Properties

Label 48.2.k.a
Level 4848
Weight 22
Character orbit 48.k
Analytic conductor 0.3830.383
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [48,2,Mod(11,48)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(48, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("48.11"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 48=243 48 = 2^{4} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 48.k (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3832819297020.383281929702
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(i)\Q(i)
Coefficient field: 12.0.163368480538624.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x122x102x8+16x68x432x2+64 x^{12} - 2x^{10} - 2x^{8} + 16x^{6} - 8x^{4} - 32x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q2β10q3+(β11+β10β1)q4+(β10β8++β3)q5+(β9β7++β2)q6+(β11+β9β5+2)q7++(β9+2β8+β7+6)q99+O(q100) q + \beta_{6} q^{2} - \beta_{10} q^{3} + (\beta_{11} + \beta_{10} - \beta_1) q^{4} + (\beta_{10} - \beta_{8} + \cdots + \beta_{3}) q^{5} + ( - \beta_{9} - \beta_{7} + \cdots + \beta_{2}) q^{6} + ( - \beta_{11} + \beta_{9} - \beta_{5} + \cdots - 2) q^{7}+ \cdots + (\beta_{9} + 2 \beta_{8} + \beta_{7} + \cdots - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q2q34q48q68q78q124q13+16q16+4q1812q198q21+16q22+24q24+10q278q28+28q304q338q34+20q36+52q99+O(q100) 12 q - 2 q^{3} - 4 q^{4} - 8 q^{6} - 8 q^{7} - 8 q^{12} - 4 q^{13} + 16 q^{16} + 4 q^{18} - 12 q^{19} - 8 q^{21} + 16 q^{22} + 24 q^{24} + 10 q^{27} - 8 q^{28} + 28 q^{30} - 4 q^{33} - 8 q^{34} + 20 q^{36}+ \cdots - 52 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x122x102x8+16x68x432x2+64 x^{12} - 2x^{10} - 2x^{8} + 16x^{6} - 8x^{4} - 32x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== (ν82ν4+4ν2+8)/8 ( \nu^{8} - 2\nu^{4} + 4\nu^{2} + 8 ) / 8 Copy content Toggle raw display
β2\beta_{2}== (ν11+2ν9+2ν7+8ν3)/32 ( -\nu^{11} + 2\nu^{9} + 2\nu^{7} + 8\nu^{3} ) / 32 Copy content Toggle raw display
β3\beta_{3}== (ν112ν92ν7+16ν58ν332ν)/32 ( \nu^{11} - 2\nu^{9} - 2\nu^{7} + 16\nu^{5} - 8\nu^{3} - 32\nu ) / 32 Copy content Toggle raw display
β4\beta_{4}== (ν11ν106ν7+10ν6+4ν512ν4+8ν332ν+64)/32 ( \nu^{11} - \nu^{10} - 6\nu^{7} + 10\nu^{6} + 4\nu^{5} - 12\nu^{4} + 8\nu^{3} - 32\nu + 64 ) / 32 Copy content Toggle raw display
β5\beta_{5}== (2ν11+ν10+8ν72ν616ν54ν424ν3+16ν2+32ν)/32 ( -2\nu^{11} + \nu^{10} + 8\nu^{7} - 2\nu^{6} - 16\nu^{5} - 4\nu^{4} - 24\nu^{3} + 16\nu^{2} + 32\nu ) / 32 Copy content Toggle raw display
β6\beta_{6}== (ν11+2ν9+10ν716ν58ν3+64ν)/32 ( -\nu^{11} + 2\nu^{9} + 10\nu^{7} - 16\nu^{5} - 8\nu^{3} + 64\nu ) / 32 Copy content Toggle raw display
β7\beta_{7}== (ν11+ν10+6ν710ν64ν5+12ν48ν3+32ν2+32ν64)/32 ( -\nu^{11} + \nu^{10} + 6\nu^{7} - 10\nu^{6} - 4\nu^{5} + 12\nu^{4} - 8\nu^{3} + 32\nu^{2} + 32\nu - 64 ) / 32 Copy content Toggle raw display
β8\beta_{8}== (ν9+2ν54ν316ν)/8 ( -\nu^{9} + 2\nu^{5} - 4\nu^{3} - 16\nu ) / 8 Copy content Toggle raw display
β9\beta_{9}== (ν11ν10+6ν7+10ν64ν512ν48ν332ν2+32ν+64)/32 ( -\nu^{11} - \nu^{10} + 6\nu^{7} + 10\nu^{6} - 4\nu^{5} - 12\nu^{4} - 8\nu^{3} - 32\nu^{2} + 32\nu + 64 ) / 32 Copy content Toggle raw display
β10\beta_{10}== (2ν11ν10+8ν7+2ν616ν5+4ν424ν316ν2+32ν)/32 ( -2\nu^{11} - \nu^{10} + 8\nu^{7} + 2\nu^{6} - 16\nu^{5} + 4\nu^{4} - 24\nu^{3} - 16\nu^{2} + 32\nu ) / 32 Copy content Toggle raw display
β11\beta_{11}== (2ν11+3ν108ν76ν6+16ν5+20ν4+24ν3+16ν232ν32)/32 ( 2\nu^{11} + 3\nu^{10} - 8\nu^{7} - 6\nu^{6} + 16\nu^{5} + 20\nu^{4} + 24\nu^{3} + 16\nu^{2} - 32\nu - 32 ) / 32 Copy content Toggle raw display
ν\nu== (β9β8+β7β6β2)/2 ( \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} - \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β7+β4 \beta_{7} + \beta_{4} Copy content Toggle raw display
ν3\nu^{3}== β10+β9+β8+β7β52β3 -\beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} - \beta_{5} - 2\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== β11+2β10+β7β5+β4+1 \beta_{11} + 2\beta_{10} + \beta_{7} - \beta_{5} + \beta_{4} + 1 Copy content Toggle raw display
ν5\nu^{5}== β9β8+β7β6+2β3+β2 \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + 2\beta_{3} + \beta_{2} Copy content Toggle raw display
ν6\nu^{6}== 2β11+2β10+2β9+2β7+4β46 2\beta_{11} + 2\beta_{10} + 2\beta_{9} + 2\beta_{7} + 4\beta_{4} - 6 Copy content Toggle raw display
ν7\nu^{7}== 2β10+4β8+6β62β5+2β2 -2\beta_{10} + 4\beta_{8} + 6\beta_{6} - 2\beta_{5} + 2\beta_{2} Copy content Toggle raw display
ν8\nu^{8}== 2β11+4β102β72β52β4+8β16 2\beta_{11} + 4\beta_{10} - 2\beta_{7} - 2\beta_{5} - 2\beta_{4} + 8\beta _1 - 6 Copy content Toggle raw display
ν9\nu^{9}== 4β1010β96β810β7+6β6+4β5+12β3+10β2 4\beta_{10} - 10\beta_{9} - 6\beta_{8} - 10\beta_{7} + 6\beta_{6} + 4\beta_{5} + 12\beta_{3} + 10\beta_{2} Copy content Toggle raw display
ν10\nu^{10}== 8β114β10+4β98β7+12β54β48 8\beta_{11} - 4\beta_{10} + 4\beta_{9} - 8\beta_{7} + 12\beta_{5} - 4\beta_{4} - 8 Copy content Toggle raw display
ν11\nu^{11}== 4β1012β9+4β812β7+24β64β5+8β38β2 -4\beta_{10} - 12\beta_{9} + 4\beta_{8} - 12\beta_{7} + 24\beta_{6} - 4\beta_{5} + 8\beta_{3} - 8\beta_{2} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/48Z)×\left(\mathbb{Z}/48\mathbb{Z}\right)^\times.

nn 1717 3131 3737
χ(n)\chi(n) 1-1 1-1 β1\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
11.1
0.204810 1.39930i
1.27715 0.607364i
−1.35164 0.416001i
1.35164 + 0.416001i
−1.27715 + 0.607364i
−0.204810 + 1.39930i
0.204810 + 1.39930i
1.27715 + 0.607364i
−1.35164 + 0.416001i
1.35164 0.416001i
−1.27715 0.607364i
−0.204810 1.39930i
−1.39930 + 0.204810i −0.814141 1.52878i 1.91611 0.573183i 2.08397 2.08397i 1.45234 + 1.97249i −1.14637 −2.56382 + 1.19449i −1.67435 + 2.48929i −2.48929 + 3.34292i
11.2 −0.607364 + 1.27715i 1.73003 + 0.0835731i −1.26222 1.55139i −0.431733 + 0.431733i −1.15749 + 2.15875i −3.10278 2.74798 0.669785i 2.98603 + 0.289169i −0.289169 0.813607i
11.3 −0.416001 1.35164i 0.966579 1.43726i −1.65389 + 1.12457i −1.57184 + 1.57184i −2.34477 0.708570i 2.24914 2.20804 + 1.76765i −1.13145 2.77846i 2.77846 + 1.47068i
11.4 0.416001 + 1.35164i −1.43726 + 0.966579i −1.65389 + 1.12457i 1.57184 1.57184i −1.90437 1.54057i 2.24914 −2.20804 1.76765i 1.13145 2.77846i 2.77846 + 1.47068i
11.5 0.607364 1.27715i 0.0835731 + 1.73003i −1.26222 1.55139i 0.431733 0.431733i 2.26027 + 0.944024i −3.10278 −2.74798 + 0.669785i −2.98603 + 0.289169i −0.289169 0.813607i
11.6 1.39930 0.204810i −1.52878 0.814141i 1.91611 0.573183i −2.08397 + 2.08397i −2.30598 0.826122i −1.14637 2.56382 1.19449i 1.67435 + 2.48929i −2.48929 + 3.34292i
35.1 −1.39930 0.204810i −0.814141 + 1.52878i 1.91611 + 0.573183i 2.08397 + 2.08397i 1.45234 1.97249i −1.14637 −2.56382 1.19449i −1.67435 2.48929i −2.48929 3.34292i
35.2 −0.607364 1.27715i 1.73003 0.0835731i −1.26222 + 1.55139i −0.431733 0.431733i −1.15749 2.15875i −3.10278 2.74798 + 0.669785i 2.98603 0.289169i −0.289169 + 0.813607i
35.3 −0.416001 + 1.35164i 0.966579 + 1.43726i −1.65389 1.12457i −1.57184 1.57184i −2.34477 + 0.708570i 2.24914 2.20804 1.76765i −1.13145 + 2.77846i 2.77846 1.47068i
35.4 0.416001 1.35164i −1.43726 0.966579i −1.65389 1.12457i 1.57184 + 1.57184i −1.90437 + 1.54057i 2.24914 −2.20804 + 1.76765i 1.13145 + 2.77846i 2.77846 1.47068i
35.5 0.607364 + 1.27715i 0.0835731 1.73003i −1.26222 + 1.55139i 0.431733 + 0.431733i 2.26027 0.944024i −3.10278 −2.74798 0.669785i −2.98603 0.289169i −0.289169 + 0.813607i
35.6 1.39930 + 0.204810i −1.52878 + 0.814141i 1.91611 + 0.573183i −2.08397 2.08397i −2.30598 + 0.826122i −1.14637 2.56382 + 1.19449i 1.67435 2.48929i −2.48929 3.34292i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
16.f odd 4 1 inner
48.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.2.k.a 12
3.b odd 2 1 inner 48.2.k.a 12
4.b odd 2 1 192.2.k.a 12
8.b even 2 1 384.2.k.b 12
8.d odd 2 1 384.2.k.a 12
12.b even 2 1 192.2.k.a 12
16.e even 4 1 192.2.k.a 12
16.e even 4 1 384.2.k.a 12
16.f odd 4 1 inner 48.2.k.a 12
16.f odd 4 1 384.2.k.b 12
24.f even 2 1 384.2.k.a 12
24.h odd 2 1 384.2.k.b 12
48.i odd 4 1 192.2.k.a 12
48.i odd 4 1 384.2.k.a 12
48.k even 4 1 inner 48.2.k.a 12
48.k even 4 1 384.2.k.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.2.k.a 12 1.a even 1 1 trivial
48.2.k.a 12 3.b odd 2 1 inner
48.2.k.a 12 16.f odd 4 1 inner
48.2.k.a 12 48.k even 4 1 inner
192.2.k.a 12 4.b odd 2 1
192.2.k.a 12 12.b even 2 1
192.2.k.a 12 16.e even 4 1
192.2.k.a 12 48.i odd 4 1
384.2.k.a 12 8.d odd 2 1
384.2.k.a 12 16.e even 4 1
384.2.k.a 12 24.f even 2 1
384.2.k.a 12 48.i odd 4 1
384.2.k.b 12 8.b even 2 1
384.2.k.b 12 16.f odd 4 1
384.2.k.b 12 24.h odd 2 1
384.2.k.b 12 48.k even 4 1

Hecke kernels

This newform subspace is the entire newspace S2new(48,[χ])S_{2}^{\mathrm{new}}(48, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+2T10++64 T^{12} + 2 T^{10} + \cdots + 64 Copy content Toggle raw display
33 T12+2T11++729 T^{12} + 2 T^{11} + \cdots + 729 Copy content Toggle raw display
55 T12+100T8++256 T^{12} + 100 T^{8} + \cdots + 256 Copy content Toggle raw display
77 (T3+2T26T8)4 (T^{3} + 2 T^{2} - 6 T - 8)^{4} Copy content Toggle raw display
1111 T12+356T8++65536 T^{12} + 356 T^{8} + \cdots + 65536 Copy content Toggle raw display
1313 (T6+2T5+2T4++8)2 (T^{6} + 2 T^{5} + 2 T^{4} + \cdots + 8)^{2} Copy content Toggle raw display
1717 (T6+40T4++512)2 (T^{6} + 40 T^{4} + \cdots + 512)^{2} Copy content Toggle raw display
1919 (T6+6T5++128)2 (T^{6} + 6 T^{5} + \cdots + 128)^{2} Copy content Toggle raw display
2323 (T6+52T4++2048)2 (T^{6} + 52 T^{4} + \cdots + 2048)^{2} Copy content Toggle raw display
2929 T12+1316T8++71639296 T^{12} + 1316 T^{8} + \cdots + 71639296 Copy content Toggle raw display
3131 (T6+36T4++16)2 (T^{6} + 36 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
3737 (T6+2T5++2312)2 (T^{6} + 2 T^{5} + \cdots + 2312)^{2} Copy content Toggle raw display
4141 (T6108T4+128)2 (T^{6} - 108 T^{4} + \cdots - 128)^{2} Copy content Toggle raw display
4343 (T66T5++128)2 (T^{6} - 6 T^{5} + \cdots + 128)^{2} Copy content Toggle raw display
4747 (T6112T4+32768)2 (T^{6} - 112 T^{4} + \cdots - 32768)^{2} Copy content Toggle raw display
5353 T12+24356T8++256 T^{12} + 24356 T^{8} + \cdots + 256 Copy content Toggle raw display
5959 T12+27748T8++4096 T^{12} + 27748 T^{8} + \cdots + 4096 Copy content Toggle raw display
6161 (T66T5++95048)2 (T^{6} - 6 T^{5} + \cdots + 95048)^{2} Copy content Toggle raw display
6767 (T614T5++32)2 (T^{6} - 14 T^{5} + \cdots + 32)^{2} Copy content Toggle raw display
7171 (T6+196T4++147968)2 (T^{6} + 196 T^{4} + \cdots + 147968)^{2} Copy content Toggle raw display
7373 (T6+272T4++369664)2 (T^{6} + 272 T^{4} + \cdots + 369664)^{2} Copy content Toggle raw display
7979 (T6+116T4++8464)2 (T^{6} + 116 T^{4} + \cdots + 8464)^{2} Copy content Toggle raw display
8383 T12++5473632256 T^{12} + \cdots + 5473632256 Copy content Toggle raw display
8989 (T6212T4+2048)2 (T^{6} - 212 T^{4} + \cdots - 2048)^{2} Copy content Toggle raw display
9797 (T3+2T2+608)4 (T^{3} + 2 T^{2} + \cdots - 608)^{4} Copy content Toggle raw display
show more
show less