 1.18797i) q^{50} +(-8.02255 + 9.82097i) q^{52} +7.37263i q^{53} +4.19561 q^{55} +(-7.32834 - 12.1325i) q^{56} +(-0.750703 + 2.10562i) q^{58} -10.7815i q^{59} -1.58069i q^{61} +(2.24181 + 0.799257i) q^{62} +(-3.72294 + 7.08094i) q^{64} +10.0225 q^{65} -9.82097i q^{67} +(-1.54890 - 1.26527i) q^{68} +(-3.76198 + 10.5518i) q^{70} -2.51268 q^{71} -2.52114 q^{73} +(0.555091 - 1.55696i) q^{74} +(-3.09781 + 3.79224i) q^{76} -13.3013i q^{77} +0.815662 q^{79} +(6.19561 - 1.26171i) q^{80} +(4.66417 + 1.66289i) q^{82} +8.22246i q^{83} +1.58069i q^{85} +(-3.09781 + 8.68893i) q^{86} +(-6.42615 + 3.88155i) q^{88} -1.45337 q^{89} -31.7745i q^{91} +(-4.39611 - 3.59109i) q^{92} +(-11.7620 - 4.19342i) q^{94} +3.87008 q^{95} -7.15528 q^{97} +(24.1279 + 8.60215i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + q^{4} - 12 q^{7} - 5 q^{8} - 8 q^{10} - 6 q^{14} + 9 q^{16} - 8 q^{17} + 16 q^{20} + 4 q^{22} + 16 q^{23} - 8 q^{25} + 4 q^{26} - 20 q^{28} + 24 q^{31} - 9 q^{32} - q^{34} - 18 q^{38} + 20 q^{40}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33209 + 0.474920i 0.941927 + 0.335819i
\(3\) 0 0
\(4\) 1.54890 + 1.26527i 0.774451 + 0.632633i
\(5\) 1.58069i 0.706908i −0.935452 0.353454i \(-0.885007\pi\)
0.935452 0.353454i \(-0.114993\pi\)
\(6\) 0 0
\(7\) −5.01127 −1.89408 −0.947042 0.321110i \(-0.895944\pi\)
−0.947042 + 0.321110i \(0.895944\pi\)
\(8\) 1.46237 + 2.42105i 0.517026 + 0.855970i
\(9\) 0 0
\(10\) 0.750703 2.10562i 0.237393 0.665855i
\(11\) 2.65428i 0.800297i 0.916450 + 0.400148i \(0.131041\pi\)
−0.916450 + 0.400148i \(0.868959\pi\)
\(12\) 0 0
\(13\) 6.34060i 1.75857i 0.476300 + 0.879283i \(0.341978\pi\)
−0.476300 + 0.879283i \(0.658022\pi\)
\(14\) −6.67544 2.37995i −1.78409 0.636069i
\(15\) 0 0
\(16\) 0.798200 + 3.91955i 0.199550 + 0.979888i
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.44834i 0.561688i 0.959753 + 0.280844i \(0.0906144\pi\)
−0.959753 + 0.280844i \(0.909386\pi\)
\(20\) 2.00000 2.44834i 0.447214 0.547466i
\(21\) 0 0
\(22\) −1.26057 + 3.53573i −0.268755 + 0.753821i
\(23\) −2.83821 −0.591808 −0.295904 0.955218i \(-0.595621\pi\)
−0.295904 + 0.955218i \(0.595621\pi\)
\(24\) 0 0
\(25\) 2.50141 0.500281
\(26\) −3.01127 + 8.44622i −0.590559 + 1.65644i
\(27\) 0 0
\(28\) −7.76198 6.34060i −1.46688 1.19826i
\(29\) 1.58069i 0.293528i 0.989172 + 0.146764i \(0.0468857\pi\)
−0.989172 + 0.146764i \(0.953114\pi\)
\(30\) 0 0
\(31\) 1.68293 0.302264 0.151132 0.988514i \(-0.451708\pi\)
0.151132 + 0.988514i \(0.451708\pi\)
\(32\) −0.798200 + 5.60026i −0.141103 + 0.989995i
\(33\) 0 0
\(34\) −1.33209 0.474920i −0.228451 0.0814480i
\(35\) 7.92129i 1.33894i
\(36\) 0 0
\(37\) 1.16881i 0.192151i −0.995374 0.0960757i \(-0.969371\pi\)
0.995374 0.0960757i \(-0.0306291\pi\)
\(38\) −1.16277 + 3.26140i −0.188625 + 0.529069i
\(39\) 0 0
\(40\) 3.82694 2.31156i 0.605092 0.365490i
\(41\) 3.50141 0.546828 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(42\) 0 0
\(43\) 6.52280i 0.994718i 0.867545 + 0.497359i \(0.165697\pi\)
−0.867545 + 0.497359i \(0.834303\pi\)
\(44\) −3.35838 + 4.11123i −0.506294 + 0.619791i
\(45\) 0 0
\(46\) −3.78074 1.34792i −0.557439 0.198740i
\(47\) −8.82975 −1.28795 −0.643975 0.765046i \(-0.722716\pi\)
−0.643975 + 0.765046i \(0.722716\pi\)
\(48\) 0 0
\(49\) 18.1129 2.58755
\(50\) 3.33209 + 1.18797i 0.471228 + 0.168004i
\(51\) 0 0
\(52\) −8.02255 + 9.82097i −1.11253 + 1.36192i
\(53\) 7.37263i 1.01271i 0.862326 + 0.506354i \(0.169007\pi\)
−0.862326 + 0.506354i \(0.830993\pi\)
\(54\) 0 0
\(55\) 4.19561 0.565736
\(56\) −7.32834 12.1325i −0.979291 1.62128i
\(57\) 0 0
\(58\) −0.750703 + 2.10562i −0.0985721 + 0.276481i
\(59\) 10.7815i 1.40363i −0.712357 0.701817i \(-0.752372\pi\)
0.712357 0.701817i \(-0.247628\pi\)
\(60\) 0 0
\(61\) 1.58069i 0.202387i −0.994867 0.101194i \(-0.967734\pi\)
0.994867 0.101194i \(-0.0322661\pi\)
\(62\) 2.24181 + 0.799257i 0.284710 + 0.101506i
\(63\) 0 0
\(64\) −3.72294 + 7.08094i −0.465368 + 0.885117i
\(65\) 10.0225 1.24314
\(66\) 0 0
\(67\) 9.82097i 1.19982i −0.800067 0.599911i \(-0.795203\pi\)
0.800067 0.599911i \(-0.204797\pi\)
\(68\) −1.54890 1.26527i −0.187832 0.153436i
\(69\) 0 0
\(70\) −3.76198 + 10.5518i −0.449642 + 1.26119i
\(71\) −2.51268 −0.298200 −0.149100 0.988822i \(-0.547638\pi\)
−0.149100 + 0.988822i \(0.547638\pi\)
\(72\) 0 0
\(73\) −2.52114 −0.295077 −0.147539 0.989056i \(-0.547135\pi\)
−0.147539 + 0.989056i \(0.547135\pi\)
\(74\) 0.555091 1.55696i 0.0645280 0.180992i
\(75\) 0 0
\(76\) −3.09781 + 3.79224i −0.355343 + 0.435000i
\(77\) 13.3013i 1.51583i
\(78\) 0 0
\(79\) 0.815662 0.0917692 0.0458846 0.998947i \(-0.485389\pi\)
0.0458846 + 0.998947i \(0.485389\pi\)
\(80\) 6.19561 1.26171i 0.692690 0.141064i
\(81\) 0 0
\(82\) 4.66417 + 1.66289i 0.515071 + 0.183635i
\(83\) 8.22246i 0.902532i 0.892390 + 0.451266i \(0.149027\pi\)
−0.892390 + 0.451266i \(0.850973\pi\)
\(84\) 0 0
\(85\) 1.58069i 0.171450i
\(86\) −3.09781 + 8.68893i −0.334045 + 0.936951i
\(87\) 0 0
\(88\) −6.42615 + 3.88155i −0.685030 + 0.413774i
\(89\) −1.45337 −0.154057 −0.0770286 0.997029i \(-0.524543\pi\)
−0.0770286 + 0.997029i \(0.524543\pi\)
\(90\) 0 0
\(91\) 31.7745i 3.33087i
\(92\) −4.39611 3.59109i −0.458326 0.374397i
\(93\) 0 0
\(94\) −11.7620 4.19342i −1.21316 0.432518i
\(95\) 3.87008 0.397062
\(96\) 0 0
\(97\) −7.15528 −0.726508 −0.363254 0.931690i \(-0.618334\pi\)
−0.363254 + 0.931690i \(0.618334\pi\)
\(98\) 24.1279 + 8.60215i 2.43728 + 0.868949i
\(99\) 0 0
\(100\) 3.87443 + 3.16494i 0.387443 + 0.316494i
\(101\) 8.67822i 0.863515i −0.901990 0.431758i \(-0.857894\pi\)
0.901990 0.431758i \(-0.142106\pi\)
\(102\) 0 0
\(103\) −7.13273 −0.702809 −0.351404 0.936224i \(-0.614296\pi\)
−0.351404 + 0.936224i \(0.614296\pi\)
\(104\) −15.3509 + 9.27231i −1.50528 + 0.909224i
\(105\) 0 0
\(106\) −3.50141 + 9.82097i −0.340087 + 0.953897i
\(107\) 5.26701i 0.509181i −0.967049 0.254590i \(-0.918059\pi\)
0.967049 0.254590i \(-0.0819407\pi\)
\(108\) 0 0
\(109\) 8.35100i 0.799880i −0.916541 0.399940i \(-0.869031\pi\)
0.916541 0.399940i \(-0.130969\pi\)
\(110\) 5.58891 + 1.99258i 0.532882 + 0.189985i
\(111\) 0 0
\(112\) −4.00000 19.6419i −0.377964 1.85599i
\(113\) 8.02255 0.754698 0.377349 0.926071i \(-0.376836\pi\)
0.377349 + 0.926071i \(0.376836\pi\)
\(114\) 0 0
\(115\) 4.48634i 0.418354i
\(116\) −2.00000 + 2.44834i −0.185695 + 0.227323i
\(117\) 0 0
\(118\) 5.12035 14.3619i 0.471367 1.32212i
\(119\) 5.01127 0.459383
\(120\) 0 0
\(121\) 3.95478 0.359525
\(122\) 0.750703 2.10562i 0.0679654 0.190634i
\(123\) 0 0
\(124\) 2.60670 + 2.12936i 0.234088 + 0.191222i
\(125\) 11.8574i 1.06056i
\(126\) 0 0
\(127\) 13.5014 1.19806 0.599028 0.800728i \(-0.295554\pi\)
0.599028 + 0.800728i \(0.295554\pi\)
\(128\) −8.32215 + 7.66432i −0.735581 + 0.677436i
\(129\) 0 0
\(130\) 13.3509 + 4.75990i 1.17095 + 0.417471i
\(131\) 5.90498i 0.515920i 0.966156 + 0.257960i \(0.0830503\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(132\) 0 0
\(133\) 12.2693i 1.06388i
\(134\) 4.66417 13.0824i 0.402923 1.13014i
\(135\) 0 0
\(136\) −1.46237 2.42105i −0.125397 0.207603i
\(137\) −1.56636 −0.133824 −0.0669118 0.997759i \(-0.521315\pi\)
−0.0669118 + 0.997759i \(0.521315\pi\)
\(138\) 0 0
\(139\) 3.29225i 0.279245i 0.990205 + 0.139623i \(0.0445889\pi\)
−0.990205 + 0.139623i \(0.955411\pi\)
\(140\) −10.0225 + 12.2693i −0.847060 + 1.03695i
\(141\) 0 0
\(142\) −3.34710 1.19332i −0.280883 0.100141i
\(143\) −16.8297 −1.40737
\(144\) 0 0
\(145\) 2.49859 0.207497
\(146\) −3.35838 1.19734i −0.277941 0.0990925i
\(147\) 0 0
\(148\) 1.47886 1.81037i 0.121561 0.148812i
\(149\) 2.70203i 0.221359i −0.993856 0.110679i \(-0.964697\pi\)
0.993856 0.110679i \(-0.0353027\pi\)
\(150\) 0 0
\(151\) 2.88982 0.235170 0.117585 0.993063i \(-0.462485\pi\)
0.117585 + 0.993063i \(0.462485\pi\)
\(152\) −5.92755 + 3.58038i −0.480788 + 0.290408i
\(153\) 0 0
\(154\) 6.31707 17.7185i 0.509044 1.42780i
\(155\) 2.66020i 0.213673i
\(156\) 0 0
\(157\) 1.01421i 0.0809428i −0.999181 0.0404714i \(-0.987114\pi\)
0.999181 0.0404714i \(-0.0128860\pi\)
\(158\) 1.08653 + 0.387374i 0.0864398 + 0.0308178i
\(159\) 0 0
\(160\) 8.85229 + 1.26171i 0.699835 + 0.0997470i
\(161\) 14.2230 1.12093
\(162\) 0 0
\(163\) 15.5259i 1.21608i 0.793905 + 0.608042i \(0.208045\pi\)
−0.793905 + 0.608042i \(0.791955\pi\)
\(164\) 5.42334 + 4.43021i 0.423491 + 0.345941i
\(165\) 0 0
\(166\) −3.90500 + 10.9530i −0.303087 + 0.850119i
\(167\) 15.9011 1.23046 0.615232 0.788346i \(-0.289062\pi\)
0.615232 + 0.788346i \(0.289062\pi\)
\(168\) 0 0
\(169\) −27.2032 −2.09255
\(170\) −0.750703 + 2.10562i −0.0575763 + 0.161494i
\(171\) 0 0
\(172\) −8.25308 + 10.1032i −0.629292 + 0.770361i
\(173\) 21.1752i 1.60992i 0.593331 + 0.804959i \(0.297813\pi\)
−0.593331 + 0.804959i \(0.702187\pi\)
\(174\) 0 0
\(175\) −12.5352 −0.947574
\(176\) −10.4036 + 2.11865i −0.784201 + 0.159699i
\(177\) 0 0
\(178\) −1.93602 0.690235i −0.145111 0.0517353i
\(179\) 16.5913i 1.24009i 0.784566 + 0.620045i \(0.212886\pi\)
−0.784566 + 0.620045i \(0.787114\pi\)
\(180\) 0 0
\(181\) 11.7859i 0.876042i 0.898965 + 0.438021i \(0.144321\pi\)
−0.898965 + 0.438021i \(0.855679\pi\)
\(182\) 15.0903 42.3263i 1.11857 3.13743i
\(183\) 0 0
\(184\) −4.15052 6.87144i −0.305980 0.506569i
\(185\) −1.84753 −0.135833
\(186\) 0 0
\(187\) 2.65428i 0.194100i
\(188\) −13.6764 11.1720i −0.997455 0.814801i
\(189\) 0 0
\(190\) 5.15528 + 1.83798i 0.374003 + 0.133341i
\(191\) −7.96248 −0.576145 −0.288072 0.957609i \(-0.593014\pi\)
−0.288072 + 0.957609i \(0.593014\pi\)
\(192\) 0 0
\(193\) 25.2229 1.81559 0.907793 0.419419i \(-0.137766\pi\)
0.907793 + 0.419419i \(0.137766\pi\)
\(194\) −9.53144 3.39818i −0.684318 0.243975i
\(195\) 0 0
\(196\) 28.0551 + 22.9176i 2.00393 + 1.63697i
\(197\) 12.8833i 0.917895i 0.888463 + 0.458948i \(0.151773\pi\)
−0.888463 + 0.458948i \(0.848227\pi\)
\(198\) 0 0
\(199\) 0.339615 0.0240747 0.0120373 0.999928i \(-0.496168\pi\)
0.0120373 + 0.999928i \(0.496168\pi\)
\(200\) 3.65798 + 6.05602i 0.258658 + 0.428225i
\(201\) 0 0
\(202\) 4.12146 11.5601i 0.289985 0.813368i
\(203\) 7.92129i 0.555966i
\(204\) 0 0
\(205\) 5.53465i 0.386557i
\(206\) −9.50141 3.38747i −0.661994 0.236016i
\(207\) 0 0
\(208\) −24.8523 + 5.06107i −1.72320 + 0.350922i
\(209\) −6.49859 −0.449517
\(210\) 0 0
\(211\) 6.36434i 0.438139i 0.975709 + 0.219069i \(0.0703021\pi\)
−0.975709 + 0.219069i \(0.929698\pi\)
\(212\) −9.32834 + 11.4195i −0.640673 + 0.784293i
\(213\) 0 0
\(214\) 2.50141 7.01611i 0.170993 0.479611i
\(215\) 10.3106 0.703174
\(216\) 0 0
\(217\) −8.43364 −0.572512
\(218\) 3.96605 11.1242i 0.268615 0.753429i
\(219\) 0 0
\(220\) 6.49859 + 5.30857i 0.438135 + 0.357904i
\(221\) 6.34060i 0.426515i
\(222\) 0 0
\(223\) 13.0629 0.874755 0.437378 0.899278i \(-0.355907\pi\)
0.437378 + 0.899278i \(0.355907\pi\)
\(224\) 4.00000 28.0644i 0.267261 1.87513i
\(225\) 0 0
\(226\) 10.6867 + 3.81006i 0.710870 + 0.253442i
\(227\) 20.3705i 1.35204i −0.736885 0.676018i \(-0.763704\pi\)
0.736885 0.676018i \(-0.236296\pi\)
\(228\) 0 0
\(229\) 17.9245i 1.18448i −0.805761 0.592241i \(-0.798243\pi\)
0.805761 0.592241i \(-0.201757\pi\)
\(230\) −2.13065 + 5.97619i −0.140491 + 0.394058i
\(231\) 0 0
\(232\) −3.82694 + 2.31156i −0.251251 + 0.151761i
\(233\) −15.8926 −1.04116 −0.520580 0.853813i \(-0.674284\pi\)
−0.520580 + 0.853813i \(0.674284\pi\)
\(234\) 0 0
\(235\) 13.9571i 0.910463i
\(236\) 13.6415 16.6995i 0.887986 1.08705i
\(237\) 0 0
\(238\) 6.67544 + 2.37995i 0.432705 + 0.154269i
\(239\) 16.3537 1.05783 0.528916 0.848674i \(-0.322598\pi\)
0.528916 + 0.848674i \(0.322598\pi\)
\(240\) 0 0
\(241\) 29.6820 1.91199 0.955994 0.293386i \(-0.0947820\pi\)
0.955994 + 0.293386i \(0.0947820\pi\)
\(242\) 5.26810 + 1.87820i 0.338646 + 0.120735i
\(243\) 0 0
\(244\) 2.00000 2.44834i 0.128037 0.156739i
\(245\) 28.6309i 1.82916i
\(246\) 0 0
\(247\) −15.5240 −0.987765
\(248\) 2.46107 + 4.07446i 0.156278 + 0.258728i
\(249\) 0 0
\(250\) 5.63132 15.7951i 0.356156 0.998970i
\(251\) 23.7425i 1.49861i 0.662225 + 0.749305i \(0.269612\pi\)
−0.662225 + 0.749305i \(0.730388\pi\)
\(252\) 0 0
\(253\) 7.53342i 0.473622i
\(254\) 17.9850 + 6.41208i 1.12848 + 0.402330i
\(255\) 0 0
\(256\) −14.7258 + 6.25717i −0.920360 + 0.391073i
\(257\) 18.9548 1.18237 0.591183 0.806537i \(-0.298661\pi\)
0.591183 + 0.806537i \(0.298661\pi\)
\(258\) 0 0
\(259\) 5.85723i 0.363951i
\(260\) 15.5240 + 12.6812i 0.962755 + 0.786454i
\(261\) 0 0
\(262\) −2.80439 + 7.86593i −0.173256 + 0.485959i
\(263\) −9.54650 −0.588662 −0.294331 0.955703i \(-0.595097\pi\)
−0.294331 + 0.955703i \(0.595097\pi\)
\(264\) 0 0
\(265\) 11.6539 0.715892
\(266\) 5.82694 16.3438i 0.357272 1.00210i
\(267\) 0 0
\(268\) 12.4261 15.2117i 0.759048 0.929204i
\(269\) 20.3467i 1.24056i −0.784379 0.620282i \(-0.787018\pi\)
0.784379 0.620282i \(-0.212982\pi\)
\(270\) 0 0
\(271\) 28.8748 1.75402 0.877011 0.480471i \(-0.159534\pi\)
0.877011 + 0.480471i \(0.159534\pi\)
\(272\) −0.798200 3.91955i −0.0483980 0.237658i
\(273\) 0 0
\(274\) −2.08653 0.743897i −0.126052 0.0449405i
\(275\) 6.63944i 0.400373i
\(276\) 0 0
\(277\) 10.4151i 0.625780i 0.949789 + 0.312890i \(0.101297\pi\)
−0.949789 + 0.312890i \(0.898703\pi\)
\(278\) −1.56355 + 4.38556i −0.0937758 + 0.263028i
\(279\) 0 0
\(280\) −19.1778 + 11.5839i −1.14609 + 0.692269i
\(281\) 30.2032 1.80177 0.900885 0.434057i \(-0.142918\pi\)
0.900885 + 0.434057i \(0.142918\pi\)
\(282\) 0 0
\(283\) 26.6458i 1.58393i −0.610568 0.791964i \(-0.709059\pi\)
0.610568 0.791964i \(-0.290941\pi\)
\(284\) −3.89190 3.17921i −0.230942 0.188651i
\(285\) 0 0
\(286\) −22.4187 7.99278i −1.32564 0.472623i
\(287\) −17.5465 −1.03574
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 3.32834 + 1.18663i 0.195447 + 0.0696814i
\(291\) 0 0
\(292\) −3.90500 3.18992i −0.228523 0.186676i
\(293\) 3.52580i 0.205979i −0.994682 0.102990i \(-0.967159\pi\)
0.994682 0.102990i \(-0.0328408\pi\)
\(294\) 0 0
\(295\) −17.0423 −0.992240
\(296\) 2.82975 1.70924i 0.164476 0.0993473i
\(297\) 0 0
\(298\) 1.28325 3.59933i 0.0743364 0.208504i
\(299\) 17.9959i 1.04073i
\(300\) 0 0
\(301\) 32.6875i 1.88408i
\(302\) 3.84948 + 1.37243i 0.221513 + 0.0789745i
\(303\) 0 0
\(304\) −9.59640 + 1.95427i −0.550391 + 0.112085i
\(305\) −2.49859 −0.143069
\(306\) 0 0
\(307\) 1.34483i 0.0767534i −0.999263 0.0383767i \(-0.987781\pi\)
0.999263 0.0383767i \(-0.0122187\pi\)
\(308\) 16.8297 20.6025i 0.958964 1.17394i
\(309\) 0 0
\(310\) 1.26338 3.54362i 0.0717553 0.201264i
\(311\) −32.5803 −1.84746 −0.923730 0.383044i \(-0.874876\pi\)
−0.923730 + 0.383044i \(0.874876\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0.481668 1.35101i 0.0271821 0.0762421i
\(315\) 0 0
\(316\) 1.26338 + 1.03203i 0.0710708 + 0.0580562i
\(317\) 25.8814i 1.45364i 0.686826 + 0.726822i \(0.259004\pi\)
−0.686826 + 0.726822i \(0.740996\pi\)
\(318\) 0 0
\(319\) −4.19561 −0.234909
\(320\) 11.1928 + 5.88483i 0.625697 + 0.328972i
\(321\) 0 0
\(322\) 18.9463 + 6.75480i 1.05584 + 0.376430i
\(323\) 2.44834i 0.136229i
\(324\) 0 0
\(325\) 15.8604i 0.879777i
\(326\) −7.37356 + 20.6819i −0.408384 + 1.14546i
\(327\) 0 0
\(328\) 5.12035 + 8.47707i 0.282724 + 0.468068i
\(329\) 44.2483 2.43949
\(330\) 0 0
\(331\) 1.26171i 0.0693499i 0.999399 + 0.0346749i \(0.0110396\pi\)
−0.999399 + 0.0346749i \(0.988960\pi\)
\(332\) −10.4036 + 12.7358i −0.570972 + 0.698967i
\(333\) 0 0
\(334\) 21.1816 + 7.55174i 1.15901 + 0.413213i
\(335\) −15.5240 −0.848164
\(336\) 0 0
\(337\) 17.8120 0.970279 0.485140 0.874437i \(-0.338769\pi\)
0.485140 + 0.874437i \(0.338769\pi\)
\(338\) −36.2370 12.9193i −1.97103 0.702719i
\(339\) 0 0
\(340\) −2.00000 + 2.44834i −0.108465 + 0.132780i
\(341\) 4.46698i 0.241901i
\(342\) 0 0
\(343\) −55.6896 −3.00696
\(344\) −15.7920 + 9.53876i −0.851448 + 0.514295i
\(345\) 0 0
\(346\) −10.0565 + 28.2071i −0.540641 + 1.51642i
\(347\) 4.34210i 0.233096i 0.993185 + 0.116548i \(0.0371829\pi\)
−0.993185 + 0.116548i \(0.962817\pi\)
\(348\) 0 0
\(349\) 12.4908i 0.668615i −0.942464 0.334307i \(-0.891498\pi\)
0.942464 0.334307i \(-0.108502\pi\)
\(350\) −16.6980 5.95322i −0.892545 0.318213i
\(351\) 0 0
\(352\) −14.8647 2.11865i −0.792290 0.112924i
\(353\) −10.2782 −0.547055 −0.273527 0.961864i \(-0.588190\pi\)
−0.273527 + 0.961864i \(0.588190\pi\)
\(354\) 0 0
\(355\) 3.97178i 0.210800i
\(356\) −2.25113 1.83890i −0.119310 0.0974617i
\(357\) 0 0
\(358\) −7.87952 + 22.1010i −0.416446 + 1.16807i
\(359\) −7.45826 −0.393632 −0.196816 0.980440i \(-0.563060\pi\)
−0.196816 + 0.980440i \(0.563060\pi\)
\(360\) 0 0
\(361\) 13.0056 0.684506
\(362\) −5.59738 + 15.6999i −0.294192 + 0.825168i
\(363\) 0 0
\(364\) 40.2032 49.2156i 2.10722 2.57960i
\(365\) 3.98516i 0.208593i
\(366\) 0 0
\(367\) −6.92083 −0.361264 −0.180632 0.983551i \(-0.557814\pi\)
−0.180632 + 0.983551i \(0.557814\pi\)
\(368\) −2.26546 11.1245i −0.118095 0.579905i
\(369\) 0 0
\(370\) −2.46107 0.877429i −0.127945 0.0456154i
\(371\) 36.9463i 1.91815i
\(372\) 0 0
\(373\) 22.0882i 1.14369i 0.820363 + 0.571843i \(0.193771\pi\)
−0.820363 + 0.571843i \(0.806229\pi\)
\(374\) 1.26057 3.53573i 0.0651826 0.182828i
\(375\) 0 0
\(376\) −12.9124 21.3772i −0.665904 1.10245i
\(377\) −10.0225 −0.516187
\(378\) 0 0
\(379\) 35.4430i 1.82058i 0.413968 + 0.910291i \(0.364143\pi\)
−0.413968 + 0.910291i \(0.635857\pi\)
\(380\) 5.99438 + 4.89668i 0.307505 + 0.251195i
\(381\) 0 0
\(382\) −10.6067 3.78154i −0.542686 0.193480i
\(383\) 28.5493 1.45880 0.729401 0.684087i \(-0.239799\pi\)
0.729401 + 0.684087i \(0.239799\pi\)
\(384\) 0 0
\(385\) −21.0254 −1.07155
\(386\) 33.5991 + 11.9789i 1.71015 + 0.609708i
\(387\) 0 0
\(388\) −11.0828 9.05333i −0.562645 0.459613i
\(389\) 19.0218i 0.964443i −0.876049 0.482222i \(-0.839830\pi\)
0.876049 0.482222i \(-0.160170\pi\)
\(390\) 0 0
\(391\) 2.83821 0.143534
\(392\) 26.4877 + 43.8521i 1.33783 + 2.21487i
\(393\) 0 0
\(394\) −6.11852 + 17.1616i −0.308247 + 0.864590i
\(395\) 1.28931i 0.0648724i
\(396\) 0 0
\(397\) 6.52486i 0.327473i −0.986504 0.163737i \(-0.947645\pi\)
0.986504 0.163737i \(-0.0523547\pi\)
\(398\) 0.452397 + 0.161290i 0.0226766 + 0.00808474i
\(399\) 0 0
\(400\) 1.99662 + 9.80438i 0.0998311 + 0.490219i
\(401\) 5.41096 0.270210 0.135105 0.990831i \(-0.456863\pi\)
0.135105 + 0.990831i \(0.456863\pi\)
\(402\) 0 0
\(403\) 10.6708i 0.531550i
\(404\) 10.9803 13.4417i 0.546288 0.668751i
\(405\) 0 0
\(406\) 3.76198 10.5518i 0.186704 0.523679i
\(407\) 3.10236 0.153778
\(408\) 0 0
\(409\) −28.4307 −1.40581 −0.702904 0.711285i \(-0.748114\pi\)
−0.702904 + 0.711285i \(0.748114\pi\)
\(410\) 2.62851 7.37263i 0.129813 0.364108i
\(411\) 0 0
\(412\) −11.0479 9.02481i −0.544291 0.444620i
\(413\) 54.0291i 2.65860i
\(414\) 0 0
\(415\) 12.9972 0.638007
\(416\) −35.5090 5.06107i −1.74097 0.248139i
\(417\) 0 0
\(418\) −8.65668 3.08631i −0.423412 0.150956i
\(419\) 14.4224i 0.704581i 0.935891 + 0.352290i \(0.114597\pi\)
−0.935891 + 0.352290i \(0.885403\pi\)
\(420\) 0 0
\(421\) 21.2645i 1.03637i 0.855270 + 0.518183i \(0.173391\pi\)
−0.855270 + 0.518183i \(0.826609\pi\)
\(422\) −3.02255 + 8.47784i −0.147135 + 0.412695i
\(423\) 0 0
\(424\) −17.8495 + 10.7815i −0.866848 + 0.523597i
\(425\) −2.50141 −0.121336
\(426\) 0 0
\(427\) 7.92129i 0.383338i
\(428\) 6.66417 8.15808i 0.322125 0.394336i
\(429\) 0 0
\(430\) 13.7345 + 4.89668i 0.662338 + 0.236139i
\(431\) −18.4752 −0.889917 −0.444958 0.895551i \(-0.646782\pi\)
−0.444958 + 0.895551i \(0.646782\pi\)
\(432\) 0 0
\(433\) −27.1580 −1.30513 −0.652564 0.757733i \(-0.726307\pi\)
−0.652564 + 0.757733i \(0.726307\pi\)
\(434\) −11.2343 4.00530i −0.539265 0.192260i
\(435\) 0 0
\(436\) 10.5662 12.9349i 0.506031 0.619469i
\(437\) 6.94891i 0.332411i
\(438\) 0 0
\(439\) 2.29647 0.109605 0.0548023 0.998497i \(-0.482547\pi\)
0.0548023 + 0.998497i \(0.482547\pi\)
\(440\) 6.13554 + 10.1578i 0.292500 + 0.484253i
\(441\) 0 0
\(442\) 3.01127 8.44622i 0.143232 0.401746i
\(443\) 14.9912i 0.712254i −0.934438 0.356127i \(-0.884097\pi\)
0.934438 0.356127i \(-0.115903\pi\)
\(444\) 0 0
\(445\) 2.29734i 0.108904i
\(446\) 17.4009 + 6.20382i 0.823955 + 0.293759i
\(447\) 0 0
\(448\) 18.6567 35.4845i 0.881445 1.67649i
\(449\) 20.6567 0.974849 0.487425 0.873165i \(-0.337936\pi\)
0.487425 + 0.873165i \(0.337936\pi\)
\(450\) 0 0
\(451\) 9.29372i 0.437624i
\(452\) 12.4261 + 10.1507i 0.584477 + 0.477447i
\(453\) 0 0
\(454\) 9.67434 27.1352i 0.454039 1.27352i
\(455\) −50.2257 −2.35462
\(456\) 0 0
\(457\) 26.4206 1.23590 0.617952 0.786216i \(-0.287963\pi\)
0.617952 + 0.786216i \(0.287963\pi\)
\(458\) 8.51268 23.8769i 0.397771 1.11570i
\(459\) 0 0
\(460\) −5.67642 + 6.94891i −0.264664 + 0.323995i
\(461\) 39.2364i 1.82742i −0.406365 0.913711i \(-0.633204\pi\)
0.406365 0.913711i \(-0.366796\pi\)
\(462\) 0 0
\(463\) 7.30774 0.339620 0.169810 0.985477i \(-0.445685\pi\)
0.169810 + 0.985477i \(0.445685\pi\)
\(464\) −6.19561 + 1.26171i −0.287624 + 0.0585734i
\(465\) 0 0
\(466\) −21.1703 7.54772i −0.980697 0.349641i
\(467\) 24.3923i 1.12874i 0.825522 + 0.564370i \(0.190881\pi\)
−0.825522 + 0.564370i \(0.809119\pi\)
\(468\) 0 0
\(469\) 49.2156i 2.27256i
\(470\) −6.62851 + 18.5921i −0.305751 + 0.857589i
\(471\) 0 0
\(472\) 26.1026 15.7666i 1.20147 0.725716i
\(473\) −17.3134 −0.796069
\(474\) 0 0
\(475\) 6.12430i 0.281002i
\(476\) 7.76198 + 6.34060i 0.355770 + 0.290621i
\(477\) 0 0
\(478\) 21.7845 + 7.76669i 0.996401 + 0.355240i
\(479\) 6.68012 0.305223 0.152611 0.988286i \(-0.451232\pi\)
0.152611 + 0.988286i \(0.451232\pi\)
\(480\) 0 0
\(481\) 7.41096 0.337911
\(482\) 39.5390 + 14.0966i 1.80095 + 0.642082i
\(483\) 0 0
\(484\) 6.12557 + 5.00385i 0.278435 + 0.227448i
\(485\) 11.3103i 0.513575i
\(486\) 0 0
\(487\) 17.2314 0.780829 0.390414 0.920639i \(-0.372332\pi\)
0.390414 + 0.920639i \(0.372332\pi\)
\(488\) 3.82694 2.31156i 0.173237 0.104639i
\(489\) 0 0
\(490\) 13.5974 38.1388i 0.614267 1.72294i
\(491\) 8.73548i 0.394227i −0.980381 0.197113i \(-0.936843\pi\)
0.980381 0.197113i \(-0.0631567\pi\)
\(492\) 0 0
\(493\) 1.58069i 0.0711909i
\(494\) −20.6792 7.37263i −0.930403 0.331710i
\(495\) 0 0
\(496\) 1.34332 + 6.59634i 0.0603167 + 0.296184i
\(497\) 12.5917 0.564816
\(498\) 0 0
\(499\) 5.23137i 0.234188i 0.993121 + 0.117094i \(0.0373579\pi\)
−0.993121 + 0.117094i \(0.962642\pi\)
\(500\) 15.0028 18.3660i 0.670946 0.821353i
\(501\) 0 0
\(502\) −11.2758 + 31.6270i −0.503262 + 1.41158i
\(503\) −2.39969 −0.106997 −0.0534984 0.998568i \(-0.517037\pi\)
−0.0534984 + 0.998568i \(0.517037\pi\)
\(504\) 0 0
\(505\) −13.7176 −0.610426
\(506\) 3.57777 10.0352i 0.159051 0.446117i
\(507\) 0 0
\(508\) 20.9124 + 17.0829i 0.927836 + 0.757930i
\(509\) 6.72283i 0.297984i 0.988838 + 0.148992i \(0.0476029\pi\)
−0.988838 + 0.148992i \(0.952397\pi\)
\(510\) 0 0
\(511\) 12.6341 0.558901
\(512\) −22.5876 + 1.34154i −0.998241 + 0.0592883i
\(513\) 0 0
\(514\) 25.2494 + 9.00199i 1.11370 + 0.397061i
\(515\) 11.2747i 0.496821i
\(516\) 0 0
\(517\) 23.4367i 1.03074i
\(518\) −2.78171 + 7.80233i −0.122221 + 0.342815i
\(519\) 0 0
\(520\) 14.6567 + 24.2651i 0.642738 + 1.06409i
\(521\) −23.2754 −1.01971 −0.509857 0.860259i \(-0.670302\pi\)
−0.509857 + 0.860259i \(0.670302\pi\)
\(522\) 0 0
\(523\) 3.46255i 0.151407i −0.997130 0.0757034i \(-0.975880\pi\)
0.997130 0.0757034i \(-0.0241202\pi\)
\(524\) −7.47137 + 9.14623i −0.326388 + 0.399555i
\(525\) 0 0
\(526\) −12.7168 4.53382i −0.554477 0.197684i
\(527\) −1.68293 −0.0733097
\(528\) 0 0
\(529\) −14.9446 −0.649764
\(530\) 15.5240 + 5.53465i 0.674317 + 0.240410i
\(531\) 0 0
\(532\) 15.5240 19.0040i 0.673049 0.823927i
\(533\) 22.2010i 0.961632i
\(534\) 0 0
\(535\) −8.32553 −0.359944
\(536\) 23.7770 14.3619i 1.02701 0.620340i
\(537\) 0 0
\(538\) 9.66307 27.1036i 0.416604 1.16852i
\(539\) 48.0767i 2.07081i
\(540\) 0 0
\(541\) 9.41268i 0.404683i −0.979315 0.202341i \(-0.935145\pi\)
0.979315 0.202341i \(-0.0648551\pi\)
\(542\) 38.4638 + 13.7132i 1.65216 + 0.589034i
\(543\) 0 0
\(544\) 0.798200 5.60026i 0.0342226 0.240109i
\(545\) −13.2004 −0.565442
\(546\) 0 0
\(547\) 8.92340i 0.381537i −0.981635 0.190768i \(-0.938902\pi\)
0.981635 0.190768i \(-0.0610980\pi\)
\(548\) −2.42615 1.98187i −0.103640 0.0846613i
\(549\) 0 0
\(550\) −3.15320 + 8.84430i −0.134453 + 0.377122i
\(551\) −3.87008 −0.164871
\(552\) 0 0
\(553\) −4.08751 −0.173818
\(554\) −4.94631 + 13.8737i −0.210149 + 0.589439i
\(555\) 0 0
\(556\) −4.16558 + 5.09938i −0.176660 + 0.216262i
\(557\) 8.36902i 0.354607i 0.984156 + 0.177303i \(0.0567374\pi\)
−0.984156 + 0.177303i \(0.943263\pi\)
\(558\) 0 0
\(559\) −41.3585 −1.74928
\(560\) −31.0479 + 6.32278i −1.31201 + 0.267186i
\(561\) 0 0
\(562\) 40.2332 + 14.3441i 1.69714 + 0.605069i
\(563\) 12.1127i 0.510488i 0.966877 + 0.255244i \(0.0821557\pi\)
−0.966877 + 0.255244i \(0.917844\pi\)
\(564\) 0 0
\(565\) 12.6812i 0.533502i
\(566\) 12.6546 35.4945i 0.531913 1.49194i
\(567\) 0 0
\(568\) −3.67447 6.08332i −0.154177 0.255250i
\(569\) −18.8542 −0.790411 −0.395206 0.918593i \(-0.629327\pi\)
−0.395206 + 0.918593i \(0.629327\pi\)
\(570\) 0 0
\(571\) 3.35775i 0.140517i −0.997529 0.0702587i \(-0.977618\pi\)
0.997529 0.0702587i \(-0.0223825\pi\)
\(572\) −26.0676 21.2941i −1.08994 0.890352i
\(573\) 0 0
\(574\) −23.3734 8.33318i −0.975588 0.347820i
\(575\) −7.09951 −0.296070
\(576\) 0 0
\(577\) −24.7442 −1.03011 −0.515057 0.857156i \(-0.672229\pi\)
−0.515057 + 0.857156i \(0.672229\pi\)
\(578\) 1.33209 + 0.474920i 0.0554074 + 0.0197540i
\(579\) 0 0
\(580\) 3.87008 + 3.16139i 0.160696 + 0.131270i
\(581\) 41.2050i 1.70947i
\(582\) 0 0
\(583\) −19.5690 −0.810467
\(584\) −3.68685 6.10381i −0.152563 0.252577i
\(585\) 0 0
\(586\) 1.67447 4.69666i 0.0691717 0.194017i
\(587\) 25.2517i 1.04225i 0.853481 + 0.521124i \(0.174487\pi\)
−0.853481 + 0.521124i \(0.825513\pi\)
\(588\) 0 0
\(589\) 4.12039i 0.169778i
\(590\) −22.7018 8.09371i −0.934617 0.333213i
\(591\) 0 0
\(592\) 4.58121 0.932945i 0.188287 0.0383438i
\(593\) −22.1581 −0.909924 −0.454962 0.890511i \(-0.650347\pi\)
−0.454962 + 0.890511i \(0.650347\pi\)
\(594\) 0 0
\(595\) 7.92129i 0.324741i
\(596\) 3.41879 4.18518i 0.140039 0.171432i
\(597\) 0 0
\(598\) 8.54663 23.9721i 0.349498 0.980294i
\(599\) 34.4007 1.40558 0.702788 0.711399i \(-0.251938\pi\)
0.702788 + 0.711399i \(0.251938\pi\)
\(600\) 0 0
\(601\) −25.2908 −1.03163 −0.515817 0.856699i \(-0.672512\pi\)
−0.515817 + 0.856699i \(0.672512\pi\)
\(602\) 15.5240 43.5426i 0.632709 1.77466i
\(603\) 0 0
\(604\) 4.47605 + 3.65639i 0.182128 + 0.148776i
\(605\) 6.25129i 0.254151i
\(606\) 0 0
\(607\) 14.2041 0.576526 0.288263 0.957551i \(-0.406922\pi\)
0.288263 + 0.957551i \(0.406922\pi\)
\(608\) −13.7113 1.95427i −0.556068 0.0792560i
\(609\) 0 0
\(610\) −3.32834 1.18663i −0.134761 0.0480453i
\(611\) 55.9859i 2.26495i
\(612\) 0 0
\(613\) 33.8370i 1.36666i −0.730108 0.683332i \(-0.760530\pi\)
0.730108 0.683332i \(-0.239470\pi\)
\(614\) 0.638685 1.79143i 0.0257752 0.0722961i
\(615\) 0 0
\(616\) 32.2032 19.4515i 1.29750 0.783723i
\(617\) −33.3261 −1.34166 −0.670830 0.741611i \(-0.734062\pi\)
−0.670830 + 0.741611i \(0.734062\pi\)
\(618\) 0 0
\(619\) 17.9900i 0.723080i −0.932357 0.361540i \(-0.882251\pi\)
0.932357 0.361540i \(-0.117749\pi\)
\(620\) 3.36586 4.12039i 0.135176 0.165479i
\(621\) 0 0
\(622\) −43.3998 15.4730i −1.74017 0.620412i
\(623\) 7.28325 0.291797
\(624\) 0 0
\(625\) −6.23595 −0.249438
\(626\) −7.99251 2.84952i −0.319445 0.113890i
\(627\) 0 0
\(628\) 1.28325 1.57091i 0.0512071 0.0626862i
\(629\) 1.16881i 0.0466035i
\(630\) 0 0
\(631\) −9.75904 −0.388501 −0.194251 0.980952i \(-0.562227\pi\)
−0.194251 + 0.980952i \(0.562227\pi\)
\(632\) 1.19280 + 1.97476i 0.0474471 + 0.0785516i
\(633\) 0 0
\(634\) −12.2916 + 34.4762i −0.488161 + 1.36923i
\(635\) 21.3416i 0.846915i
\(636\) 0 0
\(637\) 114.846i 4.55038i
\(638\) −5.58891 1.99258i −0.221267 0.0788869i
\(639\) 0 0
\(640\) 12.1149 + 13.1548i 0.478885 + 0.519988i
\(641\) 12.1525 0.479994 0.239997 0.970774i \(-0.422854\pi\)
0.239997 + 0.970774i \(0.422854\pi\)
\(642\) 0 0
\(643\) 20.1310i 0.793890i −0.917842 0.396945i \(-0.870070\pi\)
0.917842 0.396945i \(-0.129930\pi\)
\(644\) 22.0301 + 17.9959i 0.868108 + 0.709140i
\(645\) 0 0
\(646\) 1.16277 3.26140i 0.0457484 0.128318i
\(647\) −8.21254 −0.322868 −0.161434 0.986883i \(-0.551612\pi\)
−0.161434 + 0.986883i \(0.551612\pi\)
\(648\) 0 0
\(649\) 28.6172 1.12332
\(650\) −7.53242 + 21.1274i −0.295446 + 0.828685i
\(651\) 0 0
\(652\) −19.6444 + 24.0481i −0.769335 + 0.941798i
\(653\) 39.5293i 1.54690i 0.633856 + 0.773451i \(0.281471\pi\)
−0.633856 + 0.773451i \(0.718529\pi\)
\(654\) 0 0
\(655\) 9.33396 0.364708
\(656\) 2.79482 + 13.7239i 0.109119 + 0.535830i
\(657\) 0 0
\(658\) 58.9425 + 21.0144i 2.29782 + 0.819226i
\(659\) 15.5399i 0.605348i 0.953094 + 0.302674i \(0.0978793\pi\)
−0.953094 + 0.302674i \(0.902121\pi\)
\(660\) 0 0
\(661\) 46.1373i 1.79453i −0.441489 0.897267i \(-0.645550\pi\)
0.441489 0.897267i \(-0.354450\pi\)
\(662\) −0.599211 + 1.68071i −0.0232890 + 0.0653225i
\(663\) 0 0
\(664\) −19.9070 + 12.0243i −0.772540 + 0.466633i
\(665\) −19.3940 −0.752068
\(666\) 0 0
\(667\) 4.48634i 0.173712i
\(668\) 24.6292 + 20.1191i 0.952934 + 0.778432i
\(669\) 0 0
\(670\) −20.6792 7.37263i −0.798908 0.284829i
\(671\) 4.19561 0.161970
\(672\) 0 0
\(673\) −32.0095 −1.23388 −0.616938 0.787012i \(-0.711627\pi\)
−0.616938 + 0.787012i \(0.711627\pi\)
\(674\) 23.7271 + 8.45925i 0.913932 + 0.325838i
\(675\) 0 0
\(676\) −42.1351 34.4193i −1.62058 1.32382i
\(677\) 13.7551i 0.528650i 0.964434 + 0.264325i \(0.0851491\pi\)
−0.964434 + 0.264325i \(0.914851\pi\)
\(678\) 0 0
\(679\) 35.8571 1.37607
\(680\) −3.82694 + 2.31156i −0.146756 + 0.0886443i
\(681\) 0 0
\(682\) −2.12146 + 5.95040i −0.0812348 + 0.227853i
\(683\) 23.7998i 0.910674i −0.890319 0.455337i \(-0.849519\pi\)
0.890319 0.455337i \(-0.150481\pi\)
\(684\) 0 0
\(685\) 2.47594i 0.0946010i
\(686\) −74.1833 26.4481i −2.83233 1.00979i
\(687\) 0 0
\(688\) −25.5664 + 5.20650i −0.974712 + 0.198496i
\(689\) −46.7469 −1.78091
\(690\) 0 0
\(691\) 37.8178i 1.43866i −0.694671 0.719328i \(-0.744450\pi\)
0.694671 0.719328i \(-0.255550\pi\)
\(692\) −26.7922 + 32.7983i −1.01849 + 1.24680i
\(693\) 0 0
\(694\) −2.06215 + 5.78405i −0.0782781 + 0.219560i
\(695\) 5.20404 0.197401
\(696\) 0 0
\(697\) −3.50141 −0.132625
\(698\) 5.93210 16.6387i 0.224533 0.629786i
\(699\) 0 0
\(700\) −19.4158 15.8604i −0.733850 0.599467i
\(701\) 4.14594i 0.156590i −0.996930 0.0782950i \(-0.975052\pi\)
0.996930 0.0782950i \(-0.0249476\pi\)
\(702\) 0 0
\(703\) 2.86165 0.107929
\(704\) −18.7948 9.88175i −0.708357 0.372432i
\(705\) 0 0
\(706\) −13.6915 4.88133i −0.515286 0.183711i
\(707\) 43.4889i 1.63557i
\(708\) 0 0
\(709\) 47.2230i 1.77350i 0.462252 + 0.886748i \(0.347041\pi\)
−0.462252 + 0.886748i \(0.652959\pi\)
\(710\) −1.88627 + 5.29075i −0.0707906 + 0.198558i
\(711\) 0 0
\(712\) −2.12537 3.51868i −0.0796516 0.131868i
\(713\) −4.77652 −0.178882
\(714\) 0 0
\(715\) 26.6027i 0.994884i
\(716\) −20.9924 + 25.6983i −0.784522 + 0.960389i
\(717\) 0 0
\(718\) −9.93504 3.54207i −0.370772 0.132189i
\(719\) 19.5647 0.729642 0.364821 0.931078i \(-0.381130\pi\)
0.364821 + 0.931078i \(0.381130\pi\)
\(720\) 0 0
\(721\) 35.7441 1.33118
\(722\) 17.3246 + 6.17662i 0.644755 + 0.229870i
\(723\) 0 0
\(724\) −14.9124 + 18.2553i −0.554214 + 0.678452i
\(725\) 3.95396i 0.146846i
\(726\) 0 0
\(727\) 2.57406 0.0954668 0.0477334 0.998860i \(-0.484800\pi\)
0.0477334 + 0.998860i \(0.484800\pi\)
\(728\) 76.9275 46.4661i 2.85112 1.72215i
\(729\) 0 0
\(730\) −1.89263 + 5.30857i −0.0700493 + 0.196479i
\(731\) 6.52280i 0.241255i
\(732\) 0 0
\(733\) 8.78689i 0.324551i −0.986745 0.162276i \(-0.948117\pi\)
0.986745 0.162276i \(-0.0518833\pi\)
\(734\) −9.21913 3.28684i −0.340284 0.121319i
\(735\) 0 0
\(736\) 2.26546 15.8947i 0.0835060 0.585887i
\(737\) 26.0676 0.960214
\(738\) 0 0
\(739\) 21.3574i 0.785643i 0.919615 + 0.392822i \(0.128501\pi\)
−0.919615 + 0.392822i \(0.871499\pi\)
\(740\) −2.86165 2.33762i −0.105196 0.0859327i
\(741\) 0 0
\(742\) 17.5465 49.2156i 0.644152 1.80676i
\(743\) 15.6886 0.575557 0.287779 0.957697i \(-0.407083\pi\)
0.287779 + 0.957697i \(0.407083\pi\)
\(744\) 0 0
\(745\) −4.27108 −0.156480
\(746\) −10.4901 + 29.4234i −0.384071 + 1.07727i
\(747\) 0 0
\(748\) 3.35838 4.11123i 0.122794 0.150321i
\(749\) 26.3944i 0.964431i
\(750\) 0 0
\(751\) −19.4799 −0.710832 −0.355416 0.934708i \(-0.615661\pi\)
−0.355416 + 0.934708i \(0.615661\pi\)
\(752\) −7.04791 34.6086i −0.257011 1.26205i
\(753\) 0 0
\(754\) −13.3509 4.75990i −0.486211 0.173345i
\(755\) 4.56792i 0.166244i
\(756\) 0 0
\(757\) 18.0194i 0.654927i 0.944864 + 0.327463i \(0.106194\pi\)
−0.944864 + 0.327463i \(0.893806\pi\)
\(758\) −16.8326 + 47.2131i −0.611386 + 1.71486i
\(759\) 0 0
\(760\) 5.65949 + 9.36965i 0.205291 + 0.339873i
\(761\) 31.8671 1.15518 0.577592 0.816326i \(-0.303993\pi\)
0.577592 + 0.816326i \(0.303993\pi\)
\(762\) 0 0
\(763\) 41.8491i 1.51504i
\(764\) −12.3331 10.0747i −0.446196 0.364488i
\(765\) 0 0
\(766\) 38.0301 + 13.5586i 1.37408 + 0.489893i
\(767\) 68.3613 2.46838
\(768\) 0 0
\(769\) −2.60475 −0.0939296 −0.0469648 0.998897i \(-0.514955\pi\)
−0.0469648 + 0.998897i \(0.514955\pi\)
\(770\) −28.0076 9.98535i −1.00932 0.359847i
\(771\) 0 0
\(772\) 39.0679 + 31.9137i 1.40608 + 1.14860i
\(773\) 9.40703i 0.338347i 0.985586 + 0.169174i \(0.0541099\pi\)
−0.985586 + 0.169174i \(0.945890\pi\)
\(774\) 0 0
\(775\) 4.20970 0.151217
\(776\) −10.4637 17.3233i −0.375624 0.621869i
\(777\) 0 0
\(778\) 9.03382 25.3387i 0.323878 0.908435i
\(779\) 8.57264i 0.307147i
\(780\) 0 0
\(781\) 6.66936i 0.238649i
\(782\) 3.78074 + 1.34792i 0.135199 + 0.0482016i
\(783\) 0 0
\(784\) 14.4577 + 70.9943i 0.516346 + 2.53551i
\(785\) −1.60316 −0.0572191
\(786\) 0 0
\(787\) 3.38310i 0.120594i −0.998180 0.0602972i \(-0.980795\pi\)
0.998180 0.0602972i \(-0.0192048\pi\)
\(788\) −16.3008 + 19.9549i −0.580691 + 0.710865i
\(789\) 0 0
\(790\) 0.612320 1.71747i 0.0217854 0.0611050i
\(791\) −40.2032 −1.42946
\(792\) 0 0
\(793\) 10.0225 0.355911
\(794\) 3.09878 8.69166i 0.109972 0.308456i
\(795\) 0 0
\(796\) 0.526031 + 0.429704i 0.0186447 + 0.0152305i
\(797\) 20.3351i 0.720307i −0.932893 0.360153i \(-0.882724\pi\)
0.932893 0.360153i \(-0.117276\pi\)
\(798\) 0 0
\(799\) 8.82975 0.312374
\(800\) −1.99662 + 14.0085i −0.0705913 + 0.495276i
\(801\) 0 0
\(802\) 7.20786 + 2.56977i 0.254518 + 0.0907418i
\(803\) 6.69183i 0.236149i
\(804\) 0 0
\(805\) 22.4823i 0.792397i
\(806\) −5.06777 + 14.2144i −0.178505 + 0.500681i
\(807\) 0 0
\(808\) 21.0104 12.6908i 0.739143 0.446460i
\(809\) −44.1507 −1.55226 −0.776128 0.630576i \(-0.782819\pi\)
−0.776128 + 0.630576i \(0.782819\pi\)
\(810\) 0 0
\(811\) 7.73677i 0.271675i −0.990731 0.135837i \(-0.956628\pi\)
0.990731 0.135837i \(-0.0433725\pi\)
\(812\) 10.0225 12.2693i 0.351722 0.430568i
\(813\) 0 0
\(814\) 4.13260 + 1.47337i 0.144848 + 0.0516416i
\(815\) 24.5417 0.859660
\(816\) 0 0
\(817\) −15.9700 −0.558721
\(818\) −37.8721 13.5023i −1.32417 0.472097i
\(819\) 0 0
\(820\) 7.00281 8.57264i 0.244549 0.299369i
\(821\) 48.5660i 1.69496i 0.530824 + 0.847482i \(0.321882\pi\)
−0.530824 + 0.847482i \(0.678118\pi\)
\(822\) 0 0
\(823\) −37.3368 −1.30148 −0.650740 0.759301i \(-0.725541\pi\)
−0.650740 + 0.759301i \(0.725541\pi\)
\(824\) −10.4307 17.2687i −0.363371 0.601583i
\(825\) 0 0
\(826\) −25.6595 + 71.9714i −0.892808 + 2.50421i
\(827\) 36.3380i 1.26360i −0.775133 0.631798i \(-0.782317\pi\)
0.775133 0.631798i \(-0.217683\pi\)
\(828\) 0 0
\(829\) 10.6053i 0.368337i −0.982895 0.184169i \(-0.941041\pi\)
0.982895 0.184169i \(-0.0589593\pi\)
\(830\) 17.3134 + 6.17262i 0.600956 + 0.214255i
\(831\) 0 0
\(832\) −44.8974 23.6057i −1.55654 0.818380i
\(833\) −18.1129 −0.627574
\(834\) 0 0
\(835\) 25.1348i 0.869824i
\(836\) −10.0657 8.22246i −0.348129 0.284380i
\(837\) 0 0
\(838\) −6.84948 + 19.2119i −0.236611 + 0.663663i
\(839\) 43.2821 1.49426 0.747132 0.664676i \(-0.231430\pi\)
0.747132 + 0.664676i \(0.231430\pi\)
\(840\) 0 0
\(841\) 26.5014 0.913842
\(842\) −10.0989 + 28.3261i −0.348031 + 0.976181i
\(843\) 0 0
\(844\) −8.05258 + 9.85774i −0.277181 + 0.339317i
\(845\) 42.9999i 1.47924i
\(846\) 0 0
\(847\) −19.8185 −0.680971
\(848\) −28.8974 + 5.88483i −0.992340 + 0.202086i
\(849\) 0 0
\(850\) −3.33209 1.18797i −0.114290 0.0407469i
\(851\) 3.31733i 0.113717i
\(852\) 0 0
\(853\) 39.7672i 1.36160i 0.732467 + 0.680802i \(0.238369\pi\)
−0.732467 + 0.680802i \(0.761631\pi\)
\(854\) −3.76198 + 10.5518i −0.128732 + 0.361076i
\(855\) 0 0
\(856\) 12.7517 7.70232i 0.435843 0.263260i
\(857\) 14.9672 0.511271 0.255636 0.966773i \(-0.417715\pi\)
0.255636 + 0.966773i \(0.417715\pi\)
\(858\) 0 0
\(859\) 47.5063i 1.62090i −0.585811 0.810448i \(-0.699224\pi\)
0.585811 0.810448i \(-0.300776\pi\)
\(860\) 15.9700 + 13.0456i 0.544574 + 0.444851i
\(861\) 0 0
\(862\) −24.6105 8.77421i −0.838236 0.298851i
\(863\) 20.9221 0.712198 0.356099 0.934448i \(-0.384107\pi\)
0.356099 + 0.934448i \(0.384107\pi\)
\(864\) 0 0
\(865\) 33.4715 1.13806
\(866\) −36.1767 12.8978i −1.22934 0.438287i
\(867\) 0 0
\(868\) −13.0629 10.6708i −0.443383 0.362190i
\(869\) 2.16500i 0.0734426i
\(870\) 0 0
\(871\) 62.2708 2.10997
\(872\) 20.2182 12.2123i 0.684673 0.413559i
\(873\) 0 0
\(874\) 3.30017 9.25654i 0.111630 0.313107i
\(875\) 59.4208i 2.00879i
\(876\) 0 0
\(877\) 29.6926i 1.00265i −0.865260 0.501324i \(-0.832847\pi\)
0.865260 0.501324i \(-0.167153\pi\)
\(878\) 3.05910 + 1.09064i 0.103239 + 0.0368073i
\(879\) 0 0
\(880\) 3.34894 + 16.4449i 0.112893 + 0.554358i
\(881\) 16.1976 0.545710 0.272855 0.962055i \(-0.412032\pi\)
0.272855 + 0.962055i \(0.412032\pi\)
\(882\) 0 0
\(883\) 37.4853i 1.26148i −0.775993 0.630741i \(-0.782751\pi\)
0.775993 0.630741i \(-0.217249\pi\)
\(884\) 8.02255 9.82097i 0.269827 0.330315i
\(885\) 0 0
\(886\) 7.11962 19.9696i 0.239188 0.670891i
\(887\) 8.05161 0.270347 0.135173 0.990822i \(-0.456841\pi\)
0.135173 + 0.990822i \(0.456841\pi\)
\(888\) 0 0
\(889\) −67.6592 −2.26922
\(890\) −1.09105 + 3.06025i −0.0365721 + 0.102580i
\(891\) 0 0
\(892\) 20.2331 + 16.5280i 0.677455 + 0.553399i
\(893\) 21.6182i 0.723427i
\(894\) 0 0
\(895\) 26.2257 0.876630
\(896\) 41.7046 38.4080i 1.39325 1.28312i
\(897\) 0 0
\(898\) 27.5165 + 9.81026i 0.918236 + 0.327373i
\(899\) 2.66020i 0.0887227i
\(900\) 0 0
\(901\) 7.37263i 0.245618i
\(902\) −4.41377 + 12.3800i −0.146962 + 0.412210i
\(903\) 0 0
\(904\) 11.7319 + 19.4230i 0.390199 + 0.645998i
\(905\) 18.6300 0.619281
\(906\) 0 0
\(907\) 33.3609i 1.10773i 0.832606 + 0.553865i \(0.186848\pi\)
−0.832606 + 0.553865i \(0.813152\pi\)
\(908\) 25.7741 31.5519i 0.855344 1.04709i
\(909\) 0 0
\(910\) −66.9050 23.8532i −2.21788 0.790725i
\(911\) 25.7866 0.854347 0.427174 0.904170i \(-0.359509\pi\)
0.427174 + 0.904170i \(0.359509\pi\)
\(912\) 0 0
\(913\) −21.8247 −0.722293
\(914\) 35.1945 + 12.5477i 1.16413 + 0.415040i
\(915\) 0 0
\(916\) 22.6792 27.7633i 0.749343 0.917324i
\(917\) 29.5915i 0.977196i
\(918\) 0 0
\(919\) −25.8720 −0.853440 −0.426720 0.904384i \(-0.640331\pi\)
−0.426720 + 0.904384i \(0.640331\pi\)
\(920\) −10.8616 + 6.56070i −0.358098 + 0.216300i
\(921\) 0 0
\(922\) 18.6341 52.2662i 0.613683 1.72130i
\(923\) 15.9319i 0.524404i
\(924\) 0 0
\(925\) 2.92367i 0.0961297i
\(926\) 9.73454 + 3.47059i 0.319897 + 0.114051i
\(927\) 0 0
\(928\) −8.85229 1.26171i −0.290591 0.0414177i
\(929\) −40.6849 −1.33483 −0.667413 0.744687i \(-0.732599\pi\)
−0.667413 + 0.744687i \(0.732599\pi\)
\(930\) 0 0
\(931\) 44.3465i 1.45340i
\(932\) −24.6161 20.1084i −0.806328 0.658673i
\(933\) 0 0
\(934\) −11.5844 + 32.4926i −0.379052 + 1.06319i
\(935\) −4.19561 −0.137211
\(936\) 0 0
\(937\) −0.426795 −0.0139428 −0.00697140 0.999976i \(-0.502219\pi\)
−0.00697140 + 0.999976i \(0.502219\pi\)
\(938\) −23.3734 + 65.5593i −0.763170 + 2.14059i
\(939\) 0 0
\(940\) −17.6595 + 21.6182i −0.575989 + 0.705109i
\(941\) 21.4487i 0.699208i −0.936898 0.349604i \(-0.886316\pi\)
0.936898 0.349604i \(-0.113684\pi\)
\(942\) 0 0
\(943\) −9.93772 −0.323617
\(944\) 42.2587 8.60581i 1.37540 0.280095i
\(945\) 0 0
\(946\) −23.0629 8.22246i −0.749839 0.267335i
\(947\) 45.9708i 1.49385i −0.664908 0.746925i \(-0.731529\pi\)
0.664908 0.746925i \(-0.268471\pi\)
\(948\) 0 0
\(949\) 15.9856i 0.518913i
\(950\) −2.90855 + 8.15808i −0.0943657 + 0.264683i
\(951\) 0 0
\(952\) 7.32834 + 12.1325i 0.237513 + 0.393218i
\(953\) −28.3714 −0.919038 −0.459519 0.888168i \(-0.651978\pi\)
−0.459519 + 0.888168i \(0.651978\pi\)
\(954\) 0 0
\(955\) 12.5862i 0.407281i
\(956\) 25.3303 + 20.6918i 0.819240 + 0.669220i
\(957\) 0 0
\(958\) 8.89849 + 3.17252i 0.287497 + 0.102499i
\(959\) 7.84948 0.253473
\(960\) 0 0
\(961\) −28.1677 −0.908637
\(962\) 9.87203 + 3.51961i 0.318287 + 0.113477i
\(963\) 0 0
\(964\) 45.9746 + 37.5557i 1.48074 + 1.20959i
\(965\) 39.8697i 1.28345i
\(966\) 0 0
\(967\) −29.4541 −0.947180 −0.473590 0.880745i \(-0.657042\pi\)
−0.473590 + 0.880745i \(0.657042\pi\)
\(968\) 5.78335 + 9.57470i 0.185884 + 0.307743i
\(969\) 0 0
\(970\) −5.37149 + 15.0663i −0.172468 + 0.483750i
\(971\) 38.8816i 1.24777i 0.781516 + 0.623885i \(0.214446\pi\)
−0.781516 + 0.623885i \(0.785554\pi\)
\(972\) 0 0
\(973\) 16.4984i 0.528914i
\(974\) 22.9537 + 8.18352i 0.735483 + 0.262217i
\(975\) 0 0
\(976\) 6.19561 1.26171i 0.198317 0.0403864i
\(977\) −51.5465 −1.64912 −0.824559 0.565775i \(-0.808577\pi\)
−0.824559 + 0.565775i \(0.808577\pi\)
\(978\) 0 0
\(979\) 3.85766i 0.123291i
\(980\) 36.2257 44.3465i 1.15719 1.41660i
\(981\) 0 0
\(982\) 4.14865 11.6364i 0.132389 0.371333i
\(983\) −39.7261 −1.26707 −0.633533 0.773716i \(-0.718396\pi\)
−0.633533 + 0.773716i \(0.718396\pi\)
\(984\) 0 0
\(985\) 20.3645 0.648868
\(986\) 0.750703 2.10562i 0.0239072 0.0670566i
\(987\) 0 0
\(988\) −24.0451 19.6419i −0.764976 0.624893i
\(989\) 18.5131i 0.588682i
\(990\) 0 0
\(991\) 8.01408 0.254576 0.127288 0.991866i \(-0.459373\pi\)
0.127288 + 0.991866i \(0.459373\pi\)
\(992\) −1.34332 + 9.42485i −0.0426504 + 0.299239i
\(993\) 0 0
\(994\) 16.7733 + 5.98006i 0.532015 + 0.189676i
\(995\) 0.536828i 0.0170186i
\(996\) 0 0
\(997\) 18.6589i 0.590934i −0.955353 0.295467i \(-0.904525\pi\)
0.955353 0.295467i \(-0.0954753\pi\)
\(998\) −2.48448 + 6.96863i −0.0786448 + 0.220588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.f.c.613.8 8
3.2 odd 2 136.2.c.b.69.1 8
4.3 odd 2 4896.2.f.d.2449.3 8
8.3 odd 2 4896.2.f.d.2449.6 8
8.5 even 2 inner 1224.2.f.c.613.7 8
12.11 even 2 544.2.c.b.273.2 8
24.5 odd 2 136.2.c.b.69.2 yes 8
24.11 even 2 544.2.c.b.273.7 8
48.5 odd 4 4352.2.a.bf.1.7 8
48.11 even 4 4352.2.a.bb.1.2 8
48.29 odd 4 4352.2.a.bf.1.2 8
48.35 even 4 4352.2.a.bb.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.1 8 3.2 odd 2
136.2.c.b.69.2 yes 8 24.5 odd 2
544.2.c.b.273.2 8 12.11 even 2
544.2.c.b.273.7 8 24.11 even 2
1224.2.f.c.613.7 8 8.5 even 2 inner
1224.2.f.c.613.8 8 1.1 even 1 trivial
4352.2.a.bb.1.2 8 48.11 even 4
4352.2.a.bb.1.7 8 48.35 even 4
4352.2.a.bf.1.2 8 48.29 odd 4
4352.2.a.bf.1.7 8 48.5 odd 4
4896.2.f.d.2449.3 8 4.3 odd 2
4896.2.f.d.2449.6 8 8.3 odd 2