Properties

Label 2-4805-1.1-c1-0-138
Degree $2$
Conductor $4805$
Sign $1$
Analytic cond. $38.3681$
Root an. cond. $6.19420$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.55·2-s − 2.41·3-s + 4.53·4-s − 5-s − 6.17·6-s + 3.41·7-s + 6.48·8-s + 2.84·9-s − 2.55·10-s − 5.46·11-s − 10.9·12-s + 5.38·13-s + 8.72·14-s + 2.41·15-s + 7.50·16-s − 2.83·17-s + 7.26·18-s − 1.20·19-s − 4.53·20-s − 8.24·21-s − 13.9·22-s + 7.33·23-s − 15.6·24-s + 25-s + 13.7·26-s + 0.381·27-s + 15.4·28-s + ⋯
L(s)  = 1  + 1.80·2-s − 1.39·3-s + 2.26·4-s − 0.447·5-s − 2.52·6-s + 1.28·7-s + 2.29·8-s + 0.947·9-s − 0.808·10-s − 1.64·11-s − 3.16·12-s + 1.49·13-s + 2.33·14-s + 0.624·15-s + 1.87·16-s − 0.686·17-s + 1.71·18-s − 0.275·19-s − 1.01·20-s − 1.80·21-s − 2.97·22-s + 1.52·23-s − 3.20·24-s + 0.200·25-s + 2.69·26-s + 0.0733·27-s + 2.92·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4805\)    =    \(5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(38.3681\)
Root analytic conductor: \(6.19420\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4805,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.047028200\)
\(L(\frac12)\) \(\approx\) \(4.047028200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
31 \( 1 \)
good2 \( 1 - 2.55T + 2T^{2} \)
3 \( 1 + 2.41T + 3T^{2} \)
7 \( 1 - 3.41T + 7T^{2} \)
11 \( 1 + 5.46T + 11T^{2} \)
13 \( 1 - 5.38T + 13T^{2} \)
17 \( 1 + 2.83T + 17T^{2} \)
19 \( 1 + 1.20T + 19T^{2} \)
23 \( 1 - 7.33T + 23T^{2} \)
29 \( 1 - 2.64T + 29T^{2} \)
37 \( 1 - 2.54T + 37T^{2} \)
41 \( 1 + 4.95T + 41T^{2} \)
43 \( 1 - 1.90T + 43T^{2} \)
47 \( 1 - 3.88T + 47T^{2} \)
53 \( 1 - 3.36T + 53T^{2} \)
59 \( 1 - 3.61T + 59T^{2} \)
61 \( 1 - 7.45T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 + 3.34T + 71T^{2} \)
73 \( 1 - 15.4T + 73T^{2} \)
79 \( 1 + 3.97T + 79T^{2} \)
83 \( 1 + 1.32T + 83T^{2} \)
89 \( 1 + 18.0T + 89T^{2} \)
97 \( 1 - 6.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.074227596127163390322684530390, −7.10417645341874198812613516838, −6.60944420091150976667185096014, −5.68107150759065572925115617625, −5.31132514666122411926611035477, −4.73675341331815652463334751242, −4.16522985980020430832600509384, −3.12090503759730527314482094258, −2.15562329756327105277797943027, −0.928780998297197598368446726862, 0.928780998297197598368446726862, 2.15562329756327105277797943027, 3.12090503759730527314482094258, 4.16522985980020430832600509384, 4.73675341331815652463334751242, 5.31132514666122411926611035477, 5.68107150759065572925115617625, 6.60944420091150976667185096014, 7.10417645341874198812613516838, 8.074227596127163390322684530390

Graph of the $Z$-function along the critical line