Properties

Label 4830.2.a.bm
Level $4830$
Weight $2$
Character orbit 4830.a
Self dual yes
Analytic conductor $38.568$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4830.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.5677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Defining polynomial: \(x^{2} - x - 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{33}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} +O(q^{10})\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} -4 q^{11} - q^{12} + ( 1 + \beta ) q^{13} + q^{14} - q^{15} + q^{16} - q^{18} + ( -1 + \beta ) q^{19} + q^{20} + q^{21} + 4 q^{22} - q^{23} + q^{24} + q^{25} + ( -1 - \beta ) q^{26} - q^{27} - q^{28} + ( -1 + \beta ) q^{29} + q^{30} + ( -1 + \beta ) q^{31} - q^{32} + 4 q^{33} - q^{35} + q^{36} + 2 q^{37} + ( 1 - \beta ) q^{38} + ( -1 - \beta ) q^{39} - q^{40} + ( -3 - \beta ) q^{41} - q^{42} -4 q^{44} + q^{45} + q^{46} + ( -7 - \beta ) q^{47} - q^{48} + q^{49} - q^{50} + ( 1 + \beta ) q^{52} + ( 7 + \beta ) q^{53} + q^{54} -4 q^{55} + q^{56} + ( 1 - \beta ) q^{57} + ( 1 - \beta ) q^{58} + 4 q^{59} - q^{60} -2 \beta q^{61} + ( 1 - \beta ) q^{62} - q^{63} + q^{64} + ( 1 + \beta ) q^{65} -4 q^{66} + 8 q^{67} + q^{69} + q^{70} -8 q^{71} - q^{72} + ( 5 - \beta ) q^{73} -2 q^{74} - q^{75} + ( -1 + \beta ) q^{76} + 4 q^{77} + ( 1 + \beta ) q^{78} -8 q^{79} + q^{80} + q^{81} + ( 3 + \beta ) q^{82} + ( 11 + \beta ) q^{83} + q^{84} + ( 1 - \beta ) q^{87} + 4 q^{88} + ( -9 - \beta ) q^{89} - q^{90} + ( -1 - \beta ) q^{91} - q^{92} + ( 1 - \beta ) q^{93} + ( 7 + \beta ) q^{94} + ( -1 + \beta ) q^{95} + q^{96} + ( 7 - \beta ) q^{97} - q^{98} -4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} - 2q^{3} + 2q^{4} + 2q^{5} + 2q^{6} - 2q^{7} - 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{2} - 2q^{3} + 2q^{4} + 2q^{5} + 2q^{6} - 2q^{7} - 2q^{8} + 2q^{9} - 2q^{10} - 8q^{11} - 2q^{12} + 2q^{13} + 2q^{14} - 2q^{15} + 2q^{16} - 2q^{18} - 2q^{19} + 2q^{20} + 2q^{21} + 8q^{22} - 2q^{23} + 2q^{24} + 2q^{25} - 2q^{26} - 2q^{27} - 2q^{28} - 2q^{29} + 2q^{30} - 2q^{31} - 2q^{32} + 8q^{33} - 2q^{35} + 2q^{36} + 4q^{37} + 2q^{38} - 2q^{39} - 2q^{40} - 6q^{41} - 2q^{42} - 8q^{44} + 2q^{45} + 2q^{46} - 14q^{47} - 2q^{48} + 2q^{49} - 2q^{50} + 2q^{52} + 14q^{53} + 2q^{54} - 8q^{55} + 2q^{56} + 2q^{57} + 2q^{58} + 8q^{59} - 2q^{60} + 2q^{62} - 2q^{63} + 2q^{64} + 2q^{65} - 8q^{66} + 16q^{67} + 2q^{69} + 2q^{70} - 16q^{71} - 2q^{72} + 10q^{73} - 4q^{74} - 2q^{75} - 2q^{76} + 8q^{77} + 2q^{78} - 16q^{79} + 2q^{80} + 2q^{81} + 6q^{82} + 22q^{83} + 2q^{84} + 2q^{87} + 8q^{88} - 18q^{89} - 2q^{90} - 2q^{91} - 2q^{92} + 2q^{93} + 14q^{94} - 2q^{95} + 2q^{96} + 14q^{97} - 2q^{98} - 8q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37228
3.37228
−1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 1.00000 −1.00000
1.2 −1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4830.2.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4830.2.a.bm 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4830))\):

\( T_{11} + 4 \)
\( T_{13}^{2} - 2 T_{13} - 32 \)
\( T_{17} \)
\( T_{19}^{2} + 2 T_{19} - 32 \)
\( T_{29}^{2} + 2 T_{29} - 32 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( ( 4 + T )^{2} \)
$13$ \( -32 - 2 T + T^{2} \)
$17$ \( T^{2} \)
$19$ \( -32 + 2 T + T^{2} \)
$23$ \( ( 1 + T )^{2} \)
$29$ \( -32 + 2 T + T^{2} \)
$31$ \( -32 + 2 T + T^{2} \)
$37$ \( ( -2 + T )^{2} \)
$41$ \( -24 + 6 T + T^{2} \)
$43$ \( T^{2} \)
$47$ \( 16 + 14 T + T^{2} \)
$53$ \( 16 - 14 T + T^{2} \)
$59$ \( ( -4 + T )^{2} \)
$61$ \( -132 + T^{2} \)
$67$ \( ( -8 + T )^{2} \)
$71$ \( ( 8 + T )^{2} \)
$73$ \( -8 - 10 T + T^{2} \)
$79$ \( ( 8 + T )^{2} \)
$83$ \( 88 - 22 T + T^{2} \)
$89$ \( 48 + 18 T + T^{2} \)
$97$ \( 16 - 14 T + T^{2} \)
show more
show less