Properties

Label 4830.2.a.bx
Level $4830$
Weight $2$
Character orbit 4830.a
Self dual yes
Analytic conductor $38.568$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4830.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.5677441763\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \(x^{3} - x^{2} - 2 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} +O(q^{10})\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + ( 1 - \beta_{1} ) q^{11} - q^{12} + ( -2 - \beta_{1} + \beta_{2} ) q^{13} + q^{14} - q^{15} + q^{16} + ( -3 + \beta_{2} ) q^{17} - q^{18} + ( 1 - \beta_{2} ) q^{19} + q^{20} + q^{21} + ( -1 + \beta_{1} ) q^{22} + q^{23} + q^{24} + q^{25} + ( 2 + \beta_{1} - \beta_{2} ) q^{26} - q^{27} - q^{28} + ( 1 + 3 \beta_{1} - 2 \beta_{2} ) q^{29} + q^{30} + ( 1 + 2 \beta_{1} + \beta_{2} ) q^{31} - q^{32} + ( -1 + \beta_{1} ) q^{33} + ( 3 - \beta_{2} ) q^{34} - q^{35} + q^{36} + ( 2 \beta_{1} - 4 \beta_{2} ) q^{37} + ( -1 + \beta_{2} ) q^{38} + ( 2 + \beta_{1} - \beta_{2} ) q^{39} - q^{40} + ( 4 - 2 \beta_{2} ) q^{41} - q^{42} + ( -1 + \beta_{1} ) q^{43} + ( 1 - \beta_{1} ) q^{44} + q^{45} - q^{46} + ( -3 + 2 \beta_{1} + \beta_{2} ) q^{47} - q^{48} + q^{49} - q^{50} + ( 3 - \beta_{2} ) q^{51} + ( -2 - \beta_{1} + \beta_{2} ) q^{52} + ( -2 - 2 \beta_{1} + 2 \beta_{2} ) q^{53} + q^{54} + ( 1 - \beta_{1} ) q^{55} + q^{56} + ( -1 + \beta_{2} ) q^{57} + ( -1 - 3 \beta_{1} + 2 \beta_{2} ) q^{58} + ( -2 + 2 \beta_{1} ) q^{59} - q^{60} + ( -4 - 2 \beta_{1} + 4 \beta_{2} ) q^{61} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{62} - q^{63} + q^{64} + ( -2 - \beta_{1} + \beta_{2} ) q^{65} + ( 1 - \beta_{1} ) q^{66} + ( -5 - 3 \beta_{1} ) q^{67} + ( -3 + \beta_{2} ) q^{68} - q^{69} + q^{70} + ( 3 - \beta_{1} - 2 \beta_{2} ) q^{71} - q^{72} -6 q^{73} + ( -2 \beta_{1} + 4 \beta_{2} ) q^{74} - q^{75} + ( 1 - \beta_{2} ) q^{76} + ( -1 + \beta_{1} ) q^{77} + ( -2 - \beta_{1} + \beta_{2} ) q^{78} + ( 2 + 2 \beta_{2} ) q^{79} + q^{80} + q^{81} + ( -4 + 2 \beta_{2} ) q^{82} + ( 3 - 2 \beta_{1} + 3 \beta_{2} ) q^{83} + q^{84} + ( -3 + \beta_{2} ) q^{85} + ( 1 - \beta_{1} ) q^{86} + ( -1 - 3 \beta_{1} + 2 \beta_{2} ) q^{87} + ( -1 + \beta_{1} ) q^{88} + ( -8 - 5 \beta_{1} + 3 \beta_{2} ) q^{89} - q^{90} + ( 2 + \beta_{1} - \beta_{2} ) q^{91} + q^{92} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{93} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{94} + ( 1 - \beta_{2} ) q^{95} + q^{96} + ( -2 + 3 \beta_{1} - 3 \beta_{2} ) q^{97} - q^{98} + ( 1 - \beta_{1} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{2} - 3q^{3} + 3q^{4} + 3q^{5} + 3q^{6} - 3q^{7} - 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q - 3q^{2} - 3q^{3} + 3q^{4} + 3q^{5} + 3q^{6} - 3q^{7} - 3q^{8} + 3q^{9} - 3q^{10} + 4q^{11} - 3q^{12} - 4q^{13} + 3q^{14} - 3q^{15} + 3q^{16} - 8q^{17} - 3q^{18} + 2q^{19} + 3q^{20} + 3q^{21} - 4q^{22} + 3q^{23} + 3q^{24} + 3q^{25} + 4q^{26} - 3q^{27} - 3q^{28} - 2q^{29} + 3q^{30} + 2q^{31} - 3q^{32} - 4q^{33} + 8q^{34} - 3q^{35} + 3q^{36} - 6q^{37} - 2q^{38} + 4q^{39} - 3q^{40} + 10q^{41} - 3q^{42} - 4q^{43} + 4q^{44} + 3q^{45} - 3q^{46} - 10q^{47} - 3q^{48} + 3q^{49} - 3q^{50} + 8q^{51} - 4q^{52} - 2q^{53} + 3q^{54} + 4q^{55} + 3q^{56} - 2q^{57} + 2q^{58} - 8q^{59} - 3q^{60} - 6q^{61} - 2q^{62} - 3q^{63} + 3q^{64} - 4q^{65} + 4q^{66} - 12q^{67} - 8q^{68} - 3q^{69} + 3q^{70} + 8q^{71} - 3q^{72} - 18q^{73} + 6q^{74} - 3q^{75} + 2q^{76} - 4q^{77} - 4q^{78} + 8q^{79} + 3q^{80} + 3q^{81} - 10q^{82} + 14q^{83} + 3q^{84} - 8q^{85} + 4q^{86} + 2q^{87} - 4q^{88} - 16q^{89} - 3q^{90} + 4q^{91} + 3q^{92} - 2q^{93} + 10q^{94} + 2q^{95} + 3q^{96} - 12q^{97} - 3q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 1.00000 −1.00000
1.2 −1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 1.00000 −1.00000
1.3 −1.00000 −1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4830.2.a.bx 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4830.2.a.bx 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4830))\):

\( T_{11}^{3} - 4 T_{11}^{2} - 4 T_{11} + 8 \)
\( T_{13}^{3} + 4 T_{13}^{2} - 4 T_{13} - 8 \)
\( T_{17}^{3} + 8 T_{17}^{2} + 12 T_{17} - 8 \)
\( T_{19}^{3} - 2 T_{19}^{2} - 8 T_{19} + 8 \)
\( T_{29}^{3} + 2 T_{29}^{2} - 64 T_{29} + 104 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( ( -1 + T )^{3} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( 8 - 4 T - 4 T^{2} + T^{3} \)
$13$ \( -8 - 4 T + 4 T^{2} + T^{3} \)
$17$ \( -8 + 12 T + 8 T^{2} + T^{3} \)
$19$ \( 8 - 8 T - 2 T^{2} + T^{3} \)
$23$ \( ( -1 + T )^{3} \)
$29$ \( 104 - 64 T + 2 T^{2} + T^{3} \)
$31$ \( -104 - 64 T - 2 T^{2} + T^{3} \)
$37$ \( -664 - 100 T + 6 T^{2} + T^{3} \)
$41$ \( 104 - 4 T - 10 T^{2} + T^{3} \)
$43$ \( -8 - 4 T + 4 T^{2} + T^{3} \)
$47$ \( -328 - 32 T + 10 T^{2} + T^{3} \)
$53$ \( -8 - 36 T + 2 T^{2} + T^{3} \)
$59$ \( -64 - 16 T + 8 T^{2} + T^{3} \)
$61$ \( 232 - 100 T + 6 T^{2} + T^{3} \)
$67$ \( -328 - 36 T + 12 T^{2} + T^{3} \)
$71$ \( 344 - 44 T - 8 T^{2} + T^{3} \)
$73$ \( ( 6 + T )^{3} \)
$79$ \( 64 - 16 T - 8 T^{2} + T^{3} \)
$83$ \( 392 - 14 T^{2} + T^{3} \)
$89$ \( -1576 - 92 T + 16 T^{2} + T^{3} \)
$97$ \( -328 - 36 T + 12 T^{2} + T^{3} \)
show more
show less