Properties

Label 48.2.k.a.11.2
Level $48$
Weight $2$
Character 48.11
Analytic conductor $0.383$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.163368480538624.2
Defining polynomial: \(x^{12} - 2 x^{10} - 2 x^{8} + 16 x^{6} - 8 x^{4} - 32 x^{2} + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 11.2
Root \(1.27715 - 0.607364i\) of defining polynomial
Character \(\chi\) \(=\) 48.11
Dual form 48.2.k.a.35.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.607364 + 1.27715i) q^{2} +(1.73003 + 0.0835731i) q^{3} +(-1.26222 - 1.55139i) q^{4} +(-0.431733 + 0.431733i) q^{5} +(-1.15749 + 2.15875i) q^{6} -3.10278 q^{7} +(2.74798 - 0.669785i) q^{8} +(2.98603 + 0.289169i) q^{9} +O(q^{10})\) \(q+(-0.607364 + 1.27715i) q^{2} +(1.73003 + 0.0835731i) q^{3} +(-1.26222 - 1.55139i) q^{4} +(-0.431733 + 0.431733i) q^{5} +(-1.15749 + 2.15875i) q^{6} -3.10278 q^{7} +(2.74798 - 0.669785i) q^{8} +(2.98603 + 0.289169i) q^{9} +(-0.289169 - 0.813607i) q^{10} +(-2.98603 - 2.98603i) q^{11} +(-2.05403 - 2.78944i) q^{12} +(2.10278 - 2.10278i) q^{13} +(1.88451 - 3.96271i) q^{14} +(-0.782994 + 0.710831i) q^{15} +(-0.813607 + 3.91638i) q^{16} +2.42945i q^{17} +(-2.18292 + 3.63798i) q^{18} +(-0.710831 - 0.710831i) q^{19} +(1.21473 + 0.124844i) q^{20} +(-5.36790 - 0.259309i) q^{21} +(5.62721 - 2.00000i) q^{22} +5.97206i q^{23} +(4.81007 - 0.929094i) q^{24} +4.62721i q^{25} +(1.40841 + 3.96271i) q^{26} +(5.14177 + 0.749823i) q^{27} +(3.91638 + 4.81361i) q^{28} +(-2.86119 - 2.86119i) q^{29} +(-0.432276 - 1.43173i) q^{30} -0.524438i q^{31} +(-4.50765 - 3.41776i) q^{32} +(-4.91638 - 5.41549i) q^{33} +(-3.10278 - 1.47556i) q^{34} +(1.33957 - 1.33957i) q^{35} +(-3.32041 - 4.99749i) q^{36} +(1.52444 + 1.52444i) q^{37} +(1.33957 - 0.476105i) q^{38} +(3.81361 - 3.46214i) q^{39} +(-0.897225 + 1.47556i) q^{40} -1.81568 q^{41} +(3.59145 - 6.69812i) q^{42} +(0.710831 - 0.710831i) q^{43} +(-0.863466 + 8.40152i) q^{44} +(-1.41401 + 1.16432i) q^{45} +(-7.62721 - 3.62721i) q^{46} +7.53805 q^{47} +(-1.73487 + 6.70748i) q^{48} +2.62721 q^{49} +(-5.90964 - 2.81040i) q^{50} +(-0.203037 + 4.20304i) q^{51} +(-5.91638 - 0.608056i) q^{52} +(8.83325 - 8.83325i) q^{53} +(-4.08056 + 6.11139i) q^{54} +2.57834 q^{55} +(-8.52636 + 2.07819i) q^{56} +(-1.17036 - 1.28917i) q^{57} +(5.39194 - 1.91638i) q^{58} +(0.0804722 + 0.0804722i) q^{59} +(2.09108 + 0.317502i) q^{60} +(-5.72999 + 5.72999i) q^{61} +(0.669785 + 0.318525i) q^{62} +(-9.26498 - 0.897225i) q^{63} +(7.10278 - 3.68111i) q^{64} +1.81568i q^{65} +(9.90241 - 2.98978i) q^{66} +(-0.391944 - 0.391944i) q^{67} +(3.76903 - 3.06650i) q^{68} +(-0.499104 + 10.3319i) q^{69} +(0.897225 + 2.52444i) q^{70} -5.01985i q^{71} +(8.39923 - 1.20537i) q^{72} -13.4600i q^{73} +(-2.87282 + 1.02105i) q^{74} +(-0.386711 + 8.00523i) q^{75} +(-0.205550 + 2.00000i) q^{76} +(9.26498 + 9.26498i) q^{77} +(2.10542 + 6.97332i) q^{78} -3.47556i q^{79} +(-1.33957 - 2.04209i) q^{80} +(8.83276 + 1.72693i) q^{81} +(1.10278 - 2.31889i) q^{82} +(-4.55202 + 4.55202i) q^{83} +(6.37318 + 8.65500i) q^{84} +(-1.04888 - 1.04888i) q^{85} +(0.476105 + 1.33957i) q^{86} +(-4.71083 - 5.18907i) q^{87} +(-10.2056 - 6.20555i) q^{88} -12.5579 q^{89} +(-0.628197 - 2.51307i) q^{90} +(-6.52444 + 6.52444i) q^{91} +(9.26498 - 7.53805i) q^{92} +(0.0438289 - 0.907295i) q^{93} +(-4.57834 + 9.62721i) q^{94} +0.613779 q^{95} +(-7.51275 - 6.28956i) q^{96} -8.67609 q^{97} +(-1.59567 + 3.35534i) q^{98} +(-8.05292 - 9.77985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 4 q^{4} - 8 q^{6} - 8 q^{7} + O(q^{10}) \) \( 12 q - 2 q^{3} - 4 q^{4} - 8 q^{6} - 8 q^{7} - 8 q^{12} - 4 q^{13} + 16 q^{16} + 4 q^{18} - 12 q^{19} - 8 q^{21} + 16 q^{22} + 24 q^{24} + 10 q^{27} - 8 q^{28} + 28 q^{30} - 4 q^{33} - 8 q^{34} + 20 q^{36} - 4 q^{37} + 20 q^{39} - 40 q^{40} - 24 q^{42} + 12 q^{43} - 12 q^{45} - 40 q^{46} - 48 q^{48} - 20 q^{49} + 24 q^{51} - 16 q^{52} - 52 q^{54} + 24 q^{55} + 32 q^{58} - 16 q^{60} + 12 q^{61} + 56 q^{64} + 28 q^{66} + 28 q^{67} + 4 q^{69} + 40 q^{70} + 40 q^{72} - 34 q^{75} + 56 q^{76} + 60 q^{78} - 4 q^{81} - 16 q^{82} + 16 q^{84} + 32 q^{85} - 60 q^{87} - 64 q^{88} - 16 q^{90} - 56 q^{91} + 28 q^{93} - 48 q^{94} - 56 q^{96} - 8 q^{97} - 52 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.607364 + 1.27715i −0.429471 + 0.903081i
\(3\) 1.73003 + 0.0835731i 0.998835 + 0.0482510i
\(4\) −1.26222 1.55139i −0.631109 0.775694i
\(5\) −0.431733 + 0.431733i −0.193077 + 0.193077i −0.797024 0.603947i \(-0.793594\pi\)
0.603947 + 0.797024i \(0.293594\pi\)
\(6\) −1.15749 + 2.15875i −0.472545 + 0.881306i
\(7\) −3.10278 −1.17274 −0.586369 0.810044i \(-0.699443\pi\)
−0.586369 + 0.810044i \(0.699443\pi\)
\(8\) 2.74798 0.669785i 0.971557 0.236805i
\(9\) 2.98603 + 0.289169i 0.995344 + 0.0963895i
\(10\) −0.289169 0.813607i −0.0914431 0.257285i
\(11\) −2.98603 2.98603i −0.900322 0.900322i 0.0951415 0.995464i \(-0.469670\pi\)
−0.995464 + 0.0951415i \(0.969670\pi\)
\(12\) −2.05403 2.78944i −0.592946 0.805242i
\(13\) 2.10278 2.10278i 0.583205 0.583205i −0.352578 0.935783i \(-0.614695\pi\)
0.935783 + 0.352578i \(0.114695\pi\)
\(14\) 1.88451 3.96271i 0.503657 1.05908i
\(15\) −0.782994 + 0.710831i −0.202168 + 0.183536i
\(16\) −0.813607 + 3.91638i −0.203402 + 0.979095i
\(17\) 2.42945i 0.589229i 0.955616 + 0.294615i \(0.0951913\pi\)
−0.955616 + 0.294615i \(0.904809\pi\)
\(18\) −2.18292 + 3.63798i −0.514519 + 0.857479i
\(19\) −0.710831 0.710831i −0.163076 0.163076i 0.620852 0.783928i \(-0.286787\pi\)
−0.783928 + 0.620852i \(0.786787\pi\)
\(20\) 1.21473 + 0.124844i 0.271621 + 0.0279159i
\(21\) −5.36790 0.259309i −1.17137 0.0565858i
\(22\) 5.62721 2.00000i 1.19973 0.426401i
\(23\) 5.97206i 1.24526i 0.782516 + 0.622631i \(0.213936\pi\)
−0.782516 + 0.622631i \(0.786064\pi\)
\(24\) 4.81007 0.929094i 0.981852 0.189651i
\(25\) 4.62721i 0.925443i
\(26\) 1.40841 + 3.96271i 0.276212 + 0.777151i
\(27\) 5.14177 + 0.749823i 0.989533 + 0.144304i
\(28\) 3.91638 + 4.81361i 0.740127 + 0.909686i
\(29\) −2.86119 2.86119i −0.531309 0.531309i 0.389653 0.920962i \(-0.372595\pi\)
−0.920962 + 0.389653i \(0.872595\pi\)
\(30\) −0.432276 1.43173i −0.0789224 0.261398i
\(31\) 0.524438i 0.0941918i −0.998890 0.0470959i \(-0.985003\pi\)
0.998890 0.0470959i \(-0.0149966\pi\)
\(32\) −4.50765 3.41776i −0.796847 0.604181i
\(33\) −4.91638 5.41549i −0.855832 0.942715i
\(34\) −3.10278 1.47556i −0.532122 0.253057i
\(35\) 1.33957 1.33957i 0.226429 0.226429i
\(36\) −3.32041 4.99749i −0.553402 0.832914i
\(37\) 1.52444 + 1.52444i 0.250616 + 0.250616i 0.821223 0.570607i \(-0.193292\pi\)
−0.570607 + 0.821223i \(0.693292\pi\)
\(38\) 1.33957 0.476105i 0.217307 0.0772344i
\(39\) 3.81361 3.46214i 0.610666 0.554385i
\(40\) −0.897225 + 1.47556i −0.141864 + 0.233307i
\(41\) −1.81568 −0.283561 −0.141780 0.989898i \(-0.545283\pi\)
−0.141780 + 0.989898i \(0.545283\pi\)
\(42\) 3.59145 6.69812i 0.554172 1.03354i
\(43\) 0.710831 0.710831i 0.108401 0.108401i −0.650826 0.759227i \(-0.725577\pi\)
0.759227 + 0.650826i \(0.225577\pi\)
\(44\) −0.863466 + 8.40152i −0.130172 + 1.26658i
\(45\) −1.41401 + 1.16432i −0.210788 + 0.173567i
\(46\) −7.62721 3.62721i −1.12457 0.534803i
\(47\) 7.53805 1.09954 0.549769 0.835317i \(-0.314716\pi\)
0.549769 + 0.835317i \(0.314716\pi\)
\(48\) −1.73487 + 6.70748i −0.250407 + 0.968141i
\(49\) 2.62721 0.375316
\(50\) −5.90964 2.81040i −0.835749 0.397451i
\(51\) −0.203037 + 4.20304i −0.0284309 + 0.588543i
\(52\) −5.91638 0.608056i −0.820455 0.0843223i
\(53\) 8.83325 8.83325i 1.21334 1.21334i 0.243419 0.969921i \(-0.421731\pi\)
0.969921 0.243419i \(-0.0782690\pi\)
\(54\) −4.08056 + 6.11139i −0.555294 + 0.831654i
\(55\) 2.57834 0.347663
\(56\) −8.52636 + 2.07819i −1.13938 + 0.277710i
\(57\) −1.17036 1.28917i −0.155017 0.170755i
\(58\) 5.39194 1.91638i 0.707997 0.251633i
\(59\) 0.0804722 + 0.0804722i 0.0104766 + 0.0104766i 0.712326 0.701849i \(-0.247642\pi\)
−0.701849 + 0.712326i \(0.747642\pi\)
\(60\) 2.09108 + 0.317502i 0.269958 + 0.0409894i
\(61\) −5.72999 + 5.72999i −0.733650 + 0.733650i −0.971341 0.237691i \(-0.923609\pi\)
0.237691 + 0.971341i \(0.423609\pi\)
\(62\) 0.669785 + 0.318525i 0.0850628 + 0.0404527i
\(63\) −9.26498 0.897225i −1.16728 0.113040i
\(64\) 7.10278 3.68111i 0.887847 0.460139i
\(65\) 1.81568i 0.225207i
\(66\) 9.90241 2.98978i 1.21890 0.368017i
\(67\) −0.391944 0.391944i −0.0478835 0.0478835i 0.682760 0.730643i \(-0.260780\pi\)
−0.730643 + 0.682760i \(0.760780\pi\)
\(68\) 3.76903 3.06650i 0.457061 0.371868i
\(69\) −0.499104 + 10.3319i −0.0600850 + 1.24381i
\(70\) 0.897225 + 2.52444i 0.107239 + 0.301728i
\(71\) 5.01985i 0.595747i −0.954605 0.297873i \(-0.903723\pi\)
0.954605 0.297873i \(-0.0962774\pi\)
\(72\) 8.39923 1.20537i 0.989859 0.142054i
\(73\) 13.4600i 1.57537i −0.616078 0.787686i \(-0.711279\pi\)
0.616078 0.787686i \(-0.288721\pi\)
\(74\) −2.87282 + 1.02105i −0.333959 + 0.118694i
\(75\) −0.386711 + 8.00523i −0.0446535 + 0.924365i
\(76\) −0.205550 + 2.00000i −0.0235782 + 0.229416i
\(77\) 9.26498 + 9.26498i 1.05584 + 1.05584i
\(78\) 2.10542 + 6.97332i 0.238392 + 0.789573i
\(79\) 3.47556i 0.391031i −0.980701 0.195516i \(-0.937362\pi\)
0.980701 0.195516i \(-0.0626380\pi\)
\(80\) −1.33957 2.04209i −0.149769 0.228313i
\(81\) 8.83276 + 1.72693i 0.981418 + 0.191881i
\(82\) 1.10278 2.31889i 0.121781 0.256078i
\(83\) −4.55202 + 4.55202i −0.499649 + 0.499649i −0.911329 0.411680i \(-0.864942\pi\)
0.411680 + 0.911329i \(0.364942\pi\)
\(84\) 6.37318 + 8.65500i 0.695371 + 0.944338i
\(85\) −1.04888 1.04888i −0.113767 0.113767i
\(86\) 0.476105 + 1.33957i 0.0513397 + 0.144450i
\(87\) −4.71083 5.18907i −0.505054 0.556326i
\(88\) −10.2056 6.20555i −1.08792 0.661514i
\(89\) −12.5579 −1.33114 −0.665568 0.746338i \(-0.731810\pi\)
−0.665568 + 0.746338i \(0.731810\pi\)
\(90\) −0.628197 2.51307i −0.0662178 0.264901i
\(91\) −6.52444 + 6.52444i −0.683947 + 0.683947i
\(92\) 9.26498 7.53805i 0.965941 0.785896i
\(93\) 0.0438289 0.907295i 0.00454485 0.0940821i
\(94\) −4.57834 + 9.62721i −0.472219 + 0.992971i
\(95\) 0.613779 0.0629724
\(96\) −7.51275 6.28956i −0.766767 0.641926i
\(97\) −8.67609 −0.880923 −0.440462 0.897771i \(-0.645185\pi\)
−0.440462 + 0.897771i \(0.645185\pi\)
\(98\) −1.59567 + 3.35534i −0.161187 + 0.338941i
\(99\) −8.05292 9.77985i −0.809348 0.982912i
\(100\) 7.17860 5.84056i 0.717860 0.584056i
\(101\) −0.182046 + 0.182046i −0.0181142 + 0.0181142i −0.716106 0.697992i \(-0.754077\pi\)
0.697992 + 0.716106i \(0.254077\pi\)
\(102\) −5.24459 2.81208i −0.519292 0.278437i
\(103\) 6.35720 0.626394 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(104\) 4.36997 7.18679i 0.428511 0.704723i
\(105\) 2.42945 2.20555i 0.237090 0.215240i
\(106\) 5.91638 + 16.6464i 0.574650 + 1.61684i
\(107\) −1.64646 1.64646i −0.159169 0.159169i 0.623029 0.782199i \(-0.285902\pi\)
−0.782199 + 0.623029i \(0.785902\pi\)
\(108\) −5.32677 8.92331i −0.512569 0.858646i
\(109\) 6.57331 6.57331i 0.629609 0.629609i −0.318360 0.947970i \(-0.603132\pi\)
0.947970 + 0.318360i \(0.103132\pi\)
\(110\) −1.56599 + 3.29292i −0.149311 + 0.313968i
\(111\) 2.50993 + 2.76473i 0.238232 + 0.262417i
\(112\) 2.52444 12.1517i 0.238537 1.14822i
\(113\) 8.31277i 0.782000i 0.920391 + 0.391000i \(0.127871\pi\)
−0.920391 + 0.391000i \(0.872129\pi\)
\(114\) 2.35729 0.711725i 0.220781 0.0666591i
\(115\) −2.57834 2.57834i −0.240431 0.240431i
\(116\) −0.827365 + 8.05026i −0.0768189 + 0.747447i
\(117\) 6.88701 5.67090i 0.636704 0.524274i
\(118\) −0.151651 + 0.0538991i −0.0139606 + 0.00496182i
\(119\) 7.53805i 0.691012i
\(120\) −1.67555 + 2.47779i −0.152956 + 0.226190i
\(121\) 6.83276i 0.621160i
\(122\) −3.83786 10.7982i −0.347464 0.977626i
\(123\) −3.14118 0.151742i −0.283231 0.0136821i
\(124\) −0.813607 + 0.661956i −0.0730640 + 0.0594454i
\(125\) −4.15639 4.15639i −0.371759 0.371759i
\(126\) 6.77310 11.2878i 0.603396 1.00560i
\(127\) 15.7789i 1.40015i 0.714070 + 0.700074i \(0.246850\pi\)
−0.714070 + 0.700074i \(0.753150\pi\)
\(128\) 0.387362 + 11.3071i 0.0342383 + 0.999414i
\(129\) 1.28917 1.17036i 0.113505 0.103044i
\(130\) −2.31889 1.10278i −0.203380 0.0967198i
\(131\) −0.0804722 + 0.0804722i −0.00703089 + 0.00703089i −0.710613 0.703583i \(-0.751583\pi\)
0.703583 + 0.710613i \(0.251583\pi\)
\(132\) −2.19597 + 14.4627i −0.191134 + 1.25882i
\(133\) 2.20555 + 2.20555i 0.191245 + 0.191245i
\(134\) 0.738623 0.262518i 0.0638073 0.0226781i
\(135\) −2.54359 + 1.89615i −0.218918 + 0.163194i
\(136\) 1.62721 + 6.67609i 0.139532 + 0.572470i
\(137\) 13.2604 1.13291 0.566457 0.824091i \(-0.308314\pi\)
0.566457 + 0.824091i \(0.308314\pi\)
\(138\) −12.8922 6.91263i −1.09746 0.588442i
\(139\) 8.39194 8.39194i 0.711795 0.711795i −0.255115 0.966911i \(-0.582113\pi\)
0.966911 + 0.255115i \(0.0821134\pi\)
\(140\) −3.76903 0.387362i −0.318541 0.0327380i
\(141\) 13.0411 + 0.629978i 1.09826 + 0.0530537i
\(142\) 6.41110 + 3.04888i 0.538008 + 0.255856i
\(143\) −12.5579 −1.05014
\(144\) −3.56195 + 11.4592i −0.296829 + 0.954931i
\(145\) 2.47054 0.205167
\(146\) 17.1904 + 8.17510i 1.42269 + 0.676576i
\(147\) 4.54517 + 0.219564i 0.374879 + 0.0181094i
\(148\) 0.440820 4.28917i 0.0362351 0.352567i
\(149\) −5.79002 + 5.79002i −0.474337 + 0.474337i −0.903315 0.428978i \(-0.858874\pi\)
0.428978 + 0.903315i \(0.358874\pi\)
\(150\) −9.98900 5.35597i −0.815599 0.437313i
\(151\) 9.94610 0.809402 0.404701 0.914449i \(-0.367376\pi\)
0.404701 + 0.914449i \(0.367376\pi\)
\(152\) −2.42945 1.47725i −0.197055 0.119820i
\(153\) −0.702522 + 7.25443i −0.0567955 + 0.586486i
\(154\) −17.4600 + 6.20555i −1.40696 + 0.500057i
\(155\) 0.226417 + 0.226417i 0.0181863 + 0.0181863i
\(156\) −10.1847 1.54641i −0.815430 0.123812i
\(157\) −9.15165 + 9.15165i −0.730381 + 0.730381i −0.970695 0.240314i \(-0.922750\pi\)
0.240314 + 0.970695i \(0.422750\pi\)
\(158\) 4.43881 + 2.11093i 0.353133 + 0.167937i
\(159\) 16.0200 14.5436i 1.27047 1.15338i
\(160\) 3.42166 0.470539i 0.270506 0.0371994i
\(161\) 18.5300i 1.46037i
\(162\) −7.57025 + 10.2319i −0.594775 + 0.803892i
\(163\) 15.7003 + 15.7003i 1.22974 + 1.22974i 0.964062 + 0.265678i \(0.0855959\pi\)
0.265678 + 0.964062i \(0.414404\pi\)
\(164\) 2.29178 + 2.81682i 0.178958 + 0.219956i
\(165\) 4.46061 + 0.215480i 0.347258 + 0.0167751i
\(166\) −3.04888 8.57834i −0.236639 0.665808i
\(167\) 19.1437i 1.48139i 0.671843 + 0.740694i \(0.265503\pi\)
−0.671843 + 0.740694i \(0.734497\pi\)
\(168\) −14.9246 + 2.88277i −1.15146 + 0.222410i
\(169\) 4.15667i 0.319744i
\(170\) 1.97662 0.702522i 0.151600 0.0538810i
\(171\) −1.91701 2.32811i −0.146598 0.178035i
\(172\) −2.00000 0.205550i −0.152499 0.0156730i
\(173\) −13.3281 13.3281i −1.01331 1.01331i −0.999910 0.0134040i \(-0.995733\pi\)
−0.0134040 0.999910i \(-0.504267\pi\)
\(174\) 9.48840 2.86478i 0.719314 0.217179i
\(175\) 14.3572i 1.08530i
\(176\) 14.1239 9.26498i 1.06463 0.698374i
\(177\) 0.132494 + 0.145945i 0.00995889 + 0.0109699i
\(178\) 7.62721 16.0383i 0.571684 1.20212i
\(179\) 9.18451 9.18451i 0.686483 0.686483i −0.274970 0.961453i \(-0.588668\pi\)
0.961453 + 0.274970i \(0.0886680\pi\)
\(180\) 3.59111 + 0.724048i 0.267666 + 0.0539673i
\(181\) −16.5139 16.5139i −1.22747 1.22747i −0.964919 0.262548i \(-0.915437\pi\)
−0.262548 0.964919i \(-0.584563\pi\)
\(182\) −4.36997 12.2954i −0.323924 0.911395i
\(183\) −10.3919 + 9.43420i −0.768195 + 0.697396i
\(184\) 4.00000 + 16.4111i 0.294884 + 1.20984i
\(185\) −1.31630 −0.0967764
\(186\) 1.13213 + 0.607034i 0.0830119 + 0.0445099i
\(187\) 7.25443 7.25443i 0.530496 0.530496i
\(188\) −9.51467 11.6944i −0.693929 0.852904i
\(189\) −15.9537 2.32653i −1.16046 0.169230i
\(190\) −0.372787 + 0.783887i −0.0270448 + 0.0568692i
\(191\) 3.17852 0.229989 0.114995 0.993366i \(-0.463315\pi\)
0.114995 + 0.993366i \(0.463315\pi\)
\(192\) 12.5957 5.77485i 0.909015 0.416764i
\(193\) −11.4600 −0.824907 −0.412454 0.910979i \(-0.635328\pi\)
−0.412454 + 0.910979i \(0.635328\pi\)
\(194\) 5.26954 11.0807i 0.378331 0.795545i
\(195\) −0.151742 + 3.14118i −0.0108664 + 0.224944i
\(196\) −3.31612 4.07583i −0.236866 0.291130i
\(197\) −14.8053 + 14.8053i −1.05483 + 1.05483i −0.0564281 + 0.998407i \(0.517971\pi\)
−0.998407 + 0.0564281i \(0.982029\pi\)
\(198\) 17.3814 4.34485i 1.23524 0.308775i
\(199\) −24.4550 −1.73357 −0.866783 0.498686i \(-0.833816\pi\)
−0.866783 + 0.498686i \(0.833816\pi\)
\(200\) 3.09924 + 12.7155i 0.219149 + 0.899120i
\(201\) −0.645320 0.710831i −0.0455173 0.0501382i
\(202\) −0.121932 0.343068i −0.00857908 0.0241382i
\(203\) 8.87762 + 8.87762i 0.623087 + 0.623087i
\(204\) 6.77682 4.99016i 0.474472 0.349381i
\(205\) 0.783887 0.783887i 0.0547491 0.0547491i
\(206\) −3.86113 + 8.11909i −0.269018 + 0.565684i
\(207\) −1.72693 + 17.8328i −0.120030 + 1.23946i
\(208\) 6.52444 + 9.94610i 0.452388 + 0.689638i
\(209\) 4.24513i 0.293642i
\(210\) 1.34125 + 4.44235i 0.0925553 + 0.306551i
\(211\) −6.18639 6.18639i −0.425889 0.425889i 0.461336 0.887225i \(-0.347370\pi\)
−0.887225 + 0.461336i \(0.847370\pi\)
\(212\) −24.8533 2.55430i −1.70693 0.175430i
\(213\) 0.419525 8.68451i 0.0287454 0.595053i
\(214\) 3.10278 1.10278i 0.212101 0.0753842i
\(215\) 0.613779i 0.0418594i
\(216\) 14.6317 1.38338i 0.995560 0.0941272i
\(217\) 1.62721i 0.110462i
\(218\) 4.40271 + 12.3875i 0.298189 + 0.838987i
\(219\) 1.12489 23.2862i 0.0760132 1.57354i
\(220\) −3.25443 4.00000i −0.219413 0.269680i
\(221\) 5.10860 + 5.10860i 0.343641 + 0.343641i
\(222\) −5.05541 + 1.52635i −0.339297 + 0.102442i
\(223\) 8.18996i 0.548441i −0.961667 0.274220i \(-0.911580\pi\)
0.961667 0.274220i \(-0.0884197\pi\)
\(224\) 13.9862 + 10.6046i 0.934493 + 0.708547i
\(225\) −1.33804 + 13.8170i −0.0892030 + 0.921133i
\(226\) −10.6167 5.04888i −0.706209 0.335846i
\(227\) −9.91030 + 9.91030i −0.657770 + 0.657770i −0.954852 0.297082i \(-0.903986\pi\)
0.297082 + 0.954852i \(0.403986\pi\)
\(228\) −0.522755 + 3.44289i −0.0346203 + 0.228011i
\(229\) 7.15165 + 7.15165i 0.472594 + 0.472594i 0.902753 0.430159i \(-0.141542\pi\)
−0.430159 + 0.902753i \(0.641542\pi\)
\(230\) 4.85891 1.72693i 0.320387 0.113871i
\(231\) 15.2544 + 16.8030i 1.00367 + 1.10556i
\(232\) −9.77886 5.94610i −0.642014 0.390381i
\(233\) 19.6431 1.28686 0.643432 0.765503i \(-0.277510\pi\)
0.643432 + 0.765503i \(0.277510\pi\)
\(234\) 3.05966 + 12.2400i 0.200016 + 0.800156i
\(235\) −3.25443 + 3.25443i −0.212295 + 0.212295i
\(236\) 0.0232700 0.226417i 0.00151475 0.0147385i
\(237\) 0.290464 6.01284i 0.0188676 0.390576i
\(238\) 9.62721 + 4.57834i 0.624040 + 0.296770i
\(239\) −9.44247 −0.610782 −0.305391 0.952227i \(-0.598787\pi\)
−0.305391 + 0.952227i \(0.598787\pi\)
\(240\) −2.14684 3.64484i −0.138578 0.235273i
\(241\) 16.6167 1.07037 0.535186 0.844734i \(-0.320241\pi\)
0.535186 + 0.844734i \(0.320241\pi\)
\(242\) −8.72646 4.14997i −0.560958 0.266770i
\(243\) 15.1366 + 3.72583i 0.971017 + 0.239012i
\(244\) 16.1219 + 1.65693i 1.03210 + 0.106074i
\(245\) −1.13425 + 1.13425i −0.0724649 + 0.0724649i
\(246\) 2.10163 3.91959i 0.133995 0.249904i
\(247\) −2.98944 −0.190213
\(248\) −0.351261 1.44114i −0.0223051 0.0915128i
\(249\) −8.25557 + 7.49472i −0.523176 + 0.474958i
\(250\) 7.83276 2.78389i 0.495387 0.176068i
\(251\) −2.03382 2.03382i −0.128374 0.128374i 0.640001 0.768374i \(-0.278934\pi\)
−0.768374 + 0.640001i \(0.778934\pi\)
\(252\) 10.3025 + 15.5061i 0.648996 + 0.976791i
\(253\) 17.8328 17.8328i 1.12114 1.12114i
\(254\) −20.1520 9.58351i −1.26445 0.601323i
\(255\) −1.72693 1.90225i −0.108145 0.119123i
\(256\) −14.6761 6.37279i −0.917256 0.398299i
\(257\) 15.0761i 0.940421i −0.882554 0.470211i \(-0.844178\pi\)
0.882554 0.470211i \(-0.155822\pi\)
\(258\) 0.711725 + 2.35729i 0.0443100 + 0.146759i
\(259\) −4.72999 4.72999i −0.293907 0.293907i
\(260\) 2.81682 2.29178i 0.174692 0.142130i
\(261\) −7.71623 9.37096i −0.477623 0.580048i
\(262\) −0.0538991 0.151651i −0.00332990 0.00936903i
\(263\) 29.8138i 1.83840i −0.393796 0.919198i \(-0.628838\pi\)
0.393796 0.919198i \(-0.371162\pi\)
\(264\) −17.1373 11.5887i −1.05473 0.713236i
\(265\) 7.62721i 0.468536i
\(266\) −4.15639 + 1.47725i −0.254844 + 0.0905757i
\(267\) −21.7256 1.04950i −1.32958 0.0642285i
\(268\) −0.113338 + 1.10278i −0.00692321 + 0.0673627i
\(269\) 16.3713 + 16.3713i 0.998176 + 0.998176i 0.999998 0.00182258i \(-0.000580145\pi\)
−0.00182258 + 0.999998i \(0.500580\pi\)
\(270\) −0.876776 4.40020i −0.0533589 0.267788i
\(271\) 13.3466i 0.810751i 0.914150 + 0.405375i \(0.132859\pi\)
−0.914150 + 0.405375i \(0.867141\pi\)
\(272\) −9.51467 1.97662i −0.576912 0.119850i
\(273\) −11.8328 + 10.7422i −0.716151 + 0.650149i
\(274\) −8.05390 + 16.9355i −0.486554 + 1.02311i
\(275\) 13.8170 13.8170i 0.833197 0.833197i
\(276\) 16.6587 12.2668i 1.00274 0.738373i
\(277\) 10.6811 + 10.6811i 0.641766 + 0.641766i 0.950989 0.309224i \(-0.100069\pi\)
−0.309224 + 0.950989i \(0.600069\pi\)
\(278\) 5.62080 + 15.8147i 0.337113 + 0.948504i
\(279\) 0.151651 1.56599i 0.00907911 0.0937533i
\(280\) 2.78389 4.57834i 0.166369 0.273608i
\(281\) 17.5943 1.04959 0.524794 0.851229i \(-0.324142\pi\)
0.524794 + 0.851229i \(0.324142\pi\)
\(282\) −8.72525 + 16.2728i −0.519581 + 0.969030i
\(283\) −17.1758 + 17.1758i −1.02100 + 1.02100i −0.0212224 + 0.999775i \(0.506756\pi\)
−0.999775 + 0.0212224i \(0.993244\pi\)
\(284\) −7.78774 + 6.33615i −0.462117 + 0.375982i
\(285\) 1.06186 + 0.0512954i 0.0628990 + 0.00303848i
\(286\) 7.62721 16.0383i 0.451007 0.948365i
\(287\) 5.63363 0.332543
\(288\) −12.4717 11.5090i −0.734900 0.678176i
\(289\) 11.0978 0.652809
\(290\) −1.50052 + 3.15525i −0.0881133 + 0.185282i
\(291\) −15.0099 0.725088i −0.879897 0.0425054i
\(292\) −20.8816 + 16.9894i −1.22201 + 0.994232i
\(293\) 3.72465 3.72465i 0.217597 0.217597i −0.589888 0.807485i \(-0.700828\pi\)
0.807485 + 0.589888i \(0.200828\pi\)
\(294\) −3.04098 + 5.67150i −0.177354 + 0.330769i
\(295\) −0.0694851 −0.00404558
\(296\) 5.21017 + 3.16808i 0.302835 + 0.184141i
\(297\) −13.1145 17.5925i −0.760979 1.02082i
\(298\) −3.87807 10.9114i −0.224650 0.632078i
\(299\) 12.5579 + 12.5579i 0.726242 + 0.726242i
\(300\) 12.9073 9.50442i 0.745205 0.548738i
\(301\) −2.20555 + 2.20555i −0.127126 + 0.127126i
\(302\) −6.04090 + 12.7027i −0.347615 + 0.730956i
\(303\) −0.330160 + 0.299731i −0.0189672 + 0.0172191i
\(304\) 3.36222 2.20555i 0.192837 0.126497i
\(305\) 4.94765i 0.283302i
\(306\) −8.83830 5.30330i −0.505252 0.303169i
\(307\) −13.4408 13.4408i −0.767108 0.767108i 0.210488 0.977596i \(-0.432495\pi\)
−0.977596 + 0.210488i \(0.932495\pi\)
\(308\) 2.67914 26.0680i 0.152658 1.48536i
\(309\) 10.9982 + 0.531291i 0.625664 + 0.0302241i
\(310\) −0.426686 + 0.151651i −0.0242341 + 0.00861320i
\(311\) 13.8320i 0.784341i −0.919893 0.392170i \(-0.871724\pi\)
0.919893 0.392170i \(-0.128276\pi\)
\(312\) 8.16082 12.0682i 0.462016 0.683226i
\(313\) 3.94056i 0.222734i −0.993779 0.111367i \(-0.964477\pi\)
0.993779 0.111367i \(-0.0355229\pi\)
\(314\) −6.12964 17.2464i −0.345916 0.973271i
\(315\) 4.38736 3.61264i 0.247200 0.203549i
\(316\) −5.39194 + 4.38692i −0.303321 + 0.246784i
\(317\) −8.92199 8.92199i −0.501109 0.501109i 0.410673 0.911782i \(-0.365294\pi\)
−0.911782 + 0.410673i \(0.865294\pi\)
\(318\) 8.84435 + 29.2932i 0.495966 + 1.64268i
\(319\) 17.0872i 0.956699i
\(320\) −1.47725 + 4.65576i −0.0825805 + 0.260265i
\(321\) −2.71083 2.98603i −0.151304 0.166664i
\(322\) 23.6655 + 11.2544i 1.31883 + 0.627185i
\(323\) 1.72693 1.72693i 0.0960891 0.0960891i
\(324\) −8.46974 15.8828i −0.470541 0.882378i
\(325\) 9.72999 + 9.72999i 0.539723 + 0.539723i
\(326\) −29.5874 + 10.5158i −1.63869 + 0.582417i
\(327\) 11.9214 10.8227i 0.659255 0.598497i
\(328\) −4.98944 + 1.21611i −0.275496 + 0.0671486i
\(329\) −23.3889 −1.28947
\(330\) −2.98441 + 5.56599i −0.164286 + 0.306398i
\(331\) 9.44082 9.44082i 0.518914 0.518914i −0.398328 0.917243i \(-0.630410\pi\)
0.917243 + 0.398328i \(0.130410\pi\)
\(332\) 12.8076 + 1.31630i 0.702908 + 0.0722414i
\(333\) 4.11120 + 4.99284i 0.225292 + 0.273606i
\(334\) −24.4494 11.6272i −1.33781 0.636213i
\(335\) 0.338430 0.0184904
\(336\) 5.38291 20.8118i 0.293662 1.13538i
\(337\) 5.94056 0.323603 0.161801 0.986823i \(-0.448270\pi\)
0.161801 + 0.986823i \(0.448270\pi\)
\(338\) −5.30869 2.52461i −0.288755 0.137321i
\(339\) −0.694724 + 14.3814i −0.0377322 + 0.781089i
\(340\) −0.303302 + 2.95112i −0.0164489 + 0.160047i
\(341\) −1.56599 + 1.56599i −0.0848030 + 0.0848030i
\(342\) 4.13767 1.03430i 0.223740 0.0559286i
\(343\) 13.5678 0.732591
\(344\) 1.47725 2.42945i 0.0796477 0.130987i
\(345\) −4.24513 4.67609i −0.228550 0.251752i
\(346\) 25.1169 8.92694i 1.35029 0.479915i
\(347\) 4.09918 + 4.09918i 0.220056 + 0.220056i 0.808522 0.588466i \(-0.200268\pi\)
−0.588466 + 0.808522i \(0.700268\pi\)
\(348\) −2.10415 + 13.8581i −0.112795 + 0.742870i
\(349\) −8.10278 + 8.10278i −0.433732 + 0.433732i −0.889896 0.456164i \(-0.849223\pi\)
0.456164 + 0.889896i \(0.349223\pi\)
\(350\) 18.3363 + 8.72004i 0.980116 + 0.466106i
\(351\) 12.3887 9.23527i 0.661259 0.492942i
\(352\) 3.25443 + 23.6655i 0.173461 + 1.26138i
\(353\) 29.2465i 1.55664i 0.627870 + 0.778318i \(0.283927\pi\)
−0.627870 + 0.778318i \(0.716073\pi\)
\(354\) −0.266866 + 0.0805734i −0.0141838 + 0.00428243i
\(355\) 2.16724 + 2.16724i 0.115025 + 0.115025i
\(356\) 15.8508 + 19.4822i 0.840092 + 1.03255i
\(357\) 0.629978 13.0411i 0.0333420 0.690207i
\(358\) 6.15165 + 17.3083i 0.325125 + 0.914773i
\(359\) 21.3235i 1.12541i 0.826657 + 0.562706i \(0.190240\pi\)
−0.826657 + 0.562706i \(0.809760\pi\)
\(360\) −3.10583 + 4.14662i −0.163691 + 0.218546i
\(361\) 17.9894i 0.946812i
\(362\) 31.1206 11.0608i 1.63566 0.581340i
\(363\) −0.571035 + 11.8209i −0.0299716 + 0.620437i
\(364\) 18.3572 + 1.88666i 0.962179 + 0.0988880i
\(365\) 5.81112 + 5.81112i 0.304168 + 0.304168i
\(366\) −5.73719 19.0020i −0.299888 0.993253i
\(367\) 32.8277i 1.71359i −0.515654 0.856797i \(-0.672451\pi\)
0.515654 0.856797i \(-0.327549\pi\)
\(368\) −23.3889 4.85891i −1.21923 0.253288i
\(369\) −5.42166 0.525036i −0.282240 0.0273323i
\(370\) 0.799473 1.68111i 0.0415626 0.0873969i
\(371\) −27.4076 + 27.4076i −1.42293 + 1.42293i
\(372\) −1.46289 + 1.07721i −0.0758472 + 0.0558507i
\(373\) 1.35720 + 1.35720i 0.0702732 + 0.0702732i 0.741370 0.671097i \(-0.234176\pi\)
−0.671097 + 0.741370i \(0.734176\pi\)
\(374\) 4.85891 + 13.6711i 0.251248 + 0.706914i
\(375\) −6.84333 7.53805i −0.353388 0.389263i
\(376\) 20.7144 5.04888i 1.06826 0.260376i
\(377\) −12.0329 −0.619724
\(378\) 12.6611 18.9623i 0.651214 0.975313i
\(379\) −17.3869 + 17.3869i −0.893106 + 0.893106i −0.994814 0.101708i \(-0.967569\pi\)
0.101708 + 0.994814i \(0.467569\pi\)
\(380\) −0.774723 0.952209i −0.0397425 0.0488473i
\(381\) −1.31869 + 27.2980i −0.0675585 + 1.39852i
\(382\) −1.93051 + 4.05944i −0.0987737 + 0.207699i
\(383\) −32.9757 −1.68498 −0.842491 0.538711i \(-0.818912\pi\)
−0.842491 + 0.538711i \(0.818912\pi\)
\(384\) −0.274819 + 19.5940i −0.0140243 + 0.999902i
\(385\) −8.00000 −0.407718
\(386\) 6.96037 14.6361i 0.354274 0.744958i
\(387\) 2.32811 1.91701i 0.118345 0.0974473i
\(388\) 10.9511 + 13.4600i 0.555959 + 0.683327i
\(389\) 3.97434 3.97434i 0.201507 0.201507i −0.599138 0.800645i \(-0.704490\pi\)
0.800645 + 0.599138i \(0.204490\pi\)
\(390\) −3.91959 2.10163i −0.198476 0.106420i
\(391\) −14.5089 −0.733744
\(392\) 7.21953 1.75967i 0.364641 0.0888767i
\(393\) −0.145945 + 0.132494i −0.00736195 + 0.00668346i
\(394\) −9.91638 27.9008i −0.499580 1.40562i
\(395\) 1.50052 + 1.50052i 0.0754991 + 0.0754991i
\(396\) −5.00779 + 24.8375i −0.251651 + 1.24813i
\(397\) −15.9355 + 15.9355i −0.799782 + 0.799782i −0.983061 0.183279i \(-0.941329\pi\)
0.183279 + 0.983061i \(0.441329\pi\)
\(398\) 14.8530 31.2326i 0.744516 1.56555i
\(399\) 3.63135 + 4.00000i 0.181795 + 0.200250i
\(400\) −18.1219 3.76473i −0.906097 0.188237i
\(401\) 29.7716i 1.48672i −0.668891 0.743361i \(-0.733231\pi\)
0.668891 0.743361i \(-0.266769\pi\)
\(402\) 1.29978 0.392436i 0.0648272 0.0195729i
\(403\) −1.10278 1.10278i −0.0549331 0.0549331i
\(404\) 0.512205 + 0.0526419i 0.0254832 + 0.00261903i
\(405\) −4.55897 + 3.06782i −0.226537 + 0.152441i
\(406\) −16.7300 + 5.94610i −0.830295 + 0.295100i
\(407\) 9.10404i 0.451270i
\(408\) 2.25719 + 11.6858i 0.111748 + 0.578536i
\(409\) 15.6655i 0.774610i −0.921952 0.387305i \(-0.873406\pi\)
0.921952 0.387305i \(-0.126594\pi\)
\(410\) 0.525036 + 1.47725i 0.0259297 + 0.0729559i
\(411\) 22.9410 + 1.10821i 1.13159 + 0.0546642i
\(412\) −8.02418 9.86248i −0.395323 0.485890i
\(413\) −0.249687 0.249687i −0.0122863 0.0122863i
\(414\) −21.7262 13.0365i −1.06779 0.640710i
\(415\) 3.93051i 0.192941i
\(416\) −16.6654 + 2.29178i −0.817086 + 0.112364i
\(417\) 15.2197 13.8170i 0.745311 0.676621i
\(418\) −5.42166 2.57834i −0.265182 0.126111i
\(419\) 14.1554 14.1554i 0.691538 0.691538i −0.271032 0.962570i \(-0.587365\pi\)
0.962570 + 0.271032i \(0.0873650\pi\)
\(420\) −6.48817 0.985138i −0.316590 0.0480698i
\(421\) −7.35720 7.35720i −0.358568 0.358568i 0.504717 0.863285i \(-0.331597\pi\)
−0.863285 + 0.504717i \(0.831597\pi\)
\(422\) 11.6583 4.14356i 0.567519 0.201705i
\(423\) 22.5089 + 2.17977i 1.09442 + 0.105984i
\(424\) 18.3572 30.1900i 0.891504 1.46615i
\(425\) −11.2416 −0.545298
\(426\) 10.8366 + 5.81045i 0.525036 + 0.281517i
\(427\) 17.7789 17.7789i 0.860380 0.860380i
\(428\) −0.476105 + 4.63249i −0.0230134 + 0.223920i
\(429\) −21.7256 1.04950i −1.04892 0.0506705i
\(430\) −0.783887 0.372787i −0.0378024 0.0179774i
\(431\) 20.7097 0.997553 0.498776 0.866731i \(-0.333783\pi\)
0.498776 + 0.866731i \(0.333783\pi\)
\(432\) −7.11997 + 19.5271i −0.342560 + 0.939496i
\(433\) −23.4005 −1.12456 −0.562279 0.826948i \(-0.690075\pi\)
−0.562279 + 0.826948i \(0.690075\pi\)
\(434\) −2.07819 0.988310i −0.0997565 0.0474404i
\(435\) 4.27411 + 0.206471i 0.204928 + 0.00989951i
\(436\) −18.4947 1.90080i −0.885736 0.0910316i
\(437\) 4.24513 4.24513i 0.203072 0.203072i
\(438\) 29.0567 + 15.5798i 1.38838 + 0.744434i
\(439\) 20.2594 0.966931 0.483465 0.875363i \(-0.339378\pi\)
0.483465 + 0.875363i \(0.339378\pi\)
\(440\) 7.08522 1.72693i 0.337774 0.0823283i
\(441\) 7.84494 + 0.759707i 0.373569 + 0.0361765i
\(442\) −9.62721 + 3.42166i −0.457920 + 0.162752i
\(443\) 4.05264 + 4.05264i 0.192547 + 0.192547i 0.796796 0.604249i \(-0.206527\pi\)
−0.604249 + 0.796796i \(0.706527\pi\)
\(444\) 1.12109 7.38356i 0.0532047 0.350408i
\(445\) 5.42166 5.42166i 0.257011 0.257011i
\(446\) 10.4598 + 4.97429i 0.495286 + 0.235539i
\(447\) −10.5008 + 9.53303i −0.496671 + 0.450897i
\(448\) −22.0383 + 11.4217i −1.04121 + 0.539623i
\(449\) 5.38394i 0.254084i 0.991897 + 0.127042i \(0.0405483\pi\)
−0.991897 + 0.127042i \(0.959452\pi\)
\(450\) −16.8337 10.1008i −0.793548 0.476157i
\(451\) 5.42166 + 5.42166i 0.255296 + 0.255296i
\(452\) 12.8963 10.4925i 0.606592 0.493528i
\(453\) 17.2071 + 0.831227i 0.808459 + 0.0390544i
\(454\) −6.63778 18.6761i −0.311526 0.876512i
\(455\) 5.63363i 0.264109i
\(456\) −4.07958 2.75872i −0.191044 0.129189i
\(457\) 28.0766i 1.31337i 0.754165 + 0.656685i \(0.228042\pi\)
−0.754165 + 0.656685i \(0.771958\pi\)
\(458\) −13.4774 + 4.79007i −0.629756 + 0.223825i
\(459\) −1.82166 + 12.4917i −0.0850279 + 0.583062i
\(460\) −0.745574 + 7.25443i −0.0347626 + 0.338239i
\(461\) −22.7962 22.7962i −1.06172 1.06172i −0.997965 0.0637594i \(-0.979691\pi\)
−0.0637594 0.997965i \(-0.520309\pi\)
\(462\) −30.7250 + 9.27662i −1.42945 + 0.431588i
\(463\) 0.740035i 0.0343923i −0.999852 0.0171962i \(-0.994526\pi\)
0.999852 0.0171962i \(-0.00547398\pi\)
\(464\) 13.5334 8.87762i 0.628272 0.412133i
\(465\) 0.372787 + 0.410632i 0.0172876 + 0.0190426i
\(466\) −11.9305 + 25.0872i −0.552670 + 1.16214i
\(467\) −9.73282 + 9.73282i −0.450381 + 0.450381i −0.895481 0.445100i \(-0.853168\pi\)
0.445100 + 0.895481i \(0.353168\pi\)
\(468\) −17.4907 3.52651i −0.808506 0.163013i
\(469\) 1.21611 + 1.21611i 0.0561549 + 0.0561549i
\(470\) −2.17977 6.13301i −0.100545 0.282895i
\(471\) −16.5975 + 15.0678i −0.764772 + 0.694289i
\(472\) 0.275035 + 0.167237i 0.0126595 + 0.00769770i
\(473\) −4.24513 −0.195191
\(474\) 7.50287 + 4.02294i 0.344618 + 0.184780i
\(475\) 3.28917 3.28917i 0.150917 0.150917i
\(476\) −11.6944 + 9.51467i −0.536014 + 0.436104i
\(477\) 28.9307 23.8221i 1.32464 1.09074i
\(478\) 5.73501 12.0594i 0.262313 0.551586i
\(479\) 28.2478 1.29067 0.645337 0.763898i \(-0.276717\pi\)
0.645337 + 0.763898i \(0.276717\pi\)
\(480\) 5.95892 0.528089i 0.271986 0.0241038i
\(481\) 6.41110 0.292321
\(482\) −10.0923 + 21.2219i −0.459694 + 0.966633i
\(483\) 1.54861 32.0575i 0.0704641 1.45866i
\(484\) 10.6003 8.62444i 0.481830 0.392020i
\(485\) 3.74576 3.74576i 0.170086 0.170086i
\(486\) −13.9519 + 17.0688i −0.632871 + 0.774257i
\(487\) 19.7094 0.893117 0.446559 0.894754i \(-0.352649\pi\)
0.446559 + 0.894754i \(0.352649\pi\)
\(488\) −11.9080 + 19.5837i −0.539051 + 0.886515i
\(489\) 25.8499 + 28.4741i 1.16897 + 1.28764i
\(490\) −0.759707 2.13752i −0.0343201 0.0965632i
\(491\) −29.4414 29.4414i −1.32867 1.32867i −0.906529 0.422143i \(-0.861278\pi\)
−0.422143 0.906529i \(-0.638722\pi\)
\(492\) 3.72945 + 5.06472i 0.168136 + 0.228335i
\(493\) 6.95112 6.95112i 0.313063 0.313063i
\(494\) 1.81568 3.81796i 0.0816911 0.171778i
\(495\) 7.69899 + 0.745574i 0.346044 + 0.0335111i
\(496\) 2.05390 + 0.426686i 0.0922228 + 0.0191588i
\(497\) 15.5755i 0.698656i
\(498\) −4.55774 15.0956i −0.204237 0.676451i
\(499\) 4.43026 + 4.43026i 0.198326 + 0.198326i 0.799282 0.600956i \(-0.205213\pi\)
−0.600956 + 0.799282i \(0.705213\pi\)
\(500\) −1.20190 + 11.6944i −0.0537504 + 0.522991i
\(501\) −1.59990 + 33.1193i −0.0714784 + 1.47966i
\(502\) 3.83276 1.36222i 0.171065 0.0607990i
\(503\) 27.6805i 1.23421i 0.786879 + 0.617107i \(0.211696\pi\)
−0.786879 + 0.617107i \(0.788304\pi\)
\(504\) −26.0609 + 3.73999i −1.16085 + 0.166593i
\(505\) 0.157190i 0.00699488i
\(506\) 11.9441 + 33.6061i 0.530981 + 1.49397i
\(507\) −0.347386 + 7.19119i −0.0154280 + 0.319372i
\(508\) 24.4791 19.9164i 1.08609 0.883647i
\(509\) 17.3235 + 17.3235i 0.767851 + 0.767851i 0.977728 0.209877i \(-0.0673063\pi\)
−0.209877 + 0.977728i \(0.567306\pi\)
\(510\) 3.47833 1.05019i 0.154023 0.0465034i
\(511\) 41.7633i 1.84750i
\(512\) 17.0527 14.8730i 0.753631 0.657298i
\(513\) −3.12193 4.18793i −0.137837 0.184902i
\(514\) 19.2544 + 9.15667i 0.849276 + 0.403884i
\(515\) −2.74461 + 2.74461i −0.120942 + 0.120942i
\(516\) −3.44289 0.522755i −0.151565 0.0230130i
\(517\) −22.5089 22.5089i −0.989938 0.989938i
\(518\) 8.91372 3.16808i 0.391646 0.139197i
\(519\) −21.9441 24.1719i −0.963240 1.06103i
\(520\) 1.21611 + 4.98944i 0.0533301 + 0.218801i
\(521\) −10.1284 −0.443735 −0.221868 0.975077i \(-0.571215\pi\)
−0.221868 + 0.975077i \(0.571215\pi\)
\(522\) 16.6547 4.16319i 0.728955 0.182218i
\(523\) 1.45641 1.45641i 0.0636842 0.0636842i −0.674547 0.738232i \(-0.735661\pi\)
0.738232 + 0.674547i \(0.235661\pi\)
\(524\) 0.226417 + 0.0232700i 0.00989108 + 0.00101656i
\(525\) 1.19988 24.8384i 0.0523669 1.08404i
\(526\) 38.0766 + 18.1078i 1.66022 + 0.789538i
\(527\) 1.27410 0.0555006
\(528\) 25.2091 14.8484i 1.09709 0.646192i
\(529\) −12.6655 −0.550675
\(530\) −9.74109 4.63249i −0.423126 0.201223i
\(531\) 0.217023 + 0.263563i 0.00941798 + 0.0114376i
\(532\) 0.637776 6.20555i 0.0276511 0.269045i
\(533\) −3.81796 + 3.81796i −0.165374 + 0.165374i
\(534\) 14.5357 27.1094i 0.629021 1.17314i
\(535\) 1.42166 0.0614638
\(536\) −1.33957 0.814535i −0.0578606 0.0351825i
\(537\) 16.6571 15.1219i 0.718806 0.652560i
\(538\) −30.8519 + 10.9653i −1.33012 + 0.472746i
\(539\) −7.84494 7.84494i −0.337905 0.337905i
\(540\) 6.15223 + 1.55275i 0.264750 + 0.0668196i
\(541\) 5.18996 5.18996i 0.223134 0.223134i −0.586683 0.809817i \(-0.699566\pi\)
0.809817 + 0.586683i \(0.199566\pi\)
\(542\) −17.0456 8.10626i −0.732173 0.348194i
\(543\) −27.1894 29.9497i −1.16681 1.28526i
\(544\) 8.30330 10.9511i 0.356001 0.469526i
\(545\) 5.67583i 0.243126i
\(546\) −6.53264 21.6366i −0.279571 0.925963i
\(547\) 12.6413 + 12.6413i 0.540505 + 0.540505i 0.923677 0.383172i \(-0.125168\pi\)
−0.383172 + 0.923677i \(0.625168\pi\)
\(548\) −16.7376 20.5721i −0.714993 0.878795i
\(549\) −18.7669 + 15.4530i −0.800950 + 0.659518i
\(550\) 9.25443 + 26.0383i 0.394610 + 1.11028i
\(551\) 4.06764i 0.173287i
\(552\) 5.54861 + 28.7260i 0.236164 + 1.22266i
\(553\) 10.7839i 0.458578i
\(554\) −20.1287 + 7.15405i −0.855186 + 0.303947i
\(555\) −2.27724 0.110007i −0.0966636 0.00466955i
\(556\) −23.6116 2.42669i −1.00136 0.102914i
\(557\) 6.90317 + 6.90317i 0.292497 + 0.292497i 0.838066 0.545569i \(-0.183686\pi\)
−0.545569 + 0.838066i \(0.683686\pi\)
\(558\) 1.90789 + 1.14480i 0.0807675 + 0.0484635i
\(559\) 2.98944i 0.126440i
\(560\) 4.15639 + 6.33615i 0.175639 + 0.267751i
\(561\) 13.1567 11.9441i 0.555475 0.504281i
\(562\) −10.6861 + 22.4705i −0.450767 + 0.947862i
\(563\) 18.3840 18.3840i 0.774794 0.774794i −0.204146 0.978940i \(-0.565442\pi\)
0.978940 + 0.204146i \(0.0654418\pi\)
\(564\) −15.4834 21.0269i −0.651967 0.885394i
\(565\) −3.58890 3.58890i −0.150986 0.150986i
\(566\) −11.5041 32.3681i −0.483554 1.36053i
\(567\) −27.4061 5.35828i −1.15095 0.225027i
\(568\) −3.36222 13.7944i −0.141076 0.578802i
\(569\) 43.5570 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(570\) −0.710446 + 1.32500i −0.0297573 + 0.0554980i
\(571\) 7.00859 7.00859i 0.293301 0.293301i −0.545082 0.838383i \(-0.683502\pi\)
0.838383 + 0.545082i \(0.183502\pi\)
\(572\) 15.8508 + 19.4822i 0.662756 + 0.814591i
\(573\) 5.49894 + 0.265638i 0.229721 + 0.0110972i
\(574\) −3.42166 + 7.19499i −0.142817 + 0.300313i
\(575\) −27.6340 −1.15242
\(576\) 22.2736 8.93802i 0.928065 0.372417i
\(577\) 28.4494 1.18436 0.592182 0.805804i \(-0.298267\pi\)
0.592182 + 0.805804i \(0.298267\pi\)
\(578\) −6.74037 + 14.1735i −0.280362 + 0.589539i
\(579\) −19.8261 0.957746i −0.823946 0.0398026i
\(580\) −3.11836 3.83276i −0.129483 0.159147i
\(581\) 14.1239 14.1239i 0.585958 0.585958i
\(582\) 10.0425 18.7295i 0.416276 0.776363i
\(583\) −52.7527 −2.18479
\(584\) −9.01530 36.9877i −0.373056 1.53056i
\(585\) −0.525036 + 5.42166i −0.0217076 + 0.224158i
\(586\) 2.49472 + 7.01916i 0.103056 + 0.289959i
\(587\) −19.9011 19.9011i −0.821405 0.821405i 0.164904 0.986310i \(-0.447268\pi\)
−0.986310 + 0.164904i \(0.947268\pi\)
\(588\) −5.39637 7.32845i −0.222542 0.302220i
\(589\) −0.372787 + 0.372787i −0.0153604 + 0.0153604i
\(590\) 0.0422027 0.0887428i 0.00173746 0.00365348i
\(591\) −26.8510 + 24.3764i −1.10450 + 1.00271i
\(592\) −7.21057 + 4.72999i −0.296353 + 0.194401i
\(593\) 20.4344i 0.839140i 0.907723 + 0.419570i \(0.137819\pi\)
−0.907723 + 0.419570i \(0.862181\pi\)
\(594\) 30.4335 6.06412i 1.24870 0.248814i
\(595\) 3.25443 + 3.25443i 0.133418 + 0.133418i
\(596\) 16.2908 + 1.67429i 0.667298 + 0.0685816i
\(597\) −42.3079 2.04378i −1.73155 0.0836462i
\(598\) −23.6655 + 8.41110i −0.967755 + 0.343955i
\(599\) 32.6704i 1.33488i 0.744665 + 0.667438i \(0.232609\pi\)
−0.744665 + 0.667438i \(0.767391\pi\)
\(600\) 4.29912 + 22.2572i 0.175511 + 0.908647i
\(601\) 6.73553i 0.274748i −0.990519 0.137374i \(-0.956134\pi\)
0.990519 0.137374i \(-0.0438662\pi\)
\(602\) −1.47725 4.15639i −0.0602080 0.169402i
\(603\) −1.05702 1.28369i −0.0430451 0.0522760i
\(604\) −12.5542 15.4303i −0.510821 0.627848i
\(605\) −2.94993 2.94993i −0.119932 0.119932i
\(606\) −0.182275 0.603709i −0.00740440 0.0245240i
\(607\) 21.2388i 0.862058i −0.902338 0.431029i \(-0.858151\pi\)
0.902338 0.431029i \(-0.141849\pi\)
\(608\) 0.774723 + 5.63363i 0.0314192 + 0.228474i
\(609\) 14.6167 + 16.1005i 0.592297 + 0.652426i
\(610\) 6.31889 + 3.00502i 0.255844 + 0.121670i
\(611\) 15.8508 15.8508i 0.641256 0.641256i
\(612\) 12.1412 8.06679i 0.490777 0.326081i
\(613\) −9.62219 9.62219i −0.388637 0.388637i 0.485564 0.874201i \(-0.338614\pi\)
−0.874201 + 0.485564i \(0.838614\pi\)
\(614\) 25.3294 9.00246i 1.02221 0.363310i
\(615\) 1.42166 1.29064i 0.0573270 0.0520436i
\(616\) 31.6655 + 19.2544i 1.27584 + 0.775783i
\(617\) −3.74576 −0.150798 −0.0753992 0.997153i \(-0.524023\pi\)
−0.0753992 + 0.997153i \(0.524023\pi\)
\(618\) −7.35843 + 13.7236i −0.295999 + 0.552045i
\(619\) −13.0680 + 13.0680i −0.525249 + 0.525249i −0.919152 0.393903i \(-0.871124\pi\)
0.393903 + 0.919152i \(0.371124\pi\)
\(620\) 0.0654727 0.637049i 0.00262945 0.0255845i
\(621\) −4.47799 + 30.7070i −0.179696 + 1.23223i
\(622\) 17.6655 + 8.40105i 0.708323 + 0.336852i
\(623\) 38.9643 1.56107
\(624\) 10.4563 + 17.7524i 0.418586 + 0.710663i
\(625\) −19.5472 −0.781887
\(626\) 5.03268 + 2.39335i 0.201147 + 0.0956576i
\(627\) −0.354779 + 7.34422i −0.0141685 + 0.293300i
\(628\) 25.7491 + 2.64637i 1.02750 + 0.105602i
\(629\) −3.70355 + 3.70355i −0.147670 + 0.147670i
\(630\) 1.94915 + 7.79750i 0.0776561 + 0.310660i
\(631\) −7.51388 −0.299123 −0.149561 0.988752i \(-0.547786\pi\)
−0.149561 + 0.988752i \(0.547786\pi\)
\(632\) −2.32788 9.55077i −0.0925981 0.379909i
\(633\) −10.1857 11.2197i −0.404843 0.445942i
\(634\) 16.8136 5.97582i 0.667754 0.237330i
\(635\) −6.81226 6.81226i −0.270336 0.270336i
\(636\) −42.7835 6.49609i −1.69648 0.257587i
\(637\) 5.52444 5.52444i 0.218886 0.218886i
\(638\) −21.8229 10.3781i −0.863976 0.410874i
\(639\) 1.45158 14.9894i 0.0574238 0.592973i
\(640\) −5.04888 4.71440i −0.199574 0.186353i
\(641\) 27.7227i 1.09498i 0.836811 + 0.547491i \(0.184417\pi\)
−0.836811 + 0.547491i \(0.815583\pi\)
\(642\) 5.46007 1.64853i 0.215492 0.0650623i
\(643\) 19.7003 + 19.7003i 0.776903 + 0.776903i 0.979303 0.202400i \(-0.0648742\pi\)
−0.202400 + 0.979303i \(0.564874\pi\)
\(644\) −28.7472 + 23.3889i −1.13280 + 0.921651i
\(645\) −0.0512954 + 1.06186i −0.00201976 + 0.0418106i
\(646\) 1.15667 + 3.25443i 0.0455087 + 0.128044i
\(647\) 5.29520i 0.208176i −0.994568 0.104088i \(-0.966808\pi\)
0.994568 0.104088i \(-0.0331923\pi\)
\(648\) 25.4289 1.17048i 0.998942 0.0459809i
\(649\) 0.480585i 0.0188646i
\(650\) −18.3363 + 6.51700i −0.719208 + 0.255618i
\(651\) −0.135991 + 2.81513i −0.00532992 + 0.110334i
\(652\) 4.54002 44.1744i 0.177801 1.73000i
\(653\) −29.7039 29.7039i −1.16240 1.16240i −0.983948 0.178457i \(-0.942890\pi\)
−0.178457 0.983948i \(-0.557110\pi\)
\(654\) 6.58157 + 21.7987i 0.257360 + 0.852398i
\(655\) 0.0694851i 0.00271501i
\(656\) 1.47725 7.11088i 0.0576767 0.277633i
\(657\) 3.89220 40.1919i 0.151849 1.56804i
\(658\) 14.2056 29.8711i 0.553790 1.16450i
\(659\) −1.03268 + 1.03268i −0.0402276 + 0.0402276i −0.726934 0.686707i \(-0.759056\pi\)
0.686707 + 0.726934i \(0.259056\pi\)
\(660\) −5.29597 7.19212i −0.206145 0.279953i
\(661\) 29.8277 + 29.8277i 1.16016 + 1.16016i 0.984439 + 0.175725i \(0.0562271\pi\)
0.175725 + 0.984439i \(0.443773\pi\)
\(662\) 6.32332 + 17.7913i 0.245763 + 0.691480i
\(663\) 8.41110 + 9.26498i 0.326660 + 0.359822i
\(664\) −9.45998 + 15.5577i −0.367118 + 0.603757i
\(665\) −1.90442 −0.0738502
\(666\) −8.87359 + 2.21815i −0.343845 + 0.0859514i
\(667\) 17.0872 17.0872i 0.661619 0.661619i
\(668\) 29.6994 24.1636i 1.14910 0.934918i
\(669\) 0.684461 14.1689i 0.0264628 0.547802i
\(670\) −0.205550 + 0.432226i −0.00794109 + 0.0166983i
\(671\) 34.2198 1.32104
\(672\) 23.3104 + 19.5151i 0.899217 + 0.752811i
\(673\) −0.891685 −0.0343719 −0.0171860 0.999852i \(-0.505471\pi\)
−0.0171860 + 0.999852i \(0.505471\pi\)
\(674\) −3.60808 + 7.58698i −0.138978 + 0.292240i
\(675\) −3.46959 + 23.7920i −0.133545 + 0.915756i
\(676\) 6.44861 5.24663i 0.248024 0.201794i
\(677\) 8.13073 8.13073i 0.312489 0.312489i −0.533384 0.845873i \(-0.679080\pi\)
0.845873 + 0.533384i \(0.179080\pi\)
\(678\) −17.9452 9.62199i −0.689182 0.369530i
\(679\) 26.9200 1.03309
\(680\) −3.58481 2.17977i −0.137471 0.0835902i
\(681\) −17.9734 + 16.3169i −0.688742 + 0.625266i
\(682\) −1.04888 2.95112i −0.0401635 0.113004i
\(683\) 14.5917 + 14.5917i 0.558337 + 0.558337i 0.928834 0.370497i \(-0.120813\pi\)
−0.370497 + 0.928834i \(0.620813\pi\)
\(684\) −1.19212 + 5.91262i −0.0455817 + 0.226075i
\(685\) −5.72496 + 5.72496i −0.218740 + 0.218740i
\(686\) −8.24057 + 17.3281i −0.314626 + 0.661589i
\(687\) 11.7749 + 12.9703i 0.449241 + 0.494847i
\(688\) 2.20555 + 3.36222i 0.0840858 + 0.128184i
\(689\) 37.1487i 1.41525i
\(690\) 8.55040 2.58158i 0.325508 0.0982790i
\(691\) −11.2197 11.2197i −0.426817 0.426817i 0.460726 0.887543i \(-0.347589\pi\)
−0.887543 + 0.460726i \(0.847589\pi\)
\(692\) −3.85406 + 37.4999i −0.146509 + 1.42553i
\(693\) 24.9864 + 30.3447i 0.949154 + 1.15270i
\(694\) −7.72496 + 2.74557i −0.293236 + 0.104221i
\(695\) 7.24616i 0.274863i
\(696\) −16.4208 11.1042i −0.622430 0.420904i
\(697\) 4.41110i 0.167082i
\(698\) −5.42712 15.2698i −0.205420 0.577970i
\(699\) 33.9833 + 1.64164i 1.28536 + 0.0620924i
\(700\) −22.2736 + 18.1219i −0.841862 + 0.684945i
\(701\) 14.7166 + 14.7166i 0.555837 + 0.555837i 0.928120 0.372282i \(-0.121425\pi\)
−0.372282 + 0.928120i \(0.621425\pi\)
\(702\) 4.27038 + 21.4314i 0.161175 + 0.808875i
\(703\) 2.16724i 0.0817389i
\(704\) −32.2010 10.2172i −1.21362 0.385075i
\(705\) −5.90225 + 5.35828i −0.222292 + 0.201805i
\(706\) −37.3522 17.7633i −1.40577 0.668530i
\(707\) 0.564847 0.564847i 0.0212433 0.0212433i
\(708\) 0.0591803 0.389765i 0.00222413 0.0146483i
\(709\) −23.2978 23.2978i −0.874966 0.874966i 0.118043 0.993009i \(-0.462338\pi\)
−0.993009 + 0.118043i \(0.962338\pi\)
\(710\) −4.08419 + 1.45158i −0.153277 + 0.0544770i
\(711\) 1.00502 10.3781i 0.0376913 0.389211i
\(712\) −34.5089 + 8.41110i −1.29327 + 0.315219i
\(713\) 3.13198 0.117293
\(714\) 16.2728 + 8.72525i 0.608993 + 0.326534i
\(715\) 5.42166 5.42166i 0.202759 0.202759i
\(716\) −25.8416 2.65587i −0.965746 0.0992546i
\(717\) −16.3358 0.789136i −0.610071 0.0294708i
\(718\) −27.2333 12.9511i −1.01634 0.483332i
\(719\) −27.3421 −1.01969 −0.509844 0.860267i \(-0.670297\pi\)
−0.509844 + 0.860267i \(0.670297\pi\)
\(720\) −3.40949 6.48511i −0.127064 0.241686i
\(721\) −19.7250 −0.734596
\(722\) 22.9752 + 10.9261i 0.855048 + 0.406628i
\(723\) 28.7474 + 1.38871i 1.06913 + 0.0516465i
\(724\) −4.77529 + 46.4635i −0.177472 + 1.72680i
\(725\) 13.2393 13.2393i 0.491696 0.491696i
\(726\) −14.7502 7.90889i −0.547433 0.293526i
\(727\) 24.1517 0.895735 0.447868 0.894100i \(-0.352184\pi\)
0.447868 + 0.894100i \(0.352184\pi\)
\(728\) −13.5590 + 22.2990i −0.502532 + 0.826456i
\(729\) 25.8755 + 7.71083i 0.958353 + 0.285586i
\(730\) −10.9511 + 3.89220i −0.405319 + 0.144057i
\(731\) 1.72693 + 1.72693i 0.0638729 + 0.0638729i
\(732\) 27.7530 + 4.21391i 1.02578 + 0.155751i
\(733\) −6.00502 + 6.00502i −0.221801 + 0.221801i −0.809256 0.587456i \(-0.800130\pi\)
0.587456 + 0.809256i \(0.300130\pi\)
\(734\) 41.9259 + 19.9384i 1.54751 + 0.735939i
\(735\) −2.05709 + 1.86751i −0.0758770 + 0.0688840i
\(736\) 20.4111 26.9200i 0.752363 0.992283i
\(737\) 2.34071i 0.0862212i
\(738\) 3.96347 6.60538i 0.145897 0.243148i
\(739\) −10.9008 10.9008i −0.400992 0.400992i 0.477590 0.878583i \(-0.341510\pi\)
−0.878583 + 0.477590i \(0.841510\pi\)
\(740\) 1.66146 + 2.04209i 0.0610765 + 0.0750688i
\(741\) −5.17183 0.249837i −0.189992 0.00917798i
\(742\) −18.3572 51.6499i −0.673914 1.89613i
\(743\) 1.29064i 0.0473490i −0.999720 0.0236745i \(-0.992463\pi\)
0.999720 0.0236745i \(-0.00753652\pi\)
\(744\) −0.487252 2.52258i −0.0178635 0.0924824i
\(745\) 4.99948i 0.183167i
\(746\) −2.55766 + 0.909033i −0.0936427 + 0.0332821i
\(747\) −14.9088 + 12.2762i −0.545483 + 0.449162i
\(748\) −20.4111 2.09775i −0.746304 0.0767014i
\(749\) 5.10860 + 5.10860i 0.186664 + 0.186664i
\(750\) 13.7836 4.16161i 0.503306 0.151960i
\(751\) 1.46552i 0.0534774i −0.999642 0.0267387i \(-0.991488\pi\)
0.999642 0.0267387i \(-0.00851221\pi\)
\(752\) −6.13301 + 29.5219i −0.223648 + 1.07655i
\(753\) −3.34861 3.68855i −0.122030 0.134418i
\(754\) 7.30833 15.3678i 0.266154 0.559661i
\(755\) −4.29406 + 4.29406i −0.156277 + 0.156277i
\(756\) 16.5278 + 27.6870i 0.601109 + 1.00697i
\(757\) 4.71943 + 4.71943i 0.171530 + 0.171530i 0.787651 0.616121i \(-0.211297\pi\)
−0.616121 + 0.787651i \(0.711297\pi\)
\(758\) −11.6455 32.7659i −0.422984 1.19011i
\(759\) 32.3416 29.3609i 1.17393 1.06573i
\(760\) 1.68665 0.411100i 0.0611813 0.0149122i
\(761\) −29.1578 −1.05697 −0.528485 0.848943i \(-0.677240\pi\)
−0.528485 + 0.848943i \(0.677240\pi\)
\(762\) −34.0626 18.2639i −1.23396 0.661633i
\(763\) −20.3955 + 20.3955i −0.738367 + 0.738367i
\(764\) −4.01198 4.93111i −0.145148 0.178401i
\(765\) −2.82867 3.43528i −0.102271 0.124203i
\(766\) 20.0283 42.1149i 0.723651 1.52167i
\(767\) 0.338430 0.0122200
\(768\) −24.8575 12.2517i −0.896969 0.442094i
\(769\) 20.8122 0.750505 0.375253 0.926923i \(-0.377556\pi\)
0.375253 + 0.926923i \(0.377556\pi\)
\(770\) 4.85891 10.2172i 0.175103 0.368202i
\(771\) 1.25996 26.0822i 0.0453762 0.939326i
\(772\) 14.4650 + 17.7789i 0.520607 + 0.639875i
\(773\) 26.6607 26.6607i 0.958918