Properties

Label 4840.2.a.bh.1.7
Level $4840$
Weight $2$
Character 4840.1
Self dual yes
Analytic conductor $38.648$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4840,2,Mod(1,4840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4840.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,1,0,8,0,6,0,19,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6475945783\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 21x^{6} + 15x^{5} + 140x^{4} - 60x^{3} - 295x^{2} + 50x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.08163\) of defining polynomial
Character \(\chi\) \(=\) 4840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.08163 q^{3} +1.00000 q^{5} -0.0385298 q^{7} +6.49642 q^{9} -3.45332 q^{13} +3.08163 q^{15} -0.897632 q^{17} -1.20724 q^{19} -0.118734 q^{21} +7.60421 q^{23} +1.00000 q^{25} +10.7747 q^{27} +7.56188 q^{29} -5.95574 q^{31} -0.0385298 q^{35} +10.7125 q^{37} -10.6419 q^{39} -3.08927 q^{41} +9.68676 q^{43} +6.49642 q^{45} -1.30605 q^{47} -6.99852 q^{49} -2.76617 q^{51} +2.03218 q^{53} -3.72025 q^{57} -0.185620 q^{59} +9.77911 q^{61} -0.250306 q^{63} -3.45332 q^{65} +8.10586 q^{67} +23.4333 q^{69} -7.18945 q^{71} -12.7078 q^{73} +3.08163 q^{75} +12.6594 q^{79} +13.7142 q^{81} +10.7423 q^{83} -0.897632 q^{85} +23.3029 q^{87} -2.78161 q^{89} +0.133056 q^{91} -18.3534 q^{93} -1.20724 q^{95} +17.7130 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} + 8 q^{5} + 6 q^{7} + 19 q^{9} - 12 q^{13} + q^{15} - 2 q^{17} + 6 q^{19} - 6 q^{21} + 10 q^{23} + 8 q^{25} + 13 q^{27} - 8 q^{29} + 19 q^{31} + 6 q^{35} + 12 q^{37} + 21 q^{39} + 3 q^{41}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08163 1.77918 0.889589 0.456762i \(-0.150991\pi\)
0.889589 + 0.456762i \(0.150991\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.0385298 −0.0145629 −0.00728144 0.999973i \(-0.502318\pi\)
−0.00728144 + 0.999973i \(0.502318\pi\)
\(8\) 0 0
\(9\) 6.49642 2.16547
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.45332 −0.957780 −0.478890 0.877875i \(-0.658961\pi\)
−0.478890 + 0.877875i \(0.658961\pi\)
\(14\) 0 0
\(15\) 3.08163 0.795672
\(16\) 0 0
\(17\) −0.897632 −0.217708 −0.108854 0.994058i \(-0.534718\pi\)
−0.108854 + 0.994058i \(0.534718\pi\)
\(18\) 0 0
\(19\) −1.20724 −0.276959 −0.138479 0.990365i \(-0.544221\pi\)
−0.138479 + 0.990365i \(0.544221\pi\)
\(20\) 0 0
\(21\) −0.118734 −0.0259100
\(22\) 0 0
\(23\) 7.60421 1.58559 0.792794 0.609490i \(-0.208626\pi\)
0.792794 + 0.609490i \(0.208626\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 10.7747 2.07358
\(28\) 0 0
\(29\) 7.56188 1.40421 0.702103 0.712076i \(-0.252245\pi\)
0.702103 + 0.712076i \(0.252245\pi\)
\(30\) 0 0
\(31\) −5.95574 −1.06968 −0.534841 0.844953i \(-0.679628\pi\)
−0.534841 + 0.844953i \(0.679628\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0385298 −0.00651272
\(36\) 0 0
\(37\) 10.7125 1.76112 0.880560 0.473935i \(-0.157167\pi\)
0.880560 + 0.473935i \(0.157167\pi\)
\(38\) 0 0
\(39\) −10.6419 −1.70406
\(40\) 0 0
\(41\) −3.08927 −0.482463 −0.241231 0.970468i \(-0.577551\pi\)
−0.241231 + 0.970468i \(0.577551\pi\)
\(42\) 0 0
\(43\) 9.68676 1.47722 0.738609 0.674135i \(-0.235483\pi\)
0.738609 + 0.674135i \(0.235483\pi\)
\(44\) 0 0
\(45\) 6.49642 0.968429
\(46\) 0 0
\(47\) −1.30605 −0.190507 −0.0952537 0.995453i \(-0.530366\pi\)
−0.0952537 + 0.995453i \(0.530366\pi\)
\(48\) 0 0
\(49\) −6.99852 −0.999788
\(50\) 0 0
\(51\) −2.76617 −0.387341
\(52\) 0 0
\(53\) 2.03218 0.279142 0.139571 0.990212i \(-0.455428\pi\)
0.139571 + 0.990212i \(0.455428\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.72025 −0.492759
\(58\) 0 0
\(59\) −0.185620 −0.0241657 −0.0120828 0.999927i \(-0.503846\pi\)
−0.0120828 + 0.999927i \(0.503846\pi\)
\(60\) 0 0
\(61\) 9.77911 1.25209 0.626043 0.779788i \(-0.284673\pi\)
0.626043 + 0.779788i \(0.284673\pi\)
\(62\) 0 0
\(63\) −0.250306 −0.0315355
\(64\) 0 0
\(65\) −3.45332 −0.428332
\(66\) 0 0
\(67\) 8.10586 0.990288 0.495144 0.868811i \(-0.335115\pi\)
0.495144 + 0.868811i \(0.335115\pi\)
\(68\) 0 0
\(69\) 23.4333 2.82104
\(70\) 0 0
\(71\) −7.18945 −0.853231 −0.426616 0.904433i \(-0.640294\pi\)
−0.426616 + 0.904433i \(0.640294\pi\)
\(72\) 0 0
\(73\) −12.7078 −1.48733 −0.743665 0.668553i \(-0.766914\pi\)
−0.743665 + 0.668553i \(0.766914\pi\)
\(74\) 0 0
\(75\) 3.08163 0.355836
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.6594 1.42430 0.712148 0.702029i \(-0.247722\pi\)
0.712148 + 0.702029i \(0.247722\pi\)
\(80\) 0 0
\(81\) 13.7142 1.52380
\(82\) 0 0
\(83\) 10.7423 1.17912 0.589562 0.807723i \(-0.299300\pi\)
0.589562 + 0.807723i \(0.299300\pi\)
\(84\) 0 0
\(85\) −0.897632 −0.0973619
\(86\) 0 0
\(87\) 23.3029 2.49833
\(88\) 0 0
\(89\) −2.78161 −0.294850 −0.147425 0.989073i \(-0.547099\pi\)
−0.147425 + 0.989073i \(0.547099\pi\)
\(90\) 0 0
\(91\) 0.133056 0.0139480
\(92\) 0 0
\(93\) −18.3534 −1.90315
\(94\) 0 0
\(95\) −1.20724 −0.123860
\(96\) 0 0
\(97\) 17.7130 1.79848 0.899242 0.437452i \(-0.144119\pi\)
0.899242 + 0.437452i \(0.144119\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.57715 0.256436 0.128218 0.991746i \(-0.459074\pi\)
0.128218 + 0.991746i \(0.459074\pi\)
\(102\) 0 0
\(103\) 3.70321 0.364888 0.182444 0.983216i \(-0.441599\pi\)
0.182444 + 0.983216i \(0.441599\pi\)
\(104\) 0 0
\(105\) −0.118734 −0.0115873
\(106\) 0 0
\(107\) −19.2082 −1.85692 −0.928462 0.371427i \(-0.878869\pi\)
−0.928462 + 0.371427i \(0.878869\pi\)
\(108\) 0 0
\(109\) 6.51583 0.624104 0.312052 0.950065i \(-0.398984\pi\)
0.312052 + 0.950065i \(0.398984\pi\)
\(110\) 0 0
\(111\) 33.0118 3.13334
\(112\) 0 0
\(113\) −12.1185 −1.14001 −0.570006 0.821641i \(-0.693059\pi\)
−0.570006 + 0.821641i \(0.693059\pi\)
\(114\) 0 0
\(115\) 7.60421 0.709096
\(116\) 0 0
\(117\) −22.4342 −2.07405
\(118\) 0 0
\(119\) 0.0345856 0.00317045
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −9.51997 −0.858387
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.88142 0.255685 0.127842 0.991795i \(-0.459195\pi\)
0.127842 + 0.991795i \(0.459195\pi\)
\(128\) 0 0
\(129\) 29.8510 2.62823
\(130\) 0 0
\(131\) −3.67705 −0.321266 −0.160633 0.987014i \(-0.551353\pi\)
−0.160633 + 0.987014i \(0.551353\pi\)
\(132\) 0 0
\(133\) 0.0465145 0.00403332
\(134\) 0 0
\(135\) 10.7747 0.927335
\(136\) 0 0
\(137\) −6.40503 −0.547218 −0.273609 0.961841i \(-0.588217\pi\)
−0.273609 + 0.961841i \(0.588217\pi\)
\(138\) 0 0
\(139\) −9.78896 −0.830288 −0.415144 0.909756i \(-0.636269\pi\)
−0.415144 + 0.909756i \(0.636269\pi\)
\(140\) 0 0
\(141\) −4.02477 −0.338947
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.56188 0.627980
\(146\) 0 0
\(147\) −21.5668 −1.77880
\(148\) 0 0
\(149\) −19.5271 −1.59972 −0.799862 0.600183i \(-0.795094\pi\)
−0.799862 + 0.600183i \(0.795094\pi\)
\(150\) 0 0
\(151\) 4.51138 0.367131 0.183565 0.983007i \(-0.441236\pi\)
0.183565 + 0.983007i \(0.441236\pi\)
\(152\) 0 0
\(153\) −5.83140 −0.471440
\(154\) 0 0
\(155\) −5.95574 −0.478376
\(156\) 0 0
\(157\) 4.54155 0.362455 0.181228 0.983441i \(-0.441993\pi\)
0.181228 + 0.983441i \(0.441993\pi\)
\(158\) 0 0
\(159\) 6.26243 0.496643
\(160\) 0 0
\(161\) −0.292988 −0.0230907
\(162\) 0 0
\(163\) −24.6645 −1.93187 −0.965936 0.258780i \(-0.916680\pi\)
−0.965936 + 0.258780i \(0.916680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.6827 −1.29094 −0.645472 0.763784i \(-0.723339\pi\)
−0.645472 + 0.763784i \(0.723339\pi\)
\(168\) 0 0
\(169\) −1.07455 −0.0826581
\(170\) 0 0
\(171\) −7.84271 −0.599747
\(172\) 0 0
\(173\) 13.2199 1.00509 0.502544 0.864552i \(-0.332398\pi\)
0.502544 + 0.864552i \(0.332398\pi\)
\(174\) 0 0
\(175\) −0.0385298 −0.00291258
\(176\) 0 0
\(177\) −0.572012 −0.0429951
\(178\) 0 0
\(179\) 20.6661 1.54465 0.772327 0.635225i \(-0.219092\pi\)
0.772327 + 0.635225i \(0.219092\pi\)
\(180\) 0 0
\(181\) −3.76425 −0.279795 −0.139897 0.990166i \(-0.544677\pi\)
−0.139897 + 0.990166i \(0.544677\pi\)
\(182\) 0 0
\(183\) 30.1356 2.22768
\(184\) 0 0
\(185\) 10.7125 0.787597
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.415145 −0.0301974
\(190\) 0 0
\(191\) −9.47011 −0.685233 −0.342616 0.939475i \(-0.611313\pi\)
−0.342616 + 0.939475i \(0.611313\pi\)
\(192\) 0 0
\(193\) −16.3716 −1.17845 −0.589225 0.807969i \(-0.700567\pi\)
−0.589225 + 0.807969i \(0.700567\pi\)
\(194\) 0 0
\(195\) −10.6419 −0.762079
\(196\) 0 0
\(197\) 15.1615 1.08021 0.540107 0.841596i \(-0.318384\pi\)
0.540107 + 0.841596i \(0.318384\pi\)
\(198\) 0 0
\(199\) 2.94883 0.209037 0.104519 0.994523i \(-0.466670\pi\)
0.104519 + 0.994523i \(0.466670\pi\)
\(200\) 0 0
\(201\) 24.9792 1.76190
\(202\) 0 0
\(203\) −0.291357 −0.0204493
\(204\) 0 0
\(205\) −3.08927 −0.215764
\(206\) 0 0
\(207\) 49.4001 3.43355
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −17.4402 −1.20064 −0.600318 0.799762i \(-0.704959\pi\)
−0.600318 + 0.799762i \(0.704959\pi\)
\(212\) 0 0
\(213\) −22.1552 −1.51805
\(214\) 0 0
\(215\) 9.68676 0.660632
\(216\) 0 0
\(217\) 0.229473 0.0155777
\(218\) 0 0
\(219\) −39.1605 −2.64622
\(220\) 0 0
\(221\) 3.09981 0.208516
\(222\) 0 0
\(223\) −22.8815 −1.53226 −0.766130 0.642686i \(-0.777820\pi\)
−0.766130 + 0.642686i \(0.777820\pi\)
\(224\) 0 0
\(225\) 6.49642 0.433095
\(226\) 0 0
\(227\) −19.8808 −1.31954 −0.659769 0.751468i \(-0.729346\pi\)
−0.659769 + 0.751468i \(0.729346\pi\)
\(228\) 0 0
\(229\) −15.3967 −1.01744 −0.508721 0.860932i \(-0.669881\pi\)
−0.508721 + 0.860932i \(0.669881\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.5192 −0.951185 −0.475592 0.879666i \(-0.657766\pi\)
−0.475592 + 0.879666i \(0.657766\pi\)
\(234\) 0 0
\(235\) −1.30605 −0.0851975
\(236\) 0 0
\(237\) 39.0116 2.53408
\(238\) 0 0
\(239\) −5.26252 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(240\) 0 0
\(241\) −10.2035 −0.657265 −0.328633 0.944458i \(-0.606588\pi\)
−0.328633 + 0.944458i \(0.606588\pi\)
\(242\) 0 0
\(243\) 9.93811 0.637530
\(244\) 0 0
\(245\) −6.99852 −0.447119
\(246\) 0 0
\(247\) 4.16897 0.265266
\(248\) 0 0
\(249\) 33.1038 2.09787
\(250\) 0 0
\(251\) 8.52003 0.537780 0.268890 0.963171i \(-0.413343\pi\)
0.268890 + 0.963171i \(0.413343\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.76617 −0.173224
\(256\) 0 0
\(257\) 11.5515 0.720565 0.360282 0.932843i \(-0.382680\pi\)
0.360282 + 0.932843i \(0.382680\pi\)
\(258\) 0 0
\(259\) −0.412749 −0.0256470
\(260\) 0 0
\(261\) 49.1251 3.04077
\(262\) 0 0
\(263\) 2.91262 0.179600 0.0898000 0.995960i \(-0.471377\pi\)
0.0898000 + 0.995960i \(0.471377\pi\)
\(264\) 0 0
\(265\) 2.03218 0.124836
\(266\) 0 0
\(267\) −8.57188 −0.524591
\(268\) 0 0
\(269\) −0.306960 −0.0187157 −0.00935784 0.999956i \(-0.502979\pi\)
−0.00935784 + 0.999956i \(0.502979\pi\)
\(270\) 0 0
\(271\) 16.4190 0.997382 0.498691 0.866780i \(-0.333814\pi\)
0.498691 + 0.866780i \(0.333814\pi\)
\(272\) 0 0
\(273\) 0.410028 0.0248160
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.11565 0.187201 0.0936007 0.995610i \(-0.470162\pi\)
0.0936007 + 0.995610i \(0.470162\pi\)
\(278\) 0 0
\(279\) −38.6910 −2.31637
\(280\) 0 0
\(281\) 25.6494 1.53012 0.765058 0.643961i \(-0.222710\pi\)
0.765058 + 0.643961i \(0.222710\pi\)
\(282\) 0 0
\(283\) 20.3137 1.20752 0.603761 0.797165i \(-0.293668\pi\)
0.603761 + 0.797165i \(0.293668\pi\)
\(284\) 0 0
\(285\) −3.72025 −0.220368
\(286\) 0 0
\(287\) 0.119029 0.00702605
\(288\) 0 0
\(289\) −16.1943 −0.952603
\(290\) 0 0
\(291\) 54.5849 3.19982
\(292\) 0 0
\(293\) −30.1012 −1.75853 −0.879266 0.476331i \(-0.841966\pi\)
−0.879266 + 0.476331i \(0.841966\pi\)
\(294\) 0 0
\(295\) −0.185620 −0.0108072
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.2598 −1.51864
\(300\) 0 0
\(301\) −0.373229 −0.0215125
\(302\) 0 0
\(303\) 7.94180 0.456244
\(304\) 0 0
\(305\) 9.77911 0.559950
\(306\) 0 0
\(307\) 5.73211 0.327149 0.163574 0.986531i \(-0.447698\pi\)
0.163574 + 0.986531i \(0.447698\pi\)
\(308\) 0 0
\(309\) 11.4119 0.649200
\(310\) 0 0
\(311\) −26.2777 −1.49007 −0.745035 0.667025i \(-0.767567\pi\)
−0.745035 + 0.667025i \(0.767567\pi\)
\(312\) 0 0
\(313\) 10.1095 0.571421 0.285711 0.958316i \(-0.407770\pi\)
0.285711 + 0.958316i \(0.407770\pi\)
\(314\) 0 0
\(315\) −0.250306 −0.0141031
\(316\) 0 0
\(317\) 3.56813 0.200406 0.100203 0.994967i \(-0.468051\pi\)
0.100203 + 0.994967i \(0.468051\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −59.1924 −3.30380
\(322\) 0 0
\(323\) 1.08365 0.0602961
\(324\) 0 0
\(325\) −3.45332 −0.191556
\(326\) 0 0
\(327\) 20.0794 1.11039
\(328\) 0 0
\(329\) 0.0503219 0.00277434
\(330\) 0 0
\(331\) 8.06105 0.443075 0.221538 0.975152i \(-0.428892\pi\)
0.221538 + 0.975152i \(0.428892\pi\)
\(332\) 0 0
\(333\) 69.5927 3.81366
\(334\) 0 0
\(335\) 8.10586 0.442870
\(336\) 0 0
\(337\) −27.3424 −1.48944 −0.744719 0.667379i \(-0.767416\pi\)
−0.744719 + 0.667379i \(0.767416\pi\)
\(338\) 0 0
\(339\) −37.3447 −2.02828
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.539360 0.0291227
\(344\) 0 0
\(345\) 23.4333 1.26161
\(346\) 0 0
\(347\) 30.8345 1.65528 0.827642 0.561256i \(-0.189682\pi\)
0.827642 + 0.561256i \(0.189682\pi\)
\(348\) 0 0
\(349\) 23.7919 1.27355 0.636776 0.771049i \(-0.280268\pi\)
0.636776 + 0.771049i \(0.280268\pi\)
\(350\) 0 0
\(351\) −37.2084 −1.98604
\(352\) 0 0
\(353\) 2.87310 0.152920 0.0764598 0.997073i \(-0.475638\pi\)
0.0764598 + 0.997073i \(0.475638\pi\)
\(354\) 0 0
\(355\) −7.18945 −0.381577
\(356\) 0 0
\(357\) 0.106580 0.00564080
\(358\) 0 0
\(359\) 1.76912 0.0933708 0.0466854 0.998910i \(-0.485134\pi\)
0.0466854 + 0.998910i \(0.485134\pi\)
\(360\) 0 0
\(361\) −17.5426 −0.923294
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.7078 −0.665154
\(366\) 0 0
\(367\) 5.71808 0.298481 0.149241 0.988801i \(-0.452317\pi\)
0.149241 + 0.988801i \(0.452317\pi\)
\(368\) 0 0
\(369\) −20.0692 −1.04476
\(370\) 0 0
\(371\) −0.0782996 −0.00406511
\(372\) 0 0
\(373\) −18.1456 −0.939543 −0.469772 0.882788i \(-0.655664\pi\)
−0.469772 + 0.882788i \(0.655664\pi\)
\(374\) 0 0
\(375\) 3.08163 0.159134
\(376\) 0 0
\(377\) −26.1136 −1.34492
\(378\) 0 0
\(379\) −31.5044 −1.61827 −0.809136 0.587622i \(-0.800064\pi\)
−0.809136 + 0.587622i \(0.800064\pi\)
\(380\) 0 0
\(381\) 8.87946 0.454908
\(382\) 0 0
\(383\) 2.88227 0.147277 0.0736386 0.997285i \(-0.476539\pi\)
0.0736386 + 0.997285i \(0.476539\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 62.9293 3.19887
\(388\) 0 0
\(389\) −34.2856 −1.73835 −0.869174 0.494506i \(-0.835349\pi\)
−0.869174 + 0.494506i \(0.835349\pi\)
\(390\) 0 0
\(391\) −6.82578 −0.345195
\(392\) 0 0
\(393\) −11.3313 −0.571589
\(394\) 0 0
\(395\) 12.6594 0.636965
\(396\) 0 0
\(397\) −14.4405 −0.724746 −0.362373 0.932033i \(-0.618033\pi\)
−0.362373 + 0.932033i \(0.618033\pi\)
\(398\) 0 0
\(399\) 0.143340 0.00717599
\(400\) 0 0
\(401\) 4.44966 0.222206 0.111103 0.993809i \(-0.464562\pi\)
0.111103 + 0.993809i \(0.464562\pi\)
\(402\) 0 0
\(403\) 20.5671 1.02452
\(404\) 0 0
\(405\) 13.7142 0.681465
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −30.4633 −1.50631 −0.753157 0.657841i \(-0.771470\pi\)
−0.753157 + 0.657841i \(0.771470\pi\)
\(410\) 0 0
\(411\) −19.7379 −0.973599
\(412\) 0 0
\(413\) 0.00715190 0.000351922 0
\(414\) 0 0
\(415\) 10.7423 0.527320
\(416\) 0 0
\(417\) −30.1659 −1.47723
\(418\) 0 0
\(419\) −14.5620 −0.711402 −0.355701 0.934600i \(-0.615758\pi\)
−0.355701 + 0.934600i \(0.615758\pi\)
\(420\) 0 0
\(421\) 0.651674 0.0317607 0.0158803 0.999874i \(-0.494945\pi\)
0.0158803 + 0.999874i \(0.494945\pi\)
\(422\) 0 0
\(423\) −8.48467 −0.412539
\(424\) 0 0
\(425\) −0.897632 −0.0435416
\(426\) 0 0
\(427\) −0.376787 −0.0182340
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.9668 1.63612 0.818062 0.575131i \(-0.195049\pi\)
0.818062 + 0.575131i \(0.195049\pi\)
\(432\) 0 0
\(433\) −31.8266 −1.52949 −0.764743 0.644335i \(-0.777134\pi\)
−0.764743 + 0.644335i \(0.777134\pi\)
\(434\) 0 0
\(435\) 23.3029 1.11729
\(436\) 0 0
\(437\) −9.18007 −0.439142
\(438\) 0 0
\(439\) 1.74428 0.0832501 0.0416251 0.999133i \(-0.486747\pi\)
0.0416251 + 0.999133i \(0.486747\pi\)
\(440\) 0 0
\(441\) −45.4653 −2.16501
\(442\) 0 0
\(443\) 0.920539 0.0437361 0.0218681 0.999761i \(-0.493039\pi\)
0.0218681 + 0.999761i \(0.493039\pi\)
\(444\) 0 0
\(445\) −2.78161 −0.131861
\(446\) 0 0
\(447\) −60.1753 −2.84619
\(448\) 0 0
\(449\) 5.00340 0.236125 0.118062 0.993006i \(-0.462332\pi\)
0.118062 + 0.993006i \(0.462332\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 13.9024 0.653191
\(454\) 0 0
\(455\) 0.133056 0.00623775
\(456\) 0 0
\(457\) 10.9781 0.513532 0.256766 0.966474i \(-0.417343\pi\)
0.256766 + 0.966474i \(0.417343\pi\)
\(458\) 0 0
\(459\) −9.67168 −0.451436
\(460\) 0 0
\(461\) 8.89371 0.414221 0.207111 0.978318i \(-0.433594\pi\)
0.207111 + 0.978318i \(0.433594\pi\)
\(462\) 0 0
\(463\) −8.95007 −0.415945 −0.207972 0.978135i \(-0.566686\pi\)
−0.207972 + 0.978135i \(0.566686\pi\)
\(464\) 0 0
\(465\) −18.3534 −0.851117
\(466\) 0 0
\(467\) 12.1931 0.564229 0.282114 0.959381i \(-0.408964\pi\)
0.282114 + 0.959381i \(0.408964\pi\)
\(468\) 0 0
\(469\) −0.312317 −0.0144215
\(470\) 0 0
\(471\) 13.9954 0.644873
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.20724 −0.0553918
\(476\) 0 0
\(477\) 13.2019 0.604474
\(478\) 0 0
\(479\) 42.6446 1.94848 0.974241 0.225508i \(-0.0724042\pi\)
0.974241 + 0.225508i \(0.0724042\pi\)
\(480\) 0 0
\(481\) −36.9936 −1.68676
\(482\) 0 0
\(483\) −0.902881 −0.0410825
\(484\) 0 0
\(485\) 17.7130 0.804306
\(486\) 0 0
\(487\) 11.0636 0.501342 0.250671 0.968072i \(-0.419349\pi\)
0.250671 + 0.968072i \(0.419349\pi\)
\(488\) 0 0
\(489\) −76.0068 −3.43714
\(490\) 0 0
\(491\) 19.6823 0.888248 0.444124 0.895965i \(-0.353515\pi\)
0.444124 + 0.895965i \(0.353515\pi\)
\(492\) 0 0
\(493\) −6.78778 −0.305706
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.277008 0.0124255
\(498\) 0 0
\(499\) −11.2051 −0.501609 −0.250804 0.968038i \(-0.580695\pi\)
−0.250804 + 0.968038i \(0.580695\pi\)
\(500\) 0 0
\(501\) −51.4098 −2.29682
\(502\) 0 0
\(503\) 25.3693 1.13116 0.565580 0.824693i \(-0.308652\pi\)
0.565580 + 0.824693i \(0.308652\pi\)
\(504\) 0 0
\(505\) 2.57715 0.114681
\(506\) 0 0
\(507\) −3.31138 −0.147063
\(508\) 0 0
\(509\) −37.3796 −1.65682 −0.828410 0.560122i \(-0.810754\pi\)
−0.828410 + 0.560122i \(0.810754\pi\)
\(510\) 0 0
\(511\) 0.489627 0.0216598
\(512\) 0 0
\(513\) −13.0076 −0.574297
\(514\) 0 0
\(515\) 3.70321 0.163183
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 40.7387 1.78823
\(520\) 0 0
\(521\) 26.5085 1.16136 0.580678 0.814133i \(-0.302787\pi\)
0.580678 + 0.814133i \(0.302787\pi\)
\(522\) 0 0
\(523\) −18.3371 −0.801827 −0.400914 0.916116i \(-0.631307\pi\)
−0.400914 + 0.916116i \(0.631307\pi\)
\(524\) 0 0
\(525\) −0.118734 −0.00518199
\(526\) 0 0
\(527\) 5.34606 0.232878
\(528\) 0 0
\(529\) 34.8240 1.51409
\(530\) 0 0
\(531\) −1.20587 −0.0523302
\(532\) 0 0
\(533\) 10.6682 0.462093
\(534\) 0 0
\(535\) −19.2082 −0.830442
\(536\) 0 0
\(537\) 63.6851 2.74822
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.70731 −0.245376 −0.122688 0.992445i \(-0.539152\pi\)
−0.122688 + 0.992445i \(0.539152\pi\)
\(542\) 0 0
\(543\) −11.6000 −0.497805
\(544\) 0 0
\(545\) 6.51583 0.279108
\(546\) 0 0
\(547\) −13.6622 −0.584152 −0.292076 0.956395i \(-0.594346\pi\)
−0.292076 + 0.956395i \(0.594346\pi\)
\(548\) 0 0
\(549\) 63.5292 2.71136
\(550\) 0 0
\(551\) −9.12897 −0.388907
\(552\) 0 0
\(553\) −0.487765 −0.0207419
\(554\) 0 0
\(555\) 33.0118 1.40127
\(556\) 0 0
\(557\) −14.0848 −0.596790 −0.298395 0.954442i \(-0.596451\pi\)
−0.298395 + 0.954442i \(0.596451\pi\)
\(558\) 0 0
\(559\) −33.4515 −1.41485
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.32334 0.350787 0.175394 0.984498i \(-0.443880\pi\)
0.175394 + 0.984498i \(0.443880\pi\)
\(564\) 0 0
\(565\) −12.1185 −0.509829
\(566\) 0 0
\(567\) −0.528406 −0.0221909
\(568\) 0 0
\(569\) −17.1243 −0.717888 −0.358944 0.933359i \(-0.616863\pi\)
−0.358944 + 0.933359i \(0.616863\pi\)
\(570\) 0 0
\(571\) 33.6964 1.41015 0.705076 0.709132i \(-0.250913\pi\)
0.705076 + 0.709132i \(0.250913\pi\)
\(572\) 0 0
\(573\) −29.1833 −1.21915
\(574\) 0 0
\(575\) 7.60421 0.317117
\(576\) 0 0
\(577\) −30.4030 −1.26569 −0.632846 0.774277i \(-0.718114\pi\)
−0.632846 + 0.774277i \(0.718114\pi\)
\(578\) 0 0
\(579\) −50.4510 −2.09667
\(580\) 0 0
\(581\) −0.413899 −0.0171714
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −22.4342 −0.927542
\(586\) 0 0
\(587\) −9.38173 −0.387226 −0.193613 0.981078i \(-0.562021\pi\)
−0.193613 + 0.981078i \(0.562021\pi\)
\(588\) 0 0
\(589\) 7.18998 0.296258
\(590\) 0 0
\(591\) 46.7222 1.92189
\(592\) 0 0
\(593\) −30.1444 −1.23788 −0.618941 0.785437i \(-0.712438\pi\)
−0.618941 + 0.785437i \(0.712438\pi\)
\(594\) 0 0
\(595\) 0.0345856 0.00141787
\(596\) 0 0
\(597\) 9.08720 0.371914
\(598\) 0 0
\(599\) 10.2032 0.416891 0.208446 0.978034i \(-0.433160\pi\)
0.208446 + 0.978034i \(0.433160\pi\)
\(600\) 0 0
\(601\) 17.5371 0.715353 0.357676 0.933846i \(-0.383569\pi\)
0.357676 + 0.933846i \(0.383569\pi\)
\(602\) 0 0
\(603\) 52.6591 2.14444
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.32563 0.175572 0.0877859 0.996139i \(-0.472021\pi\)
0.0877859 + 0.996139i \(0.472021\pi\)
\(608\) 0 0
\(609\) −0.897854 −0.0363829
\(610\) 0 0
\(611\) 4.51022 0.182464
\(612\) 0 0
\(613\) −12.5463 −0.506741 −0.253370 0.967369i \(-0.581539\pi\)
−0.253370 + 0.967369i \(0.581539\pi\)
\(614\) 0 0
\(615\) −9.51997 −0.383882
\(616\) 0 0
\(617\) 17.1256 0.689452 0.344726 0.938703i \(-0.387972\pi\)
0.344726 + 0.938703i \(0.387972\pi\)
\(618\) 0 0
\(619\) −7.29199 −0.293090 −0.146545 0.989204i \(-0.546815\pi\)
−0.146545 + 0.989204i \(0.546815\pi\)
\(620\) 0 0
\(621\) 81.9328 3.28785
\(622\) 0 0
\(623\) 0.107175 0.00429387
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.61586 −0.383409
\(630\) 0 0
\(631\) 27.5808 1.09797 0.548987 0.835831i \(-0.315014\pi\)
0.548987 + 0.835831i \(0.315014\pi\)
\(632\) 0 0
\(633\) −53.7443 −2.13614
\(634\) 0 0
\(635\) 2.88142 0.114346
\(636\) 0 0
\(637\) 24.1681 0.957577
\(638\) 0 0
\(639\) −46.7057 −1.84765
\(640\) 0 0
\(641\) 24.6956 0.975417 0.487708 0.873007i \(-0.337833\pi\)
0.487708 + 0.873007i \(0.337833\pi\)
\(642\) 0 0
\(643\) −25.7228 −1.01441 −0.507205 0.861825i \(-0.669321\pi\)
−0.507205 + 0.861825i \(0.669321\pi\)
\(644\) 0 0
\(645\) 29.8510 1.17538
\(646\) 0 0
\(647\) 9.16022 0.360125 0.180063 0.983655i \(-0.442370\pi\)
0.180063 + 0.983655i \(0.442370\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0.707151 0.0277154
\(652\) 0 0
\(653\) 19.9381 0.780238 0.390119 0.920764i \(-0.372434\pi\)
0.390119 + 0.920764i \(0.372434\pi\)
\(654\) 0 0
\(655\) −3.67705 −0.143674
\(656\) 0 0
\(657\) −82.5549 −3.22077
\(658\) 0 0
\(659\) 21.8117 0.849662 0.424831 0.905273i \(-0.360333\pi\)
0.424831 + 0.905273i \(0.360333\pi\)
\(660\) 0 0
\(661\) 32.2443 1.25416 0.627079 0.778955i \(-0.284250\pi\)
0.627079 + 0.778955i \(0.284250\pi\)
\(662\) 0 0
\(663\) 9.55247 0.370987
\(664\) 0 0
\(665\) 0.0465145 0.00180376
\(666\) 0 0
\(667\) 57.5021 2.22649
\(668\) 0 0
\(669\) −70.5123 −2.72616
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.74689 0.0673378 0.0336689 0.999433i \(-0.489281\pi\)
0.0336689 + 0.999433i \(0.489281\pi\)
\(674\) 0 0
\(675\) 10.7747 0.414717
\(676\) 0 0
\(677\) −8.13336 −0.312590 −0.156295 0.987710i \(-0.549955\pi\)
−0.156295 + 0.987710i \(0.549955\pi\)
\(678\) 0 0
\(679\) −0.682478 −0.0261911
\(680\) 0 0
\(681\) −61.2653 −2.34769
\(682\) 0 0
\(683\) 24.4004 0.933655 0.466827 0.884348i \(-0.345397\pi\)
0.466827 + 0.884348i \(0.345397\pi\)
\(684\) 0 0
\(685\) −6.40503 −0.244724
\(686\) 0 0
\(687\) −47.4468 −1.81021
\(688\) 0 0
\(689\) −7.01779 −0.267356
\(690\) 0 0
\(691\) 18.0728 0.687523 0.343762 0.939057i \(-0.388299\pi\)
0.343762 + 0.939057i \(0.388299\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.78896 −0.371316
\(696\) 0 0
\(697\) 2.77303 0.105036
\(698\) 0 0
\(699\) −44.7428 −1.69233
\(700\) 0 0
\(701\) −16.2777 −0.614799 −0.307399 0.951581i \(-0.599459\pi\)
−0.307399 + 0.951581i \(0.599459\pi\)
\(702\) 0 0
\(703\) −12.9325 −0.487758
\(704\) 0 0
\(705\) −4.02477 −0.151582
\(706\) 0 0
\(707\) −0.0992968 −0.00373444
\(708\) 0 0
\(709\) −33.7908 −1.26904 −0.634521 0.772906i \(-0.718802\pi\)
−0.634521 + 0.772906i \(0.718802\pi\)
\(710\) 0 0
\(711\) 82.2409 3.08428
\(712\) 0 0
\(713\) −45.2887 −1.69607
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.2171 −0.605639
\(718\) 0 0
\(719\) 23.5131 0.876890 0.438445 0.898758i \(-0.355529\pi\)
0.438445 + 0.898758i \(0.355529\pi\)
\(720\) 0 0
\(721\) −0.142684 −0.00531382
\(722\) 0 0
\(723\) −31.4434 −1.16939
\(724\) 0 0
\(725\) 7.56188 0.280841
\(726\) 0 0
\(727\) 2.84884 0.105658 0.0528288 0.998604i \(-0.483176\pi\)
0.0528288 + 0.998604i \(0.483176\pi\)
\(728\) 0 0
\(729\) −10.5171 −0.389523
\(730\) 0 0
\(731\) −8.69515 −0.321602
\(732\) 0 0
\(733\) 25.2162 0.931381 0.465691 0.884948i \(-0.345806\pi\)
0.465691 + 0.884948i \(0.345806\pi\)
\(734\) 0 0
\(735\) −21.5668 −0.795504
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −36.3847 −1.33843 −0.669216 0.743068i \(-0.733370\pi\)
−0.669216 + 0.743068i \(0.733370\pi\)
\(740\) 0 0
\(741\) 12.8472 0.471955
\(742\) 0 0
\(743\) 24.6526 0.904414 0.452207 0.891913i \(-0.350637\pi\)
0.452207 + 0.891913i \(0.350637\pi\)
\(744\) 0 0
\(745\) −19.5271 −0.715419
\(746\) 0 0
\(747\) 69.7867 2.55336
\(748\) 0 0
\(749\) 0.740087 0.0270422
\(750\) 0 0
\(751\) 39.4928 1.44111 0.720557 0.693396i \(-0.243886\pi\)
0.720557 + 0.693396i \(0.243886\pi\)
\(752\) 0 0
\(753\) 26.2556 0.956806
\(754\) 0 0
\(755\) 4.51138 0.164186
\(756\) 0 0
\(757\) −9.31713 −0.338637 −0.169318 0.985561i \(-0.554157\pi\)
−0.169318 + 0.985561i \(0.554157\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.425026 0.0154072 0.00770359 0.999970i \(-0.497548\pi\)
0.00770359 + 0.999970i \(0.497548\pi\)
\(762\) 0 0
\(763\) −0.251054 −0.00908875
\(764\) 0 0
\(765\) −5.83140 −0.210835
\(766\) 0 0
\(767\) 0.641007 0.0231454
\(768\) 0 0
\(769\) −5.37492 −0.193825 −0.0969123 0.995293i \(-0.530897\pi\)
−0.0969123 + 0.995293i \(0.530897\pi\)
\(770\) 0 0
\(771\) 35.5975 1.28201
\(772\) 0 0
\(773\) 3.38581 0.121779 0.0608896 0.998145i \(-0.480606\pi\)
0.0608896 + 0.998145i \(0.480606\pi\)
\(774\) 0 0
\(775\) −5.95574 −0.213936
\(776\) 0 0
\(777\) −1.27194 −0.0456305
\(778\) 0 0
\(779\) 3.72948 0.133622
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 81.4767 2.91174
\(784\) 0 0
\(785\) 4.54155 0.162095
\(786\) 0 0
\(787\) 36.5717 1.30364 0.651820 0.758373i \(-0.274006\pi\)
0.651820 + 0.758373i \(0.274006\pi\)
\(788\) 0 0
\(789\) 8.97561 0.319540
\(790\) 0 0
\(791\) 0.466923 0.0166019
\(792\) 0 0
\(793\) −33.7704 −1.19922
\(794\) 0 0
\(795\) 6.26243 0.222106
\(796\) 0 0
\(797\) 26.4768 0.937855 0.468928 0.883237i \(-0.344641\pi\)
0.468928 + 0.883237i \(0.344641\pi\)
\(798\) 0 0
\(799\) 1.17236 0.0414750
\(800\) 0 0
\(801\) −18.0705 −0.638490
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −0.292988 −0.0103265
\(806\) 0 0
\(807\) −0.945936 −0.0332985
\(808\) 0 0
\(809\) −11.4341 −0.402003 −0.201001 0.979591i \(-0.564420\pi\)
−0.201001 + 0.979591i \(0.564420\pi\)
\(810\) 0 0
\(811\) −4.43533 −0.155746 −0.0778728 0.996963i \(-0.524813\pi\)
−0.0778728 + 0.996963i \(0.524813\pi\)
\(812\) 0 0
\(813\) 50.5972 1.77452
\(814\) 0 0
\(815\) −24.6645 −0.863960
\(816\) 0 0
\(817\) −11.6942 −0.409128
\(818\) 0 0
\(819\) 0.864386 0.0302041
\(820\) 0 0
\(821\) −48.2156 −1.68273 −0.841367 0.540463i \(-0.818249\pi\)
−0.841367 + 0.540463i \(0.818249\pi\)
\(822\) 0 0
\(823\) 42.1249 1.46838 0.734191 0.678943i \(-0.237562\pi\)
0.734191 + 0.678943i \(0.237562\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.0987 1.35959 0.679797 0.733401i \(-0.262068\pi\)
0.679797 + 0.733401i \(0.262068\pi\)
\(828\) 0 0
\(829\) 28.0646 0.974725 0.487363 0.873200i \(-0.337959\pi\)
0.487363 + 0.873200i \(0.337959\pi\)
\(830\) 0 0
\(831\) 9.60127 0.333064
\(832\) 0 0
\(833\) 6.28209 0.217662
\(834\) 0 0
\(835\) −16.6827 −0.577328
\(836\) 0 0
\(837\) −64.1710 −2.21808
\(838\) 0 0
\(839\) −34.3628 −1.18634 −0.593168 0.805079i \(-0.702123\pi\)
−0.593168 + 0.805079i \(0.702123\pi\)
\(840\) 0 0
\(841\) 28.1820 0.971792
\(842\) 0 0
\(843\) 79.0419 2.72235
\(844\) 0 0
\(845\) −1.07455 −0.0369658
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 62.5992 2.14840
\(850\) 0 0
\(851\) 81.4599 2.79241
\(852\) 0 0
\(853\) 16.3946 0.561339 0.280669 0.959804i \(-0.409444\pi\)
0.280669 + 0.959804i \(0.409444\pi\)
\(854\) 0 0
\(855\) −7.84271 −0.268215
\(856\) 0 0
\(857\) 6.89777 0.235623 0.117812 0.993036i \(-0.462412\pi\)
0.117812 + 0.993036i \(0.462412\pi\)
\(858\) 0 0
\(859\) −1.17514 −0.0400954 −0.0200477 0.999799i \(-0.506382\pi\)
−0.0200477 + 0.999799i \(0.506382\pi\)
\(860\) 0 0
\(861\) 0.366802 0.0125006
\(862\) 0 0
\(863\) −9.66842 −0.329117 −0.164558 0.986367i \(-0.552620\pi\)
−0.164558 + 0.986367i \(0.552620\pi\)
\(864\) 0 0
\(865\) 13.2199 0.449489
\(866\) 0 0
\(867\) −49.9046 −1.69485
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −27.9922 −0.948478
\(872\) 0 0
\(873\) 115.071 3.89457
\(874\) 0 0
\(875\) −0.0385298 −0.00130254
\(876\) 0 0
\(877\) −6.09017 −0.205650 −0.102825 0.994699i \(-0.532788\pi\)
−0.102825 + 0.994699i \(0.532788\pi\)
\(878\) 0 0
\(879\) −92.7607 −3.12874
\(880\) 0 0
\(881\) 55.4058 1.86667 0.933335 0.359008i \(-0.116885\pi\)
0.933335 + 0.359008i \(0.116885\pi\)
\(882\) 0 0
\(883\) −40.0880 −1.34907 −0.674534 0.738244i \(-0.735655\pi\)
−0.674534 + 0.738244i \(0.735655\pi\)
\(884\) 0 0
\(885\) −0.572012 −0.0192280
\(886\) 0 0
\(887\) −35.5736 −1.19445 −0.597223 0.802075i \(-0.703729\pi\)
−0.597223 + 0.802075i \(0.703729\pi\)
\(888\) 0 0
\(889\) −0.111020 −0.00372350
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.57671 0.0527627
\(894\) 0 0
\(895\) 20.6661 0.690791
\(896\) 0 0
\(897\) −80.9229 −2.70194
\(898\) 0 0
\(899\) −45.0366 −1.50205
\(900\) 0 0
\(901\) −1.82415 −0.0607714
\(902\) 0 0
\(903\) −1.15015 −0.0382746
\(904\) 0 0
\(905\) −3.76425 −0.125128
\(906\) 0 0
\(907\) 12.2245 0.405907 0.202954 0.979188i \(-0.434946\pi\)
0.202954 + 0.979188i \(0.434946\pi\)
\(908\) 0 0
\(909\) 16.7422 0.555304
\(910\) 0 0
\(911\) −17.1201 −0.567214 −0.283607 0.958941i \(-0.591531\pi\)
−0.283607 + 0.958941i \(0.591531\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 30.1356 0.996251
\(916\) 0 0
\(917\) 0.141676 0.00467855
\(918\) 0 0
\(919\) 30.8276 1.01691 0.508454 0.861089i \(-0.330217\pi\)
0.508454 + 0.861089i \(0.330217\pi\)
\(920\) 0 0
\(921\) 17.6642 0.582056
\(922\) 0 0
\(923\) 24.8275 0.817208
\(924\) 0 0
\(925\) 10.7125 0.352224
\(926\) 0 0
\(927\) 24.0576 0.790155
\(928\) 0 0
\(929\) 7.29211 0.239246 0.119623 0.992819i \(-0.461831\pi\)
0.119623 + 0.992819i \(0.461831\pi\)
\(930\) 0 0
\(931\) 8.44886 0.276900
\(932\) 0 0
\(933\) −80.9780 −2.65110
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −26.4143 −0.862917 −0.431458 0.902133i \(-0.642001\pi\)
−0.431458 + 0.902133i \(0.642001\pi\)
\(938\) 0 0
\(939\) 31.1536 1.01666
\(940\) 0 0
\(941\) −54.6703 −1.78220 −0.891100 0.453807i \(-0.850065\pi\)
−0.891100 + 0.453807i \(0.850065\pi\)
\(942\) 0 0
\(943\) −23.4915 −0.764987
\(944\) 0 0
\(945\) −0.415145 −0.0135047
\(946\) 0 0
\(947\) 6.86882 0.223207 0.111603 0.993753i \(-0.464401\pi\)
0.111603 + 0.993753i \(0.464401\pi\)
\(948\) 0 0
\(949\) 43.8840 1.42453
\(950\) 0 0
\(951\) 10.9956 0.356558
\(952\) 0 0
\(953\) −43.5319 −1.41014 −0.705068 0.709140i \(-0.749083\pi\)
−0.705068 + 0.709140i \(0.749083\pi\)
\(954\) 0 0
\(955\) −9.47011 −0.306445
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.246784 0.00796908
\(960\) 0 0
\(961\) 4.47081 0.144220
\(962\) 0 0
\(963\) −124.784 −4.02112
\(964\) 0 0
\(965\) −16.3716 −0.527019
\(966\) 0 0
\(967\) 31.8547 1.02438 0.512188 0.858873i \(-0.328835\pi\)
0.512188 + 0.858873i \(0.328835\pi\)
\(968\) 0 0
\(969\) 3.33942 0.107277
\(970\) 0 0
\(971\) −19.2035 −0.616271 −0.308136 0.951342i \(-0.599705\pi\)
−0.308136 + 0.951342i \(0.599705\pi\)
\(972\) 0 0
\(973\) 0.377166 0.0120914
\(974\) 0 0
\(975\) −10.6419 −0.340812
\(976\) 0 0
\(977\) 11.6680 0.373292 0.186646 0.982427i \(-0.440238\pi\)
0.186646 + 0.982427i \(0.440238\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 42.3296 1.35148
\(982\) 0 0
\(983\) −20.7424 −0.661581 −0.330790 0.943704i \(-0.607315\pi\)
−0.330790 + 0.943704i \(0.607315\pi\)
\(984\) 0 0
\(985\) 15.1615 0.483087
\(986\) 0 0
\(987\) 0.155073 0.00493604
\(988\) 0 0
\(989\) 73.6602 2.34226
\(990\) 0 0
\(991\) −31.5161 −1.00114 −0.500572 0.865695i \(-0.666877\pi\)
−0.500572 + 0.865695i \(0.666877\pi\)
\(992\) 0 0
\(993\) 24.8411 0.788310
\(994\) 0 0
\(995\) 2.94883 0.0934843
\(996\) 0 0
\(997\) −23.2775 −0.737206 −0.368603 0.929587i \(-0.620164\pi\)
−0.368603 + 0.929587i \(0.620164\pi\)
\(998\) 0 0
\(999\) 115.423 3.65183
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4840.2.a.bh.1.7 8
4.3 odd 2 9680.2.a.de.1.2 8
11.2 odd 10 440.2.y.d.81.4 16
11.6 odd 10 440.2.y.d.201.4 yes 16
11.10 odd 2 4840.2.a.bg.1.7 8
44.35 even 10 880.2.bo.k.81.1 16
44.39 even 10 880.2.bo.k.641.1 16
44.43 even 2 9680.2.a.df.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.81.4 16 11.2 odd 10
440.2.y.d.201.4 yes 16 11.6 odd 10
880.2.bo.k.81.1 16 44.35 even 10
880.2.bo.k.641.1 16 44.39 even 10
4840.2.a.bg.1.7 8 11.10 odd 2
4840.2.a.bh.1.7 8 1.1 even 1 trivial
9680.2.a.de.1.2 8 4.3 odd 2
9680.2.a.df.1.2 8 44.43 even 2