Properties

Label 4805.2.a.bb.1.21
Level $4805$
Weight $2$
Character 4805.1
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,32,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.21
Character \(\chi\) \(=\) 4805.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55674 q^{2} -2.41709 q^{3} +4.53694 q^{4} -1.00000 q^{5} -6.17988 q^{6} +3.41271 q^{7} +6.48631 q^{8} +2.84233 q^{9} -2.55674 q^{10} -5.46610 q^{11} -10.9662 q^{12} +5.38349 q^{13} +8.72542 q^{14} +2.41709 q^{15} +7.50995 q^{16} -2.83128 q^{17} +7.26711 q^{18} -1.20252 q^{19} -4.53694 q^{20} -8.24883 q^{21} -13.9754 q^{22} +7.33676 q^{23} -15.6780 q^{24} +1.00000 q^{25} +13.7642 q^{26} +0.381101 q^{27} +15.4833 q^{28} +2.64099 q^{29} +6.17988 q^{30} +6.22840 q^{32} +13.2121 q^{33} -7.23885 q^{34} -3.41271 q^{35} +12.8955 q^{36} +2.54608 q^{37} -3.07455 q^{38} -13.0124 q^{39} -6.48631 q^{40} -4.95941 q^{41} -21.0901 q^{42} +1.90043 q^{43} -24.7994 q^{44} -2.84233 q^{45} +18.7582 q^{46} +3.88911 q^{47} -18.1522 q^{48} +4.64659 q^{49} +2.55674 q^{50} +6.84346 q^{51} +24.4246 q^{52} +3.36913 q^{53} +0.974379 q^{54} +5.46610 q^{55} +22.1359 q^{56} +2.90661 q^{57} +6.75233 q^{58} +3.61973 q^{59} +10.9662 q^{60} +7.45118 q^{61} +9.70005 q^{63} +0.904535 q^{64} -5.38349 q^{65} +33.7799 q^{66} +12.0235 q^{67} -12.8453 q^{68} -17.7336 q^{69} -8.72542 q^{70} -3.34899 q^{71} +18.4362 q^{72} +15.4323 q^{73} +6.50968 q^{74} -2.41709 q^{75} -5.45578 q^{76} -18.6542 q^{77} -33.2693 q^{78} -3.97731 q^{79} -7.50995 q^{80} -9.44815 q^{81} -12.6799 q^{82} -1.32742 q^{83} -37.4245 q^{84} +2.83128 q^{85} +4.85892 q^{86} -6.38351 q^{87} -35.4548 q^{88} -18.0557 q^{89} -7.26711 q^{90} +18.3723 q^{91} +33.2865 q^{92} +9.94345 q^{94} +1.20252 q^{95} -15.0546 q^{96} +6.87122 q^{97} +11.8801 q^{98} -15.5365 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} - 24 q^{5} + 8 q^{7} + 40 q^{9} + 8 q^{14} + 88 q^{16} - 64 q^{18} + 40 q^{19} - 32 q^{20} + 24 q^{25} + 72 q^{28} + 56 q^{33} - 8 q^{35} + 88 q^{36} - 72 q^{38} + 64 q^{39} - 56 q^{41}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55674 1.80789 0.903946 0.427648i \(-0.140658\pi\)
0.903946 + 0.427648i \(0.140658\pi\)
\(3\) −2.41709 −1.39551 −0.697754 0.716337i \(-0.745817\pi\)
−0.697754 + 0.716337i \(0.745817\pi\)
\(4\) 4.53694 2.26847
\(5\) −1.00000 −0.447214
\(6\) −6.17988 −2.52293
\(7\) 3.41271 1.28988 0.644941 0.764232i \(-0.276882\pi\)
0.644941 + 0.764232i \(0.276882\pi\)
\(8\) 6.48631 2.29326
\(9\) 2.84233 0.947444
\(10\) −2.55674 −0.808513
\(11\) −5.46610 −1.64809 −0.824046 0.566523i \(-0.808288\pi\)
−0.824046 + 0.566523i \(0.808288\pi\)
\(12\) −10.9662 −3.16567
\(13\) 5.38349 1.49311 0.746555 0.665323i \(-0.231706\pi\)
0.746555 + 0.665323i \(0.231706\pi\)
\(14\) 8.72542 2.33197
\(15\) 2.41709 0.624090
\(16\) 7.50995 1.87749
\(17\) −2.83128 −0.686686 −0.343343 0.939210i \(-0.611559\pi\)
−0.343343 + 0.939210i \(0.611559\pi\)
\(18\) 7.26711 1.71287
\(19\) −1.20252 −0.275878 −0.137939 0.990441i \(-0.544048\pi\)
−0.137939 + 0.990441i \(0.544048\pi\)
\(20\) −4.53694 −1.01449
\(21\) −8.24883 −1.80004
\(22\) −13.9754 −2.97957
\(23\) 7.33676 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(24\) −15.6780 −3.20026
\(25\) 1.00000 0.200000
\(26\) 13.7642 2.69938
\(27\) 0.381101 0.0733430
\(28\) 15.4833 2.92606
\(29\) 2.64099 0.490419 0.245210 0.969470i \(-0.421143\pi\)
0.245210 + 0.969470i \(0.421143\pi\)
\(30\) 6.17988 1.12829
\(31\) 0 0
\(32\) 6.22840 1.10104
\(33\) 13.2121 2.29993
\(34\) −7.23885 −1.24145
\(35\) −3.41271 −0.576853
\(36\) 12.8955 2.14925
\(37\) 2.54608 0.418573 0.209287 0.977854i \(-0.432886\pi\)
0.209287 + 0.977854i \(0.432886\pi\)
\(38\) −3.07455 −0.498757
\(39\) −13.0124 −2.08365
\(40\) −6.48631 −1.02558
\(41\) −4.95941 −0.774529 −0.387265 0.921969i \(-0.626580\pi\)
−0.387265 + 0.921969i \(0.626580\pi\)
\(42\) −21.0901 −3.25428
\(43\) 1.90043 0.289813 0.144907 0.989445i \(-0.453712\pi\)
0.144907 + 0.989445i \(0.453712\pi\)
\(44\) −24.7994 −3.73865
\(45\) −2.84233 −0.423710
\(46\) 18.7582 2.76575
\(47\) 3.88911 0.567285 0.283642 0.958930i \(-0.408457\pi\)
0.283642 + 0.958930i \(0.408457\pi\)
\(48\) −18.1522 −2.62005
\(49\) 4.64659 0.663798
\(50\) 2.55674 0.361578
\(51\) 6.84346 0.958276
\(52\) 24.4246 3.38708
\(53\) 3.36913 0.462785 0.231393 0.972860i \(-0.425672\pi\)
0.231393 + 0.972860i \(0.425672\pi\)
\(54\) 0.974379 0.132596
\(55\) 5.46610 0.737049
\(56\) 22.1359 2.95803
\(57\) 2.90661 0.384990
\(58\) 6.75233 0.886625
\(59\) 3.61973 0.471248 0.235624 0.971844i \(-0.424287\pi\)
0.235624 + 0.971844i \(0.424287\pi\)
\(60\) 10.9662 1.41573
\(61\) 7.45118 0.954026 0.477013 0.878896i \(-0.341719\pi\)
0.477013 + 0.878896i \(0.341719\pi\)
\(62\) 0 0
\(63\) 9.70005 1.22209
\(64\) 0.904535 0.113067
\(65\) −5.38349 −0.667739
\(66\) 33.7799 4.15801
\(67\) 12.0235 1.46891 0.734453 0.678659i \(-0.237439\pi\)
0.734453 + 0.678659i \(0.237439\pi\)
\(68\) −12.8453 −1.55773
\(69\) −17.7336 −2.13488
\(70\) −8.72542 −1.04289
\(71\) −3.34899 −0.397452 −0.198726 0.980055i \(-0.563680\pi\)
−0.198726 + 0.980055i \(0.563680\pi\)
\(72\) 18.4362 2.17273
\(73\) 15.4323 1.80622 0.903110 0.429410i \(-0.141278\pi\)
0.903110 + 0.429410i \(0.141278\pi\)
\(74\) 6.50968 0.756735
\(75\) −2.41709 −0.279102
\(76\) −5.45578 −0.625821
\(77\) −18.6542 −2.12584
\(78\) −33.2693 −3.76701
\(79\) −3.97731 −0.447482 −0.223741 0.974649i \(-0.571827\pi\)
−0.223741 + 0.974649i \(0.571827\pi\)
\(80\) −7.50995 −0.839638
\(81\) −9.44815 −1.04979
\(82\) −12.6799 −1.40026
\(83\) −1.32742 −0.145704 −0.0728518 0.997343i \(-0.523210\pi\)
−0.0728518 + 0.997343i \(0.523210\pi\)
\(84\) −37.4245 −4.08334
\(85\) 2.83128 0.307095
\(86\) 4.85892 0.523951
\(87\) −6.38351 −0.684384
\(88\) −35.4548 −3.77950
\(89\) −18.0557 −1.91390 −0.956951 0.290250i \(-0.906261\pi\)
−0.956951 + 0.290250i \(0.906261\pi\)
\(90\) −7.26711 −0.766021
\(91\) 18.3723 1.92594
\(92\) 33.2865 3.47035
\(93\) 0 0
\(94\) 9.94345 1.02559
\(95\) 1.20252 0.123376
\(96\) −15.0546 −1.53651
\(97\) 6.87122 0.697667 0.348833 0.937185i \(-0.386578\pi\)
0.348833 + 0.937185i \(0.386578\pi\)
\(98\) 11.8801 1.20007
\(99\) −15.5365 −1.56147
\(100\) 4.53694 0.453694
\(101\) −13.2625 −1.31967 −0.659833 0.751413i \(-0.729373\pi\)
−0.659833 + 0.751413i \(0.729373\pi\)
\(102\) 17.4970 1.73246
\(103\) −5.18607 −0.510999 −0.255499 0.966809i \(-0.582240\pi\)
−0.255499 + 0.966809i \(0.582240\pi\)
\(104\) 34.9190 3.42409
\(105\) 8.24883 0.805003
\(106\) 8.61400 0.836665
\(107\) 13.5434 1.30929 0.654644 0.755937i \(-0.272819\pi\)
0.654644 + 0.755937i \(0.272819\pi\)
\(108\) 1.72903 0.166376
\(109\) 5.53736 0.530383 0.265192 0.964196i \(-0.414565\pi\)
0.265192 + 0.964196i \(0.414565\pi\)
\(110\) 13.9754 1.33250
\(111\) −6.15411 −0.584123
\(112\) 25.6293 2.42174
\(113\) 5.14611 0.484105 0.242053 0.970263i \(-0.422179\pi\)
0.242053 + 0.970263i \(0.422179\pi\)
\(114\) 7.43146 0.696020
\(115\) −7.33676 −0.684157
\(116\) 11.9820 1.11250
\(117\) 15.3017 1.41464
\(118\) 9.25472 0.851966
\(119\) −9.66233 −0.885744
\(120\) 15.6780 1.43120
\(121\) 18.8783 1.71620
\(122\) 19.0508 1.72478
\(123\) 11.9873 1.08086
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 24.8005 2.20941
\(127\) 11.2632 0.999452 0.499726 0.866184i \(-0.333434\pi\)
0.499726 + 0.866184i \(0.333434\pi\)
\(128\) −10.1441 −0.896624
\(129\) −4.59352 −0.404437
\(130\) −13.7642 −1.20720
\(131\) 12.9343 1.13008 0.565038 0.825065i \(-0.308862\pi\)
0.565038 + 0.825065i \(0.308862\pi\)
\(132\) 59.9424 5.21731
\(133\) −4.10387 −0.355850
\(134\) 30.7411 2.65562
\(135\) −0.381101 −0.0328000
\(136\) −18.3645 −1.57475
\(137\) 5.27414 0.450600 0.225300 0.974289i \(-0.427664\pi\)
0.225300 + 0.974289i \(0.427664\pi\)
\(138\) −45.3404 −3.85963
\(139\) 3.51245 0.297922 0.148961 0.988843i \(-0.452407\pi\)
0.148961 + 0.988843i \(0.452407\pi\)
\(140\) −15.4833 −1.30857
\(141\) −9.40033 −0.791650
\(142\) −8.56251 −0.718549
\(143\) −29.4267 −2.46078
\(144\) 21.3458 1.77881
\(145\) −2.64099 −0.219322
\(146\) 39.4566 3.26545
\(147\) −11.2312 −0.926336
\(148\) 11.5514 0.949521
\(149\) 6.85604 0.561669 0.280834 0.959756i \(-0.409389\pi\)
0.280834 + 0.959756i \(0.409389\pi\)
\(150\) −6.17988 −0.504585
\(151\) −13.1910 −1.07347 −0.536735 0.843751i \(-0.680342\pi\)
−0.536735 + 0.843751i \(0.680342\pi\)
\(152\) −7.79995 −0.632659
\(153\) −8.04743 −0.650596
\(154\) −47.6940 −3.84330
\(155\) 0 0
\(156\) −59.0364 −4.72669
\(157\) −13.9741 −1.11526 −0.557629 0.830090i \(-0.688289\pi\)
−0.557629 + 0.830090i \(0.688289\pi\)
\(158\) −10.1690 −0.808999
\(159\) −8.14349 −0.645821
\(160\) −6.22840 −0.492399
\(161\) 25.0382 1.97329
\(162\) −24.1565 −1.89791
\(163\) 16.3515 1.28075 0.640374 0.768063i \(-0.278779\pi\)
0.640374 + 0.768063i \(0.278779\pi\)
\(164\) −22.5005 −1.75700
\(165\) −13.2121 −1.02856
\(166\) −3.39388 −0.263416
\(167\) −8.53209 −0.660233 −0.330116 0.943940i \(-0.607088\pi\)
−0.330116 + 0.943940i \(0.607088\pi\)
\(168\) −53.5045 −4.12796
\(169\) 15.9819 1.22938
\(170\) 7.23885 0.555195
\(171\) −3.41797 −0.261379
\(172\) 8.62215 0.657433
\(173\) 22.9386 1.74399 0.871994 0.489517i \(-0.162827\pi\)
0.871994 + 0.489517i \(0.162827\pi\)
\(174\) −16.3210 −1.23729
\(175\) 3.41271 0.257977
\(176\) −41.0501 −3.09427
\(177\) −8.74921 −0.657631
\(178\) −46.1638 −3.46013
\(179\) 14.9896 1.12038 0.560188 0.828366i \(-0.310729\pi\)
0.560188 + 0.828366i \(0.310729\pi\)
\(180\) −12.8955 −0.961173
\(181\) 2.09879 0.156002 0.0780009 0.996953i \(-0.475146\pi\)
0.0780009 + 0.996953i \(0.475146\pi\)
\(182\) 46.9732 3.48189
\(183\) −18.0102 −1.33135
\(184\) 47.5885 3.50827
\(185\) −2.54608 −0.187192
\(186\) 0 0
\(187\) 15.4760 1.13172
\(188\) 17.6446 1.28687
\(189\) 1.30059 0.0946039
\(190\) 3.07455 0.223051
\(191\) 15.1699 1.09765 0.548827 0.835936i \(-0.315075\pi\)
0.548827 + 0.835936i \(0.315075\pi\)
\(192\) −2.18634 −0.157786
\(193\) −8.33660 −0.600082 −0.300041 0.953926i \(-0.597000\pi\)
−0.300041 + 0.953926i \(0.597000\pi\)
\(194\) 17.5680 1.26131
\(195\) 13.0124 0.931836
\(196\) 21.0813 1.50581
\(197\) 18.9006 1.34661 0.673305 0.739365i \(-0.264874\pi\)
0.673305 + 0.739365i \(0.264874\pi\)
\(198\) −39.7228 −2.82297
\(199\) −7.51729 −0.532887 −0.266443 0.963851i \(-0.585849\pi\)
−0.266443 + 0.963851i \(0.585849\pi\)
\(200\) 6.48631 0.458651
\(201\) −29.0619 −2.04987
\(202\) −33.9087 −2.38581
\(203\) 9.01293 0.632584
\(204\) 31.0484 2.17382
\(205\) 4.95941 0.346380
\(206\) −13.2595 −0.923830
\(207\) 20.8535 1.44942
\(208\) 40.4297 2.80330
\(209\) 6.57312 0.454672
\(210\) 21.0901 1.45536
\(211\) 18.7278 1.28928 0.644638 0.764488i \(-0.277008\pi\)
0.644638 + 0.764488i \(0.277008\pi\)
\(212\) 15.2855 1.04981
\(213\) 8.09481 0.554647
\(214\) 34.6270 2.36705
\(215\) −1.90043 −0.129608
\(216\) 2.47194 0.168194
\(217\) 0 0
\(218\) 14.1576 0.958875
\(219\) −37.3014 −2.52059
\(220\) 24.7994 1.67197
\(221\) −15.2421 −1.02530
\(222\) −15.7345 −1.05603
\(223\) 13.2247 0.885592 0.442796 0.896622i \(-0.353987\pi\)
0.442796 + 0.896622i \(0.353987\pi\)
\(224\) 21.2557 1.42021
\(225\) 2.84233 0.189489
\(226\) 13.1573 0.875209
\(227\) −23.1084 −1.53376 −0.766880 0.641790i \(-0.778192\pi\)
−0.766880 + 0.641790i \(0.778192\pi\)
\(228\) 13.1871 0.873339
\(229\) −9.26446 −0.612213 −0.306106 0.951997i \(-0.599026\pi\)
−0.306106 + 0.951997i \(0.599026\pi\)
\(230\) −18.7582 −1.23688
\(231\) 45.0889 2.96663
\(232\) 17.1303 1.12466
\(233\) −13.0053 −0.852008 −0.426004 0.904721i \(-0.640079\pi\)
−0.426004 + 0.904721i \(0.640079\pi\)
\(234\) 39.1224 2.55751
\(235\) −3.88911 −0.253697
\(236\) 16.4225 1.06901
\(237\) 9.61351 0.624465
\(238\) −24.7041 −1.60133
\(239\) 2.90520 0.187921 0.0939607 0.995576i \(-0.470047\pi\)
0.0939607 + 0.995576i \(0.470047\pi\)
\(240\) 18.1522 1.17172
\(241\) −19.3655 −1.24744 −0.623720 0.781648i \(-0.714379\pi\)
−0.623720 + 0.781648i \(0.714379\pi\)
\(242\) 48.2669 3.10271
\(243\) 21.6937 1.39165
\(244\) 33.8056 2.16418
\(245\) −4.64659 −0.296859
\(246\) 30.6486 1.95408
\(247\) −6.47378 −0.411916
\(248\) 0 0
\(249\) 3.20850 0.203331
\(250\) −2.55674 −0.161703
\(251\) −13.2700 −0.837593 −0.418797 0.908080i \(-0.637548\pi\)
−0.418797 + 0.908080i \(0.637548\pi\)
\(252\) 44.0085 2.77228
\(253\) −40.1035 −2.52128
\(254\) 28.7972 1.80690
\(255\) −6.84346 −0.428554
\(256\) −27.7450 −1.73407
\(257\) −3.18176 −0.198472 −0.0992362 0.995064i \(-0.531640\pi\)
−0.0992362 + 0.995064i \(0.531640\pi\)
\(258\) −11.7445 −0.731178
\(259\) 8.68904 0.539911
\(260\) −24.4246 −1.51475
\(261\) 7.50657 0.464645
\(262\) 33.0697 2.04305
\(263\) −17.6702 −1.08959 −0.544795 0.838569i \(-0.683392\pi\)
−0.544795 + 0.838569i \(0.683392\pi\)
\(264\) 85.6975 5.27432
\(265\) −3.36913 −0.206964
\(266\) −10.4925 −0.643339
\(267\) 43.6423 2.67087
\(268\) 54.5500 3.33217
\(269\) −1.34708 −0.0821331 −0.0410666 0.999156i \(-0.513076\pi\)
−0.0410666 + 0.999156i \(0.513076\pi\)
\(270\) −0.974379 −0.0592988
\(271\) 3.66547 0.222662 0.111331 0.993783i \(-0.464489\pi\)
0.111331 + 0.993783i \(0.464489\pi\)
\(272\) −21.2628 −1.28924
\(273\) −44.4075 −2.68766
\(274\) 13.4846 0.814637
\(275\) −5.46610 −0.329618
\(276\) −80.4564 −4.84291
\(277\) −20.2583 −1.21720 −0.608601 0.793476i \(-0.708269\pi\)
−0.608601 + 0.793476i \(0.708269\pi\)
\(278\) 8.98044 0.538611
\(279\) 0 0
\(280\) −22.1359 −1.32287
\(281\) −2.76581 −0.164994 −0.0824972 0.996591i \(-0.526290\pi\)
−0.0824972 + 0.996591i \(0.526290\pi\)
\(282\) −24.0342 −1.43122
\(283\) 30.3025 1.80130 0.900648 0.434549i \(-0.143092\pi\)
0.900648 + 0.434549i \(0.143092\pi\)
\(284\) −15.1942 −0.901608
\(285\) −2.90661 −0.172173
\(286\) −75.2365 −4.44883
\(287\) −16.9250 −0.999052
\(288\) 17.7032 1.04317
\(289\) −8.98387 −0.528463
\(290\) −6.75233 −0.396511
\(291\) −16.6084 −0.973600
\(292\) 70.0156 4.09736
\(293\) −26.0050 −1.51923 −0.759616 0.650372i \(-0.774613\pi\)
−0.759616 + 0.650372i \(0.774613\pi\)
\(294\) −28.7154 −1.67471
\(295\) −3.61973 −0.210749
\(296\) 16.5147 0.959896
\(297\) −2.08314 −0.120876
\(298\) 17.5291 1.01544
\(299\) 39.4974 2.28419
\(300\) −10.9662 −0.633134
\(301\) 6.48563 0.373825
\(302\) −33.7260 −1.94072
\(303\) 32.0566 1.84160
\(304\) −9.03090 −0.517958
\(305\) −7.45118 −0.426653
\(306\) −20.5752 −1.17621
\(307\) −17.1009 −0.976002 −0.488001 0.872843i \(-0.662274\pi\)
−0.488001 + 0.872843i \(0.662274\pi\)
\(308\) −84.6331 −4.82242
\(309\) 12.5352 0.713103
\(310\) 0 0
\(311\) −8.36576 −0.474379 −0.237189 0.971463i \(-0.576226\pi\)
−0.237189 + 0.971463i \(0.576226\pi\)
\(312\) −84.4023 −4.77834
\(313\) −16.9903 −0.960350 −0.480175 0.877173i \(-0.659427\pi\)
−0.480175 + 0.877173i \(0.659427\pi\)
\(314\) −35.7283 −2.01627
\(315\) −9.70005 −0.546536
\(316\) −18.0448 −1.01510
\(317\) 21.8888 1.22940 0.614699 0.788761i \(-0.289277\pi\)
0.614699 + 0.788761i \(0.289277\pi\)
\(318\) −20.8208 −1.16757
\(319\) −14.4359 −0.808256
\(320\) −0.904535 −0.0505650
\(321\) −32.7356 −1.82712
\(322\) 64.0164 3.56749
\(323\) 3.40468 0.189442
\(324\) −42.8657 −2.38143
\(325\) 5.38349 0.298622
\(326\) 41.8066 2.31545
\(327\) −13.3843 −0.740154
\(328\) −32.1682 −1.77619
\(329\) 13.2724 0.731731
\(330\) −33.7799 −1.85952
\(331\) 20.6052 1.13257 0.566283 0.824211i \(-0.308381\pi\)
0.566283 + 0.824211i \(0.308381\pi\)
\(332\) −6.02244 −0.330524
\(333\) 7.23681 0.396575
\(334\) −21.8144 −1.19363
\(335\) −12.0235 −0.656915
\(336\) −61.9483 −3.37956
\(337\) −6.70887 −0.365455 −0.182728 0.983164i \(-0.558493\pi\)
−0.182728 + 0.983164i \(0.558493\pi\)
\(338\) 40.8617 2.22258
\(339\) −12.4386 −0.675573
\(340\) 12.8453 0.696636
\(341\) 0 0
\(342\) −8.73888 −0.472545
\(343\) −8.03152 −0.433661
\(344\) 12.3268 0.664616
\(345\) 17.7336 0.954747
\(346\) 58.6481 3.15294
\(347\) 8.12022 0.435916 0.217958 0.975958i \(-0.430060\pi\)
0.217958 + 0.975958i \(0.430060\pi\)
\(348\) −28.9616 −1.55251
\(349\) −7.00132 −0.374772 −0.187386 0.982286i \(-0.560002\pi\)
−0.187386 + 0.982286i \(0.560002\pi\)
\(350\) 8.72542 0.466394
\(351\) 2.05165 0.109509
\(352\) −34.0451 −1.81461
\(353\) 1.62311 0.0863897 0.0431948 0.999067i \(-0.486246\pi\)
0.0431948 + 0.999067i \(0.486246\pi\)
\(354\) −22.3695 −1.18893
\(355\) 3.34899 0.177746
\(356\) −81.9177 −4.34163
\(357\) 23.3547 1.23606
\(358\) 38.3246 2.02552
\(359\) 4.12321 0.217615 0.108807 0.994063i \(-0.465297\pi\)
0.108807 + 0.994063i \(0.465297\pi\)
\(360\) −18.4362 −0.971675
\(361\) −17.5539 −0.923891
\(362\) 5.36607 0.282034
\(363\) −45.6305 −2.39498
\(364\) 83.3539 4.36893
\(365\) −15.4323 −0.807766
\(366\) −46.0474 −2.40694
\(367\) 12.5426 0.654716 0.327358 0.944900i \(-0.393842\pi\)
0.327358 + 0.944900i \(0.393842\pi\)
\(368\) 55.0987 2.87222
\(369\) −14.0963 −0.733823
\(370\) −6.50968 −0.338422
\(371\) 11.4979 0.596939
\(372\) 0 0
\(373\) 32.5633 1.68607 0.843033 0.537862i \(-0.180768\pi\)
0.843033 + 0.537862i \(0.180768\pi\)
\(374\) 39.5683 2.04603
\(375\) 2.41709 0.124818
\(376\) 25.2259 1.30093
\(377\) 14.2177 0.732251
\(378\) 3.32527 0.171034
\(379\) −21.3538 −1.09687 −0.548435 0.836193i \(-0.684776\pi\)
−0.548435 + 0.836193i \(0.684776\pi\)
\(380\) 5.45578 0.279876
\(381\) −27.2243 −1.39474
\(382\) 38.7855 1.98444
\(383\) −10.4260 −0.532744 −0.266372 0.963870i \(-0.585825\pi\)
−0.266372 + 0.963870i \(0.585825\pi\)
\(384\) 24.5193 1.25125
\(385\) 18.6542 0.950707
\(386\) −21.3146 −1.08488
\(387\) 5.40166 0.274582
\(388\) 31.1743 1.58264
\(389\) −32.9923 −1.67278 −0.836388 0.548138i \(-0.815337\pi\)
−0.836388 + 0.548138i \(0.815337\pi\)
\(390\) 33.2693 1.68466
\(391\) −20.7724 −1.05051
\(392\) 30.1392 1.52226
\(393\) −31.2634 −1.57703
\(394\) 48.3239 2.43452
\(395\) 3.97731 0.200120
\(396\) −70.4880 −3.54216
\(397\) −4.63109 −0.232428 −0.116214 0.993224i \(-0.537076\pi\)
−0.116214 + 0.993224i \(0.537076\pi\)
\(398\) −19.2198 −0.963401
\(399\) 9.91942 0.496592
\(400\) 7.50995 0.375497
\(401\) −19.1106 −0.954338 −0.477169 0.878812i \(-0.658337\pi\)
−0.477169 + 0.878812i \(0.658337\pi\)
\(402\) −74.3040 −3.70594
\(403\) 0 0
\(404\) −60.1710 −2.99362
\(405\) 9.44815 0.469482
\(406\) 23.0438 1.14364
\(407\) −13.9171 −0.689847
\(408\) 44.3888 2.19757
\(409\) −21.5580 −1.06597 −0.532987 0.846123i \(-0.678931\pi\)
−0.532987 + 0.846123i \(0.678931\pi\)
\(410\) 12.6799 0.626217
\(411\) −12.7481 −0.628817
\(412\) −23.5289 −1.15919
\(413\) 12.3531 0.607855
\(414\) 53.3171 2.62039
\(415\) 1.32742 0.0651606
\(416\) 33.5305 1.64397
\(417\) −8.48992 −0.415753
\(418\) 16.8058 0.821998
\(419\) −23.1121 −1.12910 −0.564551 0.825398i \(-0.690951\pi\)
−0.564551 + 0.825398i \(0.690951\pi\)
\(420\) 37.4245 1.82613
\(421\) 9.56282 0.466063 0.233032 0.972469i \(-0.425135\pi\)
0.233032 + 0.972469i \(0.425135\pi\)
\(422\) 47.8822 2.33087
\(423\) 11.0541 0.537470
\(424\) 21.8532 1.06129
\(425\) −2.83128 −0.137337
\(426\) 20.6964 1.00274
\(427\) 25.4287 1.23058
\(428\) 61.4455 2.97008
\(429\) 71.1270 3.43404
\(430\) −4.85892 −0.234318
\(431\) 12.5266 0.603385 0.301692 0.953405i \(-0.402448\pi\)
0.301692 + 0.953405i \(0.402448\pi\)
\(432\) 2.86205 0.137701
\(433\) 17.3509 0.833832 0.416916 0.908945i \(-0.363111\pi\)
0.416916 + 0.908945i \(0.363111\pi\)
\(434\) 0 0
\(435\) 6.38351 0.306066
\(436\) 25.1227 1.20316
\(437\) −8.82264 −0.422044
\(438\) −95.3701 −4.55696
\(439\) −23.3256 −1.11327 −0.556636 0.830757i \(-0.687908\pi\)
−0.556636 + 0.830757i \(0.687908\pi\)
\(440\) 35.4548 1.69024
\(441\) 13.2071 0.628911
\(442\) −38.9703 −1.85363
\(443\) −28.1551 −1.33769 −0.668845 0.743402i \(-0.733211\pi\)
−0.668845 + 0.743402i \(0.733211\pi\)
\(444\) −27.9209 −1.32507
\(445\) 18.0557 0.855923
\(446\) 33.8122 1.60105
\(447\) −16.5717 −0.783814
\(448\) 3.08691 0.145843
\(449\) 5.06308 0.238941 0.119471 0.992838i \(-0.461880\pi\)
0.119471 + 0.992838i \(0.461880\pi\)
\(450\) 7.26711 0.342575
\(451\) 27.1086 1.27649
\(452\) 23.3476 1.09818
\(453\) 31.8839 1.49804
\(454\) −59.0823 −2.77287
\(455\) −18.3723 −0.861306
\(456\) 18.8532 0.882881
\(457\) −29.4244 −1.37641 −0.688207 0.725515i \(-0.741602\pi\)
−0.688207 + 0.725515i \(0.741602\pi\)
\(458\) −23.6869 −1.10681
\(459\) −1.07900 −0.0503636
\(460\) −33.2865 −1.55199
\(461\) −7.80537 −0.363532 −0.181766 0.983342i \(-0.558181\pi\)
−0.181766 + 0.983342i \(0.558181\pi\)
\(462\) 115.281 5.36335
\(463\) 4.27397 0.198628 0.0993141 0.995056i \(-0.468335\pi\)
0.0993141 + 0.995056i \(0.468335\pi\)
\(464\) 19.8337 0.920756
\(465\) 0 0
\(466\) −33.2513 −1.54034
\(467\) −4.94347 −0.228757 −0.114378 0.993437i \(-0.536488\pi\)
−0.114378 + 0.993437i \(0.536488\pi\)
\(468\) 69.4227 3.20906
\(469\) 41.0328 1.89472
\(470\) −9.94345 −0.458657
\(471\) 33.7768 1.55635
\(472\) 23.4787 1.08069
\(473\) −10.3880 −0.477639
\(474\) 24.5793 1.12896
\(475\) −1.20252 −0.0551756
\(476\) −43.8374 −2.00928
\(477\) 9.57617 0.438463
\(478\) 7.42784 0.339742
\(479\) 13.3220 0.608700 0.304350 0.952560i \(-0.401561\pi\)
0.304350 + 0.952560i \(0.401561\pi\)
\(480\) 15.0546 0.687146
\(481\) 13.7068 0.624976
\(482\) −49.5125 −2.25523
\(483\) −60.5197 −2.75374
\(484\) 85.6495 3.89316
\(485\) −6.87122 −0.312006
\(486\) 55.4653 2.51596
\(487\) 42.0019 1.90329 0.951644 0.307204i \(-0.0993935\pi\)
0.951644 + 0.307204i \(0.0993935\pi\)
\(488\) 48.3307 2.18783
\(489\) −39.5231 −1.78729
\(490\) −11.8801 −0.536690
\(491\) −39.5937 −1.78684 −0.893420 0.449222i \(-0.851701\pi\)
−0.893420 + 0.449222i \(0.851701\pi\)
\(492\) 54.3858 2.45190
\(493\) −7.47738 −0.336764
\(494\) −16.5518 −0.744700
\(495\) 15.5365 0.698312
\(496\) 0 0
\(497\) −11.4291 −0.512666
\(498\) 8.20332 0.367599
\(499\) −9.09941 −0.407346 −0.203673 0.979039i \(-0.565288\pi\)
−0.203673 + 0.979039i \(0.565288\pi\)
\(500\) −4.53694 −0.202898
\(501\) 20.6228 0.921360
\(502\) −33.9279 −1.51428
\(503\) −15.9995 −0.713383 −0.356692 0.934222i \(-0.616095\pi\)
−0.356692 + 0.934222i \(0.616095\pi\)
\(504\) 62.9175 2.80257
\(505\) 13.2625 0.590172
\(506\) −102.534 −4.55821
\(507\) −38.6298 −1.71561
\(508\) 51.1007 2.26723
\(509\) 26.2944 1.16548 0.582739 0.812660i \(-0.301981\pi\)
0.582739 + 0.812660i \(0.301981\pi\)
\(510\) −17.4970 −0.774779
\(511\) 52.6661 2.32981
\(512\) −50.6487 −2.23838
\(513\) −0.458284 −0.0202337
\(514\) −8.13494 −0.358817
\(515\) 5.18607 0.228526
\(516\) −20.8405 −0.917453
\(517\) −21.2582 −0.934937
\(518\) 22.2157 0.976100
\(519\) −55.4446 −2.43375
\(520\) −34.9190 −1.53130
\(521\) −20.6956 −0.906690 −0.453345 0.891335i \(-0.649769\pi\)
−0.453345 + 0.891335i \(0.649769\pi\)
\(522\) 19.1924 0.840027
\(523\) −22.0517 −0.964255 −0.482127 0.876101i \(-0.660136\pi\)
−0.482127 + 0.876101i \(0.660136\pi\)
\(524\) 58.6822 2.56354
\(525\) −8.24883 −0.360008
\(526\) −45.1781 −1.96986
\(527\) 0 0
\(528\) 99.2219 4.31808
\(529\) 30.8281 1.34035
\(530\) −8.61400 −0.374168
\(531\) 10.2885 0.446481
\(532\) −18.6190 −0.807236
\(533\) −26.6989 −1.15646
\(534\) 111.582 4.82863
\(535\) −13.5434 −0.585531
\(536\) 77.9882 3.36858
\(537\) −36.2313 −1.56349
\(538\) −3.44415 −0.148488
\(539\) −25.3987 −1.09400
\(540\) −1.72903 −0.0744058
\(541\) 1.24621 0.0535786 0.0267893 0.999641i \(-0.491472\pi\)
0.0267893 + 0.999641i \(0.491472\pi\)
\(542\) 9.37167 0.402548
\(543\) −5.07297 −0.217702
\(544\) −17.6343 −0.756066
\(545\) −5.53736 −0.237195
\(546\) −113.539 −4.85900
\(547\) 6.27178 0.268162 0.134081 0.990970i \(-0.457192\pi\)
0.134081 + 0.990970i \(0.457192\pi\)
\(548\) 23.9285 1.02217
\(549\) 21.1787 0.903886
\(550\) −13.9754 −0.595914
\(551\) −3.17585 −0.135296
\(552\) −115.026 −4.89582
\(553\) −13.5734 −0.577199
\(554\) −51.7953 −2.20057
\(555\) 6.15411 0.261228
\(556\) 15.9358 0.675828
\(557\) 14.8349 0.628575 0.314288 0.949328i \(-0.398234\pi\)
0.314288 + 0.949328i \(0.398234\pi\)
\(558\) 0 0
\(559\) 10.2310 0.432724
\(560\) −25.6293 −1.08303
\(561\) −37.4070 −1.57933
\(562\) −7.07147 −0.298292
\(563\) −38.7429 −1.63282 −0.816410 0.577473i \(-0.804039\pi\)
−0.816410 + 0.577473i \(0.804039\pi\)
\(564\) −42.6487 −1.79584
\(565\) −5.14611 −0.216498
\(566\) 77.4757 3.25655
\(567\) −32.2438 −1.35411
\(568\) −21.7226 −0.911459
\(569\) −12.5825 −0.527485 −0.263743 0.964593i \(-0.584957\pi\)
−0.263743 + 0.964593i \(0.584957\pi\)
\(570\) −7.43146 −0.311270
\(571\) −11.8059 −0.494063 −0.247032 0.969007i \(-0.579455\pi\)
−0.247032 + 0.969007i \(0.579455\pi\)
\(572\) −133.507 −5.58221
\(573\) −36.6670 −1.53178
\(574\) −43.2729 −1.80618
\(575\) 7.33676 0.305964
\(576\) 2.57099 0.107124
\(577\) −11.4457 −0.476491 −0.238246 0.971205i \(-0.576572\pi\)
−0.238246 + 0.971205i \(0.576572\pi\)
\(578\) −22.9694 −0.955403
\(579\) 20.1503 0.837419
\(580\) −11.9820 −0.497526
\(581\) −4.53011 −0.187941
\(582\) −42.4634 −1.76016
\(583\) −18.4160 −0.762712
\(584\) 100.099 4.14212
\(585\) −15.3017 −0.632645
\(586\) −66.4883 −2.74660
\(587\) 38.0604 1.57092 0.785459 0.618913i \(-0.212427\pi\)
0.785459 + 0.618913i \(0.212427\pi\)
\(588\) −50.9554 −2.10136
\(589\) 0 0
\(590\) −9.25472 −0.381011
\(591\) −45.6844 −1.87920
\(592\) 19.1210 0.785866
\(593\) −21.6817 −0.890360 −0.445180 0.895441i \(-0.646860\pi\)
−0.445180 + 0.895441i \(0.646860\pi\)
\(594\) −5.32605 −0.218531
\(595\) 9.66233 0.396117
\(596\) 31.1055 1.27413
\(597\) 18.1700 0.743648
\(598\) 100.985 4.12957
\(599\) −11.6740 −0.476985 −0.238492 0.971144i \(-0.576653\pi\)
−0.238492 + 0.971144i \(0.576653\pi\)
\(600\) −15.6780 −0.640052
\(601\) 4.73860 0.193291 0.0966457 0.995319i \(-0.469189\pi\)
0.0966457 + 0.995319i \(0.469189\pi\)
\(602\) 16.5821 0.675836
\(603\) 34.1748 1.39171
\(604\) −59.8468 −2.43513
\(605\) −18.8783 −0.767510
\(606\) 81.9605 3.32942
\(607\) −27.4282 −1.11328 −0.556638 0.830755i \(-0.687909\pi\)
−0.556638 + 0.830755i \(0.687909\pi\)
\(608\) −7.48981 −0.303752
\(609\) −21.7851 −0.882776
\(610\) −19.0508 −0.771343
\(611\) 20.9370 0.847019
\(612\) −36.5107 −1.47586
\(613\) −7.68442 −0.310371 −0.155185 0.987885i \(-0.549597\pi\)
−0.155185 + 0.987885i \(0.549597\pi\)
\(614\) −43.7227 −1.76451
\(615\) −11.9873 −0.483376
\(616\) −120.997 −4.87511
\(617\) 28.5096 1.14775 0.573876 0.818942i \(-0.305439\pi\)
0.573876 + 0.818942i \(0.305439\pi\)
\(618\) 32.0493 1.28921
\(619\) 11.9420 0.479988 0.239994 0.970774i \(-0.422855\pi\)
0.239994 + 0.970774i \(0.422855\pi\)
\(620\) 0 0
\(621\) 2.79605 0.112202
\(622\) −21.3891 −0.857626
\(623\) −61.6189 −2.46871
\(624\) −97.7223 −3.91202
\(625\) 1.00000 0.0400000
\(626\) −43.4399 −1.73621
\(627\) −15.8878 −0.634499
\(628\) −63.3999 −2.52993
\(629\) −7.20867 −0.287428
\(630\) −24.8005 −0.988077
\(631\) 30.8241 1.22709 0.613543 0.789661i \(-0.289744\pi\)
0.613543 + 0.789661i \(0.289744\pi\)
\(632\) −25.7980 −1.02619
\(633\) −45.2668 −1.79919
\(634\) 55.9641 2.22262
\(635\) −11.2632 −0.446968
\(636\) −36.9465 −1.46502
\(637\) 25.0148 0.991124
\(638\) −36.9089 −1.46124
\(639\) −9.51893 −0.376563
\(640\) 10.1441 0.400982
\(641\) −29.2867 −1.15675 −0.578377 0.815770i \(-0.696314\pi\)
−0.578377 + 0.815770i \(0.696314\pi\)
\(642\) −83.6965 −3.30324
\(643\) 28.7834 1.13511 0.567553 0.823337i \(-0.307890\pi\)
0.567553 + 0.823337i \(0.307890\pi\)
\(644\) 113.597 4.47635
\(645\) 4.59352 0.180870
\(646\) 8.70490 0.342490
\(647\) −6.73042 −0.264600 −0.132300 0.991210i \(-0.542236\pi\)
−0.132300 + 0.991210i \(0.542236\pi\)
\(648\) −61.2836 −2.40745
\(649\) −19.7858 −0.776660
\(650\) 13.7642 0.539876
\(651\) 0 0
\(652\) 74.1858 2.90534
\(653\) 9.93549 0.388806 0.194403 0.980922i \(-0.437723\pi\)
0.194403 + 0.980922i \(0.437723\pi\)
\(654\) −34.2203 −1.33812
\(655\) −12.9343 −0.505385
\(656\) −37.2449 −1.45417
\(657\) 43.8638 1.71129
\(658\) 33.9341 1.32289
\(659\) 10.3088 0.401572 0.200786 0.979635i \(-0.435650\pi\)
0.200786 + 0.979635i \(0.435650\pi\)
\(660\) −59.9424 −2.33325
\(661\) −31.9769 −1.24376 −0.621878 0.783114i \(-0.713630\pi\)
−0.621878 + 0.783114i \(0.713630\pi\)
\(662\) 52.6823 2.04755
\(663\) 36.8417 1.43081
\(664\) −8.61007 −0.334136
\(665\) 4.10387 0.159141
\(666\) 18.5027 0.716964
\(667\) 19.3763 0.750254
\(668\) −38.7096 −1.49772
\(669\) −31.9653 −1.23585
\(670\) −30.7411 −1.18763
\(671\) −40.7289 −1.57232
\(672\) −51.3770 −1.98191
\(673\) −36.0633 −1.39014 −0.695068 0.718944i \(-0.744626\pi\)
−0.695068 + 0.718944i \(0.744626\pi\)
\(674\) −17.1529 −0.660703
\(675\) 0.381101 0.0146686
\(676\) 72.5091 2.78881
\(677\) 45.9548 1.76619 0.883093 0.469198i \(-0.155457\pi\)
0.883093 + 0.469198i \(0.155457\pi\)
\(678\) −31.8023 −1.22136
\(679\) 23.4495 0.899909
\(680\) 18.3645 0.704248
\(681\) 55.8552 2.14038
\(682\) 0 0
\(683\) −36.9842 −1.41516 −0.707581 0.706632i \(-0.750213\pi\)
−0.707581 + 0.706632i \(0.750213\pi\)
\(684\) −15.5071 −0.592930
\(685\) −5.27414 −0.201515
\(686\) −20.5345 −0.784012
\(687\) 22.3930 0.854348
\(688\) 14.2722 0.544121
\(689\) 18.1377 0.690990
\(690\) 45.3404 1.72608
\(691\) 8.79157 0.334447 0.167223 0.985919i \(-0.446520\pi\)
0.167223 + 0.985919i \(0.446520\pi\)
\(692\) 104.071 3.95618
\(693\) −53.0214 −2.01412
\(694\) 20.7613 0.788089
\(695\) −3.51245 −0.133235
\(696\) −41.4054 −1.56947
\(697\) 14.0415 0.531858
\(698\) −17.9006 −0.677547
\(699\) 31.4351 1.18898
\(700\) 15.4833 0.585212
\(701\) 17.7710 0.671201 0.335601 0.942004i \(-0.391061\pi\)
0.335601 + 0.942004i \(0.391061\pi\)
\(702\) 5.24556 0.197981
\(703\) −3.06173 −0.115475
\(704\) −4.94428 −0.186345
\(705\) 9.40033 0.354037
\(706\) 4.14989 0.156183
\(707\) −45.2610 −1.70221
\(708\) −39.6947 −1.49182
\(709\) −7.01800 −0.263566 −0.131783 0.991279i \(-0.542070\pi\)
−0.131783 + 0.991279i \(0.542070\pi\)
\(710\) 8.56251 0.321345
\(711\) −11.3048 −0.423964
\(712\) −117.115 −4.38907
\(713\) 0 0
\(714\) 59.7121 2.23467
\(715\) 29.4267 1.10050
\(716\) 68.0070 2.54154
\(717\) −7.02212 −0.262246
\(718\) 10.5420 0.393423
\(719\) 20.1553 0.751666 0.375833 0.926687i \(-0.377357\pi\)
0.375833 + 0.926687i \(0.377357\pi\)
\(720\) −21.3458 −0.795510
\(721\) −17.6985 −0.659128
\(722\) −44.8809 −1.67029
\(723\) 46.8081 1.74081
\(724\) 9.52208 0.353885
\(725\) 2.64099 0.0980839
\(726\) −116.665 −4.32986
\(727\) 30.1784 1.11926 0.559628 0.828744i \(-0.310944\pi\)
0.559628 + 0.828744i \(0.310944\pi\)
\(728\) 119.168 4.41667
\(729\) −24.0913 −0.892270
\(730\) −39.4566 −1.46035
\(731\) −5.38066 −0.199011
\(732\) −81.7112 −3.02013
\(733\) 9.26840 0.342336 0.171168 0.985242i \(-0.445246\pi\)
0.171168 + 0.985242i \(0.445246\pi\)
\(734\) 32.0681 1.18365
\(735\) 11.2312 0.414270
\(736\) 45.6963 1.68439
\(737\) −65.7218 −2.42089
\(738\) −36.0406 −1.32667
\(739\) −43.7100 −1.60790 −0.803949 0.594698i \(-0.797272\pi\)
−0.803949 + 0.594698i \(0.797272\pi\)
\(740\) −11.5514 −0.424639
\(741\) 15.6477 0.574833
\(742\) 29.3971 1.07920
\(743\) −5.98061 −0.219407 −0.109704 0.993964i \(-0.534990\pi\)
−0.109704 + 0.993964i \(0.534990\pi\)
\(744\) 0 0
\(745\) −6.85604 −0.251186
\(746\) 83.2561 3.04822
\(747\) −3.77297 −0.138046
\(748\) 70.2139 2.56728
\(749\) 46.2196 1.68883
\(750\) 6.17988 0.225657
\(751\) −40.0362 −1.46094 −0.730471 0.682944i \(-0.760699\pi\)
−0.730471 + 0.682944i \(0.760699\pi\)
\(752\) 29.2070 1.06507
\(753\) 32.0747 1.16887
\(754\) 36.3511 1.32383
\(755\) 13.1910 0.480070
\(756\) 5.90069 0.214606
\(757\) −32.5127 −1.18169 −0.590847 0.806783i \(-0.701206\pi\)
−0.590847 + 0.806783i \(0.701206\pi\)
\(758\) −54.5962 −1.98302
\(759\) 96.9338 3.51847
\(760\) 7.79995 0.282934
\(761\) 9.05050 0.328080 0.164040 0.986454i \(-0.447547\pi\)
0.164040 + 0.986454i \(0.447547\pi\)
\(762\) −69.6056 −2.52154
\(763\) 18.8974 0.684132
\(764\) 68.8248 2.48999
\(765\) 8.04743 0.290955
\(766\) −26.6566 −0.963143
\(767\) 19.4868 0.703626
\(768\) 67.0623 2.41990
\(769\) −39.6295 −1.42908 −0.714539 0.699596i \(-0.753363\pi\)
−0.714539 + 0.699596i \(0.753363\pi\)
\(770\) 47.6940 1.71877
\(771\) 7.69059 0.276970
\(772\) −37.8227 −1.36127
\(773\) −12.2401 −0.440244 −0.220122 0.975472i \(-0.570646\pi\)
−0.220122 + 0.975472i \(0.570646\pi\)
\(774\) 13.8107 0.496414
\(775\) 0 0
\(776\) 44.5689 1.59993
\(777\) −21.0022 −0.753450
\(778\) −84.3528 −3.02420
\(779\) 5.96381 0.213676
\(780\) 59.0364 2.11384
\(781\) 18.3059 0.655037
\(782\) −53.1098 −1.89920
\(783\) 1.00648 0.0359688
\(784\) 34.8956 1.24627
\(785\) 13.9741 0.498759
\(786\) −79.9325 −2.85110
\(787\) 0.383970 0.0136871 0.00684353 0.999977i \(-0.497822\pi\)
0.00684353 + 0.999977i \(0.497822\pi\)
\(788\) 85.7507 3.05474
\(789\) 42.7104 1.52053
\(790\) 10.1690 0.361795
\(791\) 17.5622 0.624439
\(792\) −100.774 −3.58086
\(793\) 40.1133 1.42447
\(794\) −11.8405 −0.420204
\(795\) 8.14349 0.288820
\(796\) −34.1055 −1.20884
\(797\) −29.9745 −1.06175 −0.530875 0.847450i \(-0.678137\pi\)
−0.530875 + 0.847450i \(0.678137\pi\)
\(798\) 25.3614 0.897785
\(799\) −11.0111 −0.389546
\(800\) 6.22840 0.220207
\(801\) −51.3203 −1.81331
\(802\) −48.8609 −1.72534
\(803\) −84.3548 −2.97681
\(804\) −131.852 −4.65007
\(805\) −25.0382 −0.882482
\(806\) 0 0
\(807\) 3.25602 0.114617
\(808\) −86.0245 −3.02633
\(809\) 53.9576 1.89705 0.948524 0.316706i \(-0.102577\pi\)
0.948524 + 0.316706i \(0.102577\pi\)
\(810\) 24.1565 0.848773
\(811\) −11.3034 −0.396917 −0.198458 0.980109i \(-0.563593\pi\)
−0.198458 + 0.980109i \(0.563593\pi\)
\(812\) 40.8911 1.43500
\(813\) −8.85978 −0.310726
\(814\) −35.5826 −1.24717
\(815\) −16.3515 −0.572768
\(816\) 51.3940 1.79915
\(817\) −2.28532 −0.0799532
\(818\) −55.1183 −1.92716
\(819\) 52.2201 1.82472
\(820\) 22.5005 0.785753
\(821\) 42.7826 1.49312 0.746562 0.665316i \(-0.231703\pi\)
0.746562 + 0.665316i \(0.231703\pi\)
\(822\) −32.5936 −1.13683
\(823\) −24.9511 −0.869740 −0.434870 0.900493i \(-0.643206\pi\)
−0.434870 + 0.900493i \(0.643206\pi\)
\(824\) −33.6384 −1.17185
\(825\) 13.2121 0.459985
\(826\) 31.5837 1.09894
\(827\) −31.5430 −1.09686 −0.548429 0.836197i \(-0.684774\pi\)
−0.548429 + 0.836197i \(0.684774\pi\)
\(828\) 94.6111 3.28796
\(829\) −19.2045 −0.667000 −0.333500 0.942750i \(-0.608230\pi\)
−0.333500 + 0.942750i \(0.608230\pi\)
\(830\) 3.39388 0.117803
\(831\) 48.9661 1.69862
\(832\) 4.86955 0.168821
\(833\) −13.1558 −0.455821
\(834\) −21.7065 −0.751636
\(835\) 8.53209 0.295265
\(836\) 29.8219 1.03141
\(837\) 0 0
\(838\) −59.0918 −2.04129
\(839\) 18.7264 0.646506 0.323253 0.946313i \(-0.395223\pi\)
0.323253 + 0.946313i \(0.395223\pi\)
\(840\) 53.5045 1.84608
\(841\) −22.0252 −0.759489
\(842\) 24.4497 0.842592
\(843\) 6.68522 0.230251
\(844\) 84.9669 2.92468
\(845\) −15.9819 −0.549795
\(846\) 28.2626 0.971687
\(847\) 64.4260 2.21370
\(848\) 25.3020 0.868873
\(849\) −73.2439 −2.51372
\(850\) −7.23885 −0.248291
\(851\) 18.6800 0.640342
\(852\) 36.7257 1.25820
\(853\) 56.2107 1.92462 0.962310 0.271956i \(-0.0876705\pi\)
0.962310 + 0.271956i \(0.0876705\pi\)
\(854\) 65.0147 2.22476
\(855\) 3.41797 0.116892
\(856\) 87.8466 3.00253
\(857\) −18.5419 −0.633378 −0.316689 0.948529i \(-0.602571\pi\)
−0.316689 + 0.948529i \(0.602571\pi\)
\(858\) 181.853 6.20838
\(859\) −3.57211 −0.121879 −0.0609395 0.998141i \(-0.519410\pi\)
−0.0609395 + 0.998141i \(0.519410\pi\)
\(860\) −8.62215 −0.294013
\(861\) 40.9093 1.39419
\(862\) 32.0273 1.09085
\(863\) 38.0561 1.29544 0.647722 0.761877i \(-0.275722\pi\)
0.647722 + 0.761877i \(0.275722\pi\)
\(864\) 2.37365 0.0807533
\(865\) −22.9386 −0.779935
\(866\) 44.3618 1.50748
\(867\) 21.7148 0.737474
\(868\) 0 0
\(869\) 21.7404 0.737491
\(870\) 16.3210 0.553334
\(871\) 64.7285 2.19324
\(872\) 35.9170 1.21630
\(873\) 19.5303 0.661000
\(874\) −22.5572 −0.763010
\(875\) −3.41271 −0.115371
\(876\) −169.234 −5.71789
\(877\) −24.6139 −0.831152 −0.415576 0.909559i \(-0.636420\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(878\) −59.6376 −2.01267
\(879\) 62.8566 2.12010
\(880\) 41.0501 1.38380
\(881\) −4.56011 −0.153634 −0.0768171 0.997045i \(-0.524476\pi\)
−0.0768171 + 0.997045i \(0.524476\pi\)
\(882\) 33.7673 1.13700
\(883\) −4.50147 −0.151486 −0.0757432 0.997127i \(-0.524133\pi\)
−0.0757432 + 0.997127i \(0.524133\pi\)
\(884\) −69.1527 −2.32586
\(885\) 8.74921 0.294102
\(886\) −71.9855 −2.41840
\(887\) −56.1143 −1.88413 −0.942067 0.335425i \(-0.891120\pi\)
−0.942067 + 0.335425i \(0.891120\pi\)
\(888\) −39.9175 −1.33954
\(889\) 38.4382 1.28918
\(890\) 46.1638 1.54742
\(891\) 51.6445 1.73016
\(892\) 59.9997 2.00894
\(893\) −4.67675 −0.156501
\(894\) −42.3695 −1.41705
\(895\) −14.9896 −0.501047
\(896\) −34.6190 −1.15654
\(897\) −95.4688 −3.18761
\(898\) 12.9450 0.431980
\(899\) 0 0
\(900\) 12.8955 0.429850
\(901\) −9.53893 −0.317788
\(902\) 69.3098 2.30776
\(903\) −15.6764 −0.521676
\(904\) 33.3792 1.11018
\(905\) −2.09879 −0.0697661
\(906\) 81.5189 2.70829
\(907\) 55.6829 1.84892 0.924460 0.381279i \(-0.124516\pi\)
0.924460 + 0.381279i \(0.124516\pi\)
\(908\) −104.842 −3.47929
\(909\) −37.6963 −1.25031
\(910\) −46.9732 −1.55715
\(911\) 17.3307 0.574190 0.287095 0.957902i \(-0.407310\pi\)
0.287095 + 0.957902i \(0.407310\pi\)
\(912\) 21.8285 0.722814
\(913\) 7.25582 0.240133
\(914\) −75.2306 −2.48841
\(915\) 18.0102 0.595398
\(916\) −42.0323 −1.38879
\(917\) 44.1410 1.45767
\(918\) −2.75874 −0.0910519
\(919\) 34.3449 1.13293 0.566466 0.824085i \(-0.308310\pi\)
0.566466 + 0.824085i \(0.308310\pi\)
\(920\) −47.5885 −1.56895
\(921\) 41.3345 1.36202
\(922\) −19.9563 −0.657227
\(923\) −18.0292 −0.593439
\(924\) 204.566 6.72972
\(925\) 2.54608 0.0837147
\(926\) 10.9274 0.359098
\(927\) −14.7405 −0.484142
\(928\) 16.4491 0.539970
\(929\) −15.9851 −0.524455 −0.262228 0.965006i \(-0.584457\pi\)
−0.262228 + 0.965006i \(0.584457\pi\)
\(930\) 0 0
\(931\) −5.58763 −0.183127
\(932\) −59.0044 −1.93275
\(933\) 20.2208 0.662000
\(934\) −12.6392 −0.413567
\(935\) −15.4760 −0.506121
\(936\) 99.2512 3.24413
\(937\) −0.797551 −0.0260549 −0.0130274 0.999915i \(-0.504147\pi\)
−0.0130274 + 0.999915i \(0.504147\pi\)
\(938\) 104.910 3.42544
\(939\) 41.0672 1.34018
\(940\) −17.6446 −0.575505
\(941\) 21.1320 0.688883 0.344442 0.938808i \(-0.388068\pi\)
0.344442 + 0.938808i \(0.388068\pi\)
\(942\) 86.3586 2.81371
\(943\) −36.3860 −1.18489
\(944\) 27.1840 0.884763
\(945\) −1.30059 −0.0423081
\(946\) −26.5594 −0.863519
\(947\) −49.9648 −1.62364 −0.811819 0.583909i \(-0.801522\pi\)
−0.811819 + 0.583909i \(0.801522\pi\)
\(948\) 43.6159 1.41658
\(949\) 83.0798 2.69689
\(950\) −3.07455 −0.0997515
\(951\) −52.9073 −1.71564
\(952\) −62.6728 −2.03124
\(953\) −8.50612 −0.275540 −0.137770 0.990464i \(-0.543994\pi\)
−0.137770 + 0.990464i \(0.543994\pi\)
\(954\) 24.4838 0.792693
\(955\) −15.1699 −0.490886
\(956\) 13.1807 0.426294
\(957\) 34.8929 1.12793
\(958\) 34.0611 1.10046
\(959\) 17.9991 0.581222
\(960\) 2.18634 0.0705639
\(961\) 0 0
\(962\) 35.0448 1.12989
\(963\) 38.4948 1.24048
\(964\) −87.8600 −2.82978
\(965\) 8.33660 0.268365
\(966\) −154.733 −4.97847
\(967\) −15.0769 −0.484842 −0.242421 0.970171i \(-0.577941\pi\)
−0.242421 + 0.970171i \(0.577941\pi\)
\(968\) 122.450 3.93570
\(969\) −8.22943 −0.264367
\(970\) −17.5680 −0.564073
\(971\) 45.7540 1.46832 0.734158 0.678978i \(-0.237577\pi\)
0.734158 + 0.678978i \(0.237577\pi\)
\(972\) 98.4232 3.15693
\(973\) 11.9870 0.384285
\(974\) 107.388 3.44094
\(975\) −13.0124 −0.416730
\(976\) 55.9580 1.79117
\(977\) 46.2643 1.48013 0.740063 0.672537i \(-0.234795\pi\)
0.740063 + 0.672537i \(0.234795\pi\)
\(978\) −101.050 −3.23123
\(979\) 98.6943 3.15428
\(980\) −21.0813 −0.673417
\(981\) 15.7390 0.502508
\(982\) −101.231 −3.23041
\(983\) −49.1527 −1.56773 −0.783864 0.620932i \(-0.786754\pi\)
−0.783864 + 0.620932i \(0.786754\pi\)
\(984\) 77.7536 2.47869
\(985\) −18.9006 −0.602222
\(986\) −19.1177 −0.608833
\(987\) −32.0806 −1.02114
\(988\) −29.3711 −0.934420
\(989\) 13.9430 0.443363
\(990\) 39.7228 1.26247
\(991\) 37.9195 1.20455 0.602276 0.798288i \(-0.294261\pi\)
0.602276 + 0.798288i \(0.294261\pi\)
\(992\) 0 0
\(993\) −49.8047 −1.58050
\(994\) −29.2213 −0.926845
\(995\) 7.51729 0.238314
\(996\) 14.5568 0.461249
\(997\) −26.5898 −0.842107 −0.421054 0.907036i \(-0.638340\pi\)
−0.421054 + 0.907036i \(0.638340\pi\)
\(998\) −23.2649 −0.736437
\(999\) 0.970316 0.0306994
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4805.2.a.bb.1.21 24
31.30 odd 2 inner 4805.2.a.bb.1.22 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4805.2.a.bb.1.21 24 1.1 even 1 trivial
4805.2.a.bb.1.22 yes 24 31.30 odd 2 inner