Properties

Label 4352.2.a.bf.1.7
Level $4352$
Weight $2$
Character 4352.1
Self dual yes
Analytic conductor $34.751$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4352,2,Mod(1,4352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4352.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4352 = 2^{8} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,12,0,8,0,0,0,0,0,12,0,8,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.7508949597\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.71515595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} + 55x^{4} - 79x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.37995\) of defining polynomial
Character \(\chi\) \(=\) 4352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.10562 q^{3} -1.58069 q^{5} +5.01127 q^{7} +1.43364 q^{9} +2.65428 q^{11} +6.34060 q^{13} -3.32834 q^{15} +1.00000 q^{17} +2.44834 q^{19} +10.5518 q^{21} -2.83821 q^{23} -2.50141 q^{25} -3.29817 q^{27} -1.58069 q^{29} +1.68293 q^{31} +5.58891 q^{33} -7.92129 q^{35} +1.16881 q^{37} +13.3509 q^{39} +3.50141 q^{41} -6.52280 q^{43} -2.26614 q^{45} +8.82975 q^{47} +18.1129 q^{49} +2.10562 q^{51} +7.37263 q^{53} -4.19561 q^{55} +5.15528 q^{57} -10.7815 q^{59} -1.58069 q^{61} +7.18434 q^{63} -10.0225 q^{65} -9.82097 q^{67} -5.97619 q^{69} -2.51268 q^{71} +2.52114 q^{73} -5.26701 q^{75} +13.3013 q^{77} +0.815662 q^{79} -11.2456 q^{81} -8.22246 q^{83} -1.58069 q^{85} -3.32834 q^{87} -1.45337 q^{89} +31.7745 q^{91} +3.54362 q^{93} -3.87008 q^{95} -7.15528 q^{97} +3.80527 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{7} + 8 q^{9} + 12 q^{15} + 8 q^{17} + 16 q^{23} + 8 q^{25} + 24 q^{31} - 8 q^{33} + 12 q^{39} + 4 q^{47} + 8 q^{49} + 12 q^{55} - 8 q^{57} + 40 q^{63} - 24 q^{65} + 36 q^{71} - 8 q^{73} + 24 q^{79}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10562 1.21568 0.607840 0.794059i \(-0.292036\pi\)
0.607840 + 0.794059i \(0.292036\pi\)
\(4\) 0 0
\(5\) −1.58069 −0.706908 −0.353454 0.935452i \(-0.614993\pi\)
−0.353454 + 0.935452i \(0.614993\pi\)
\(6\) 0 0
\(7\) 5.01127 1.89408 0.947042 0.321110i \(-0.104056\pi\)
0.947042 + 0.321110i \(0.104056\pi\)
\(8\) 0 0
\(9\) 1.43364 0.477878
\(10\) 0 0
\(11\) 2.65428 0.800297 0.400148 0.916450i \(-0.368959\pi\)
0.400148 + 0.916450i \(0.368959\pi\)
\(12\) 0 0
\(13\) 6.34060 1.75857 0.879283 0.476300i \(-0.158022\pi\)
0.879283 + 0.476300i \(0.158022\pi\)
\(14\) 0 0
\(15\) −3.32834 −0.859374
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 2.44834 0.561688 0.280844 0.959753i \(-0.409386\pi\)
0.280844 + 0.959753i \(0.409386\pi\)
\(20\) 0 0
\(21\) 10.5518 2.30260
\(22\) 0 0
\(23\) −2.83821 −0.591808 −0.295904 0.955218i \(-0.595621\pi\)
−0.295904 + 0.955218i \(0.595621\pi\)
\(24\) 0 0
\(25\) −2.50141 −0.500281
\(26\) 0 0
\(27\) −3.29817 −0.634733
\(28\) 0 0
\(29\) −1.58069 −0.293528 −0.146764 0.989172i \(-0.546886\pi\)
−0.146764 + 0.989172i \(0.546886\pi\)
\(30\) 0 0
\(31\) 1.68293 0.302264 0.151132 0.988514i \(-0.451708\pi\)
0.151132 + 0.988514i \(0.451708\pi\)
\(32\) 0 0
\(33\) 5.58891 0.972905
\(34\) 0 0
\(35\) −7.92129 −1.33894
\(36\) 0 0
\(37\) 1.16881 0.192151 0.0960757 0.995374i \(-0.469371\pi\)
0.0960757 + 0.995374i \(0.469371\pi\)
\(38\) 0 0
\(39\) 13.3509 2.13785
\(40\) 0 0
\(41\) 3.50141 0.546828 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(42\) 0 0
\(43\) −6.52280 −0.994718 −0.497359 0.867545i \(-0.665697\pi\)
−0.497359 + 0.867545i \(0.665697\pi\)
\(44\) 0 0
\(45\) −2.26614 −0.337816
\(46\) 0 0
\(47\) 8.82975 1.28795 0.643975 0.765046i \(-0.277284\pi\)
0.643975 + 0.765046i \(0.277284\pi\)
\(48\) 0 0
\(49\) 18.1129 2.58755
\(50\) 0 0
\(51\) 2.10562 0.294846
\(52\) 0 0
\(53\) 7.37263 1.01271 0.506354 0.862326i \(-0.330993\pi\)
0.506354 + 0.862326i \(0.330993\pi\)
\(54\) 0 0
\(55\) −4.19561 −0.565736
\(56\) 0 0
\(57\) 5.15528 0.682833
\(58\) 0 0
\(59\) −10.7815 −1.40363 −0.701817 0.712357i \(-0.747628\pi\)
−0.701817 + 0.712357i \(0.747628\pi\)
\(60\) 0 0
\(61\) −1.58069 −0.202387 −0.101194 0.994867i \(-0.532266\pi\)
−0.101194 + 0.994867i \(0.532266\pi\)
\(62\) 0 0
\(63\) 7.18434 0.905141
\(64\) 0 0
\(65\) −10.0225 −1.24314
\(66\) 0 0
\(67\) −9.82097 −1.19982 −0.599911 0.800067i \(-0.704797\pi\)
−0.599911 + 0.800067i \(0.704797\pi\)
\(68\) 0 0
\(69\) −5.97619 −0.719449
\(70\) 0 0
\(71\) −2.51268 −0.298200 −0.149100 0.988822i \(-0.547638\pi\)
−0.149100 + 0.988822i \(0.547638\pi\)
\(72\) 0 0
\(73\) 2.52114 0.295077 0.147539 0.989056i \(-0.452865\pi\)
0.147539 + 0.989056i \(0.452865\pi\)
\(74\) 0 0
\(75\) −5.26701 −0.608182
\(76\) 0 0
\(77\) 13.3013 1.51583
\(78\) 0 0
\(79\) 0.815662 0.0917692 0.0458846 0.998947i \(-0.485389\pi\)
0.0458846 + 0.998947i \(0.485389\pi\)
\(80\) 0 0
\(81\) −11.2456 −1.24951
\(82\) 0 0
\(83\) −8.22246 −0.902532 −0.451266 0.892390i \(-0.649027\pi\)
−0.451266 + 0.892390i \(0.649027\pi\)
\(84\) 0 0
\(85\) −1.58069 −0.171450
\(86\) 0 0
\(87\) −3.32834 −0.356836
\(88\) 0 0
\(89\) −1.45337 −0.154057 −0.0770286 0.997029i \(-0.524543\pi\)
−0.0770286 + 0.997029i \(0.524543\pi\)
\(90\) 0 0
\(91\) 31.7745 3.33087
\(92\) 0 0
\(93\) 3.54362 0.367456
\(94\) 0 0
\(95\) −3.87008 −0.397062
\(96\) 0 0
\(97\) −7.15528 −0.726508 −0.363254 0.931690i \(-0.618334\pi\)
−0.363254 + 0.931690i \(0.618334\pi\)
\(98\) 0 0
\(99\) 3.80527 0.382444
\(100\) 0 0
\(101\) −8.67822 −0.863515 −0.431758 0.901990i \(-0.642106\pi\)
−0.431758 + 0.901990i \(0.642106\pi\)
\(102\) 0 0
\(103\) 7.13273 0.702809 0.351404 0.936224i \(-0.385704\pi\)
0.351404 + 0.936224i \(0.385704\pi\)
\(104\) 0 0
\(105\) −16.6792 −1.62773
\(106\) 0 0
\(107\) −5.26701 −0.509181 −0.254590 0.967049i \(-0.581941\pi\)
−0.254590 + 0.967049i \(0.581941\pi\)
\(108\) 0 0
\(109\) −8.35100 −0.799880 −0.399940 0.916541i \(-0.630969\pi\)
−0.399940 + 0.916541i \(0.630969\pi\)
\(110\) 0 0
\(111\) 2.46107 0.233595
\(112\) 0 0
\(113\) −8.02255 −0.754698 −0.377349 0.926071i \(-0.623164\pi\)
−0.377349 + 0.926071i \(0.623164\pi\)
\(114\) 0 0
\(115\) 4.48634 0.418354
\(116\) 0 0
\(117\) 9.09010 0.840380
\(118\) 0 0
\(119\) 5.01127 0.459383
\(120\) 0 0
\(121\) −3.95478 −0.359525
\(122\) 0 0
\(123\) 7.37263 0.664768
\(124\) 0 0
\(125\) 11.8574 1.06056
\(126\) 0 0
\(127\) 13.5014 1.19806 0.599028 0.800728i \(-0.295554\pi\)
0.599028 + 0.800728i \(0.295554\pi\)
\(128\) 0 0
\(129\) −13.7345 −1.20926
\(130\) 0 0
\(131\) −5.90498 −0.515920 −0.257960 0.966156i \(-0.583050\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(132\) 0 0
\(133\) 12.2693 1.06388
\(134\) 0 0
\(135\) 5.21340 0.448698
\(136\) 0 0
\(137\) −1.56636 −0.133824 −0.0669118 0.997759i \(-0.521315\pi\)
−0.0669118 + 0.997759i \(0.521315\pi\)
\(138\) 0 0
\(139\) −3.29225 −0.279245 −0.139623 0.990205i \(-0.544589\pi\)
−0.139623 + 0.990205i \(0.544589\pi\)
\(140\) 0 0
\(141\) 18.5921 1.56574
\(142\) 0 0
\(143\) 16.8297 1.40737
\(144\) 0 0
\(145\) 2.49859 0.207497
\(146\) 0 0
\(147\) 38.1388 3.14564
\(148\) 0 0
\(149\) −2.70203 −0.221359 −0.110679 0.993856i \(-0.535303\pi\)
−0.110679 + 0.993856i \(0.535303\pi\)
\(150\) 0 0
\(151\) −2.88982 −0.235170 −0.117585 0.993063i \(-0.537515\pi\)
−0.117585 + 0.993063i \(0.537515\pi\)
\(152\) 0 0
\(153\) 1.43364 0.115903
\(154\) 0 0
\(155\) −2.66020 −0.213673
\(156\) 0 0
\(157\) −1.01421 −0.0809428 −0.0404714 0.999181i \(-0.512886\pi\)
−0.0404714 + 0.999181i \(0.512886\pi\)
\(158\) 0 0
\(159\) 15.5240 1.23113
\(160\) 0 0
\(161\) −14.2230 −1.12093
\(162\) 0 0
\(163\) 15.5259 1.21608 0.608042 0.793905i \(-0.291955\pi\)
0.608042 + 0.793905i \(0.291955\pi\)
\(164\) 0 0
\(165\) −8.83436 −0.687754
\(166\) 0 0
\(167\) 15.9011 1.23046 0.615232 0.788346i \(-0.289062\pi\)
0.615232 + 0.788346i \(0.289062\pi\)
\(168\) 0 0
\(169\) 27.2032 2.09255
\(170\) 0 0
\(171\) 3.51003 0.268419
\(172\) 0 0
\(173\) −21.1752 −1.60992 −0.804959 0.593331i \(-0.797813\pi\)
−0.804959 + 0.593331i \(0.797813\pi\)
\(174\) 0 0
\(175\) −12.5352 −0.947574
\(176\) 0 0
\(177\) −22.7018 −1.70637
\(178\) 0 0
\(179\) −16.5913 −1.24009 −0.620045 0.784566i \(-0.712886\pi\)
−0.620045 + 0.784566i \(0.712886\pi\)
\(180\) 0 0
\(181\) −11.7859 −0.876042 −0.438021 0.898965i \(-0.644321\pi\)
−0.438021 + 0.898965i \(0.644321\pi\)
\(182\) 0 0
\(183\) −3.32834 −0.246038
\(184\) 0 0
\(185\) −1.84753 −0.135833
\(186\) 0 0
\(187\) 2.65428 0.194100
\(188\) 0 0
\(189\) −16.5280 −1.20224
\(190\) 0 0
\(191\) 7.96248 0.576145 0.288072 0.957609i \(-0.406986\pi\)
0.288072 + 0.957609i \(0.406986\pi\)
\(192\) 0 0
\(193\) 25.2229 1.81559 0.907793 0.419419i \(-0.137766\pi\)
0.907793 + 0.419419i \(0.137766\pi\)
\(194\) 0 0
\(195\) −21.1037 −1.51127
\(196\) 0 0
\(197\) 12.8833 0.917895 0.458948 0.888463i \(-0.348227\pi\)
0.458948 + 0.888463i \(0.348227\pi\)
\(198\) 0 0
\(199\) −0.339615 −0.0240747 −0.0120373 0.999928i \(-0.503832\pi\)
−0.0120373 + 0.999928i \(0.503832\pi\)
\(200\) 0 0
\(201\) −20.6792 −1.45860
\(202\) 0 0
\(203\) −7.92129 −0.555966
\(204\) 0 0
\(205\) −5.53465 −0.386557
\(206\) 0 0
\(207\) −4.06896 −0.282812
\(208\) 0 0
\(209\) 6.49859 0.449517
\(210\) 0 0
\(211\) 6.36434 0.438139 0.219069 0.975709i \(-0.429698\pi\)
0.219069 + 0.975709i \(0.429698\pi\)
\(212\) 0 0
\(213\) −5.29075 −0.362516
\(214\) 0 0
\(215\) 10.3106 0.703174
\(216\) 0 0
\(217\) 8.43364 0.572512
\(218\) 0 0
\(219\) 5.30857 0.358720
\(220\) 0 0
\(221\) 6.34060 0.426515
\(222\) 0 0
\(223\) 13.0629 0.874755 0.437378 0.899278i \(-0.355907\pi\)
0.437378 + 0.899278i \(0.355907\pi\)
\(224\) 0 0
\(225\) −3.58610 −0.239073
\(226\) 0 0
\(227\) 20.3705 1.35204 0.676018 0.736885i \(-0.263704\pi\)
0.676018 + 0.736885i \(0.263704\pi\)
\(228\) 0 0
\(229\) 17.9245 1.18448 0.592241 0.805761i \(-0.298243\pi\)
0.592241 + 0.805761i \(0.298243\pi\)
\(230\) 0 0
\(231\) 28.0076 1.84276
\(232\) 0 0
\(233\) −15.8926 −1.04116 −0.520580 0.853813i \(-0.674284\pi\)
−0.520580 + 0.853813i \(0.674284\pi\)
\(234\) 0 0
\(235\) −13.9571 −0.910463
\(236\) 0 0
\(237\) 1.71747 0.111562
\(238\) 0 0
\(239\) −16.3537 −1.05783 −0.528916 0.848674i \(-0.677402\pi\)
−0.528916 + 0.848674i \(0.677402\pi\)
\(240\) 0 0
\(241\) 29.6820 1.91199 0.955994 0.293386i \(-0.0947820\pi\)
0.955994 + 0.293386i \(0.0947820\pi\)
\(242\) 0 0
\(243\) −13.7844 −0.884272
\(244\) 0 0
\(245\) −28.6309 −1.82916
\(246\) 0 0
\(247\) 15.5240 0.987765
\(248\) 0 0
\(249\) −17.3134 −1.09719
\(250\) 0 0
\(251\) 23.7425 1.49861 0.749305 0.662225i \(-0.230388\pi\)
0.749305 + 0.662225i \(0.230388\pi\)
\(252\) 0 0
\(253\) −7.53342 −0.473622
\(254\) 0 0
\(255\) −3.32834 −0.208429
\(256\) 0 0
\(257\) −18.9548 −1.18237 −0.591183 0.806537i \(-0.701339\pi\)
−0.591183 + 0.806537i \(0.701339\pi\)
\(258\) 0 0
\(259\) 5.85723 0.363951
\(260\) 0 0
\(261\) −2.26614 −0.140270
\(262\) 0 0
\(263\) −9.54650 −0.588662 −0.294331 0.955703i \(-0.595097\pi\)
−0.294331 + 0.955703i \(0.595097\pi\)
\(264\) 0 0
\(265\) −11.6539 −0.715892
\(266\) 0 0
\(267\) −3.06025 −0.187284
\(268\) 0 0
\(269\) 20.3467 1.24056 0.620282 0.784379i \(-0.287018\pi\)
0.620282 + 0.784379i \(0.287018\pi\)
\(270\) 0 0
\(271\) 28.8748 1.75402 0.877011 0.480471i \(-0.159534\pi\)
0.877011 + 0.480471i \(0.159534\pi\)
\(272\) 0 0
\(273\) 66.9050 4.04927
\(274\) 0 0
\(275\) −6.63944 −0.400373
\(276\) 0 0
\(277\) −10.4151 −0.625780 −0.312890 0.949789i \(-0.601297\pi\)
−0.312890 + 0.949789i \(0.601297\pi\)
\(278\) 0 0
\(279\) 2.41271 0.144445
\(280\) 0 0
\(281\) 30.2032 1.80177 0.900885 0.434057i \(-0.142918\pi\)
0.900885 + 0.434057i \(0.142918\pi\)
\(282\) 0 0
\(283\) 26.6458 1.58393 0.791964 0.610568i \(-0.209059\pi\)
0.791964 + 0.610568i \(0.209059\pi\)
\(284\) 0 0
\(285\) −8.14892 −0.482700
\(286\) 0 0
\(287\) 17.5465 1.03574
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −15.0663 −0.883202
\(292\) 0 0
\(293\) −3.52580 −0.205979 −0.102990 0.994682i \(-0.532841\pi\)
−0.102990 + 0.994682i \(0.532841\pi\)
\(294\) 0 0
\(295\) 17.0423 0.992240
\(296\) 0 0
\(297\) −8.75428 −0.507975
\(298\) 0 0
\(299\) −17.9959 −1.04073
\(300\) 0 0
\(301\) −32.6875 −1.88408
\(302\) 0 0
\(303\) −18.2730 −1.04976
\(304\) 0 0
\(305\) 2.49859 0.143069
\(306\) 0 0
\(307\) −1.34483 −0.0767534 −0.0383767 0.999263i \(-0.512219\pi\)
−0.0383767 + 0.999263i \(0.512219\pi\)
\(308\) 0 0
\(309\) 15.0188 0.854391
\(310\) 0 0
\(311\) −32.5803 −1.84746 −0.923730 0.383044i \(-0.874876\pi\)
−0.923730 + 0.383044i \(0.874876\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) −11.3562 −0.639852
\(316\) 0 0
\(317\) −25.8814 −1.45364 −0.726822 0.686826i \(-0.759004\pi\)
−0.726822 + 0.686826i \(0.759004\pi\)
\(318\) 0 0
\(319\) −4.19561 −0.234909
\(320\) 0 0
\(321\) −11.0903 −0.619001
\(322\) 0 0
\(323\) 2.44834 0.136229
\(324\) 0 0
\(325\) −15.8604 −0.879777
\(326\) 0 0
\(327\) −17.5840 −0.972399
\(328\) 0 0
\(329\) 44.2483 2.43949
\(330\) 0 0
\(331\) −1.26171 −0.0693499 −0.0346749 0.999399i \(-0.511040\pi\)
−0.0346749 + 0.999399i \(0.511040\pi\)
\(332\) 0 0
\(333\) 1.67565 0.0918250
\(334\) 0 0
\(335\) 15.5240 0.848164
\(336\) 0 0
\(337\) 17.8120 0.970279 0.485140 0.874437i \(-0.338769\pi\)
0.485140 + 0.874437i \(0.338769\pi\)
\(338\) 0 0
\(339\) −16.8924 −0.917471
\(340\) 0 0
\(341\) 4.46698 0.241901
\(342\) 0 0
\(343\) 55.6896 3.00696
\(344\) 0 0
\(345\) 9.44653 0.508584
\(346\) 0 0
\(347\) 4.34210 0.233096 0.116548 0.993185i \(-0.462817\pi\)
0.116548 + 0.993185i \(0.462817\pi\)
\(348\) 0 0
\(349\) −12.4908 −0.668615 −0.334307 0.942464i \(-0.608502\pi\)
−0.334307 + 0.942464i \(0.608502\pi\)
\(350\) 0 0
\(351\) −20.9124 −1.11622
\(352\) 0 0
\(353\) 10.2782 0.547055 0.273527 0.961864i \(-0.411810\pi\)
0.273527 + 0.961864i \(0.411810\pi\)
\(354\) 0 0
\(355\) 3.97178 0.210800
\(356\) 0 0
\(357\) 10.5518 0.558462
\(358\) 0 0
\(359\) −7.45826 −0.393632 −0.196816 0.980440i \(-0.563060\pi\)
−0.196816 + 0.980440i \(0.563060\pi\)
\(360\) 0 0
\(361\) −13.0056 −0.684506
\(362\) 0 0
\(363\) −8.32726 −0.437068
\(364\) 0 0
\(365\) −3.98516 −0.208593
\(366\) 0 0
\(367\) −6.92083 −0.361264 −0.180632 0.983551i \(-0.557814\pi\)
−0.180632 + 0.983551i \(0.557814\pi\)
\(368\) 0 0
\(369\) 5.01974 0.261317
\(370\) 0 0
\(371\) 36.9463 1.91815
\(372\) 0 0
\(373\) −22.0882 −1.14369 −0.571843 0.820363i \(-0.693771\pi\)
−0.571843 + 0.820363i \(0.693771\pi\)
\(374\) 0 0
\(375\) 24.9672 1.28930
\(376\) 0 0
\(377\) −10.0225 −0.516187
\(378\) 0 0
\(379\) −35.4430 −1.82058 −0.910291 0.413968i \(-0.864143\pi\)
−0.910291 + 0.413968i \(0.864143\pi\)
\(380\) 0 0
\(381\) 28.4288 1.45645
\(382\) 0 0
\(383\) −28.5493 −1.45880 −0.729401 0.684087i \(-0.760201\pi\)
−0.729401 + 0.684087i \(0.760201\pi\)
\(384\) 0 0
\(385\) −21.0254 −1.07155
\(386\) 0 0
\(387\) −9.35132 −0.475354
\(388\) 0 0
\(389\) −19.0218 −0.964443 −0.482222 0.876049i \(-0.660170\pi\)
−0.482222 + 0.876049i \(0.660170\pi\)
\(390\) 0 0
\(391\) −2.83821 −0.143534
\(392\) 0 0
\(393\) −12.4336 −0.627194
\(394\) 0 0
\(395\) −1.28931 −0.0648724
\(396\) 0 0
\(397\) −6.52486 −0.327473 −0.163737 0.986504i \(-0.552355\pi\)
−0.163737 + 0.986504i \(0.552355\pi\)
\(398\) 0 0
\(399\) 25.8345 1.29334
\(400\) 0 0
\(401\) −5.41096 −0.270210 −0.135105 0.990831i \(-0.543137\pi\)
−0.135105 + 0.990831i \(0.543137\pi\)
\(402\) 0 0
\(403\) 10.6708 0.531550
\(404\) 0 0
\(405\) 17.7758 0.883289
\(406\) 0 0
\(407\) 3.10236 0.153778
\(408\) 0 0
\(409\) 28.4307 1.40581 0.702904 0.711285i \(-0.251886\pi\)
0.702904 + 0.711285i \(0.251886\pi\)
\(410\) 0 0
\(411\) −3.29817 −0.162687
\(412\) 0 0
\(413\) −54.0291 −2.65860
\(414\) 0 0
\(415\) 12.9972 0.638007
\(416\) 0 0
\(417\) −6.93223 −0.339473
\(418\) 0 0
\(419\) −14.4224 −0.704581 −0.352290 0.935891i \(-0.614597\pi\)
−0.352290 + 0.935891i \(0.614597\pi\)
\(420\) 0 0
\(421\) −21.2645 −1.03637 −0.518183 0.855270i \(-0.673391\pi\)
−0.518183 + 0.855270i \(0.673391\pi\)
\(422\) 0 0
\(423\) 12.6586 0.615484
\(424\) 0 0
\(425\) −2.50141 −0.121336
\(426\) 0 0
\(427\) −7.92129 −0.383338
\(428\) 0 0
\(429\) 35.4370 1.71092
\(430\) 0 0
\(431\) 18.4752 0.889917 0.444958 0.895551i \(-0.353218\pi\)
0.444958 + 0.895551i \(0.353218\pi\)
\(432\) 0 0
\(433\) −27.1580 −1.30513 −0.652564 0.757733i \(-0.726307\pi\)
−0.652564 + 0.757733i \(0.726307\pi\)
\(434\) 0 0
\(435\) 5.26109 0.252250
\(436\) 0 0
\(437\) −6.94891 −0.332411
\(438\) 0 0
\(439\) −2.29647 −0.109605 −0.0548023 0.998497i \(-0.517453\pi\)
−0.0548023 + 0.998497i \(0.517453\pi\)
\(440\) 0 0
\(441\) 25.9672 1.23654
\(442\) 0 0
\(443\) −14.9912 −0.712254 −0.356127 0.934438i \(-0.615903\pi\)
−0.356127 + 0.934438i \(0.615903\pi\)
\(444\) 0 0
\(445\) 2.29734 0.108904
\(446\) 0 0
\(447\) −5.68944 −0.269101
\(448\) 0 0
\(449\) −20.6567 −0.974849 −0.487425 0.873165i \(-0.662064\pi\)
−0.487425 + 0.873165i \(0.662064\pi\)
\(450\) 0 0
\(451\) 9.29372 0.437624
\(452\) 0 0
\(453\) −6.08486 −0.285892
\(454\) 0 0
\(455\) −50.2257 −2.35462
\(456\) 0 0
\(457\) −26.4206 −1.23590 −0.617952 0.786216i \(-0.712037\pi\)
−0.617952 + 0.786216i \(0.712037\pi\)
\(458\) 0 0
\(459\) −3.29817 −0.153945
\(460\) 0 0
\(461\) 39.2364 1.82742 0.913711 0.406365i \(-0.133204\pi\)
0.913711 + 0.406365i \(0.133204\pi\)
\(462\) 0 0
\(463\) 7.30774 0.339620 0.169810 0.985477i \(-0.445685\pi\)
0.169810 + 0.985477i \(0.445685\pi\)
\(464\) 0 0
\(465\) −5.60137 −0.259757
\(466\) 0 0
\(467\) −24.3923 −1.12874 −0.564370 0.825522i \(-0.690881\pi\)
−0.564370 + 0.825522i \(0.690881\pi\)
\(468\) 0 0
\(469\) −49.2156 −2.27256
\(470\) 0 0
\(471\) −2.13554 −0.0984005
\(472\) 0 0
\(473\) −17.3134 −0.796069
\(474\) 0 0
\(475\) −6.12430 −0.281002
\(476\) 0 0
\(477\) 10.5697 0.483951
\(478\) 0 0
\(479\) −6.68012 −0.305223 −0.152611 0.988286i \(-0.548768\pi\)
−0.152611 + 0.988286i \(0.548768\pi\)
\(480\) 0 0
\(481\) 7.41096 0.337911
\(482\) 0 0
\(483\) −29.9483 −1.36270
\(484\) 0 0
\(485\) 11.3103 0.513575
\(486\) 0 0
\(487\) −17.2314 −0.780829 −0.390414 0.920639i \(-0.627668\pi\)
−0.390414 + 0.920639i \(0.627668\pi\)
\(488\) 0 0
\(489\) 32.6917 1.47837
\(490\) 0 0
\(491\) −8.73548 −0.394227 −0.197113 0.980381i \(-0.563157\pi\)
−0.197113 + 0.980381i \(0.563157\pi\)
\(492\) 0 0
\(493\) −1.58069 −0.0711909
\(494\) 0 0
\(495\) −6.01498 −0.270353
\(496\) 0 0
\(497\) −12.5917 −0.564816
\(498\) 0 0
\(499\) 5.23137 0.234188 0.117094 0.993121i \(-0.462642\pi\)
0.117094 + 0.993121i \(0.462642\pi\)
\(500\) 0 0
\(501\) 33.4817 1.49585
\(502\) 0 0
\(503\) −2.39969 −0.106997 −0.0534984 0.998568i \(-0.517037\pi\)
−0.0534984 + 0.998568i \(0.517037\pi\)
\(504\) 0 0
\(505\) 13.7176 0.610426
\(506\) 0 0
\(507\) 57.2796 2.54387
\(508\) 0 0
\(509\) −6.72283 −0.297984 −0.148992 0.988838i \(-0.547603\pi\)
−0.148992 + 0.988838i \(0.547603\pi\)
\(510\) 0 0
\(511\) 12.6341 0.558901
\(512\) 0 0
\(513\) −8.07505 −0.356522
\(514\) 0 0
\(515\) −11.2747 −0.496821
\(516\) 0 0
\(517\) 23.4367 1.03074
\(518\) 0 0
\(519\) −44.5868 −1.95714
\(520\) 0 0
\(521\) −23.2754 −1.01971 −0.509857 0.860259i \(-0.670302\pi\)
−0.509857 + 0.860259i \(0.670302\pi\)
\(522\) 0 0
\(523\) 3.46255 0.151407 0.0757034 0.997130i \(-0.475880\pi\)
0.0757034 + 0.997130i \(0.475880\pi\)
\(524\) 0 0
\(525\) −26.3944 −1.15195
\(526\) 0 0
\(527\) 1.68293 0.0733097
\(528\) 0 0
\(529\) −14.9446 −0.649764
\(530\) 0 0
\(531\) −15.4568 −0.670766
\(532\) 0 0
\(533\) 22.2010 0.961632
\(534\) 0 0
\(535\) 8.32553 0.359944
\(536\) 0 0
\(537\) −34.9349 −1.50755
\(538\) 0 0
\(539\) 48.0767 2.07081
\(540\) 0 0
\(541\) −9.41268 −0.404683 −0.202341 0.979315i \(-0.564855\pi\)
−0.202341 + 0.979315i \(0.564855\pi\)
\(542\) 0 0
\(543\) −24.8167 −1.06499
\(544\) 0 0
\(545\) 13.2004 0.565442
\(546\) 0 0
\(547\) −8.92340 −0.381537 −0.190768 0.981635i \(-0.561098\pi\)
−0.190768 + 0.981635i \(0.561098\pi\)
\(548\) 0 0
\(549\) −2.26614 −0.0967164
\(550\) 0 0
\(551\) −3.87008 −0.164871
\(552\) 0 0
\(553\) 4.08751 0.173818
\(554\) 0 0
\(555\) −3.89020 −0.165130
\(556\) 0 0
\(557\) −8.36902 −0.354607 −0.177303 0.984156i \(-0.556737\pi\)
−0.177303 + 0.984156i \(0.556737\pi\)
\(558\) 0 0
\(559\) −41.3585 −1.74928
\(560\) 0 0
\(561\) 5.58891 0.235964
\(562\) 0 0
\(563\) −12.1127 −0.510488 −0.255244 0.966877i \(-0.582156\pi\)
−0.255244 + 0.966877i \(0.582156\pi\)
\(564\) 0 0
\(565\) 12.6812 0.533502
\(566\) 0 0
\(567\) −56.3548 −2.36668
\(568\) 0 0
\(569\) −18.8542 −0.790411 −0.395206 0.918593i \(-0.629327\pi\)
−0.395206 + 0.918593i \(0.629327\pi\)
\(570\) 0 0
\(571\) 3.35775 0.140517 0.0702587 0.997529i \(-0.477618\pi\)
0.0702587 + 0.997529i \(0.477618\pi\)
\(572\) 0 0
\(573\) 16.7659 0.700408
\(574\) 0 0
\(575\) 7.09951 0.296070
\(576\) 0 0
\(577\) −24.7442 −1.03011 −0.515057 0.857156i \(-0.672229\pi\)
−0.515057 + 0.857156i \(0.672229\pi\)
\(578\) 0 0
\(579\) 53.1099 2.20717
\(580\) 0 0
\(581\) −41.2050 −1.70947
\(582\) 0 0
\(583\) 19.5690 0.810467
\(584\) 0 0
\(585\) −14.3687 −0.594072
\(586\) 0 0
\(587\) 25.2517 1.04225 0.521124 0.853481i \(-0.325513\pi\)
0.521124 + 0.853481i \(0.325513\pi\)
\(588\) 0 0
\(589\) 4.12039 0.169778
\(590\) 0 0
\(591\) 27.1273 1.11587
\(592\) 0 0
\(593\) 22.1581 0.909924 0.454962 0.890511i \(-0.349653\pi\)
0.454962 + 0.890511i \(0.349653\pi\)
\(594\) 0 0
\(595\) −7.92129 −0.324741
\(596\) 0 0
\(597\) −0.715101 −0.0292671
\(598\) 0 0
\(599\) 34.4007 1.40558 0.702788 0.711399i \(-0.251938\pi\)
0.702788 + 0.711399i \(0.251938\pi\)
\(600\) 0 0
\(601\) 25.2908 1.03163 0.515817 0.856699i \(-0.327488\pi\)
0.515817 + 0.856699i \(0.327488\pi\)
\(602\) 0 0
\(603\) −14.0797 −0.573369
\(604\) 0 0
\(605\) 6.25129 0.254151
\(606\) 0 0
\(607\) 14.2041 0.576526 0.288263 0.957551i \(-0.406922\pi\)
0.288263 + 0.957551i \(0.406922\pi\)
\(608\) 0 0
\(609\) −16.6792 −0.675877
\(610\) 0 0
\(611\) 55.9859 2.26495
\(612\) 0 0
\(613\) 33.8370 1.36666 0.683332 0.730108i \(-0.260530\pi\)
0.683332 + 0.730108i \(0.260530\pi\)
\(614\) 0 0
\(615\) −11.6539 −0.469929
\(616\) 0 0
\(617\) −33.3261 −1.34166 −0.670830 0.741611i \(-0.734062\pi\)
−0.670830 + 0.741611i \(0.734062\pi\)
\(618\) 0 0
\(619\) 17.9900 0.723080 0.361540 0.932357i \(-0.382251\pi\)
0.361540 + 0.932357i \(0.382251\pi\)
\(620\) 0 0
\(621\) 9.36090 0.375640
\(622\) 0 0
\(623\) −7.28325 −0.291797
\(624\) 0 0
\(625\) −6.23595 −0.249438
\(626\) 0 0
\(627\) 13.6836 0.546469
\(628\) 0 0
\(629\) 1.16881 0.0466035
\(630\) 0 0
\(631\) 9.75904 0.388501 0.194251 0.980952i \(-0.437773\pi\)
0.194251 + 0.980952i \(0.437773\pi\)
\(632\) 0 0
\(633\) 13.4009 0.532637
\(634\) 0 0
\(635\) −21.3416 −0.846915
\(636\) 0 0
\(637\) 114.846 4.55038
\(638\) 0 0
\(639\) −3.60226 −0.142503
\(640\) 0 0
\(641\) −12.1525 −0.479994 −0.239997 0.970774i \(-0.577146\pi\)
−0.239997 + 0.970774i \(0.577146\pi\)
\(642\) 0 0
\(643\) −20.1310 −0.793890 −0.396945 0.917842i \(-0.629930\pi\)
−0.396945 + 0.917842i \(0.629930\pi\)
\(644\) 0 0
\(645\) 21.7101 0.854835
\(646\) 0 0
\(647\) −8.21254 −0.322868 −0.161434 0.986883i \(-0.551612\pi\)
−0.161434 + 0.986883i \(0.551612\pi\)
\(648\) 0 0
\(649\) −28.6172 −1.12332
\(650\) 0 0
\(651\) 17.7580 0.695992
\(652\) 0 0
\(653\) −39.5293 −1.54690 −0.773451 0.633856i \(-0.781471\pi\)
−0.773451 + 0.633856i \(0.781471\pi\)
\(654\) 0 0
\(655\) 9.33396 0.364708
\(656\) 0 0
\(657\) 3.61440 0.141011
\(658\) 0 0
\(659\) −15.5399 −0.605348 −0.302674 0.953094i \(-0.597879\pi\)
−0.302674 + 0.953094i \(0.597879\pi\)
\(660\) 0 0
\(661\) 46.1373 1.79453 0.897267 0.441489i \(-0.145550\pi\)
0.897267 + 0.441489i \(0.145550\pi\)
\(662\) 0 0
\(663\) 13.3509 0.518506
\(664\) 0 0
\(665\) −19.3940 −0.752068
\(666\) 0 0
\(667\) 4.48634 0.173712
\(668\) 0 0
\(669\) 27.5055 1.06342
\(670\) 0 0
\(671\) −4.19561 −0.161970
\(672\) 0 0
\(673\) −32.0095 −1.23388 −0.616938 0.787012i \(-0.711627\pi\)
−0.616938 + 0.787012i \(0.711627\pi\)
\(674\) 0 0
\(675\) 8.25006 0.317545
\(676\) 0 0
\(677\) 13.7551 0.528650 0.264325 0.964434i \(-0.414851\pi\)
0.264325 + 0.964434i \(0.414851\pi\)
\(678\) 0 0
\(679\) −35.8571 −1.37607
\(680\) 0 0
\(681\) 42.8925 1.64364
\(682\) 0 0
\(683\) −23.7998 −0.910674 −0.455337 0.890319i \(-0.650481\pi\)
−0.455337 + 0.890319i \(0.650481\pi\)
\(684\) 0 0
\(685\) 2.47594 0.0946010
\(686\) 0 0
\(687\) 37.7421 1.43995
\(688\) 0 0
\(689\) 46.7469 1.78091
\(690\) 0 0
\(691\) −37.8178 −1.43866 −0.719328 0.694671i \(-0.755550\pi\)
−0.719328 + 0.694671i \(0.755550\pi\)
\(692\) 0 0
\(693\) 19.0693 0.724382
\(694\) 0 0
\(695\) 5.20404 0.197401
\(696\) 0 0
\(697\) 3.50141 0.132625
\(698\) 0 0
\(699\) −33.4638 −1.26572
\(700\) 0 0
\(701\) 4.14594 0.156590 0.0782950 0.996930i \(-0.475052\pi\)
0.0782950 + 0.996930i \(0.475052\pi\)
\(702\) 0 0
\(703\) 2.86165 0.107929
\(704\) 0 0
\(705\) −29.3884 −1.10683
\(706\) 0 0
\(707\) −43.4889 −1.63557
\(708\) 0 0
\(709\) −47.2230 −1.77350 −0.886748 0.462252i \(-0.847041\pi\)
−0.886748 + 0.462252i \(0.847041\pi\)
\(710\) 0 0
\(711\) 1.16936 0.0438545
\(712\) 0 0
\(713\) −4.77652 −0.178882
\(714\) 0 0
\(715\) −26.6027 −0.994884
\(716\) 0 0
\(717\) −34.4347 −1.28599
\(718\) 0 0
\(719\) −19.5647 −0.729642 −0.364821 0.931078i \(-0.618870\pi\)
−0.364821 + 0.931078i \(0.618870\pi\)
\(720\) 0 0
\(721\) 35.7441 1.33118
\(722\) 0 0
\(723\) 62.4991 2.32437
\(724\) 0 0
\(725\) 3.95396 0.146846
\(726\) 0 0
\(727\) −2.57406 −0.0954668 −0.0477334 0.998860i \(-0.515200\pi\)
−0.0477334 + 0.998860i \(0.515200\pi\)
\(728\) 0 0
\(729\) 4.71199 0.174518
\(730\) 0 0
\(731\) −6.52280 −0.241255
\(732\) 0 0
\(733\) −8.78689 −0.324551 −0.162276 0.986745i \(-0.551883\pi\)
−0.162276 + 0.986745i \(0.551883\pi\)
\(734\) 0 0
\(735\) −60.2858 −2.22368
\(736\) 0 0
\(737\) −26.0676 −0.960214
\(738\) 0 0
\(739\) 21.3574 0.785643 0.392822 0.919615i \(-0.371499\pi\)
0.392822 + 0.919615i \(0.371499\pi\)
\(740\) 0 0
\(741\) 32.6875 1.20081
\(742\) 0 0
\(743\) 15.6886 0.575557 0.287779 0.957697i \(-0.407083\pi\)
0.287779 + 0.957697i \(0.407083\pi\)
\(744\) 0 0
\(745\) 4.27108 0.156480
\(746\) 0 0
\(747\) −11.7880 −0.431300
\(748\) 0 0
\(749\) −26.3944 −0.964431
\(750\) 0 0
\(751\) −19.4799 −0.710832 −0.355416 0.934708i \(-0.615661\pi\)
−0.355416 + 0.934708i \(0.615661\pi\)
\(752\) 0 0
\(753\) 49.9926 1.82183
\(754\) 0 0
\(755\) 4.56792 0.166244
\(756\) 0 0
\(757\) −18.0194 −0.654927 −0.327463 0.944864i \(-0.606194\pi\)
−0.327463 + 0.944864i \(0.606194\pi\)
\(758\) 0 0
\(759\) −15.8625 −0.575773
\(760\) 0 0
\(761\) 31.8671 1.15518 0.577592 0.816326i \(-0.303993\pi\)
0.577592 + 0.816326i \(0.303993\pi\)
\(762\) 0 0
\(763\) −41.8491 −1.51504
\(764\) 0 0
\(765\) −2.26614 −0.0819324
\(766\) 0 0
\(767\) −68.3613 −2.46838
\(768\) 0 0
\(769\) −2.60475 −0.0939296 −0.0469648 0.998897i \(-0.514955\pi\)
−0.0469648 + 0.998897i \(0.514955\pi\)
\(770\) 0 0
\(771\) −39.9116 −1.43738
\(772\) 0 0
\(773\) 9.40703 0.338347 0.169174 0.985586i \(-0.445890\pi\)
0.169174 + 0.985586i \(0.445890\pi\)
\(774\) 0 0
\(775\) −4.20970 −0.151217
\(776\) 0 0
\(777\) 12.3331 0.442448
\(778\) 0 0
\(779\) 8.57264 0.307147
\(780\) 0 0
\(781\) −6.66936 −0.238649
\(782\) 0 0
\(783\) 5.21340 0.186312
\(784\) 0 0
\(785\) 1.60316 0.0572191
\(786\) 0 0
\(787\) −3.38310 −0.120594 −0.0602972 0.998180i \(-0.519205\pi\)
−0.0602972 + 0.998180i \(0.519205\pi\)
\(788\) 0 0
\(789\) −20.1013 −0.715625
\(790\) 0 0
\(791\) −40.2032 −1.42946
\(792\) 0 0
\(793\) −10.0225 −0.355911
\(794\) 0 0
\(795\) −24.5386 −0.870295
\(796\) 0 0
\(797\) 20.3351 0.720307 0.360153 0.932893i \(-0.382724\pi\)
0.360153 + 0.932893i \(0.382724\pi\)
\(798\) 0 0
\(799\) 8.82975 0.312374
\(800\) 0 0
\(801\) −2.08361 −0.0736206
\(802\) 0 0
\(803\) 6.69183 0.236149
\(804\) 0 0
\(805\) 22.4823 0.792397
\(806\) 0 0
\(807\) 42.8425 1.50813
\(808\) 0 0
\(809\) −44.1507 −1.55226 −0.776128 0.630576i \(-0.782819\pi\)
−0.776128 + 0.630576i \(0.782819\pi\)
\(810\) 0 0
\(811\) 7.73677 0.271675 0.135837 0.990731i \(-0.456628\pi\)
0.135837 + 0.990731i \(0.456628\pi\)
\(812\) 0 0
\(813\) 60.7994 2.13233
\(814\) 0 0
\(815\) −24.5417 −0.859660
\(816\) 0 0
\(817\) −15.9700 −0.558721
\(818\) 0 0
\(819\) 45.5530 1.59175
\(820\) 0 0
\(821\) 48.5660 1.69496 0.847482 0.530824i \(-0.178118\pi\)
0.847482 + 0.530824i \(0.178118\pi\)
\(822\) 0 0
\(823\) 37.3368 1.30148 0.650740 0.759301i \(-0.274459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(824\) 0 0
\(825\) −13.9801 −0.486726
\(826\) 0 0
\(827\) −36.3380 −1.26360 −0.631798 0.775133i \(-0.717683\pi\)
−0.631798 + 0.775133i \(0.717683\pi\)
\(828\) 0 0
\(829\) −10.6053 −0.368337 −0.184169 0.982895i \(-0.558959\pi\)
−0.184169 + 0.982895i \(0.558959\pi\)
\(830\) 0 0
\(831\) −21.9302 −0.760749
\(832\) 0 0
\(833\) 18.1129 0.627574
\(834\) 0 0
\(835\) −25.1348 −0.869824
\(836\) 0 0
\(837\) −5.55060 −0.191857
\(838\) 0 0
\(839\) 43.2821 1.49426 0.747132 0.664676i \(-0.231430\pi\)
0.747132 + 0.664676i \(0.231430\pi\)
\(840\) 0 0
\(841\) −26.5014 −0.913842
\(842\) 0 0
\(843\) 63.5964 2.19038
\(844\) 0 0
\(845\) −42.9999 −1.47924
\(846\) 0 0
\(847\) −19.8185 −0.680971
\(848\) 0 0
\(849\) 56.1059 1.92555
\(850\) 0 0
\(851\) −3.31733 −0.113717
\(852\) 0 0
\(853\) −39.7672 −1.36160 −0.680802 0.732467i \(-0.738369\pi\)
−0.680802 + 0.732467i \(0.738369\pi\)
\(854\) 0 0
\(855\) −5.54828 −0.189747
\(856\) 0 0
\(857\) 14.9672 0.511271 0.255636 0.966773i \(-0.417715\pi\)
0.255636 + 0.966773i \(0.417715\pi\)
\(858\) 0 0
\(859\) 47.5063 1.62090 0.810448 0.585811i \(-0.199224\pi\)
0.810448 + 0.585811i \(0.199224\pi\)
\(860\) 0 0
\(861\) 36.9463 1.25913
\(862\) 0 0
\(863\) −20.9221 −0.712198 −0.356099 0.934448i \(-0.615893\pi\)
−0.356099 + 0.934448i \(0.615893\pi\)
\(864\) 0 0
\(865\) 33.4715 1.13806
\(866\) 0 0
\(867\) 2.10562 0.0715106
\(868\) 0 0
\(869\) 2.16500 0.0734426
\(870\) 0 0
\(871\) −62.2708 −2.10997
\(872\) 0 0
\(873\) −10.2581 −0.347183
\(874\) 0 0
\(875\) 59.4208 2.00879
\(876\) 0 0
\(877\) −29.6926 −1.00265 −0.501324 0.865260i \(-0.667153\pi\)
−0.501324 + 0.865260i \(0.667153\pi\)
\(878\) 0 0
\(879\) −7.42398 −0.250405
\(880\) 0 0
\(881\) −16.1976 −0.545710 −0.272855 0.962055i \(-0.587968\pi\)
−0.272855 + 0.962055i \(0.587968\pi\)
\(882\) 0 0
\(883\) −37.4853 −1.26148 −0.630741 0.775993i \(-0.717249\pi\)
−0.630741 + 0.775993i \(0.717249\pi\)
\(884\) 0 0
\(885\) 35.8846 1.20625
\(886\) 0 0
\(887\) 8.05161 0.270347 0.135173 0.990822i \(-0.456841\pi\)
0.135173 + 0.990822i \(0.456841\pi\)
\(888\) 0 0
\(889\) 67.6592 2.26922
\(890\) 0 0
\(891\) −29.8490 −0.999979
\(892\) 0 0
\(893\) 21.6182 0.723427
\(894\) 0 0
\(895\) 26.2257 0.876630
\(896\) 0 0
\(897\) −37.8926 −1.26520
\(898\) 0 0
\(899\) −2.66020 −0.0887227
\(900\) 0 0
\(901\) 7.37263 0.245618
\(902\) 0 0
\(903\) −68.8275 −2.29044
\(904\) 0 0
\(905\) 18.6300 0.619281
\(906\) 0 0
\(907\) −33.3609 −1.10773 −0.553865 0.832606i \(-0.686848\pi\)
−0.553865 + 0.832606i \(0.686848\pi\)
\(908\) 0 0
\(909\) −12.4414 −0.412655
\(910\) 0 0
\(911\) −25.7866 −0.854347 −0.427174 0.904170i \(-0.640491\pi\)
−0.427174 + 0.904170i \(0.640491\pi\)
\(912\) 0 0
\(913\) −21.8247 −0.722293
\(914\) 0 0
\(915\) 5.26109 0.173926
\(916\) 0 0
\(917\) −29.5915 −0.977196
\(918\) 0 0
\(919\) 25.8720 0.853440 0.426720 0.904384i \(-0.359669\pi\)
0.426720 + 0.904384i \(0.359669\pi\)
\(920\) 0 0
\(921\) −2.83170 −0.0933076
\(922\) 0 0
\(923\) −15.9319 −0.524404
\(924\) 0 0
\(925\) −2.92367 −0.0961297
\(926\) 0 0
\(927\) 10.2257 0.335857
\(928\) 0 0
\(929\) 40.6849 1.33483 0.667413 0.744687i \(-0.267401\pi\)
0.667413 + 0.744687i \(0.267401\pi\)
\(930\) 0 0
\(931\) 44.3465 1.45340
\(932\) 0 0
\(933\) −68.6018 −2.24592
\(934\) 0 0
\(935\) −4.19561 −0.137211
\(936\) 0 0
\(937\) 0.426795 0.0139428 0.00697140 0.999976i \(-0.497781\pi\)
0.00697140 + 0.999976i \(0.497781\pi\)
\(938\) 0 0
\(939\) 12.6337 0.412286
\(940\) 0 0
\(941\) 21.4487 0.699208 0.349604 0.936898i \(-0.386316\pi\)
0.349604 + 0.936898i \(0.386316\pi\)
\(942\) 0 0
\(943\) −9.93772 −0.323617
\(944\) 0 0
\(945\) 26.1258 0.849871
\(946\) 0 0
\(947\) 45.9708 1.49385 0.746925 0.664908i \(-0.231529\pi\)
0.746925 + 0.664908i \(0.231529\pi\)
\(948\) 0 0
\(949\) 15.9856 0.518913
\(950\) 0 0
\(951\) −54.4964 −1.76717
\(952\) 0 0
\(953\) −28.3714 −0.919038 −0.459519 0.888168i \(-0.651978\pi\)
−0.459519 + 0.888168i \(0.651978\pi\)
\(954\) 0 0
\(955\) −12.5862 −0.407281
\(956\) 0 0
\(957\) −8.83436 −0.285574
\(958\) 0 0
\(959\) −7.84948 −0.253473
\(960\) 0 0
\(961\) −28.1677 −0.908637
\(962\) 0 0
\(963\) −7.55097 −0.243327
\(964\) 0 0
\(965\) −39.8697 −1.28345
\(966\) 0 0
\(967\) 29.4541 0.947180 0.473590 0.880745i \(-0.342958\pi\)
0.473590 + 0.880745i \(0.342958\pi\)
\(968\) 0 0
\(969\) 5.15528 0.165611
\(970\) 0 0
\(971\) 38.8816 1.24777 0.623885 0.781516i \(-0.285554\pi\)
0.623885 + 0.781516i \(0.285554\pi\)
\(972\) 0 0
\(973\) −16.4984 −0.528914
\(974\) 0 0
\(975\) −33.3960 −1.06953
\(976\) 0 0
\(977\) 51.5465 1.64912 0.824559 0.565775i \(-0.191423\pi\)
0.824559 + 0.565775i \(0.191423\pi\)
\(978\) 0 0
\(979\) −3.85766 −0.123291
\(980\) 0 0
\(981\) −11.9723 −0.382246
\(982\) 0 0
\(983\) −39.7261 −1.26707 −0.633533 0.773716i \(-0.718396\pi\)
−0.633533 + 0.773716i \(0.718396\pi\)
\(984\) 0 0
\(985\) −20.3645 −0.648868
\(986\) 0 0
\(987\) 93.1701 2.96564
\(988\) 0 0
\(989\) 18.5131 0.588682
\(990\) 0 0
\(991\) 8.01408 0.254576 0.127288 0.991866i \(-0.459373\pi\)
0.127288 + 0.991866i \(0.459373\pi\)
\(992\) 0 0
\(993\) −2.65668 −0.0843073
\(994\) 0 0
\(995\) 0.536828 0.0170186
\(996\) 0 0
\(997\) 18.6589 0.590934 0.295467 0.955353i \(-0.404525\pi\)
0.295467 + 0.955353i \(0.404525\pi\)
\(998\) 0 0
\(999\) −3.85494 −0.121965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4352.2.a.bf.1.7 8
4.3 odd 2 4352.2.a.bb.1.2 8
8.3 odd 2 4352.2.a.bb.1.7 8
8.5 even 2 inner 4352.2.a.bf.1.2 8
16.3 odd 4 544.2.c.b.273.2 8
16.5 even 4 136.2.c.b.69.2 yes 8
16.11 odd 4 544.2.c.b.273.7 8
16.13 even 4 136.2.c.b.69.1 8
48.5 odd 4 1224.2.f.c.613.7 8
48.11 even 4 4896.2.f.d.2449.6 8
48.29 odd 4 1224.2.f.c.613.8 8
48.35 even 4 4896.2.f.d.2449.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.1 8 16.13 even 4
136.2.c.b.69.2 yes 8 16.5 even 4
544.2.c.b.273.2 8 16.3 odd 4
544.2.c.b.273.7 8 16.11 odd 4
1224.2.f.c.613.7 8 48.5 odd 4
1224.2.f.c.613.8 8 48.29 odd 4
4352.2.a.bb.1.2 8 4.3 odd 2
4352.2.a.bb.1.7 8 8.3 odd 2
4352.2.a.bf.1.2 8 8.5 even 2 inner
4352.2.a.bf.1.7 8 1.1 even 1 trivial
4896.2.f.d.2449.3 8 48.35 even 4
4896.2.f.d.2449.6 8 48.11 even 4