Properties

Label 4840.2.a
Level $4840$
Weight $2$
Character orbit 4840.a
Rep. character $\chi_{4840}(1,\cdot)$
Character field $\Q$
Dimension $109$
Newform subspaces $34$
Sturm bound $1584$
Trace bound $13$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4840.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 34 \)
Sturm bound: \(1584\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4840))\).

Total New Old
Modular forms 840 109 731
Cusp forms 745 109 636
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(12\)
\(+\)\(+\)\(-\)\(-\)\(15\)
\(+\)\(-\)\(+\)\(-\)\(17\)
\(+\)\(-\)\(-\)\(+\)\(10\)
\(-\)\(+\)\(+\)\(-\)\(12\)
\(-\)\(+\)\(-\)\(+\)\(15\)
\(-\)\(-\)\(+\)\(+\)\(13\)
\(-\)\(-\)\(-\)\(-\)\(15\)
Plus space\(+\)\(50\)
Minus space\(-\)\(59\)

Trace form

\( 109q - 4q^{3} + q^{5} - 4q^{7} + 117q^{9} + O(q^{10}) \) \( 109q - 4q^{3} + q^{5} - 4q^{7} + 117q^{9} - 6q^{13} - 2q^{17} - 12q^{19} - 16q^{21} - 4q^{23} + 109q^{25} - 16q^{27} - 10q^{29} - 24q^{31} + 4q^{35} - 10q^{37} + 16q^{39} + 18q^{41} - 8q^{43} - 3q^{45} + 20q^{47} + 105q^{49} + 16q^{51} + 14q^{53} + 16q^{57} + 12q^{59} + 6q^{61} - 20q^{63} + 2q^{65} - 4q^{67} + 16q^{69} - 16q^{71} + 6q^{73} - 4q^{75} + 16q^{79} + 101q^{81} + 16q^{83} - 2q^{85} + 40q^{87} + 18q^{89} - 16q^{91} + 4q^{95} + 30q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4840))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 5 11
4840.2.a.a \(1\) \(38.648\) \(\Q\) None \(0\) \(-2\) \(-1\) \(0\) \(-\) \(+\) \(+\) \(q-2q^{3}-q^{5}+q^{9}-2q^{13}+2q^{15}+\cdots\)
4840.2.a.b \(1\) \(38.648\) \(\Q\) None \(0\) \(-2\) \(-1\) \(0\) \(+\) \(+\) \(+\) \(q-2q^{3}-q^{5}+q^{9}+2q^{13}+2q^{15}+\cdots\)
4840.2.a.c \(1\) \(38.648\) \(\Q\) None \(0\) \(0\) \(-1\) \(2\) \(-\) \(+\) \(-\) \(q-q^{5}+2q^{7}-3q^{9}+8q^{19}-8q^{23}+\cdots\)
4840.2.a.d \(1\) \(38.648\) \(\Q\) None \(0\) \(0\) \(-1\) \(2\) \(+\) \(+\) \(-\) \(q-q^{5}+2q^{7}-3q^{9}+4q^{13}+4q^{17}+\cdots\)
4840.2.a.e \(1\) \(38.648\) \(\Q\) None \(0\) \(0\) \(1\) \(-4\) \(-\) \(-\) \(-\) \(q+q^{5}-4q^{7}-3q^{9}-6q^{13}+6q^{17}+\cdots\)
4840.2.a.f \(1\) \(38.648\) \(\Q\) None \(0\) \(0\) \(1\) \(4\) \(-\) \(-\) \(-\) \(q+q^{5}+4q^{7}-3q^{9}+2q^{13}-2q^{17}+\cdots\)
4840.2.a.g \(1\) \(38.648\) \(\Q\) None \(0\) \(1\) \(-1\) \(-3\) \(-\) \(+\) \(+\) \(q+q^{3}-q^{5}-3q^{7}-2q^{9}+4q^{13}+\cdots\)
4840.2.a.h \(1\) \(38.648\) \(\Q\) None \(0\) \(1\) \(-1\) \(3\) \(+\) \(+\) \(+\) \(q+q^{3}-q^{5}+3q^{7}-2q^{9}-4q^{13}+\cdots\)
4840.2.a.i \(1\) \(38.648\) \(\Q\) None \(0\) \(3\) \(1\) \(-1\) \(-\) \(-\) \(-\) \(q+3q^{3}+q^{5}-q^{7}+6q^{9}+6q^{13}+\cdots\)
4840.2.a.j \(2\) \(38.648\) \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(2\) \(1\) \(+\) \(-\) \(-\) \(q-\beta q^{3}+q^{5}+\beta q^{7}+(1+\beta )q^{9}-2q^{13}+\cdots\)
4840.2.a.k \(2\) \(38.648\) \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(2\) \(-4\) \(+\) \(-\) \(-\) \(q+\beta q^{3}+q^{5}+(-2-\beta )q^{7}+2\beta q^{13}+\cdots\)
4840.2.a.l \(2\) \(38.648\) \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(2\) \(4\) \(-\) \(-\) \(-\) \(q+\beta q^{3}+q^{5}+(2+\beta )q^{7}-2\beta q^{13}+\cdots\)
4840.2.a.m \(2\) \(38.648\) \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-2\) \(-5\) \(+\) \(+\) \(-\) \(q+\beta q^{3}-q^{5}+(-2-\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
4840.2.a.n \(2\) \(38.648\) \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-2\) \(-3\) \(-\) \(+\) \(-\) \(q+\beta q^{3}-q^{5}+(-2+\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
4840.2.a.o \(2\) \(38.648\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(2\) \(-2\) \(+\) \(-\) \(-\) \(q+(1+\beta )q^{3}+q^{5}+(-1-\beta )q^{7}+2\beta q^{9}+\cdots\)
4840.2.a.p \(2\) \(38.648\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(2\) \(2\) \(-\) \(-\) \(-\) \(q+(1+\beta )q^{3}+q^{5}+(1+\beta )q^{7}+2\beta q^{9}+\cdots\)
4840.2.a.q \(3\) \(38.648\) 3.3.568.1 None \(0\) \(-1\) \(3\) \(-1\) \(+\) \(-\) \(+\) \(q+\beta _{2}q^{3}+q^{5}+\beta _{2}q^{7}+(3-\beta _{1})q^{9}+\cdots\)
4840.2.a.r \(3\) \(38.648\) 3.3.568.1 None \(0\) \(-1\) \(3\) \(1\) \(-\) \(-\) \(+\) \(q+\beta _{2}q^{3}+q^{5}-\beta _{2}q^{7}+(3-\beta _{1})q^{9}+\cdots\)
4840.2.a.s \(3\) \(38.648\) 3.3.788.1 None \(0\) \(1\) \(-3\) \(-3\) \(-\) \(+\) \(-\) \(q+\beta _{1}q^{3}-q^{5}+(-1-\beta _{1}+\beta _{2})q^{7}+\cdots\)
4840.2.a.t \(3\) \(38.648\) 3.3.404.1 None \(0\) \(1\) \(-3\) \(-1\) \(-\) \(+\) \(-\) \(q+\beta _{2}q^{3}-q^{5}-\beta _{1}q^{7}+(2+\beta _{1}-\beta _{2})q^{9}+\cdots\)
4840.2.a.u \(3\) \(38.648\) 3.3.404.1 None \(0\) \(1\) \(-3\) \(1\) \(+\) \(+\) \(-\) \(q+\beta _{2}q^{3}-q^{5}+\beta _{1}q^{7}+(2+\beta _{1}-\beta _{2})q^{9}+\cdots\)
4840.2.a.v \(3\) \(38.648\) 3.3.788.1 None \(0\) \(1\) \(-3\) \(3\) \(+\) \(+\) \(-\) \(q+\beta _{1}q^{3}-q^{5}+(1+\beta _{1}-\beta _{2})q^{7}+(1+\cdots)q^{9}+\cdots\)
4840.2.a.w \(4\) \(38.648\) 4.4.4752.1 None \(0\) \(-2\) \(-4\) \(-6\) \(+\) \(+\) \(+\) \(q+(-1-\beta _{2})q^{3}-q^{5}+(-2-\beta _{2}+\beta _{3})q^{7}+\cdots\)
4840.2.a.x \(4\) \(38.648\) 4.4.4752.1 None \(0\) \(-2\) \(-4\) \(6\) \(-\) \(+\) \(+\) \(q+(-1-\beta _{2})q^{3}-q^{5}+(2+\beta _{2}-\beta _{3})q^{7}+\cdots\)
4840.2.a.y \(4\) \(38.648\) 4.4.725.1 None \(0\) \(-2\) \(4\) \(-7\) \(-\) \(-\) \(+\) \(q-\beta _{2}q^{3}+q^{5}+(-2+\beta _{1}+\beta _{2}-\beta _{3})q^{7}+\cdots\)
4840.2.a.z \(4\) \(38.648\) 4.4.725.1 None \(0\) \(-2\) \(4\) \(7\) \(+\) \(-\) \(-\) \(q-\beta _{2}q^{3}+q^{5}+(2-\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\)
4840.2.a.ba \(6\) \(38.648\) 6.6.25903625.1 None \(0\) \(-3\) \(-6\) \(-7\) \(-\) \(+\) \(-\) \(q-\beta _{1}q^{3}-q^{5}+(-1+\beta _{2}-\beta _{3}+\beta _{5})q^{7}+\cdots\)
4840.2.a.bb \(6\) \(38.648\) 6.6.25903625.1 None \(0\) \(-3\) \(-6\) \(7\) \(+\) \(+\) \(+\) \(q-\beta _{1}q^{3}-q^{5}+(1-\beta _{2}+\beta _{3}-\beta _{5})q^{7}+\cdots\)
4840.2.a.bc \(6\) \(38.648\) 6.6.22733568.1 None \(0\) \(-2\) \(6\) \(-4\) \(-\) \(-\) \(+\) \(q+\beta _{1}q^{3}+q^{5}+(-\beta _{3}-\beta _{4})q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
4840.2.a.bd \(6\) \(38.648\) 6.6.22733568.1 None \(0\) \(-2\) \(6\) \(4\) \(+\) \(-\) \(+\) \(q+\beta _{1}q^{3}+q^{5}+(\beta _{3}+\beta _{4})q^{7}+(-\beta _{1}+\cdots)q^{9}+\cdots\)
4840.2.a.be \(6\) \(38.648\) 6.6.45753625.1 None \(0\) \(2\) \(-6\) \(-6\) \(+\) \(+\) \(-\) \(q-\beta _{3}q^{3}-q^{5}+(-1+\beta _{2}+\beta _{5})q^{7}+\cdots\)
4840.2.a.bf \(6\) \(38.648\) 6.6.45753625.1 None \(0\) \(2\) \(-6\) \(6\) \(-\) \(+\) \(+\) \(q-\beta _{3}q^{3}-q^{5}+(1-\beta _{2}-\beta _{5})q^{7}+(-2\beta _{2}+\cdots)q^{9}+\cdots\)
4840.2.a.bg \(8\) \(38.648\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(1\) \(8\) \(-6\) \(+\) \(-\) \(+\) \(q+\beta _{1}q^{3}+q^{5}+(-1-\beta _{4})q^{7}+(3+\beta _{4}+\cdots)q^{9}+\cdots\)
4840.2.a.bh \(8\) \(38.648\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(1\) \(8\) \(6\) \(-\) \(-\) \(-\) \(q+\beta _{1}q^{3}+q^{5}+(1+\beta _{4})q^{7}+(3+\beta _{4}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4840))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4840)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2420))\)\(^{\oplus 2}\)