Properties

Label 4805.2.a.bb
Level $4805$
Weight $2$
Character orbit 4805.a
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,32,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 32 q^{4} - 24 q^{5} + 8 q^{7} + 40 q^{9} + 8 q^{14} + 88 q^{16} - 64 q^{18} + 40 q^{19} - 32 q^{20} + 24 q^{25} + 72 q^{28} + 56 q^{33} - 8 q^{35} + 88 q^{36} - 72 q^{38} + 64 q^{39} - 56 q^{41}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.67486 −2.55190 5.15485 −1.00000 6.82596 −3.25192 −8.43878 3.51219 2.67486
1.2 −2.67486 2.55190 5.15485 −1.00000 −6.82596 −3.25192 −8.43878 3.51219 2.67486
1.3 −2.66573 −2.65868 5.10611 −1.00000 7.08731 4.70911 −8.28004 4.06856 2.66573
1.4 −2.66573 2.65868 5.10611 −1.00000 −7.08731 4.70911 −8.28004 4.06856 2.66573
1.5 −1.95673 −3.36901 1.82879 −1.00000 6.59224 1.01127 0.335006 8.35023 1.95673
1.6 −1.95673 3.36901 1.82879 −1.00000 −6.59224 1.01127 0.335006 8.35023 1.95673
1.7 −1.14368 −0.176920 −0.692003 −1.00000 0.202339 −1.26713 3.07878 −2.96870 1.14368
1.8 −1.14368 0.176920 −0.692003 −1.00000 −0.202339 −1.26713 3.07878 −2.96870 1.14368
1.9 −0.674641 −0.608276 −1.54486 −1.00000 0.410368 −0.249886 2.39151 −2.63000 0.674641
1.10 −0.674641 0.608276 −1.54486 −1.00000 −0.410368 −0.249886 2.39151 −2.63000 0.674641
1.11 −0.117497 −2.06650 −1.98619 −1.00000 0.242807 4.77107 0.468364 1.27044 0.117497
1.12 −0.117497 2.06650 −1.98619 −1.00000 −0.242807 4.77107 0.468364 1.27044 0.117497
1.13 −0.109488 −3.27311 −1.98801 −1.00000 0.358365 −3.10127 0.436639 7.71323 0.109488
1.14 −0.109488 3.27311 −1.98801 −1.00000 −0.358365 −3.10127 0.436639 7.71323 0.109488
1.15 0.803114 −2.46454 −1.35501 −1.00000 −1.97931 1.24052 −2.69445 3.07398 −0.803114
1.16 0.803114 2.46454 −1.35501 −1.00000 1.97931 1.24052 −2.69445 3.07398 −0.803114
1.17 1.43563 −1.06814 0.0610318 −1.00000 −1.53345 −3.78195 −2.78364 −1.85907 −1.43563
1.18 1.43563 1.06814 0.0610318 −1.00000 1.53345 −3.78195 −2.78364 −1.85907 −1.43563
1.19 1.75387 −0.587870 1.07606 −1.00000 −1.03105 −2.62378 −1.62047 −2.65441 −1.75387
1.20 1.75387 0.587870 1.07606 −1.00000 1.03105 −2.62378 −1.62047 −2.65441 −1.75387
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4805.2.a.bb 24
31.b odd 2 1 inner 4805.2.a.bb 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4805.2.a.bb 24 1.a even 1 1 trivial
4805.2.a.bb 24 31.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4805))\):

\( T_{2}^{12} - 20T_{2}^{10} + 141T_{2}^{8} - 416T_{2}^{6} - 8T_{2}^{5} + 482T_{2}^{4} + 52T_{2}^{3} - 162T_{2}^{2} - 36T_{2} - 2 \) Copy content Toggle raw display
\( T_{3}^{24} - 56 T_{3}^{22} + 1352 T_{3}^{20} - 18452 T_{3}^{18} + 156778 T_{3}^{16} - 860136 T_{3}^{14} + \cdots + 8836 \) Copy content Toggle raw display