Properties

Label 440.2.y.d.81.4
Level $440$
Weight $2$
Character 440.81
Analytic conductor $3.513$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(81,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-3,0,-4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 141 x^{12} - 220 x^{11} + 1105 x^{10} - 1935 x^{9} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.4
Root \(-0.952275 + 2.93080i\) of defining polynomial
Character \(\chi\) \(=\) 440.81
Dual form 440.2.y.d.201.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.952275 - 2.93080i) q^{3} +(-0.809017 + 0.587785i) q^{5} +(0.0119064 + 0.0366440i) q^{7} +(-5.25571 - 3.81850i) q^{9} +(-1.11209 - 3.12462i) q^{11} +(-2.79380 - 2.02981i) q^{13} +(0.952275 + 2.93080i) q^{15} +(-0.726200 + 0.527615i) q^{17} +(0.373056 - 1.14815i) q^{19} +0.118734 q^{21} +7.60421 q^{23} +(0.309017 - 0.951057i) q^{25} +(-8.71688 + 6.33319i) q^{27} +(-2.33675 - 7.19177i) q^{29} +(4.81829 + 3.50069i) q^{31} +(-10.2167 + 0.283805i) q^{33} +(-0.0311712 - 0.0226472i) q^{35} +(3.31034 + 10.1882i) q^{37} +(-8.60944 + 6.25512i) q^{39} +(0.954637 - 2.93807i) q^{41} -9.68676 q^{43} +6.49642 q^{45} +(-0.403593 + 1.24213i) q^{47} +(5.66192 - 4.11362i) q^{49} +(0.854793 + 2.63078i) q^{51} +(-1.64407 - 1.19449i) q^{53} +(2.73630 + 1.87420i) q^{55} +(-3.00974 - 2.18671i) q^{57} +(-0.0573598 - 0.176535i) q^{59} +(7.91147 - 5.74802i) q^{61} +(0.0773487 - 0.238055i) q^{63} +3.45332 q^{65} +8.10586 q^{67} +(7.24130 - 22.2864i) q^{69} +(5.81639 - 4.22586i) q^{71} +(3.92691 + 12.0858i) q^{73} +(-2.49309 - 1.81133i) q^{75} +(0.101258 - 0.0779541i) q^{77} +(10.2417 + 7.44102i) q^{79} +(4.23793 + 13.0430i) q^{81} +(8.69073 - 6.31418i) q^{83} +(0.277384 - 0.853699i) q^{85} -23.3029 q^{87} -2.78161 q^{89} +(0.0411165 - 0.126544i) q^{91} +(14.8482 - 10.7878i) q^{93} +(0.373056 + 1.14815i) q^{95} +(-14.3301 - 10.4114i) q^{97} +(-6.08656 + 20.6686i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{3} - 4 q^{5} + 8 q^{7} - 7 q^{9} - 7 q^{11} - 11 q^{13} - 3 q^{15} + 9 q^{17} - 2 q^{19} + 12 q^{21} + 20 q^{23} - 4 q^{25} - 9 q^{27} + q^{29} - 2 q^{31} - 32 q^{33} - 2 q^{35} - 16 q^{37}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.952275 2.93080i 0.549796 1.69210i −0.159509 0.987197i \(-0.550991\pi\)
0.709305 0.704902i \(-0.249009\pi\)
\(4\) 0 0
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.0119064 + 0.0366440i 0.00450018 + 0.0138501i 0.953281 0.302084i \(-0.0976822\pi\)
−0.948781 + 0.315934i \(0.897682\pi\)
\(8\) 0 0
\(9\) −5.25571 3.81850i −1.75190 1.27283i
\(10\) 0 0
\(11\) −1.11209 3.12462i −0.335307 0.942109i
\(12\) 0 0
\(13\) −2.79380 2.02981i −0.774860 0.562969i 0.128572 0.991700i \(-0.458961\pi\)
−0.903432 + 0.428731i \(0.858961\pi\)
\(14\) 0 0
\(15\) 0.952275 + 2.93080i 0.245876 + 0.756729i
\(16\) 0 0
\(17\) −0.726200 + 0.527615i −0.176129 + 0.127965i −0.672357 0.740227i \(-0.734718\pi\)
0.496228 + 0.868192i \(0.334718\pi\)
\(18\) 0 0
\(19\) 0.373056 1.14815i 0.0855850 0.263403i −0.899101 0.437741i \(-0.855779\pi\)
0.984686 + 0.174338i \(0.0557785\pi\)
\(20\) 0 0
\(21\) 0.118734 0.0259100
\(22\) 0 0
\(23\) 7.60421 1.58559 0.792794 0.609490i \(-0.208626\pi\)
0.792794 + 0.609490i \(0.208626\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) −8.71688 + 6.33319i −1.67757 + 1.21882i
\(28\) 0 0
\(29\) −2.33675 7.19177i −0.433923 1.33548i −0.894186 0.447696i \(-0.852245\pi\)
0.460263 0.887783i \(-0.347755\pi\)
\(30\) 0 0
\(31\) 4.81829 + 3.50069i 0.865391 + 0.628743i 0.929346 0.369209i \(-0.120372\pi\)
−0.0639553 + 0.997953i \(0.520372\pi\)
\(32\) 0 0
\(33\) −10.2167 + 0.283805i −1.77849 + 0.0494041i
\(34\) 0 0
\(35\) −0.0311712 0.0226472i −0.00526890 0.00382808i
\(36\) 0 0
\(37\) 3.31034 + 10.1882i 0.544216 + 1.67492i 0.722847 + 0.691008i \(0.242833\pi\)
−0.178631 + 0.983916i \(0.557167\pi\)
\(38\) 0 0
\(39\) −8.60944 + 6.25512i −1.37861 + 1.00162i
\(40\) 0 0
\(41\) 0.954637 2.93807i 0.149089 0.458849i −0.848425 0.529316i \(-0.822449\pi\)
0.997514 + 0.0704663i \(0.0224487\pi\)
\(42\) 0 0
\(43\) −9.68676 −1.47722 −0.738609 0.674135i \(-0.764517\pi\)
−0.738609 + 0.674135i \(0.764517\pi\)
\(44\) 0 0
\(45\) 6.49642 0.968429
\(46\) 0 0
\(47\) −0.403593 + 1.24213i −0.0588700 + 0.181183i −0.976167 0.217020i \(-0.930366\pi\)
0.917297 + 0.398204i \(0.130366\pi\)
\(48\) 0 0
\(49\) 5.66192 4.11362i 0.808845 0.587661i
\(50\) 0 0
\(51\) 0.854793 + 2.63078i 0.119695 + 0.368383i
\(52\) 0 0
\(53\) −1.64407 1.19449i −0.225831 0.164075i 0.469117 0.883136i \(-0.344572\pi\)
−0.694947 + 0.719061i \(0.744572\pi\)
\(54\) 0 0
\(55\) 2.73630 + 1.87420i 0.368963 + 0.252718i
\(56\) 0 0
\(57\) −3.00974 2.18671i −0.398650 0.289636i
\(58\) 0 0
\(59\) −0.0573598 0.176535i −0.00746761 0.0229829i 0.947253 0.320486i \(-0.103846\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(60\) 0 0
\(61\) 7.91147 5.74802i 1.01296 0.735958i 0.0481316 0.998841i \(-0.484673\pi\)
0.964828 + 0.262883i \(0.0846733\pi\)
\(62\) 0 0
\(63\) 0.0773487 0.238055i 0.00974502 0.0299921i
\(64\) 0 0
\(65\) 3.45332 0.428332
\(66\) 0 0
\(67\) 8.10586 0.990288 0.495144 0.868811i \(-0.335115\pi\)
0.495144 + 0.868811i \(0.335115\pi\)
\(68\) 0 0
\(69\) 7.24130 22.2864i 0.871750 2.68297i
\(70\) 0 0
\(71\) 5.81639 4.22586i 0.690279 0.501517i −0.186473 0.982460i \(-0.559706\pi\)
0.876752 + 0.480943i \(0.159706\pi\)
\(72\) 0 0
\(73\) 3.92691 + 12.0858i 0.459610 + 1.41453i 0.865636 + 0.500673i \(0.166914\pi\)
−0.406026 + 0.913861i \(0.633086\pi\)
\(74\) 0 0
\(75\) −2.49309 1.81133i −0.287877 0.209155i
\(76\) 0 0
\(77\) 0.101258 0.0779541i 0.0115394 0.00888370i
\(78\) 0 0
\(79\) 10.2417 + 7.44102i 1.15228 + 0.837181i 0.988782 0.149363i \(-0.0477224\pi\)
0.163498 + 0.986544i \(0.447722\pi\)
\(80\) 0 0
\(81\) 4.23793 + 13.0430i 0.470881 + 1.44922i
\(82\) 0 0
\(83\) 8.69073 6.31418i 0.953931 0.693072i 0.00219777 0.999998i \(-0.499300\pi\)
0.951733 + 0.306926i \(0.0993004\pi\)
\(84\) 0 0
\(85\) 0.277384 0.853699i 0.0300865 0.0925967i
\(86\) 0 0
\(87\) −23.3029 −2.49833
\(88\) 0 0
\(89\) −2.78161 −0.294850 −0.147425 0.989073i \(-0.547099\pi\)
−0.147425 + 0.989073i \(0.547099\pi\)
\(90\) 0 0
\(91\) 0.0411165 0.126544i 0.00431018 0.0132654i
\(92\) 0 0
\(93\) 14.8482 10.7878i 1.53968 1.11865i
\(94\) 0 0
\(95\) 0.373056 + 1.14815i 0.0382748 + 0.117798i
\(96\) 0 0
\(97\) −14.3301 10.4114i −1.45500 1.05712i −0.984630 0.174655i \(-0.944119\pi\)
−0.470374 0.882467i \(-0.655881\pi\)
\(98\) 0 0
\(99\) −6.08656 + 20.6686i −0.611722 + 2.07727i
\(100\) 0 0
\(101\) 2.08495 + 1.51481i 0.207461 + 0.150729i 0.686664 0.726975i \(-0.259074\pi\)
−0.479203 + 0.877704i \(0.659074\pi\)
\(102\) 0 0
\(103\) 1.14435 + 3.52196i 0.112757 + 0.347029i 0.991473 0.130316i \(-0.0415992\pi\)
−0.878716 + 0.477345i \(0.841599\pi\)
\(104\) 0 0
\(105\) −0.0960581 + 0.0697903i −0.00937431 + 0.00681084i
\(106\) 0 0
\(107\) 5.93565 18.2681i 0.573821 1.76604i −0.0663370 0.997797i \(-0.521131\pi\)
0.640158 0.768243i \(-0.278869\pi\)
\(108\) 0 0
\(109\) −6.51583 −0.624104 −0.312052 0.950065i \(-0.601016\pi\)
−0.312052 + 0.950065i \(0.601016\pi\)
\(110\) 0 0
\(111\) 33.0118 3.13334
\(112\) 0 0
\(113\) −3.74482 + 11.5254i −0.352283 + 1.08422i 0.605285 + 0.796009i \(0.293059\pi\)
−0.957568 + 0.288207i \(0.906941\pi\)
\(114\) 0 0
\(115\) −6.15194 + 4.46964i −0.573671 + 0.416796i
\(116\) 0 0
\(117\) 6.93256 + 21.3362i 0.640916 + 1.97254i
\(118\) 0 0
\(119\) −0.0279803 0.0203289i −0.00256495 0.00186355i
\(120\) 0 0
\(121\) −8.52653 + 6.94970i −0.775139 + 0.631791i
\(122\) 0 0
\(123\) −7.70182 5.59570i −0.694450 0.504547i
\(124\) 0 0
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 2.33112 1.69366i 0.206853 0.150288i −0.479536 0.877522i \(-0.659195\pi\)
0.686389 + 0.727235i \(0.259195\pi\)
\(128\) 0 0
\(129\) −9.22446 + 28.3900i −0.812168 + 2.49960i
\(130\) 0 0
\(131\) 3.67705 0.321266 0.160633 0.987014i \(-0.448647\pi\)
0.160633 + 0.987014i \(0.448647\pi\)
\(132\) 0 0
\(133\) 0.0465145 0.00403332
\(134\) 0 0
\(135\) 3.32955 10.2473i 0.286562 0.881948i
\(136\) 0 0
\(137\) 5.18178 3.76478i 0.442709 0.321647i −0.344001 0.938969i \(-0.611783\pi\)
0.786710 + 0.617322i \(0.211783\pi\)
\(138\) 0 0
\(139\) 3.02495 + 9.30985i 0.256573 + 0.789651i 0.993516 + 0.113696i \(0.0362689\pi\)
−0.736942 + 0.675956i \(0.763731\pi\)
\(140\) 0 0
\(141\) 3.25611 + 2.36570i 0.274214 + 0.199228i
\(142\) 0 0
\(143\) −3.23545 + 10.9869i −0.270562 + 0.918770i
\(144\) 0 0
\(145\) 6.11769 + 4.44476i 0.508046 + 0.369117i
\(146\) 0 0
\(147\) −6.66451 20.5113i −0.549680 1.69174i
\(148\) 0 0
\(149\) −15.7978 + 11.4778i −1.29420 + 0.940295i −0.999881 0.0154112i \(-0.995094\pi\)
−0.294323 + 0.955706i \(0.595094\pi\)
\(150\) 0 0
\(151\) −1.39409 + 4.29058i −0.113450 + 0.349162i −0.991621 0.129185i \(-0.958764\pi\)
0.878171 + 0.478347i \(0.158764\pi\)
\(152\) 0 0
\(153\) 5.83140 0.471440
\(154\) 0 0
\(155\) −5.95574 −0.478376
\(156\) 0 0
\(157\) 1.40342 4.31927i 0.112005 0.344716i −0.879306 0.476258i \(-0.841993\pi\)
0.991311 + 0.131542i \(0.0419929\pi\)
\(158\) 0 0
\(159\) −5.06641 + 3.68096i −0.401793 + 0.291919i
\(160\) 0 0
\(161\) 0.0905384 + 0.278649i 0.00713543 + 0.0219606i
\(162\) 0 0
\(163\) 19.9540 + 14.4974i 1.56292 + 1.13553i 0.933566 + 0.358406i \(0.116680\pi\)
0.629352 + 0.777120i \(0.283320\pi\)
\(164\) 0 0
\(165\) 8.09863 6.23480i 0.630478 0.485379i
\(166\) 0 0
\(167\) −13.4966 9.80583i −1.04440 0.758798i −0.0732569 0.997313i \(-0.523339\pi\)
−0.971139 + 0.238515i \(0.923339\pi\)
\(168\) 0 0
\(169\) −0.332056 1.02196i −0.0255427 0.0786125i
\(170\) 0 0
\(171\) −6.34488 + 4.60983i −0.485205 + 0.352522i
\(172\) 0 0
\(173\) −4.08516 + 12.5728i −0.310589 + 0.955895i 0.666943 + 0.745109i \(0.267602\pi\)
−0.977532 + 0.210787i \(0.932398\pi\)
\(174\) 0 0
\(175\) 0.0385298 0.00291258
\(176\) 0 0
\(177\) −0.572012 −0.0429951
\(178\) 0 0
\(179\) 6.38617 19.6546i 0.477325 1.46905i −0.365472 0.930822i \(-0.619092\pi\)
0.842797 0.538232i \(-0.180908\pi\)
\(180\) 0 0
\(181\) 3.04535 2.21257i 0.226359 0.164459i −0.468826 0.883291i \(-0.655323\pi\)
0.695184 + 0.718832i \(0.255323\pi\)
\(182\) 0 0
\(183\) −9.31240 28.6606i −0.688392 2.11865i
\(184\) 0 0
\(185\) −8.66657 6.29663i −0.637179 0.462938i
\(186\) 0 0
\(187\) 2.45619 + 1.68235i 0.179615 + 0.123025i
\(188\) 0 0
\(189\) −0.335860 0.244016i −0.0244302 0.0177496i
\(190\) 0 0
\(191\) −2.92642 9.00661i −0.211749 0.651695i −0.999368 0.0355338i \(-0.988687\pi\)
0.787620 0.616161i \(-0.211313\pi\)
\(192\) 0 0
\(193\) −13.2449 + 9.62296i −0.953386 + 0.692676i −0.951605 0.307323i \(-0.900567\pi\)
−0.00178079 + 0.999998i \(0.500567\pi\)
\(194\) 0 0
\(195\) 3.28851 10.1210i 0.235495 0.724780i
\(196\) 0 0
\(197\) −15.1615 −1.08021 −0.540107 0.841596i \(-0.681616\pi\)
−0.540107 + 0.841596i \(0.681616\pi\)
\(198\) 0 0
\(199\) 2.94883 0.209037 0.104519 0.994523i \(-0.466670\pi\)
0.104519 + 0.994523i \(0.466670\pi\)
\(200\) 0 0
\(201\) 7.71901 23.7567i 0.544457 1.67567i
\(202\) 0 0
\(203\) 0.235713 0.171256i 0.0165438 0.0120198i
\(204\) 0 0
\(205\) 0.954637 + 2.93807i 0.0666747 + 0.205204i
\(206\) 0 0
\(207\) −39.9656 29.0367i −2.77780 2.01819i
\(208\) 0 0
\(209\) −4.00240 + 0.111181i −0.276852 + 0.00769058i
\(210\) 0 0
\(211\) −14.1094 10.2511i −0.971335 0.705716i −0.0155792 0.999879i \(-0.504959\pi\)
−0.955755 + 0.294163i \(0.904959\pi\)
\(212\) 0 0
\(213\) −6.84634 21.0709i −0.469103 1.44375i
\(214\) 0 0
\(215\) 7.83675 5.69373i 0.534462 0.388310i
\(216\) 0 0
\(217\) −0.0709111 + 0.218242i −0.00481376 + 0.0148152i
\(218\) 0 0
\(219\) 39.1605 2.64622
\(220\) 0 0
\(221\) 3.09981 0.208516
\(222\) 0 0
\(223\) −7.07077 + 21.7616i −0.473494 + 1.45726i 0.374484 + 0.927233i \(0.377820\pi\)
−0.847978 + 0.530032i \(0.822180\pi\)
\(224\) 0 0
\(225\) −5.25571 + 3.81850i −0.350381 + 0.254567i
\(226\) 0 0
\(227\) 6.14352 + 18.9078i 0.407760 + 1.25496i 0.918569 + 0.395261i \(0.129346\pi\)
−0.510809 + 0.859694i \(0.670654\pi\)
\(228\) 0 0
\(229\) 12.4562 + 9.04994i 0.823127 + 0.598037i 0.917607 0.397490i \(-0.130119\pi\)
−0.0944794 + 0.995527i \(0.530119\pi\)
\(230\) 0 0
\(231\) −0.132043 0.371000i −0.00868778 0.0244100i
\(232\) 0 0
\(233\) −11.7463 8.53417i −0.769525 0.559092i 0.132292 0.991211i \(-0.457766\pi\)
−0.901817 + 0.432118i \(0.857766\pi\)
\(234\) 0 0
\(235\) −0.403593 1.24213i −0.0263275 0.0810277i
\(236\) 0 0
\(237\) 31.5611 22.9305i 2.05011 1.48949i
\(238\) 0 0
\(239\) 1.62621 5.00495i 0.105191 0.323743i −0.884585 0.466380i \(-0.845558\pi\)
0.989775 + 0.142636i \(0.0455580\pi\)
\(240\) 0 0
\(241\) 10.2035 0.657265 0.328633 0.944458i \(-0.393412\pi\)
0.328633 + 0.944458i \(0.393412\pi\)
\(242\) 0 0
\(243\) 9.93811 0.637530
\(244\) 0 0
\(245\) −2.16266 + 6.65598i −0.138167 + 0.425235i
\(246\) 0 0
\(247\) −3.37277 + 2.45046i −0.214604 + 0.155919i
\(248\) 0 0
\(249\) −10.2296 31.4836i −0.648278 1.99519i
\(250\) 0 0
\(251\) −6.89285 5.00795i −0.435073 0.316099i 0.348601 0.937271i \(-0.386657\pi\)
−0.783674 + 0.621172i \(0.786657\pi\)
\(252\) 0 0
\(253\) −8.45654 23.7603i −0.531658 1.49380i
\(254\) 0 0
\(255\) −2.23788 1.62591i −0.140141 0.101819i
\(256\) 0 0
\(257\) 3.56962 + 10.9862i 0.222667 + 0.685298i 0.998520 + 0.0543844i \(0.0173196\pi\)
−0.775853 + 0.630913i \(0.782680\pi\)
\(258\) 0 0
\(259\) −0.333921 + 0.242608i −0.0207488 + 0.0150749i
\(260\) 0 0
\(261\) −15.1805 + 46.7208i −0.939649 + 2.89194i
\(262\) 0 0
\(263\) −2.91262 −0.179600 −0.0898000 0.995960i \(-0.528623\pi\)
−0.0898000 + 0.995960i \(0.528623\pi\)
\(264\) 0 0
\(265\) 2.03218 0.124836
\(266\) 0 0
\(267\) −2.64886 + 8.15234i −0.162107 + 0.498915i
\(268\) 0 0
\(269\) 0.248336 0.180427i 0.0151413 0.0110008i −0.580189 0.814482i \(-0.697021\pi\)
0.595330 + 0.803481i \(0.297021\pi\)
\(270\) 0 0
\(271\) −5.07375 15.6154i −0.308208 0.948567i −0.978461 0.206434i \(-0.933814\pi\)
0.670253 0.742133i \(-0.266186\pi\)
\(272\) 0 0
\(273\) −0.331720 0.241008i −0.0200766 0.0145865i
\(274\) 0 0
\(275\) −3.31535 + 0.0920959i −0.199923 + 0.00555359i
\(276\) 0 0
\(277\) 2.52061 + 1.83133i 0.151449 + 0.110034i 0.660929 0.750448i \(-0.270162\pi\)
−0.509480 + 0.860482i \(0.670162\pi\)
\(278\) 0 0
\(279\) −11.9562 36.7973i −0.715797 2.20300i
\(280\) 0 0
\(281\) 20.7508 15.0764i 1.23789 0.899380i 0.240434 0.970665i \(-0.422710\pi\)
0.997456 + 0.0712855i \(0.0227101\pi\)
\(282\) 0 0
\(283\) −6.27727 + 19.3195i −0.373145 + 1.14842i 0.571577 + 0.820549i \(0.306332\pi\)
−0.944722 + 0.327874i \(0.893668\pi\)
\(284\) 0 0
\(285\) 3.72025 0.220368
\(286\) 0 0
\(287\) 0.119029 0.00702605
\(288\) 0 0
\(289\) −5.00430 + 15.4017i −0.294371 + 0.905980i
\(290\) 0 0
\(291\) −44.1601 + 32.0842i −2.58871 + 1.88081i
\(292\) 0 0
\(293\) 9.30179 + 28.6280i 0.543416 + 1.67246i 0.724726 + 0.689037i \(0.241966\pi\)
−0.181310 + 0.983426i \(0.558034\pi\)
\(294\) 0 0
\(295\) 0.150170 + 0.109105i 0.00874323 + 0.00635233i
\(296\) 0 0
\(297\) 29.4827 + 20.1939i 1.71076 + 1.17177i
\(298\) 0 0
\(299\) −21.2446 15.4351i −1.22861 0.892636i
\(300\) 0 0
\(301\) −0.115334 0.354962i −0.00664774 0.0204596i
\(302\) 0 0
\(303\) 6.42505 4.66807i 0.369110 0.268174i
\(304\) 0 0
\(305\) −3.02191 + 9.30049i −0.173034 + 0.532544i
\(306\) 0 0
\(307\) −5.73211 −0.327149 −0.163574 0.986531i \(-0.552302\pi\)
−0.163574 + 0.986531i \(0.552302\pi\)
\(308\) 0 0
\(309\) 11.4119 0.649200
\(310\) 0 0
\(311\) −8.12025 + 24.9916i −0.460457 + 1.41714i 0.404150 + 0.914693i \(0.367567\pi\)
−0.864607 + 0.502449i \(0.832433\pi\)
\(312\) 0 0
\(313\) −8.17873 + 5.94220i −0.462289 + 0.335873i −0.794429 0.607357i \(-0.792230\pi\)
0.332139 + 0.943230i \(0.392230\pi\)
\(314\) 0 0
\(315\) 0.0773487 + 0.238055i 0.00435810 + 0.0134129i
\(316\) 0 0
\(317\) −2.88667 2.09729i −0.162132 0.117796i 0.503761 0.863843i \(-0.331949\pi\)
−0.665893 + 0.746047i \(0.731949\pi\)
\(318\) 0 0
\(319\) −19.8729 + 15.2993i −1.11267 + 0.856598i
\(320\) 0 0
\(321\) −47.8877 34.7924i −2.67283 1.94192i
\(322\) 0 0
\(323\) 0.334867 + 1.03062i 0.0186325 + 0.0573450i
\(324\) 0 0
\(325\) −2.79380 + 2.02981i −0.154972 + 0.112594i
\(326\) 0 0
\(327\) −6.20487 + 19.0966i −0.343130 + 1.05605i
\(328\) 0 0
\(329\) −0.0503219 −0.00277434
\(330\) 0 0
\(331\) 8.06105 0.443075 0.221538 0.975152i \(-0.428892\pi\)
0.221538 + 0.975152i \(0.428892\pi\)
\(332\) 0 0
\(333\) 21.5053 66.1866i 1.17848 3.62700i
\(334\) 0 0
\(335\) −6.55778 + 4.76451i −0.358290 + 0.260313i
\(336\) 0 0
\(337\) 8.44928 + 26.0042i 0.460261 + 1.41654i 0.864845 + 0.502038i \(0.167416\pi\)
−0.404584 + 0.914501i \(0.632584\pi\)
\(338\) 0 0
\(339\) 30.2125 + 21.9506i 1.64092 + 1.19219i
\(340\) 0 0
\(341\) 5.57999 18.9484i 0.302173 1.02611i
\(342\) 0 0
\(343\) 0.436351 + 0.317028i 0.0235607 + 0.0171179i
\(344\) 0 0
\(345\) 7.24130 + 22.2864i 0.389858 + 1.19986i
\(346\) 0 0
\(347\) 24.9457 18.1241i 1.33915 0.972952i 0.339679 0.940541i \(-0.389682\pi\)
0.999475 0.0324105i \(-0.0103184\pi\)
\(348\) 0 0
\(349\) −7.35211 + 22.6275i −0.393549 + 1.21122i 0.536536 + 0.843877i \(0.319732\pi\)
−0.930086 + 0.367343i \(0.880268\pi\)
\(350\) 0 0
\(351\) 37.2084 1.98604
\(352\) 0 0
\(353\) 2.87310 0.152920 0.0764598 0.997073i \(-0.475638\pi\)
0.0764598 + 0.997073i \(0.475638\pi\)
\(354\) 0 0
\(355\) −2.22166 + 6.83758i −0.117914 + 0.362901i
\(356\) 0 0
\(357\) −0.0862249 + 0.0626460i −0.00456350 + 0.00331558i
\(358\) 0 0
\(359\) −0.546690 1.68254i −0.0288532 0.0888009i 0.935593 0.353081i \(-0.114866\pi\)
−0.964446 + 0.264280i \(0.914866\pi\)
\(360\) 0 0
\(361\) 14.1922 + 10.3113i 0.746960 + 0.542698i
\(362\) 0 0
\(363\) 12.2486 + 31.6076i 0.642884 + 1.65897i
\(364\) 0 0
\(365\) −10.2808 7.46943i −0.538121 0.390968i
\(366\) 0 0
\(367\) 1.76698 + 5.43822i 0.0922358 + 0.283873i 0.986523 0.163620i \(-0.0523171\pi\)
−0.894288 + 0.447493i \(0.852317\pi\)
\(368\) 0 0
\(369\) −16.2363 + 11.7964i −0.845229 + 0.614095i
\(370\) 0 0
\(371\) 0.0241959 0.0744673i 0.00125619 0.00386615i
\(372\) 0 0
\(373\) 18.1456 0.939543 0.469772 0.882788i \(-0.344336\pi\)
0.469772 + 0.882788i \(0.344336\pi\)
\(374\) 0 0
\(375\) 3.08163 0.159134
\(376\) 0 0
\(377\) −8.06955 + 24.8355i −0.415603 + 1.27909i
\(378\) 0 0
\(379\) 25.4876 18.5178i 1.30921 0.951196i 0.309209 0.950994i \(-0.399936\pi\)
1.00000 0.000202224i \(-6.43700e-5\pi\)
\(380\) 0 0
\(381\) −2.74390 8.44486i −0.140574 0.432644i
\(382\) 0 0
\(383\) −2.33181 1.69416i −0.119150 0.0865673i 0.526615 0.850104i \(-0.323461\pi\)
−0.645764 + 0.763537i \(0.723461\pi\)
\(384\) 0 0
\(385\) −0.0360989 + 0.122584i −0.00183977 + 0.00624746i
\(386\) 0 0
\(387\) 50.9108 + 36.9889i 2.58794 + 1.88025i
\(388\) 0 0
\(389\) −10.5948 32.6075i −0.537179 1.65327i −0.738892 0.673823i \(-0.764651\pi\)
0.201713 0.979445i \(-0.435349\pi\)
\(390\) 0 0
\(391\) −5.52218 + 4.01210i −0.279268 + 0.202900i
\(392\) 0 0
\(393\) 3.50156 10.7767i 0.176631 0.543613i
\(394\) 0 0
\(395\) −12.6594 −0.636965
\(396\) 0 0
\(397\) −14.4405 −0.724746 −0.362373 0.932033i \(-0.618033\pi\)
−0.362373 + 0.932033i \(0.618033\pi\)
\(398\) 0 0
\(399\) 0.0442946 0.136325i 0.00221750 0.00682477i
\(400\) 0 0
\(401\) −3.59985 + 2.61545i −0.179768 + 0.130609i −0.674030 0.738704i \(-0.735438\pi\)
0.494262 + 0.869313i \(0.335438\pi\)
\(402\) 0 0
\(403\) −6.35558 19.5605i −0.316594 0.974376i
\(404\) 0 0
\(405\) −11.0950 8.06101i −0.551317 0.400555i
\(406\) 0 0
\(407\) 28.1528 21.6737i 1.39548 1.07432i
\(408\) 0 0
\(409\) −24.6453 17.9059i −1.21863 0.885389i −0.222647 0.974899i \(-0.571470\pi\)
−0.995986 + 0.0895101i \(0.971470\pi\)
\(410\) 0 0
\(411\) −6.09935 18.7719i −0.300859 0.925948i
\(412\) 0 0
\(413\) 0.00578601 0.00420378i 0.000284711 0.000206855i
\(414\) 0 0
\(415\) −3.31956 + 10.2166i −0.162951 + 0.501511i
\(416\) 0 0
\(417\) 30.1659 1.47723
\(418\) 0 0
\(419\) −14.5620 −0.711402 −0.355701 0.934600i \(-0.615758\pi\)
−0.355701 + 0.934600i \(0.615758\pi\)
\(420\) 0 0
\(421\) 0.201378 0.619779i 0.00981459 0.0302062i −0.946029 0.324081i \(-0.894945\pi\)
0.955844 + 0.293875i \(0.0949449\pi\)
\(422\) 0 0
\(423\) 6.86424 4.98716i 0.333751 0.242484i
\(424\) 0 0
\(425\) 0.277384 + 0.853699i 0.0134551 + 0.0414105i
\(426\) 0 0
\(427\) 0.304827 + 0.221470i 0.0147516 + 0.0107177i
\(428\) 0 0
\(429\) 29.1193 + 19.9450i 1.40590 + 0.962954i
\(430\) 0 0
\(431\) 27.4797 + 19.9652i 1.32365 + 0.961689i 0.999879 + 0.0155542i \(0.00495125\pi\)
0.323773 + 0.946135i \(0.395049\pi\)
\(432\) 0 0
\(433\) −9.83495 30.2689i −0.472637 1.45463i −0.849118 0.528204i \(-0.822866\pi\)
0.376480 0.926425i \(-0.377134\pi\)
\(434\) 0 0
\(435\) 18.8524 13.6971i 0.903905 0.656725i
\(436\) 0 0
\(437\) 2.83680 8.73077i 0.135702 0.417649i
\(438\) 0 0
\(439\) −1.74428 −0.0832501 −0.0416251 0.999133i \(-0.513253\pi\)
−0.0416251 + 0.999133i \(0.513253\pi\)
\(440\) 0 0
\(441\) −45.4653 −2.16501
\(442\) 0 0
\(443\) 0.284462 0.875485i 0.0135152 0.0415955i −0.944071 0.329741i \(-0.893039\pi\)
0.957587 + 0.288145i \(0.0930386\pi\)
\(444\) 0 0
\(445\) 2.25037 1.63499i 0.106678 0.0775059i
\(446\) 0 0
\(447\) 18.5952 + 57.2301i 0.879523 + 2.70689i
\(448\) 0 0
\(449\) −4.04783 2.94092i −0.191029 0.138791i 0.488160 0.872754i \(-0.337668\pi\)
−0.679189 + 0.733963i \(0.737668\pi\)
\(450\) 0 0
\(451\) −10.2420 + 0.284509i −0.482277 + 0.0133970i
\(452\) 0 0
\(453\) 11.2473 + 8.17162i 0.528443 + 0.383936i
\(454\) 0 0
\(455\) 0.0411165 + 0.126544i 0.00192757 + 0.00593245i
\(456\) 0 0
\(457\) 8.88144 6.45275i 0.415456 0.301847i −0.360351 0.932817i \(-0.617343\pi\)
0.775807 + 0.630970i \(0.217343\pi\)
\(458\) 0 0
\(459\) 2.98871 9.19832i 0.139501 0.429341i
\(460\) 0 0
\(461\) −8.89371 −0.414221 −0.207111 0.978318i \(-0.566406\pi\)
−0.207111 + 0.978318i \(0.566406\pi\)
\(462\) 0 0
\(463\) −8.95007 −0.415945 −0.207972 0.978135i \(-0.566686\pi\)
−0.207972 + 0.978135i \(0.566686\pi\)
\(464\) 0 0
\(465\) −5.67150 + 17.4551i −0.263009 + 0.809460i
\(466\) 0 0
\(467\) −9.86441 + 7.16691i −0.456470 + 0.331645i −0.792145 0.610333i \(-0.791036\pi\)
0.335675 + 0.941978i \(0.391036\pi\)
\(468\) 0 0
\(469\) 0.0965112 + 0.297031i 0.00445647 + 0.0137156i
\(470\) 0 0
\(471\) −11.3225 8.22627i −0.521713 0.379047i
\(472\) 0 0
\(473\) 10.7725 + 30.2675i 0.495321 + 1.39170i
\(474\) 0 0
\(475\) −0.976674 0.709595i −0.0448129 0.0325585i
\(476\) 0 0
\(477\) 4.07962 + 12.5558i 0.186793 + 0.574889i
\(478\) 0 0
\(479\) 34.5002 25.0659i 1.57636 1.14529i 0.655627 0.755085i \(-0.272404\pi\)
0.920728 0.390205i \(-0.127596\pi\)
\(480\) 0 0
\(481\) 11.4317 35.1830i 0.521239 1.60421i
\(482\) 0 0
\(483\) 0.902881 0.0410825
\(484\) 0 0
\(485\) 17.7130 0.804306
\(486\) 0 0
\(487\) 3.41885 10.5221i 0.154923 0.476804i −0.843230 0.537553i \(-0.819349\pi\)
0.998153 + 0.0607488i \(0.0193488\pi\)
\(488\) 0 0
\(489\) 61.4908 44.6757i 2.78071 2.02030i
\(490\) 0 0
\(491\) −6.08215 18.7189i −0.274484 0.844774i −0.989356 0.145519i \(-0.953515\pi\)
0.714872 0.699256i \(-0.246485\pi\)
\(492\) 0 0
\(493\) 5.49143 + 3.98976i 0.247322 + 0.179690i
\(494\) 0 0
\(495\) −7.22458 20.2989i −0.324721 0.912366i
\(496\) 0 0
\(497\) 0.224104 + 0.162821i 0.0100524 + 0.00730353i
\(498\) 0 0
\(499\) −3.46256 10.6567i −0.155006 0.477058i 0.843156 0.537669i \(-0.180695\pi\)
−0.998161 + 0.0606111i \(0.980695\pi\)
\(500\) 0 0
\(501\) −41.5914 + 30.2179i −1.85817 + 1.35004i
\(502\) 0 0
\(503\) −7.83954 + 24.1276i −0.349548 + 1.07580i 0.609556 + 0.792743i \(0.291348\pi\)
−0.959104 + 0.283055i \(0.908652\pi\)
\(504\) 0 0
\(505\) −2.57715 −0.114681
\(506\) 0 0
\(507\) −3.31138 −0.147063
\(508\) 0 0
\(509\) −11.5509 + 35.5501i −0.511986 + 1.57573i 0.276715 + 0.960952i \(0.410754\pi\)
−0.788700 + 0.614778i \(0.789246\pi\)
\(510\) 0 0
\(511\) −0.396116 + 0.287795i −0.0175232 + 0.0127313i
\(512\) 0 0
\(513\) 4.01955 + 12.3709i 0.177468 + 0.546189i
\(514\) 0 0
\(515\) −2.99596 2.17669i −0.132018 0.0959165i
\(516\) 0 0
\(517\) 4.33002 0.120282i 0.190434 0.00529000i
\(518\) 0 0
\(519\) 32.9583 + 23.9456i 1.44671 + 1.05110i
\(520\) 0 0
\(521\) 8.19156 + 25.2110i 0.358879 + 1.10452i 0.953726 + 0.300677i \(0.0972126\pi\)
−0.594847 + 0.803839i \(0.702787\pi\)
\(522\) 0 0
\(523\) −14.8351 + 10.7783i −0.648692 + 0.471302i −0.862825 0.505502i \(-0.831307\pi\)
0.214134 + 0.976804i \(0.431307\pi\)
\(524\) 0 0
\(525\) 0.0366909 0.112923i 0.00160132 0.00492837i
\(526\) 0 0
\(527\) −5.34606 −0.232878
\(528\) 0 0
\(529\) 34.8240 1.51409
\(530\) 0 0
\(531\) −0.372633 + 1.14685i −0.0161709 + 0.0497689i
\(532\) 0 0
\(533\) −8.63079 + 6.27064i −0.373841 + 0.271611i
\(534\) 0 0
\(535\) 5.93565 + 18.2681i 0.256621 + 0.789797i
\(536\) 0 0
\(537\) −51.5223 37.4332i −2.22335 1.61536i
\(538\) 0 0
\(539\) −19.1501 13.1166i −0.824852 0.564974i
\(540\) 0 0
\(541\) −4.61731 3.35467i −0.198514 0.144229i 0.484088 0.875019i \(-0.339152\pi\)
−0.682602 + 0.730791i \(0.739152\pi\)
\(542\) 0 0
\(543\) −3.58460 11.0323i −0.153830 0.473440i
\(544\) 0 0
\(545\) 5.27142 3.82991i 0.225803 0.164055i
\(546\) 0 0
\(547\) 4.22184 12.9935i 0.180513 0.555562i −0.819329 0.573323i \(-0.805654\pi\)
0.999842 + 0.0177616i \(0.00565397\pi\)
\(548\) 0 0
\(549\) −63.5292 −2.71136
\(550\) 0 0
\(551\) −9.12897 −0.388907
\(552\) 0 0
\(553\) −0.150728 + 0.463892i −0.00640959 + 0.0197267i
\(554\) 0 0
\(555\) −26.7071 + 19.4039i −1.13365 + 0.823648i
\(556\) 0 0
\(557\) 4.35243 + 13.3954i 0.184418 + 0.567581i 0.999938 0.0111484i \(-0.00354872\pi\)
−0.815520 + 0.578729i \(0.803549\pi\)
\(558\) 0 0
\(559\) 27.0628 + 19.6623i 1.14464 + 0.831627i
\(560\) 0 0
\(561\) 7.26959 5.59656i 0.306923 0.236287i
\(562\) 0 0
\(563\) 6.73373 + 4.89234i 0.283793 + 0.206187i 0.720570 0.693382i \(-0.243880\pi\)
−0.436777 + 0.899570i \(0.643880\pi\)
\(564\) 0 0
\(565\) −3.74482 11.5254i −0.157546 0.484876i
\(566\) 0 0
\(567\) −0.427489 + 0.310589i −0.0179529 + 0.0130435i
\(568\) 0 0
\(569\) 5.29170 16.2862i 0.221840 0.682752i −0.776757 0.629800i \(-0.783137\pi\)
0.998597 0.0529523i \(-0.0168631\pi\)
\(570\) 0 0
\(571\) −33.6964 −1.41015 −0.705076 0.709132i \(-0.749087\pi\)
−0.705076 + 0.709132i \(0.749087\pi\)
\(572\) 0 0
\(573\) −29.1833 −1.21915
\(574\) 0 0
\(575\) 2.34983 7.23203i 0.0979947 0.301597i
\(576\) 0 0
\(577\) 24.5965 17.8704i 1.02397 0.743955i 0.0568745 0.998381i \(-0.481886\pi\)
0.967092 + 0.254426i \(0.0818865\pi\)
\(578\) 0 0
\(579\) 15.5902 + 47.9818i 0.647907 + 1.99405i
\(580\) 0 0
\(581\) 0.334852 + 0.243284i 0.0138920 + 0.0100931i
\(582\) 0 0
\(583\) −1.90397 + 6.46547i −0.0788545 + 0.267773i
\(584\) 0 0
\(585\) −18.1497 13.1865i −0.750397 0.545195i
\(586\) 0 0
\(587\) −2.89912 8.92256i −0.119659 0.368273i 0.873231 0.487306i \(-0.162021\pi\)
−0.992890 + 0.119033i \(0.962021\pi\)
\(588\) 0 0
\(589\) 5.81681 4.22616i 0.239678 0.174136i
\(590\) 0 0
\(591\) −14.4379 + 44.4354i −0.593898 + 1.82783i
\(592\) 0 0
\(593\) 30.1444 1.23788 0.618941 0.785437i \(-0.287562\pi\)
0.618941 + 0.785437i \(0.287562\pi\)
\(594\) 0 0
\(595\) 0.0345856 0.00141787
\(596\) 0 0
\(597\) 2.80810 8.64244i 0.114928 0.353711i
\(598\) 0 0
\(599\) −8.25456 + 5.99729i −0.337272 + 0.245043i −0.743510 0.668725i \(-0.766840\pi\)
0.406238 + 0.913767i \(0.366840\pi\)
\(600\) 0 0
\(601\) −5.41926 16.6788i −0.221056 0.680341i −0.998668 0.0515962i \(-0.983569\pi\)
0.777612 0.628745i \(-0.216431\pi\)
\(602\) 0 0
\(603\) −42.6021 30.9522i −1.73489 1.26047i
\(604\) 0 0
\(605\) 2.81317 10.6342i 0.114372 0.432341i
\(606\) 0 0
\(607\) 3.49951 + 2.54254i 0.142041 + 0.103198i 0.656536 0.754294i \(-0.272021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(608\) 0 0
\(609\) −0.277452 0.853910i −0.0112429 0.0346022i
\(610\) 0 0
\(611\) 3.64885 2.65104i 0.147617 0.107250i
\(612\) 0 0
\(613\) 3.87702 11.9323i 0.156592 0.481939i −0.841727 0.539903i \(-0.818461\pi\)
0.998319 + 0.0579639i \(0.0184608\pi\)
\(614\) 0 0
\(615\) 9.51997 0.383882
\(616\) 0 0
\(617\) 17.1256 0.689452 0.344726 0.938703i \(-0.387972\pi\)
0.344726 + 0.938703i \(0.387972\pi\)
\(618\) 0 0
\(619\) −2.25335 + 6.93510i −0.0905698 + 0.278745i −0.986074 0.166308i \(-0.946815\pi\)
0.895504 + 0.445053i \(0.146815\pi\)
\(620\) 0 0
\(621\) −66.2850 + 48.1589i −2.65993 + 1.93255i
\(622\) 0 0
\(623\) −0.0331188 0.101929i −0.00132688 0.00408371i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) −3.48554 + 11.8361i −0.139199 + 0.472689i
\(628\) 0 0
\(629\) −7.77939 5.65206i −0.310185 0.225362i
\(630\) 0 0
\(631\) 8.52294 + 26.2309i 0.339293 + 1.04424i 0.964569 + 0.263832i \(0.0849865\pi\)
−0.625276 + 0.780404i \(0.715014\pi\)
\(632\) 0 0
\(633\) −43.4801 + 31.5901i −1.72818 + 1.25559i
\(634\) 0 0
\(635\) −0.890407 + 2.74039i −0.0353347 + 0.108749i
\(636\) 0 0
\(637\) −24.1681 −0.957577
\(638\) 0 0
\(639\) −46.7057 −1.84765
\(640\) 0 0
\(641\) 7.63135 23.4869i 0.301420 0.927676i −0.679568 0.733612i \(-0.737833\pi\)
0.980989 0.194064i \(-0.0621670\pi\)
\(642\) 0 0
\(643\) 20.8102 15.1195i 0.820675 0.596255i −0.0962308 0.995359i \(-0.530679\pi\)
0.916906 + 0.399104i \(0.130679\pi\)
\(644\) 0 0
\(645\) −9.22446 28.3900i −0.363213 1.11785i
\(646\) 0 0
\(647\) −7.41077 5.38424i −0.291348 0.211676i 0.432504 0.901632i \(-0.357630\pi\)
−0.723852 + 0.689956i \(0.757630\pi\)
\(648\) 0 0
\(649\) −0.487817 + 0.375550i −0.0191485 + 0.0147416i
\(650\) 0 0
\(651\) 0.572097 + 0.415653i 0.0224222 + 0.0162907i
\(652\) 0 0
\(653\) 6.16121 + 18.9623i 0.241107 + 0.742050i 0.996252 + 0.0864933i \(0.0275661\pi\)
−0.755146 + 0.655557i \(0.772434\pi\)
\(654\) 0 0
\(655\) −2.97480 + 2.16132i −0.116235 + 0.0844496i
\(656\) 0 0
\(657\) 25.5109 78.5144i 0.995274 3.06314i
\(658\) 0 0
\(659\) −21.8117 −0.849662 −0.424831 0.905273i \(-0.639667\pi\)
−0.424831 + 0.905273i \(0.639667\pi\)
\(660\) 0 0
\(661\) 32.2443 1.25416 0.627079 0.778955i \(-0.284250\pi\)
0.627079 + 0.778955i \(0.284250\pi\)
\(662\) 0 0
\(663\) 2.95188 9.08494i 0.114641 0.352830i
\(664\) 0 0
\(665\) −0.0376310 + 0.0273405i −0.00145927 + 0.00106022i
\(666\) 0 0
\(667\) −17.7691 54.6877i −0.688023 2.11752i
\(668\) 0 0
\(669\) 57.0456 + 41.4461i 2.20551 + 1.60240i
\(670\) 0 0
\(671\) −26.7586 18.3280i −1.03300 0.707546i
\(672\) 0 0
\(673\) 1.41327 + 1.02680i 0.0544774 + 0.0395801i 0.614691 0.788768i \(-0.289281\pi\)
−0.560213 + 0.828348i \(0.689281\pi\)
\(674\) 0 0
\(675\) 3.32955 + 10.2473i 0.128155 + 0.394419i
\(676\) 0 0
\(677\) −6.58002 + 4.78067i −0.252891 + 0.183736i −0.707007 0.707207i \(-0.749955\pi\)
0.454116 + 0.890942i \(0.349955\pi\)
\(678\) 0 0
\(679\) 0.210897 0.649075i 0.00809350 0.0249092i
\(680\) 0 0
\(681\) 61.2653 2.34769
\(682\) 0 0
\(683\) 24.4004 0.933655 0.466827 0.884348i \(-0.345397\pi\)
0.466827 + 0.884348i \(0.345397\pi\)
\(684\) 0 0
\(685\) −1.97926 + 6.09154i −0.0756237 + 0.232746i
\(686\) 0 0
\(687\) 38.3853 27.8885i 1.46449 1.06401i
\(688\) 0 0
\(689\) 2.16862 + 6.67431i 0.0826177 + 0.254271i
\(690\) 0 0
\(691\) −14.6212 10.6230i −0.556218 0.404116i 0.273855 0.961771i \(-0.411701\pi\)
−0.830073 + 0.557655i \(0.811701\pi\)
\(692\) 0 0
\(693\) −0.829850 + 0.0230521i −0.0315234 + 0.000875678i
\(694\) 0 0
\(695\) −7.91943 5.75380i −0.300401 0.218254i
\(696\) 0 0
\(697\) 0.856913 + 2.63731i 0.0324579 + 0.0998951i
\(698\) 0 0
\(699\) −36.1977 + 26.2991i −1.36912 + 0.994725i
\(700\) 0 0
\(701\) 5.03007 15.4810i 0.189983 0.584708i −0.810015 0.586409i \(-0.800541\pi\)
0.999999 + 0.00170043i \(0.000541262\pi\)
\(702\) 0 0
\(703\) 12.9325 0.487758
\(704\) 0 0
\(705\) −4.02477 −0.151582
\(706\) 0 0
\(707\) −0.0306844 + 0.0944369i −0.00115401 + 0.00355166i
\(708\) 0 0
\(709\) 27.3374 19.8618i 1.02668 0.745924i 0.0590354 0.998256i \(-0.481198\pi\)
0.967641 + 0.252332i \(0.0811975\pi\)
\(710\) 0 0
\(711\) −25.4138 78.2158i −0.953094 2.93332i
\(712\) 0 0
\(713\) 36.6393 + 26.6200i 1.37215 + 0.996927i
\(714\) 0 0
\(715\) −3.84040 10.7903i −0.143623 0.403536i
\(716\) 0 0
\(717\) −13.1199 9.53218i −0.489972 0.355986i
\(718\) 0 0
\(719\) 7.26594 + 22.3623i 0.270974 + 0.833972i 0.990257 + 0.139255i \(0.0444706\pi\)
−0.719283 + 0.694718i \(0.755529\pi\)
\(720\) 0 0
\(721\) −0.115434 + 0.0838674i −0.00429897 + 0.00312339i
\(722\) 0 0
\(723\) 9.71654 29.9044i 0.361362 1.11216i
\(724\) 0 0
\(725\) −7.56188 −0.280841
\(726\) 0 0
\(727\) 2.84884 0.105658 0.0528288 0.998604i \(-0.483176\pi\)
0.0528288 + 0.998604i \(0.483176\pi\)
\(728\) 0 0
\(729\) −3.24997 + 10.0024i −0.120369 + 0.370458i
\(730\) 0 0
\(731\) 7.03452 5.11088i 0.260181 0.189033i
\(732\) 0 0
\(733\) −7.79223 23.9820i −0.287813 0.885796i −0.985541 0.169434i \(-0.945806\pi\)
0.697729 0.716362i \(-0.254194\pi\)
\(734\) 0 0
\(735\) 17.4479 + 12.6767i 0.643576 + 0.467585i
\(736\) 0 0
\(737\) −9.01442 25.3278i −0.332050 0.932960i
\(738\) 0 0
\(739\) −29.4358 21.3864i −1.08281 0.786710i −0.104643 0.994510i \(-0.533370\pi\)
−0.978171 + 0.207799i \(0.933370\pi\)
\(740\) 0 0
\(741\) 3.97001 + 12.2184i 0.145842 + 0.448855i
\(742\) 0 0
\(743\) 19.9443 14.4904i 0.731687 0.531601i −0.158410 0.987373i \(-0.550637\pi\)
0.890097 + 0.455772i \(0.150637\pi\)
\(744\) 0 0
\(745\) 6.03422 18.5714i 0.221077 0.680404i
\(746\) 0 0
\(747\) −69.7867 −2.55336
\(748\) 0 0
\(749\) 0.740087 0.0270422
\(750\) 0 0
\(751\) 12.2040 37.5599i 0.445328 1.37058i −0.436795 0.899561i \(-0.643886\pi\)
0.882123 0.471019i \(-0.156114\pi\)
\(752\) 0 0
\(753\) −21.2412 + 15.4326i −0.774072 + 0.562396i
\(754\) 0 0
\(755\) −1.39409 4.29058i −0.0507362 0.156150i
\(756\) 0 0
\(757\) 7.53772 + 5.47647i 0.273963 + 0.199046i 0.716280 0.697813i \(-0.245843\pi\)
−0.442317 + 0.896859i \(0.645843\pi\)
\(758\) 0 0
\(759\) −77.6896 + 2.15811i −2.81995 + 0.0783346i
\(760\) 0 0
\(761\) 0.343853 + 0.249824i 0.0124647 + 0.00905611i 0.594000 0.804465i \(-0.297548\pi\)
−0.581535 + 0.813521i \(0.697548\pi\)
\(762\) 0 0
\(763\) −0.0775798 0.238766i −0.00280858 0.00864391i
\(764\) 0 0
\(765\) −4.71770 + 3.42761i −0.170569 + 0.123925i
\(766\) 0 0
\(767\) −0.198082 + 0.609634i −0.00715232 + 0.0220126i
\(768\) 0 0
\(769\) 5.37492 0.193825 0.0969123 0.995293i \(-0.469103\pi\)
0.0969123 + 0.995293i \(0.469103\pi\)
\(770\) 0 0
\(771\) 35.5975 1.28201
\(772\) 0 0
\(773\) 1.04627 3.22010i 0.0376318 0.115819i −0.930476 0.366353i \(-0.880606\pi\)
0.968108 + 0.250534i \(0.0806062\pi\)
\(774\) 0 0
\(775\) 4.81829 3.50069i 0.173078 0.125749i
\(776\) 0 0
\(777\) 0.393051 + 1.20969i 0.0141006 + 0.0433972i
\(778\) 0 0
\(779\) −3.01721 2.19213i −0.108103 0.0785412i
\(780\) 0 0
\(781\) −19.6725 13.4745i −0.703939 0.482156i
\(782\) 0 0
\(783\) 65.9160 + 47.8908i 2.35565 + 1.71148i
\(784\) 0 0
\(785\) 1.40342 + 4.31927i 0.0500901 + 0.154161i
\(786\) 0 0
\(787\) 29.5871 21.4963i 1.05467 0.766261i 0.0815730 0.996667i \(-0.474006\pi\)
0.973094 + 0.230407i \(0.0740056\pi\)
\(788\) 0 0
\(789\) −2.77362 + 8.53631i −0.0987434 + 0.303901i
\(790\) 0 0
\(791\) −0.466923 −0.0166019
\(792\) 0 0
\(793\) −33.7704 −1.19922
\(794\) 0 0
\(795\) 1.93520 5.95592i 0.0686344 0.211235i
\(796\) 0 0
\(797\) −21.4202 + 15.5627i −0.758741 + 0.551257i −0.898524 0.438925i \(-0.855359\pi\)
0.139783 + 0.990182i \(0.455359\pi\)
\(798\) 0 0
\(799\) −0.362278 1.11498i −0.0128165 0.0394450i
\(800\) 0 0
\(801\) 14.6193 + 10.6216i 0.516549 + 0.375295i
\(802\) 0 0
\(803\) 33.3965 25.7106i 1.17854 0.907306i
\(804\) 0 0
\(805\) −0.237033 0.172214i −0.00835430 0.00606976i
\(806\) 0 0
\(807\) −0.292310 0.899639i −0.0102898 0.0316688i
\(808\) 0 0
\(809\) −9.25040 + 6.72081i −0.325227 + 0.236291i −0.738403 0.674360i \(-0.764420\pi\)
0.413176 + 0.910651i \(0.364420\pi\)
\(810\) 0 0
\(811\) 1.37059 4.21825i 0.0481281 0.148123i −0.924104 0.382140i \(-0.875187\pi\)
0.972232 + 0.234017i \(0.0751872\pi\)
\(812\) 0 0
\(813\) −50.5972 −1.77452
\(814\) 0 0
\(815\) −24.6645 −0.863960
\(816\) 0 0
\(817\) −3.61371 + 11.1218i −0.126428 + 0.389104i
\(818\) 0 0
\(819\) −0.699303 + 0.508073i −0.0244356 + 0.0177535i
\(820\) 0 0
\(821\) 14.8994 + 45.8557i 0.519994 + 1.60038i 0.774008 + 0.633176i \(0.218249\pi\)
−0.254014 + 0.967200i \(0.581751\pi\)
\(822\) 0 0
\(823\) −34.0798 24.7604i −1.18795 0.863093i −0.194900 0.980823i \(-0.562438\pi\)
−0.993046 + 0.117730i \(0.962438\pi\)
\(824\) 0 0
\(825\) −2.88721 + 9.80432i −0.100520 + 0.341343i
\(826\) 0 0
\(827\) 31.6315 + 22.9816i 1.09993 + 0.799149i 0.981049 0.193759i \(-0.0620680\pi\)
0.118885 + 0.992908i \(0.462068\pi\)
\(828\) 0 0
\(829\) 8.67245 + 26.6911i 0.301207 + 0.927019i 0.981066 + 0.193676i \(0.0620410\pi\)
−0.679859 + 0.733343i \(0.737959\pi\)
\(830\) 0 0
\(831\) 7.76759 5.64349i 0.269455 0.195770i
\(832\) 0 0
\(833\) −1.94127 + 5.97463i −0.0672611 + 0.207009i
\(834\) 0 0
\(835\) 16.6827 0.577328
\(836\) 0 0
\(837\) −64.1710 −2.21808
\(838\) 0 0
\(839\) −10.6187 + 32.6810i −0.366598 + 1.12827i 0.582377 + 0.812919i \(0.302123\pi\)
−0.948974 + 0.315353i \(0.897877\pi\)
\(840\) 0 0
\(841\) −22.7997 + 16.5650i −0.786197 + 0.571205i
\(842\) 0 0
\(843\) −24.4253 75.1734i −0.841252 2.58911i
\(844\) 0 0
\(845\) 0.869333 + 0.631607i 0.0299060 + 0.0217280i
\(846\) 0 0
\(847\) −0.356185 0.229700i −0.0122386 0.00789260i
\(848\) 0 0
\(849\) 50.6438 + 36.7949i 1.73809 + 1.26280i
\(850\) 0 0
\(851\) 25.1725 + 77.4730i 0.862902 + 2.65574i
\(852\) 0 0
\(853\) 13.2635 9.63648i 0.454133 0.329947i −0.337093 0.941472i \(-0.609444\pi\)
0.791225 + 0.611525i \(0.209444\pi\)
\(854\) 0 0
\(855\) 2.42353 7.45886i 0.0828830 0.255088i
\(856\) 0 0
\(857\) −6.89777 −0.235623 −0.117812 0.993036i \(-0.537588\pi\)
−0.117812 + 0.993036i \(0.537588\pi\)
\(858\) 0 0
\(859\) −1.17514 −0.0400954 −0.0200477 0.999799i \(-0.506382\pi\)
−0.0200477 + 0.999799i \(0.506382\pi\)
\(860\) 0 0
\(861\) 0.113348 0.348850i 0.00386289 0.0118888i
\(862\) 0 0
\(863\) 7.82191 5.68295i 0.266261 0.193450i −0.446642 0.894713i \(-0.647380\pi\)
0.712903 + 0.701263i \(0.247380\pi\)
\(864\) 0 0
\(865\) −4.08516 12.5728i −0.138900 0.427489i
\(866\) 0 0
\(867\) 40.3737 + 29.3332i 1.37116 + 0.996208i
\(868\) 0 0
\(869\) 11.8607 40.2765i 0.402348 1.36629i
\(870\) 0 0
\(871\) −22.6461 16.4534i −0.767335 0.557501i
\(872\) 0 0
\(873\) 35.5589 + 109.439i 1.20349 + 3.70396i
\(874\) 0 0
\(875\) −0.0311712 + 0.0226472i −0.00105378 + 0.000765616i
\(876\) 0 0
\(877\) 1.88197 5.79210i 0.0635495 0.195585i −0.914241 0.405172i \(-0.867212\pi\)
0.977790 + 0.209586i \(0.0672118\pi\)
\(878\) 0 0
\(879\) 92.7607 3.12874
\(880\) 0 0
\(881\) 55.4058 1.86667 0.933335 0.359008i \(-0.116885\pi\)
0.933335 + 0.359008i \(0.116885\pi\)
\(882\) 0 0
\(883\) −12.3879 + 38.1259i −0.416885 + 1.28304i 0.493669 + 0.869650i \(0.335655\pi\)
−0.910554 + 0.413390i \(0.864345\pi\)
\(884\) 0 0
\(885\) 0.462767 0.336220i 0.0155558 0.0113019i
\(886\) 0 0
\(887\) 10.9929 + 33.8325i 0.369104 + 1.13599i 0.947371 + 0.320138i \(0.103729\pi\)
−0.578267 + 0.815848i \(0.696271\pi\)
\(888\) 0 0
\(889\) 0.0898174 + 0.0652562i 0.00301238 + 0.00218862i
\(890\) 0 0
\(891\) 36.0415 27.7469i 1.20744 0.929555i
\(892\) 0 0
\(893\) 1.27559 + 0.926769i 0.0426859 + 0.0310131i
\(894\) 0 0
\(895\) 6.38617 + 19.6546i 0.213466 + 0.656981i
\(896\) 0 0
\(897\) −65.4680 + 47.5653i −2.18591 + 1.58816i
\(898\) 0 0
\(899\) 13.9171 42.8323i 0.464160 1.42854i
\(900\) 0 0
\(901\) 1.82415 0.0607714
\(902\) 0 0
\(903\) −1.15015 −0.0382746
\(904\) 0 0
\(905\) −1.16322 + 3.58002i −0.0386667 + 0.119004i
\(906\) 0 0
\(907\) −9.88981 + 7.18537i −0.328386 + 0.238586i −0.739745 0.672887i \(-0.765054\pi\)
0.411360 + 0.911473i \(0.365054\pi\)
\(908\) 0 0
\(909\) −5.17363 15.9228i −0.171599 0.528126i
\(910\) 0 0
\(911\) 13.8505 + 10.0629i 0.458886 + 0.333400i 0.793094 0.609099i \(-0.208469\pi\)
−0.334208 + 0.942499i \(0.608469\pi\)
\(912\) 0 0
\(913\) −29.3943 20.1333i −0.972808 0.666316i
\(914\) 0 0
\(915\) 24.3802 + 17.7132i 0.805984 + 0.585582i
\(916\) 0 0
\(917\) 0.0437803 + 0.134742i 0.00144575 + 0.00444957i
\(918\) 0 0
\(919\) 24.9400 18.1200i 0.822695 0.597723i −0.0947879 0.995497i \(-0.530217\pi\)
0.917483 + 0.397774i \(0.130217\pi\)
\(920\) 0 0
\(921\) −5.45854 + 16.7997i −0.179865 + 0.553568i
\(922\) 0 0
\(923\) −24.8275 −0.817208
\(924\) 0 0
\(925\) 10.7125 0.352224
\(926\) 0 0
\(927\) 7.43421 22.8801i 0.244171 0.751482i
\(928\) 0 0
\(929\) −5.89944 + 4.28619i −0.193554 + 0.140625i −0.680342 0.732895i \(-0.738169\pi\)
0.486787 + 0.873520i \(0.338169\pi\)
\(930\) 0 0
\(931\) −2.61084 8.03534i −0.0855668 0.263348i
\(932\) 0 0
\(933\) 65.5126 + 47.5977i 2.14479 + 1.55828i
\(934\) 0 0
\(935\) −2.97596 + 0.0826683i −0.0973243 + 0.00270354i
\(936\) 0 0
\(937\) −21.3696 15.5259i −0.698114 0.507210i 0.181203 0.983446i \(-0.442001\pi\)
−0.879318 + 0.476236i \(0.842001\pi\)
\(938\) 0 0
\(939\) 9.62699 + 29.6288i 0.314165 + 0.966901i
\(940\) 0 0
\(941\) −44.2292 + 32.1344i −1.44183 + 1.04755i −0.454174 + 0.890913i \(0.650065\pi\)
−0.987656 + 0.156637i \(0.949935\pi\)
\(942\) 0 0
\(943\) 7.25926 22.3417i 0.236394 0.727546i
\(944\) 0 0
\(945\) 0.415145 0.0135047
\(946\) 0 0
\(947\) 6.86882 0.223207 0.111603 0.993753i \(-0.464401\pi\)
0.111603 + 0.993753i \(0.464401\pi\)
\(948\) 0 0
\(949\) 13.5609 41.7361i 0.440205 1.35481i
\(950\) 0 0
\(951\) −8.89565 + 6.46307i −0.288461 + 0.209579i
\(952\) 0 0
\(953\) 13.4521 + 41.4013i 0.435756 + 1.34112i 0.892310 + 0.451423i \(0.149083\pi\)
−0.456554 + 0.889695i \(0.650917\pi\)
\(954\) 0 0
\(955\) 7.66148 + 5.56639i 0.247920 + 0.180124i
\(956\) 0 0
\(957\) 25.9148 + 72.8127i 0.837707 + 2.35370i
\(958\) 0 0
\(959\) 0.199653 + 0.145056i 0.00644712 + 0.00468411i
\(960\) 0 0
\(961\) 1.38156 + 4.25199i 0.0445663 + 0.137161i
\(962\) 0 0
\(963\) −100.953 + 73.3464i −3.25316 + 2.36356i
\(964\) 0 0
\(965\) 5.05909 15.5703i 0.162858 0.501225i
\(966\) 0 0
\(967\) −31.8547 −1.02438 −0.512188 0.858873i \(-0.671165\pi\)
−0.512188 + 0.858873i \(0.671165\pi\)
\(968\) 0 0
\(969\) 3.33942 0.107277
\(970\) 0 0
\(971\) −5.93422 + 18.2637i −0.190438 + 0.586109i −1.00000 0.000926638i \(-0.999705\pi\)
0.809561 + 0.587035i \(0.199705\pi\)
\(972\) 0 0
\(973\) −0.305134 + 0.221693i −0.00978214 + 0.00710714i
\(974\) 0 0
\(975\) 3.28851 + 10.1210i 0.105317 + 0.324132i
\(976\) 0 0
\(977\) −9.43960 6.85827i −0.301999 0.219415i 0.426457 0.904508i \(-0.359762\pi\)
−0.728456 + 0.685093i \(0.759762\pi\)
\(978\) 0 0
\(979\) 3.09339 + 8.69148i 0.0988652 + 0.277781i
\(980\) 0 0
\(981\) 34.2454 + 24.8807i 1.09337 + 0.794380i
\(982\) 0 0
\(983\) −6.40976 19.7272i −0.204440 0.629201i −0.999736 0.0229796i \(-0.992685\pi\)
0.795296 0.606221i \(-0.207315\pi\)
\(984\) 0 0
\(985\) 12.2659 8.91173i 0.390825 0.283951i
\(986\) 0 0
\(987\) −0.0479203 + 0.147484i −0.00152532 + 0.00469445i
\(988\) 0 0
\(989\) −73.6602 −2.34226
\(990\) 0 0
\(991\) −31.5161 −1.00114 −0.500572 0.865695i \(-0.666877\pi\)
−0.500572 + 0.865695i \(0.666877\pi\)
\(992\) 0 0
\(993\) 7.67634 23.6253i 0.243601 0.749727i
\(994\) 0 0
\(995\) −2.38566 + 1.73328i −0.0756304 + 0.0549487i
\(996\) 0 0
\(997\) 7.19314 + 22.1382i 0.227809 + 0.701125i 0.997994 + 0.0633041i \(0.0201638\pi\)
−0.770185 + 0.637820i \(0.779836\pi\)
\(998\) 0 0
\(999\) −93.3794 67.8441i −2.95439 2.14649i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.d.81.4 16
4.3 odd 2 880.2.bo.k.81.1 16
11.3 even 5 inner 440.2.y.d.201.4 yes 16
11.5 even 5 4840.2.a.bg.1.7 8
11.6 odd 10 4840.2.a.bh.1.7 8
44.3 odd 10 880.2.bo.k.641.1 16
44.27 odd 10 9680.2.a.df.1.2 8
44.39 even 10 9680.2.a.de.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.81.4 16 1.1 even 1 trivial
440.2.y.d.201.4 yes 16 11.3 even 5 inner
880.2.bo.k.81.1 16 4.3 odd 2
880.2.bo.k.641.1 16 44.3 odd 10
4840.2.a.bg.1.7 8 11.5 even 5
4840.2.a.bh.1.7 8 11.6 odd 10
9680.2.a.de.1.2 8 44.39 even 10
9680.2.a.df.1.2 8 44.27 odd 10