Properties

Label 4830.2.a.u
Level $4830$
Weight $2$
Character orbit 4830.a
Self dual yes
Analytic conductor $38.568$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4830.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.5677441763\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - q^{12} + 6q^{13} + q^{14} + q^{15} + q^{16} + 4q^{17} + q^{18} + 4q^{19} - q^{20} - q^{21} + q^{23} - q^{24} + q^{25} + 6q^{26} - q^{27} + q^{28} - 8q^{29} + q^{30} - 4q^{31} + q^{32} + 4q^{34} - q^{35} + q^{36} + 2q^{37} + 4q^{38} - 6q^{39} - q^{40} - q^{42} + 4q^{43} - q^{45} + q^{46} - 4q^{47} - q^{48} + q^{49} + q^{50} - 4q^{51} + 6q^{52} - q^{54} + q^{56} - 4q^{57} - 8q^{58} - 8q^{59} + q^{60} - 6q^{61} - 4q^{62} + q^{63} + q^{64} - 6q^{65} + 4q^{67} + 4q^{68} - q^{69} - q^{70} + 12q^{71} + q^{72} - 4q^{73} + 2q^{74} - q^{75} + 4q^{76} - 6q^{78} + 12q^{79} - q^{80} + q^{81} + 4q^{83} - q^{84} - 4q^{85} + 4q^{86} + 8q^{87} - 6q^{89} - q^{90} + 6q^{91} + q^{92} + 4q^{93} - 4q^{94} - 4q^{95} - q^{96} + 6q^{97} + q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4830.2.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4830.2.a.u 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4830))\):

\( T_{11} \)
\( T_{13} - 6 \)
\( T_{17} - 4 \)
\( T_{19} - 4 \)
\( T_{29} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( -1 + T \)
$11$ \( T \)
$13$ \( -6 + T \)
$17$ \( -4 + T \)
$19$ \( -4 + T \)
$23$ \( -1 + T \)
$29$ \( 8 + T \)
$31$ \( 4 + T \)
$37$ \( -2 + T \)
$41$ \( T \)
$43$ \( -4 + T \)
$47$ \( 4 + T \)
$53$ \( T \)
$59$ \( 8 + T \)
$61$ \( 6 + T \)
$67$ \( -4 + T \)
$71$ \( -12 + T \)
$73$ \( 4 + T \)
$79$ \( -12 + T \)
$83$ \( -4 + T \)
$89$ \( 6 + T \)
$97$ \( -6 + T \)
show more
show less