gp: [N,k,chi] = [48,2,Mod(11,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 2 x 10 − 2 x 8 + 16 x 6 − 8 x 4 − 32 x 2 + 64 x^{12} - 2x^{10} - 2x^{8} + 16x^{6} - 8x^{4} - 32x^{2} + 64 x 1 2 − 2 x 1 0 − 2 x 8 + 1 6 x 6 − 8 x 4 − 3 2 x 2 + 6 4
x^12 - 2*x^10 - 2*x^8 + 16*x^6 - 8*x^4 - 32*x^2 + 64
:
β 1 \beta_{1} β 1 = = =
( ν 8 − 2 ν 4 + 4 ν 2 + 8 ) / 8 ( \nu^{8} - 2\nu^{4} + 4\nu^{2} + 8 ) / 8 ( ν 8 − 2 ν 4 + 4 ν 2 + 8 ) / 8
(v^8 - 2*v^4 + 4*v^2 + 8) / 8
β 2 \beta_{2} β 2 = = =
( − ν 11 + 2 ν 9 + 2 ν 7 + 8 ν 3 ) / 32 ( -\nu^{11} + 2\nu^{9} + 2\nu^{7} + 8\nu^{3} ) / 32 ( − ν 1 1 + 2 ν 9 + 2 ν 7 + 8 ν 3 ) / 3 2
(-v^11 + 2*v^9 + 2*v^7 + 8*v^3) / 32
β 3 \beta_{3} β 3 = = =
( ν 11 − 2 ν 9 − 2 ν 7 + 16 ν 5 − 8 ν 3 − 32 ν ) / 32 ( \nu^{11} - 2\nu^{9} - 2\nu^{7} + 16\nu^{5} - 8\nu^{3} - 32\nu ) / 32 ( ν 1 1 − 2 ν 9 − 2 ν 7 + 1 6 ν 5 − 8 ν 3 − 3 2 ν ) / 3 2
(v^11 - 2*v^9 - 2*v^7 + 16*v^5 - 8*v^3 - 32*v) / 32
β 4 \beta_{4} β 4 = = =
( ν 11 − ν 10 − 6 ν 7 + 10 ν 6 + 4 ν 5 − 12 ν 4 + 8 ν 3 − 32 ν + 64 ) / 32 ( \nu^{11} - \nu^{10} - 6\nu^{7} + 10\nu^{6} + 4\nu^{5} - 12\nu^{4} + 8\nu^{3} - 32\nu + 64 ) / 32 ( ν 1 1 − ν 1 0 − 6 ν 7 + 1 0 ν 6 + 4 ν 5 − 1 2 ν 4 + 8 ν 3 − 3 2 ν + 6 4 ) / 3 2
(v^11 - v^10 - 6*v^7 + 10*v^6 + 4*v^5 - 12*v^4 + 8*v^3 - 32*v + 64) / 32
β 5 \beta_{5} β 5 = = =
( − 2 ν 11 + ν 10 + 8 ν 7 − 2 ν 6 − 16 ν 5 − 4 ν 4 − 24 ν 3 + 16 ν 2 + 32 ν ) / 32 ( -2\nu^{11} + \nu^{10} + 8\nu^{7} - 2\nu^{6} - 16\nu^{5} - 4\nu^{4} - 24\nu^{3} + 16\nu^{2} + 32\nu ) / 32 ( − 2 ν 1 1 + ν 1 0 + 8 ν 7 − 2 ν 6 − 1 6 ν 5 − 4 ν 4 − 2 4 ν 3 + 1 6 ν 2 + 3 2 ν ) / 3 2
(-2*v^11 + v^10 + 8*v^7 - 2*v^6 - 16*v^5 - 4*v^4 - 24*v^3 + 16*v^2 + 32*v) / 32
β 6 \beta_{6} β 6 = = =
( − ν 11 + 2 ν 9 + 10 ν 7 − 16 ν 5 − 8 ν 3 + 64 ν ) / 32 ( -\nu^{11} + 2\nu^{9} + 10\nu^{7} - 16\nu^{5} - 8\nu^{3} + 64\nu ) / 32 ( − ν 1 1 + 2 ν 9 + 1 0 ν 7 − 1 6 ν 5 − 8 ν 3 + 6 4 ν ) / 3 2
(-v^11 + 2*v^9 + 10*v^7 - 16*v^5 - 8*v^3 + 64*v) / 32
β 7 \beta_{7} β 7 = = =
( − ν 11 + ν 10 + 6 ν 7 − 10 ν 6 − 4 ν 5 + 12 ν 4 − 8 ν 3 + 32 ν 2 + 32 ν − 64 ) / 32 ( -\nu^{11} + \nu^{10} + 6\nu^{7} - 10\nu^{6} - 4\nu^{5} + 12\nu^{4} - 8\nu^{3} + 32\nu^{2} + 32\nu - 64 ) / 32 ( − ν 1 1 + ν 1 0 + 6 ν 7 − 1 0 ν 6 − 4 ν 5 + 1 2 ν 4 − 8 ν 3 + 3 2 ν 2 + 3 2 ν − 6 4 ) / 3 2
(-v^11 + v^10 + 6*v^7 - 10*v^6 - 4*v^5 + 12*v^4 - 8*v^3 + 32*v^2 + 32*v - 64) / 32
β 8 \beta_{8} β 8 = = =
( − ν 9 + 2 ν 5 − 4 ν 3 − 16 ν ) / 8 ( -\nu^{9} + 2\nu^{5} - 4\nu^{3} - 16\nu ) / 8 ( − ν 9 + 2 ν 5 − 4 ν 3 − 1 6 ν ) / 8
(-v^9 + 2*v^5 - 4*v^3 - 16*v) / 8
β 9 \beta_{9} β 9 = = =
( − ν 11 − ν 10 + 6 ν 7 + 10 ν 6 − 4 ν 5 − 12 ν 4 − 8 ν 3 − 32 ν 2 + 32 ν + 64 ) / 32 ( -\nu^{11} - \nu^{10} + 6\nu^{7} + 10\nu^{6} - 4\nu^{5} - 12\nu^{4} - 8\nu^{3} - 32\nu^{2} + 32\nu + 64 ) / 32 ( − ν 1 1 − ν 1 0 + 6 ν 7 + 1 0 ν 6 − 4 ν 5 − 1 2 ν 4 − 8 ν 3 − 3 2 ν 2 + 3 2 ν + 6 4 ) / 3 2
(-v^11 - v^10 + 6*v^7 + 10*v^6 - 4*v^5 - 12*v^4 - 8*v^3 - 32*v^2 + 32*v + 64) / 32
β 10 \beta_{10} β 1 0 = = =
( − 2 ν 11 − ν 10 + 8 ν 7 + 2 ν 6 − 16 ν 5 + 4 ν 4 − 24 ν 3 − 16 ν 2 + 32 ν ) / 32 ( -2\nu^{11} - \nu^{10} + 8\nu^{7} + 2\nu^{6} - 16\nu^{5} + 4\nu^{4} - 24\nu^{3} - 16\nu^{2} + 32\nu ) / 32 ( − 2 ν 1 1 − ν 1 0 + 8 ν 7 + 2 ν 6 − 1 6 ν 5 + 4 ν 4 − 2 4 ν 3 − 1 6 ν 2 + 3 2 ν ) / 3 2
(-2*v^11 - v^10 + 8*v^7 + 2*v^6 - 16*v^5 + 4*v^4 - 24*v^3 - 16*v^2 + 32*v) / 32
β 11 \beta_{11} β 1 1 = = =
( 2 ν 11 + 3 ν 10 − 8 ν 7 − 6 ν 6 + 16 ν 5 + 20 ν 4 + 24 ν 3 + 16 ν 2 − 32 ν − 32 ) / 32 ( 2\nu^{11} + 3\nu^{10} - 8\nu^{7} - 6\nu^{6} + 16\nu^{5} + 20\nu^{4} + 24\nu^{3} + 16\nu^{2} - 32\nu - 32 ) / 32 ( 2 ν 1 1 + 3 ν 1 0 − 8 ν 7 − 6 ν 6 + 1 6 ν 5 + 2 0 ν 4 + 2 4 ν 3 + 1 6 ν 2 − 3 2 ν − 3 2 ) / 3 2
(2*v^11 + 3*v^10 - 8*v^7 - 6*v^6 + 16*v^5 + 20*v^4 + 24*v^3 + 16*v^2 - 32*v - 32) / 32
ν \nu ν = = =
( β 9 − β 8 + β 7 − β 6 − β 2 ) / 2 ( \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} - \beta_{2} ) / 2 ( β 9 − β 8 + β 7 − β 6 − β 2 ) / 2
(b9 - b8 + b7 - b6 - b2) / 2
ν 2 \nu^{2} ν 2 = = =
β 7 + β 4 \beta_{7} + \beta_{4} β 7 + β 4
b7 + b4
ν 3 \nu^{3} ν 3 = = =
− β 10 + β 9 + β 8 + β 7 − β 5 − 2 β 3 -\beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} - \beta_{5} - 2\beta_{3} − β 1 0 + β 9 + β 8 + β 7 − β 5 − 2 β 3
-b10 + b9 + b8 + b7 - b5 - 2*b3
ν 4 \nu^{4} ν 4 = = =
β 11 + 2 β 10 + β 7 − β 5 + β 4 + 1 \beta_{11} + 2\beta_{10} + \beta_{7} - \beta_{5} + \beta_{4} + 1 β 1 1 + 2 β 1 0 + β 7 − β 5 + β 4 + 1
b11 + 2*b10 + b7 - b5 + b4 + 1
ν 5 \nu^{5} ν 5 = = =
β 9 − β 8 + β 7 − β 6 + 2 β 3 + β 2 \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + 2\beta_{3} + \beta_{2} β 9 − β 8 + β 7 − β 6 + 2 β 3 + β 2
b9 - b8 + b7 - b6 + 2*b3 + b2
ν 6 \nu^{6} ν 6 = = =
2 β 11 + 2 β 10 + 2 β 9 + 2 β 7 + 4 β 4 − 6 2\beta_{11} + 2\beta_{10} + 2\beta_{9} + 2\beta_{7} + 4\beta_{4} - 6 2 β 1 1 + 2 β 1 0 + 2 β 9 + 2 β 7 + 4 β 4 − 6
2*b11 + 2*b10 + 2*b9 + 2*b7 + 4*b4 - 6
ν 7 \nu^{7} ν 7 = = =
− 2 β 10 + 4 β 8 + 6 β 6 − 2 β 5 + 2 β 2 -2\beta_{10} + 4\beta_{8} + 6\beta_{6} - 2\beta_{5} + 2\beta_{2} − 2 β 1 0 + 4 β 8 + 6 β 6 − 2 β 5 + 2 β 2
-2*b10 + 4*b8 + 6*b6 - 2*b5 + 2*b2
ν 8 \nu^{8} ν 8 = = =
2 β 11 + 4 β 10 − 2 β 7 − 2 β 5 − 2 β 4 + 8 β 1 − 6 2\beta_{11} + 4\beta_{10} - 2\beta_{7} - 2\beta_{5} - 2\beta_{4} + 8\beta _1 - 6 2 β 1 1 + 4 β 1 0 − 2 β 7 − 2 β 5 − 2 β 4 + 8 β 1 − 6
2*b11 + 4*b10 - 2*b7 - 2*b5 - 2*b4 + 8*b1 - 6
ν 9 \nu^{9} ν 9 = = =
4 β 10 − 10 β 9 − 6 β 8 − 10 β 7 + 6 β 6 + 4 β 5 + 12 β 3 + 10 β 2 4\beta_{10} - 10\beta_{9} - 6\beta_{8} - 10\beta_{7} + 6\beta_{6} + 4\beta_{5} + 12\beta_{3} + 10\beta_{2} 4 β 1 0 − 1 0 β 9 − 6 β 8 − 1 0 β 7 + 6 β 6 + 4 β 5 + 1 2 β 3 + 1 0 β 2
4*b10 - 10*b9 - 6*b8 - 10*b7 + 6*b6 + 4*b5 + 12*b3 + 10*b2
ν 10 \nu^{10} ν 1 0 = = =
8 β 11 − 4 β 10 + 4 β 9 − 8 β 7 + 12 β 5 − 4 β 4 − 8 8\beta_{11} - 4\beta_{10} + 4\beta_{9} - 8\beta_{7} + 12\beta_{5} - 4\beta_{4} - 8 8 β 1 1 − 4 β 1 0 + 4 β 9 − 8 β 7 + 1 2 β 5 − 4 β 4 − 8
8*b11 - 4*b10 + 4*b9 - 8*b7 + 12*b5 - 4*b4 - 8
ν 11 \nu^{11} ν 1 1 = = =
− 4 β 10 − 12 β 9 + 4 β 8 − 12 β 7 + 24 β 6 − 4 β 5 + 8 β 3 − 8 β 2 -4\beta_{10} - 12\beta_{9} + 4\beta_{8} - 12\beta_{7} + 24\beta_{6} - 4\beta_{5} + 8\beta_{3} - 8\beta_{2} − 4 β 1 0 − 1 2 β 9 + 4 β 8 − 1 2 β 7 + 2 4 β 6 − 4 β 5 + 8 β 3 − 8 β 2
-4*b10 - 12*b9 + 4*b8 - 12*b7 + 24*b6 - 4*b5 + 8*b3 - 8*b2
Character values
We give the values of χ \chi χ on generators for ( Z / 48 Z ) × \left(\mathbb{Z}/48\mathbb{Z}\right)^\times ( Z / 4 8 Z ) × .
n n n
17 17 1 7
31 31 3 1
37 37 3 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
β 1 \beta_{1} β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 2 n e w ( 48 , [ χ ] ) S_{2}^{\mathrm{new}}(48, [\chi]) S 2 n e w ( 4 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 + 2 T 10 + ⋯ + 64 T^{12} + 2 T^{10} + \cdots + 64 T 1 2 + 2 T 1 0 + ⋯ + 6 4
T^12 + 2*T^10 - 2*T^8 - 16*T^6 - 8*T^4 + 32*T^2 + 64
3 3 3
T 12 + 2 T 11 + ⋯ + 729 T^{12} + 2 T^{11} + \cdots + 729 T 1 2 + 2 T 1 1 + ⋯ + 7 2 9
T^12 + 2*T^11 + 2*T^10 - 2*T^9 - 5*T^8 - 20*T^7 - 28*T^6 - 60*T^5 - 45*T^4 - 54*T^3 + 162*T^2 + 486*T + 729
5 5 5
T 12 + 100 T 8 + ⋯ + 256 T^{12} + 100 T^{8} + \cdots + 256 T 1 2 + 1 0 0 T 8 + ⋯ + 2 5 6
T^12 + 100*T^8 + 1856*T^4 + 256
7 7 7
( T 3 + 2 T 2 − 6 T − 8 ) 4 (T^{3} + 2 T^{2} - 6 T - 8)^{4} ( T 3 + 2 T 2 − 6 T − 8 ) 4
(T^3 + 2*T^2 - 6*T - 8)^4
11 11 1 1
T 12 + 356 T 8 + ⋯ + 65536 T^{12} + 356 T^{8} + \cdots + 65536 T 1 2 + 3 5 6 T 8 + ⋯ + 6 5 5 3 6
T^12 + 356*T^8 + 12288*T^4 + 65536
13 13 1 3
( T 6 + 2 T 5 + 2 T 4 + ⋯ + 8 ) 2 (T^{6} + 2 T^{5} + 2 T^{4} + \cdots + 8)^{2} ( T 6 + 2 T 5 + 2 T 4 + ⋯ + 8 ) 2
(T^6 + 2*T^5 + 2*T^4 - 32*T^3 + 196*T^2 - 56*T + 8)^2
17 17 1 7
( T 6 + 40 T 4 + ⋯ + 512 ) 2 (T^{6} + 40 T^{4} + \cdots + 512)^{2} ( T 6 + 4 0 T 4 + ⋯ + 5 1 2 ) 2
(T^6 + 40*T^4 + 288*T^2 + 512)^2
19 19 1 9
( T 6 + 6 T 5 + ⋯ + 128 ) 2 (T^{6} + 6 T^{5} + \cdots + 128)^{2} ( T 6 + 6 T 5 + ⋯ + 1 2 8 ) 2
(T^6 + 6*T^5 + 18*T^4 - 32*T^3 + 64*T^2 + 128*T + 128)^2
23 23 2 3
( T 6 + 52 T 4 + ⋯ + 2048 ) 2 (T^{6} + 52 T^{4} + \cdots + 2048)^{2} ( T 6 + 5 2 T 4 + ⋯ + 2 0 4 8 ) 2
(T^6 + 52*T^4 + 640*T^2 + 2048)^2
29 29 2 9
T 12 + 1316 T 8 + ⋯ + 71639296 T^{12} + 1316 T^{8} + \cdots + 71639296 T 1 2 + 1 3 1 6 T 8 + ⋯ + 7 1 6 3 9 2 9 6
T^12 + 1316*T^8 + 548160*T^4 + 71639296
31 31 3 1
( T 6 + 36 T 4 + ⋯ + 16 ) 2 (T^{6} + 36 T^{4} + \cdots + 16)^{2} ( T 6 + 3 6 T 4 + ⋯ + 1 6 ) 2
(T^6 + 36*T^4 + 68*T^2 + 16)^2
37 37 3 7
( T 6 + 2 T 5 + ⋯ + 2312 ) 2 (T^{6} + 2 T^{5} + \cdots + 2312)^{2} ( T 6 + 2 T 5 + ⋯ + 2 3 1 2 ) 2
(T^6 + 2*T^5 + 2*T^4 - 128*T^3 + 900*T^2 - 2040*T + 2312)^2
41 41 4 1
( T 6 − 108 T 4 + ⋯ − 128 ) 2 (T^{6} - 108 T^{4} + \cdots - 128)^{2} ( T 6 − 1 0 8 T 4 + ⋯ − 1 2 8 ) 2
(T^6 - 108*T^4 + 384*T^2 - 128)^2
43 43 4 3
( T 6 − 6 T 5 + ⋯ + 128 ) 2 (T^{6} - 6 T^{5} + \cdots + 128)^{2} ( T 6 − 6 T 5 + ⋯ + 1 2 8 ) 2
(T^6 - 6*T^5 + 18*T^4 + 32*T^3 + 64*T^2 - 128*T + 128)^2
47 47 4 7
( T 6 − 112 T 4 + ⋯ − 32768 ) 2 (T^{6} - 112 T^{4} + \cdots - 32768)^{2} ( T 6 − 1 1 2 T 4 + ⋯ − 3 2 7 6 8 ) 2
(T^6 - 112*T^4 + 3712*T^2 - 32768)^2
53 53 5 3
T 12 + 24356 T 8 + ⋯ + 256 T^{12} + 24356 T^{8} + \cdots + 256 T 1 2 + 2 4 3 5 6 T 8 + ⋯ + 2 5 6
T^12 + 24356*T^8 + 87360*T^4 + 256
59 59 5 9
T 12 + 27748 T 8 + ⋯ + 4096 T^{12} + 27748 T^{8} + \cdots + 4096 T 1 2 + 2 7 7 4 8 T 8 + ⋯ + 4 0 9 6
T^12 + 27748*T^8 + 24418304*T^4 + 4096
61 61 6 1
( T 6 − 6 T 5 + ⋯ + 95048 ) 2 (T^{6} - 6 T^{5} + \cdots + 95048)^{2} ( T 6 − 6 T 5 + ⋯ + 9 5 0 4 8 ) 2
(T^6 - 6*T^5 + 18*T^4 - 64*T^3 + 3844*T^2 - 27032*T + 95048)^2
67 67 6 7
( T 6 − 14 T 5 + ⋯ + 32 ) 2 (T^{6} - 14 T^{5} + \cdots + 32)^{2} ( T 6 − 1 4 T 5 + ⋯ + 3 2 ) 2
(T^6 - 14*T^5 + 98*T^4 + 232*T^3 + 256*T^2 + 128*T + 32)^2
71 71 7 1
( T 6 + 196 T 4 + ⋯ + 147968 ) 2 (T^{6} + 196 T^{4} + \cdots + 147968)^{2} ( T 6 + 1 9 6 T 4 + ⋯ + 1 4 7 9 6 8 ) 2
(T^6 + 196*T^4 + 10176*T^2 + 147968)^2
73 73 7 3
( T 6 + 272 T 4 + ⋯ + 369664 ) 2 (T^{6} + 272 T^{4} + \cdots + 369664)^{2} ( T 6 + 2 7 2 T 4 + ⋯ + 3 6 9 6 6 4 ) 2
(T^6 + 272*T^4 + 18496*T^2 + 369664)^2
79 79 7 9
( T 6 + 116 T 4 + ⋯ + 8464 ) 2 (T^{6} + 116 T^{4} + \cdots + 8464)^{2} ( T 6 + 1 1 6 T 4 + ⋯ + 8 4 6 4 ) 2
(T^6 + 116*T^4 + 1956*T^2 + 8464)^2
83 83 8 3
T 12 + ⋯ + 5473632256 T^{12} + \cdots + 5473632256 T 1 2 + ⋯ + 5 4 7 3 6 3 2 2 5 6
T^12 + 19044*T^8 + 32944128*T^4 + 5473632256
89 89 8 9
( T 6 − 212 T 4 + ⋯ − 2048 ) 2 (T^{6} - 212 T^{4} + \cdots - 2048)^{2} ( T 6 − 2 1 2 T 4 + ⋯ − 2 0 4 8 ) 2
(T^6 - 212*T^4 + 8576*T^2 - 2048)^2
97 97 9 7
( T 3 + 2 T 2 + ⋯ − 608 ) 4 (T^{3} + 2 T^{2} + \cdots - 608)^{4} ( T 3 + 2 T 2 + ⋯ − 6 0 8 ) 4
(T^3 + 2*T^2 - 128*T - 608)^4
show more
show less