Defining parameters
Level: | \( N \) | \(=\) | \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4830.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 57 \) | ||
Sturm bound: | \(2304\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4830))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1168 | 87 | 1081 |
Cusp forms | 1137 | 87 | 1050 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(28\) | \(1\) | \(27\) | \(28\) | \(1\) | \(27\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(43\) | \(4\) | \(39\) | \(42\) | \(4\) | \(38\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(41\) | \(5\) | \(36\) | \(40\) | \(5\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(33\) | \(1\) | \(32\) | \(32\) | \(1\) | \(31\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(39\) | \(3\) | \(36\) | \(38\) | \(3\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(33\) | \(3\) | \(30\) | \(32\) | \(3\) | \(29\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(36\) | \(2\) | \(34\) | \(35\) | \(2\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(39\) | \(3\) | \(36\) | \(38\) | \(3\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(37\) | \(2\) | \(35\) | \(36\) | \(2\) | \(34\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(35\) | \(3\) | \(32\) | \(34\) | \(3\) | \(31\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(34\) | \(3\) | \(31\) | \(33\) | \(3\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(39\) | \(3\) | \(36\) | \(38\) | \(3\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(36\) | \(3\) | \(33\) | \(35\) | \(3\) | \(32\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(37\) | \(3\) | \(34\) | \(36\) | \(3\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(41\) | \(3\) | \(38\) | \(40\) | \(3\) | \(37\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(33\) | \(2\) | \(31\) | \(32\) | \(2\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(36\) | \(2\) | \(34\) | \(35\) | \(2\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(37\) | \(3\) | \(34\) | \(36\) | \(3\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(38\) | \(2\) | \(36\) | \(37\) | \(2\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(34\) | \(4\) | \(30\) | \(33\) | \(4\) | \(29\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(36\) | \(4\) | \(32\) | \(35\) | \(4\) | \(31\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(38\) | \(2\) | \(36\) | \(37\) | \(2\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(34\) | \(3\) | \(31\) | \(33\) | \(3\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(39\) | \(2\) | \(37\) | \(38\) | \(2\) | \(36\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(40\) | \(4\) | \(36\) | \(39\) | \(4\) | \(35\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(34\) | \(3\) | \(31\) | \(33\) | \(3\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(36\) | \(3\) | \(33\) | \(35\) | \(3\) | \(32\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(35\) | \(1\) | \(34\) | \(34\) | \(1\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(32\) | \(3\) | \(29\) | \(31\) | \(3\) | \(28\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(43\) | \(1\) | \(42\) | \(42\) | \(1\) | \(41\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(40\) | \(1\) | \(39\) | \(39\) | \(1\) | \(38\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(32\) | \(5\) | \(27\) | \(31\) | \(5\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(576\) | \(36\) | \(540\) | \(561\) | \(36\) | \(525\) | \(15\) | \(0\) | \(15\) | |||||||
Minus space | \(-\) | \(592\) | \(51\) | \(541\) | \(576\) | \(51\) | \(525\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4830))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4830))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4830)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(690))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(805))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(966))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1610))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2415))\)\(^{\oplus 2}\)