Properties

Label 48.2.k.a.35.1
Level $48$
Weight $2$
Character 48.35
Analytic conductor $0.383$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.163368480538624.2
Defining polynomial: \(x^{12} - 2 x^{10} - 2 x^{8} + 16 x^{6} - 8 x^{4} - 32 x^{2} + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.1
Root \(0.204810 + 1.39930i\) of defining polynomial
Character \(\chi\) \(=\) 48.35
Dual form 48.2.k.a.11.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.39930 - 0.204810i) q^{2} +(-0.814141 + 1.52878i) q^{3} +(1.91611 + 0.573183i) q^{4} +(2.08397 + 2.08397i) q^{5} +(1.45234 - 1.97249i) q^{6} -1.14637 q^{7} +(-2.56382 - 1.19449i) q^{8} +(-1.67435 - 2.48929i) q^{9} +O(q^{10})\) \(q+(-1.39930 - 0.204810i) q^{2} +(-0.814141 + 1.52878i) q^{3} +(1.91611 + 0.573183i) q^{4} +(2.08397 + 2.08397i) q^{5} +(1.45234 - 1.97249i) q^{6} -1.14637 q^{7} +(-2.56382 - 1.19449i) q^{8} +(-1.67435 - 2.48929i) q^{9} +(-2.48929 - 3.34292i) q^{10} +(1.67435 - 1.67435i) q^{11} +(-2.43625 + 2.46266i) q^{12} +(0.146365 + 0.146365i) q^{13} +(1.60411 + 0.234787i) q^{14} +(-4.88258 + 1.48929i) q^{15} +(3.34292 + 2.19656i) q^{16} -5.59722i q^{17} +(1.83309 + 3.82620i) q^{18} +(1.48929 - 1.48929i) q^{19} +(2.79861 + 5.18760i) q^{20} +(0.933303 - 1.75254i) q^{21} +(-2.68585 + 2.00000i) q^{22} +3.34870i q^{23} +(3.91343 - 2.94704i) q^{24} +3.68585i q^{25} +(-0.174833 - 0.234787i) q^{26} +(5.16874 - 0.533081i) q^{27} +(-2.19656 - 0.657077i) q^{28} +(-3.51325 + 3.51325i) q^{29} +(7.13723 - 1.08397i) q^{30} -5.83221i q^{31} +(-4.22789 - 3.75832i) q^{32} +(1.19656 + 3.92287i) q^{33} +(-1.14637 + 7.83221i) q^{34} +(-2.38899 - 2.38899i) q^{35} +(-1.78141 - 5.72945i) q^{36} +(-4.83221 + 4.83221i) q^{37} +(-2.38899 + 1.77895i) q^{38} +(-0.342923 + 0.104599i) q^{39} +(-2.85363 - 7.83221i) q^{40} +0.610042 q^{41} +(-1.66491 + 2.26119i) q^{42} +(-1.48929 - 1.48929i) q^{43} +(4.16794 - 2.24852i) q^{44} +(1.69831 - 8.67689i) q^{45} +(0.685846 - 4.68585i) q^{46} +6.41646 q^{47} +(-6.07967 + 3.32229i) q^{48} -5.68585 q^{49} +(0.754898 - 5.15762i) q^{50} +(8.55693 + 4.55693i) q^{51} +(0.196558 + 0.364346i) q^{52} +(0.164553 + 0.164553i) q^{53} +(-7.34181 - 0.312665i) q^{54} +6.97858 q^{55} +(2.93908 + 1.36933i) q^{56} +(1.06431 + 3.48929i) q^{57} +(5.63565 - 4.19656i) q^{58} +(-9.05051 + 9.05051i) q^{59} +(-10.2092 + 0.0550256i) q^{60} +(4.53948 + 4.53948i) q^{61} +(-1.19449 + 8.16104i) q^{62} +(1.91942 + 2.85363i) q^{63} +(5.14637 + 6.12494i) q^{64} +0.610042i q^{65} +(-0.870906 - 5.73436i) q^{66} +(-0.635654 + 0.635654i) q^{67} +(3.20823 - 10.7249i) q^{68} +(-5.11943 - 2.72631i) q^{69} +(2.85363 + 3.83221i) q^{70} -6.90659i q^{71} +(1.31929 + 8.38209i) q^{72} -7.07896i q^{73} +(7.75142 - 5.77205i) q^{74} +(-5.63485 - 3.00080i) q^{75} +(3.70727 - 2.00000i) q^{76} +(-1.91942 + 1.91942i) q^{77} +(0.501277 - 0.0761315i) q^{78} +9.83221i q^{79} +(2.38899 + 11.5441i) q^{80} +(-3.39312 + 8.33587i) q^{81} +(-0.853635 - 0.124943i) q^{82} +(-8.09081 - 8.09081i) q^{83} +(2.79284 - 2.82310i) q^{84} +(11.6644 - 11.6644i) q^{85} +(1.77895 + 2.38899i) q^{86} +(-2.51071 - 8.23127i) q^{87} +(-6.29273 + 2.29273i) q^{88} +0.490134 q^{89} +(-4.15356 + 11.7938i) q^{90} +(-0.167788 - 0.167788i) q^{91} +(-1.91942 + 6.41646i) q^{92} +(8.91618 + 4.74824i) q^{93} +(-8.97858 - 1.31415i) q^{94} +6.20726 q^{95} +(9.18775 - 3.40372i) q^{96} +12.3503 q^{97} +(7.95623 + 1.16452i) q^{98} +(-6.97138 - 1.36449i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 2q^{3} - 4q^{4} - 8q^{6} - 8q^{7} + O(q^{10}) \) \( 12q - 2q^{3} - 4q^{4} - 8q^{6} - 8q^{7} - 8q^{12} - 4q^{13} + 16q^{16} + 4q^{18} - 12q^{19} - 8q^{21} + 16q^{22} + 24q^{24} + 10q^{27} - 8q^{28} + 28q^{30} - 4q^{33} - 8q^{34} + 20q^{36} - 4q^{37} + 20q^{39} - 40q^{40} - 24q^{42} + 12q^{43} - 12q^{45} - 40q^{46} - 48q^{48} - 20q^{49} + 24q^{51} - 16q^{52} - 52q^{54} + 24q^{55} + 32q^{58} - 16q^{60} + 12q^{61} + 56q^{64} + 28q^{66} + 28q^{67} + 4q^{69} + 40q^{70} + 40q^{72} - 34q^{75} + 56q^{76} + 60q^{78} - 4q^{81} - 16q^{82} + 16q^{84} + 32q^{85} - 60q^{87} - 64q^{88} - 16q^{90} - 56q^{91} + 28q^{93} - 48q^{94} - 56q^{96} - 8q^{97} - 52q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39930 0.204810i −0.989458 0.144822i
\(3\) −0.814141 + 1.52878i −0.470045 + 0.882643i
\(4\) 1.91611 + 0.573183i 0.958053 + 0.286591i
\(5\) 2.08397 + 2.08397i 0.931979 + 0.931979i 0.997829 0.0658506i \(-0.0209761\pi\)
−0.0658506 + 0.997829i \(0.520976\pi\)
\(6\) 1.45234 1.97249i 0.592916 0.805265i
\(7\) −1.14637 −0.433285 −0.216643 0.976251i \(-0.569511\pi\)
−0.216643 + 0.976251i \(0.569511\pi\)
\(8\) −2.56382 1.19449i −0.906448 0.422318i
\(9\) −1.67435 2.48929i −0.558116 0.829763i
\(10\) −2.48929 3.34292i −0.787182 1.05713i
\(11\) 1.67435 1.67435i 0.504835 0.504835i −0.408102 0.912937i \(-0.633809\pi\)
0.912937 + 0.408102i \(0.133809\pi\)
\(12\) −2.43625 + 2.46266i −0.703285 + 0.710908i
\(13\) 0.146365 + 0.146365i 0.0405945 + 0.0405945i 0.727113 0.686518i \(-0.240862\pi\)
−0.686518 + 0.727113i \(0.740862\pi\)
\(14\) 1.60411 + 0.234787i 0.428718 + 0.0627495i
\(15\) −4.88258 + 1.48929i −1.26068 + 0.384533i
\(16\) 3.34292 + 2.19656i 0.835731 + 0.549139i
\(17\) 5.59722i 1.35752i −0.734358 0.678762i \(-0.762517\pi\)
0.734358 0.678762i \(-0.237483\pi\)
\(18\) 1.83309 + 3.82620i 0.432064 + 0.901843i
\(19\) 1.48929 1.48929i 0.341666 0.341666i −0.515327 0.856993i \(-0.672330\pi\)
0.856993 + 0.515327i \(0.172330\pi\)
\(20\) 2.79861 + 5.18760i 0.625788 + 1.15998i
\(21\) 0.933303 1.75254i 0.203663 0.382436i
\(22\) −2.68585 + 2.00000i −0.572624 + 0.426401i
\(23\) 3.34870i 0.698252i 0.937076 + 0.349126i \(0.113521\pi\)
−0.937076 + 0.349126i \(0.886479\pi\)
\(24\) 3.91343 2.94704i 0.798826 0.601561i
\(25\) 3.68585i 0.737169i
\(26\) −0.174833 0.234787i −0.0342875 0.0460455i
\(27\) 5.16874 0.533081i 0.994724 0.102592i
\(28\) −2.19656 0.657077i −0.415110 0.124176i
\(29\) −3.51325 + 3.51325i −0.652394 + 0.652394i −0.953569 0.301175i \(-0.902621\pi\)
0.301175 + 0.953569i \(0.402621\pi\)
\(30\) 7.13723 1.08397i 1.30307 0.197905i
\(31\) 5.83221i 1.04750i −0.851873 0.523748i \(-0.824533\pi\)
0.851873 0.523748i \(-0.175467\pi\)
\(32\) −4.22789 3.75832i −0.747392 0.664383i
\(33\) 1.19656 + 3.92287i 0.208294 + 0.682884i
\(34\) −1.14637 + 7.83221i −0.196600 + 1.34321i
\(35\) −2.38899 2.38899i −0.403813 0.403813i
\(36\) −1.78141 5.72945i −0.296902 0.954908i
\(37\) −4.83221 + 4.83221i −0.794411 + 0.794411i −0.982208 0.187797i \(-0.939865\pi\)
0.187797 + 0.982208i \(0.439865\pi\)
\(38\) −2.38899 + 1.77895i −0.387545 + 0.288583i
\(39\) −0.342923 + 0.104599i −0.0549116 + 0.0167492i
\(40\) −2.85363 7.83221i −0.451199 1.23838i
\(41\) 0.610042 0.0952726 0.0476363 0.998865i \(-0.484831\pi\)
0.0476363 + 0.998865i \(0.484831\pi\)
\(42\) −1.66491 + 2.26119i −0.256902 + 0.348909i
\(43\) −1.48929 1.48929i −0.227114 0.227114i 0.584372 0.811486i \(-0.301341\pi\)
−0.811486 + 0.584372i \(0.801341\pi\)
\(44\) 4.16794 2.24852i 0.628340 0.338977i
\(45\) 1.69831 8.67689i 0.253169 1.29347i
\(46\) 0.685846 4.68585i 0.101123 0.690890i
\(47\) 6.41646 0.935936 0.467968 0.883745i \(-0.344986\pi\)
0.467968 + 0.883745i \(0.344986\pi\)
\(48\) −6.07967 + 3.32229i −0.877525 + 0.479532i
\(49\) −5.68585 −0.812264
\(50\) 0.754898 5.15762i 0.106759 0.729398i
\(51\) 8.55693 + 4.55693i 1.19821 + 0.638097i
\(52\) 0.196558 + 0.364346i 0.0272576 + 0.0505257i
\(53\) 0.164553 + 0.164553i 0.0226031 + 0.0226031i 0.718318 0.695715i \(-0.244912\pi\)
−0.695715 + 0.718318i \(0.744912\pi\)
\(54\) −7.34181 0.312665i −0.999094 0.0425483i
\(55\) 6.97858 0.940991
\(56\) 2.93908 + 1.36933i 0.392751 + 0.182984i
\(57\) 1.06431 + 3.48929i 0.140971 + 0.462168i
\(58\) 5.63565 4.19656i 0.739998 0.551035i
\(59\) −9.05051 + 9.05051i −1.17828 + 1.17828i −0.198093 + 0.980183i \(0.563475\pi\)
−0.980183 + 0.198093i \(0.936525\pi\)
\(60\) −10.2092 + 0.0550256i −1.31800 + 0.00710378i
\(61\) 4.53948 + 4.53948i 0.581221 + 0.581221i 0.935239 0.354018i \(-0.115185\pi\)
−0.354018 + 0.935239i \(0.615185\pi\)
\(62\) −1.19449 + 8.16104i −0.151701 + 1.03645i
\(63\) 1.91942 + 2.85363i 0.241824 + 0.359524i
\(64\) 5.14637 + 6.12494i 0.643296 + 0.765618i
\(65\) 0.610042i 0.0756664i
\(66\) −0.870906 5.73436i −0.107201 0.705850i
\(67\) −0.635654 + 0.635654i −0.0776575 + 0.0776575i −0.744869 0.667211i \(-0.767488\pi\)
0.667211 + 0.744869i \(0.267488\pi\)
\(68\) 3.20823 10.7249i 0.389055 1.30058i
\(69\) −5.11943 2.72631i −0.616307 0.328209i
\(70\) 2.85363 + 3.83221i 0.341075 + 0.458037i
\(71\) 6.90659i 0.819662i −0.912162 0.409831i \(-0.865588\pi\)
0.912162 0.409831i \(-0.134412\pi\)
\(72\) 1.31929 + 8.38209i 0.155480 + 0.987839i
\(73\) 7.07896i 0.828530i −0.910156 0.414265i \(-0.864039\pi\)
0.910156 0.414265i \(-0.135961\pi\)
\(74\) 7.75142 5.77205i 0.901084 0.670987i
\(75\) −5.63485 3.00080i −0.650657 0.346502i
\(76\) 3.70727 2.00000i 0.425253 0.229416i
\(77\) −1.91942 + 1.91942i −0.218738 + 0.218738i
\(78\) 0.501277 0.0761315i 0.0567584 0.00862019i
\(79\) 9.83221i 1.10621i 0.833111 + 0.553105i \(0.186557\pi\)
−0.833111 + 0.553105i \(0.813443\pi\)
\(80\) 2.38899 + 11.5441i 0.267097 + 1.29067i
\(81\) −3.39312 + 8.33587i −0.377013 + 0.926208i
\(82\) −0.853635 0.124943i −0.0942682 0.0137976i
\(83\) −8.09081 8.09081i −0.888081 0.888081i 0.106257 0.994339i \(-0.466113\pi\)
−0.994339 + 0.106257i \(0.966113\pi\)
\(84\) 2.79284 2.82310i 0.304723 0.308026i
\(85\) 11.6644 11.6644i 1.26518 1.26518i
\(86\) 1.77895 + 2.38899i 0.191829 + 0.257611i
\(87\) −2.51071 8.23127i −0.269177 0.882485i
\(88\) −6.29273 + 2.29273i −0.670807 + 0.244406i
\(89\) 0.490134 0.0519541 0.0259770 0.999663i \(-0.491730\pi\)
0.0259770 + 0.999663i \(0.491730\pi\)
\(90\) −4.15356 + 11.7938i −0.437824 + 1.24317i
\(91\) −0.167788 0.167788i −0.0175890 0.0175890i
\(92\) −1.91942 + 6.41646i −0.200113 + 0.668962i
\(93\) 8.91618 + 4.74824i 0.924565 + 0.492370i
\(94\) −8.97858 1.31415i −0.926070 0.135545i
\(95\) 6.20726 0.636851
\(96\) 9.18775 3.40372i 0.937720 0.347391i
\(97\) 12.3503 1.25398 0.626990 0.779027i \(-0.284287\pi\)
0.626990 + 0.779027i \(0.284287\pi\)
\(98\) 7.95623 + 1.16452i 0.803701 + 0.117634i
\(99\) −6.97138 1.36449i −0.700650 0.137137i
\(100\) −2.11266 + 7.06247i −0.211266 + 0.706247i
\(101\) −8.29123 8.29123i −0.825008 0.825008i 0.161813 0.986821i \(-0.448266\pi\)
−0.986821 + 0.161813i \(0.948266\pi\)
\(102\) −11.0404 8.12907i −1.09317 0.804898i
\(103\) −12.2253 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(104\) −0.200422 0.550088i −0.0196530 0.0539405i
\(105\) 5.59722 1.70727i 0.546233 0.166612i
\(106\) −0.196558 0.263962i −0.0190914 0.0256382i
\(107\) −0.714641 + 0.714641i −0.0690869 + 0.0690869i −0.740806 0.671719i \(-0.765556\pi\)
0.671719 + 0.740806i \(0.265556\pi\)
\(108\) 10.2094 + 1.94119i 0.982400 + 0.186791i
\(109\) −12.4966 12.4966i −1.19696 1.19696i −0.975072 0.221888i \(-0.928778\pi\)
−0.221888 0.975072i \(-0.571222\pi\)
\(110\) −9.76515 1.42928i −0.931071 0.136277i
\(111\) −3.45330 11.3215i −0.327772 1.07459i
\(112\) −3.83221 2.51806i −0.362110 0.237934i
\(113\) 5.47731i 0.515262i 0.966243 + 0.257631i \(0.0829419\pi\)
−0.966243 + 0.257631i \(0.917058\pi\)
\(114\) −0.774648 5.10056i −0.0725524 0.477711i
\(115\) −6.97858 + 6.97858i −0.650756 + 0.650756i
\(116\) −8.74549 + 4.71802i −0.811999 + 0.438058i
\(117\) 0.119279 0.609413i 0.0110274 0.0563402i
\(118\) 14.5181 10.8108i 1.33650 0.995214i
\(119\) 6.41646i 0.588196i
\(120\) 14.2970 + 2.01394i 1.30513 + 0.183847i
\(121\) 5.39312i 0.490283i
\(122\) −5.42238 7.28185i −0.490920 0.659267i
\(123\) −0.496660 + 0.932621i −0.0447824 + 0.0840916i
\(124\) 3.34292 11.1751i 0.300203 1.00356i
\(125\) 2.73865 2.73865i 0.244953 0.244953i
\(126\) −2.10139 4.38622i −0.187207 0.390755i
\(127\) 7.20390i 0.639243i 0.947545 + 0.319622i \(0.103556\pi\)
−0.947545 + 0.319622i \(0.896444\pi\)
\(128\) −5.94688 9.62469i −0.525635 0.850710i
\(129\) 3.48929 1.06431i 0.307215 0.0937069i
\(130\) 0.124943 0.853635i 0.0109582 0.0748687i
\(131\) 9.05051 + 9.05051i 0.790747 + 0.790747i 0.981616 0.190869i \(-0.0611304\pi\)
−0.190869 + 0.981616i \(0.561130\pi\)
\(132\) 0.0442099 + 8.20248i 0.00384798 + 0.713934i
\(133\) −1.70727 + 1.70727i −0.148039 + 0.148039i
\(134\) 1.01966 0.759285i 0.0880854 0.0655923i
\(135\) 11.8824 + 9.66056i 1.02267 + 0.831448i
\(136\) −6.68585 + 14.3503i −0.573307 + 1.23053i
\(137\) 13.4430 1.14851 0.574255 0.818677i \(-0.305292\pi\)
0.574255 + 0.818677i \(0.305292\pi\)
\(138\) 6.60526 + 4.86345i 0.562277 + 0.414004i
\(139\) 8.63565 + 8.63565i 0.732467 + 0.732467i 0.971108 0.238641i \(-0.0767020\pi\)
−0.238641 + 0.971108i \(0.576702\pi\)
\(140\) −3.20823 5.94688i −0.271145 0.502603i
\(141\) −5.22390 + 9.80936i −0.439932 + 0.826097i
\(142\) −1.41454 + 9.66442i −0.118705 + 0.811020i
\(143\) 0.490134 0.0409870
\(144\) −0.129352 11.9993i −0.0107793 0.999942i
\(145\) −14.6430 −1.21603
\(146\) −1.44984 + 9.90562i −0.119990 + 0.819795i
\(147\) 4.62908 8.69242i 0.381800 0.716939i
\(148\) −12.0288 + 6.48929i −0.988759 + 0.533416i
\(149\) 11.6399 + 11.6399i 0.953580 + 0.953580i 0.998969 0.0453896i \(-0.0144529\pi\)
−0.0453896 + 0.998969i \(0.514453\pi\)
\(150\) 7.27028 + 5.35311i 0.593616 + 0.437079i
\(151\) −0.810789 −0.0659811 −0.0329905 0.999456i \(-0.510503\pi\)
−0.0329905 + 0.999456i \(0.510503\pi\)
\(152\) −5.59722 + 2.03932i −0.453994 + 0.165411i
\(153\) −13.9331 + 9.37169i −1.12642 + 0.757656i
\(154\) 3.07896 2.29273i 0.248110 0.184754i
\(155\) 12.1541 12.1541i 0.976244 0.976244i
\(156\) −0.717031 + 0.00386467i −0.0574084 + 0.000309421i
\(157\) 5.51806 + 5.51806i 0.440389 + 0.440389i 0.892143 0.451754i \(-0.149201\pi\)
−0.451754 + 0.892143i \(0.649201\pi\)
\(158\) 2.01373 13.7583i 0.160204 1.09455i
\(159\) −0.385535 + 0.117596i −0.0305749 + 0.00932599i
\(160\) −0.978577 16.6430i −0.0773633 1.31574i
\(161\) 3.83883i 0.302542i
\(162\) 6.45527 10.9695i 0.507174 0.861844i
\(163\) 10.0748 10.0748i 0.789115 0.789115i −0.192234 0.981349i \(-0.561573\pi\)
0.981349 + 0.192234i \(0.0615732\pi\)
\(164\) 1.16891 + 0.349666i 0.0912762 + 0.0273043i
\(165\) −5.68155 + 10.6687i −0.442308 + 0.830559i
\(166\) 9.66442 + 12.9786i 0.750105 + 1.00733i
\(167\) 2.36843i 0.183275i −0.995792 0.0916373i \(-0.970790\pi\)
0.995792 0.0916373i \(-0.0292100\pi\)
\(168\) −4.48623 + 3.37838i −0.346120 + 0.260648i
\(169\) 12.9572i 0.996704i
\(170\) −18.7111 + 13.9331i −1.43507 + 1.06862i
\(171\) −6.20086 1.21368i −0.474191 0.0928125i
\(172\) −2.00000 3.70727i −0.152499 0.282677i
\(173\) 5.22347 5.22347i 0.397133 0.397133i −0.480088 0.877221i \(-0.659395\pi\)
0.877221 + 0.480088i \(0.159395\pi\)
\(174\) 1.82740 + 12.0323i 0.138535 + 0.912165i
\(175\) 4.22533i 0.319405i
\(176\) 9.27502 1.91942i 0.699131 0.144681i
\(177\) −6.46787 21.2047i −0.486155 1.59384i
\(178\) −0.685846 0.100384i −0.0514063 0.00752411i
\(179\) 7.13110 + 7.13110i 0.533003 + 0.533003i 0.921465 0.388462i \(-0.126993\pi\)
−0.388462 + 0.921465i \(0.626993\pi\)
\(180\) 8.22758 15.6524i 0.613248 1.16666i
\(181\) −6.73183 + 6.73183i −0.500373 + 0.500373i −0.911554 0.411181i \(-0.865116\pi\)
0.411181 + 0.911554i \(0.365116\pi\)
\(182\) 0.200422 + 0.269152i 0.0148563 + 0.0199509i
\(183\) −10.6357 + 3.24410i −0.786210 + 0.239811i
\(184\) 4.00000 8.58546i 0.294884 0.632929i
\(185\) −20.1403 −1.48075
\(186\) −11.5040 8.47036i −0.843511 0.621077i
\(187\) −9.37169 9.37169i −0.685326 0.685326i
\(188\) 12.2946 + 3.67780i 0.896677 + 0.268231i
\(189\) −5.92526 + 0.611106i −0.430999 + 0.0444514i
\(190\) −8.68585 1.27131i −0.630138 0.0922304i
\(191\) −25.5284 −1.84717 −0.923584 0.383396i \(-0.874754\pi\)
−0.923584 + 0.383396i \(0.874754\pi\)
\(192\) −13.5536 + 2.88110i −0.978145 + 0.207926i
\(193\) 9.07896 0.653518 0.326759 0.945108i \(-0.394043\pi\)
0.326759 + 0.945108i \(0.394043\pi\)
\(194\) −17.2818 2.52946i −1.24076 0.181604i
\(195\) −0.932621 0.496660i −0.0667864 0.0355666i
\(196\) −10.8947 3.25903i −0.778192 0.232788i
\(197\) 3.18414 + 3.18414i 0.226861 + 0.226861i 0.811380 0.584519i \(-0.198717\pi\)
−0.584519 + 0.811380i \(0.698717\pi\)
\(198\) 9.47562 + 3.33715i 0.673403 + 0.237161i
\(199\) 19.5542 1.38616 0.693079 0.720861i \(-0.256254\pi\)
0.693079 + 0.720861i \(0.256254\pi\)
\(200\) 4.40272 9.44985i 0.311320 0.668206i
\(201\) −0.454264 1.48929i −0.0320413 0.105046i
\(202\) 9.90383 + 13.3001i 0.696831 + 0.935790i
\(203\) 4.02747 4.02747i 0.282673 0.282673i
\(204\) 13.7840 + 13.6362i 0.965075 + 0.954727i
\(205\) 1.27131 + 1.27131i 0.0887920 + 0.0887920i
\(206\) 17.1070 + 2.50387i 1.19190 + 0.174453i
\(207\) 8.33587 5.60688i 0.579383 0.389705i
\(208\) 0.167788 + 0.810789i 0.0116340 + 0.0562181i
\(209\) 4.98718i 0.344970i
\(210\) −8.18188 + 1.24262i −0.564603 + 0.0857492i
\(211\) −10.3429 + 10.3429i −0.712036 + 0.712036i −0.966961 0.254925i \(-0.917949\pi\)
0.254925 + 0.966961i \(0.417949\pi\)
\(212\) 0.220982 + 0.409620i 0.0151771 + 0.0281328i
\(213\) 10.5587 + 5.62294i 0.723468 + 0.385277i
\(214\) 1.14637 0.853635i 0.0783639 0.0583533i
\(215\) 6.20726i 0.423332i
\(216\) −13.8885 4.80730i −0.944991 0.327095i
\(217\) 6.68585i 0.453865i
\(218\) 14.9272 + 20.0460i 1.01100 + 1.35769i
\(219\) 10.8222 + 5.76327i 0.731296 + 0.389446i
\(220\) 13.3717 + 4.00000i 0.901519 + 0.269680i
\(221\) 0.819240 0.819240i 0.0551080 0.0551080i
\(222\) 2.51346 + 16.5495i 0.168692 + 1.11073i
\(223\) 22.6184i 1.51464i −0.653042 0.757321i \(-0.726508\pi\)
0.653042 0.757321i \(-0.273492\pi\)
\(224\) 4.84671 + 4.30840i 0.323834 + 0.287867i
\(225\) 9.17513 6.17139i 0.611676 0.411426i
\(226\) 1.12181 7.66442i 0.0746215 0.509830i
\(227\) 1.46515 + 1.46515i 0.0972455 + 0.0972455i 0.754056 0.656810i \(-0.228095\pi\)
−0.656810 + 0.754056i \(0.728095\pi\)
\(228\) 0.0393236 + 7.29589i 0.00260427 + 0.483182i
\(229\) −7.51806 + 7.51806i −0.496807 + 0.496807i −0.910443 0.413635i \(-0.864259\pi\)
0.413635 + 0.910443i \(0.364259\pi\)
\(230\) 11.1944 8.33587i 0.738139 0.549651i
\(231\) −1.37169 4.49704i −0.0902507 0.295884i
\(232\) 13.2039 4.81079i 0.866879 0.315844i
\(233\) −18.3820 −1.20424 −0.602121 0.798405i \(-0.705678\pi\)
−0.602121 + 0.798405i \(0.705678\pi\)
\(234\) −0.291722 + 0.828324i −0.0190704 + 0.0541493i
\(235\) 13.3717 + 13.3717i 0.872273 + 0.872273i
\(236\) −22.5293 + 12.1541i −1.46654 + 0.791167i
\(237\) −15.0313 8.00481i −0.976388 0.519968i
\(238\) 1.31415 8.97858i 0.0851839 0.581995i
\(239\) −13.5322 −0.875328 −0.437664 0.899139i \(-0.644194\pi\)
−0.437664 + 0.899139i \(0.644194\pi\)
\(240\) −19.5934 5.74628i −1.26475 0.370921i
\(241\) 4.87819 0.314232 0.157116 0.987580i \(-0.449780\pi\)
0.157116 + 0.987580i \(0.449780\pi\)
\(242\) 1.10456 7.54661i 0.0710040 0.485114i
\(243\) −9.98126 11.9739i −0.640298 0.768127i
\(244\) 6.09617 + 11.3001i 0.390268 + 0.723413i
\(245\) −11.8491 11.8491i −0.757013 0.757013i
\(246\) 0.885989 1.20330i 0.0564886 0.0767196i
\(247\) 0.435961 0.0277395
\(248\) −6.96655 + 14.9528i −0.442376 + 0.949501i
\(249\) 18.9561 5.78202i 1.20130 0.366421i
\(250\) −4.39312 + 3.27131i −0.277845 + 0.206896i
\(251\) 5.23224 5.23224i 0.330256 0.330256i −0.522427 0.852684i \(-0.674973\pi\)
0.852684 + 0.522427i \(0.174973\pi\)
\(252\) 2.04215 + 6.56804i 0.128643 + 0.413748i
\(253\) 5.60688 + 5.60688i 0.352502 + 0.352502i
\(254\) 1.47543 10.0805i 0.0925768 0.632504i
\(255\) 8.33587 + 27.3288i 0.522013 + 1.71140i
\(256\) 6.35027 + 14.6858i 0.396892 + 0.917865i
\(257\) 12.8329i 0.800495i 0.916407 + 0.400248i \(0.131076\pi\)
−0.916407 + 0.400248i \(0.868924\pi\)
\(258\) −5.10056 + 0.774648i −0.317547 + 0.0482275i
\(259\) 5.53948 5.53948i 0.344207 0.344207i
\(260\) −0.349666 + 1.16891i −0.0216853 + 0.0724924i
\(261\) 14.6279 + 2.86309i 0.905444 + 0.177221i
\(262\) −10.8108 14.5181i −0.667893 0.896929i
\(263\) 28.3152i 1.74599i 0.487729 + 0.872995i \(0.337825\pi\)
−0.487729 + 0.872995i \(0.662175\pi\)
\(264\) 1.61809 11.4868i 0.0995863 0.706965i
\(265\) 0.685846i 0.0421312i
\(266\) 2.73865 2.03932i 0.167918 0.125039i
\(267\) −0.399038 + 0.749307i −0.0244207 + 0.0458569i
\(268\) −1.58233 + 0.853635i −0.0966560 + 0.0521440i
\(269\) 6.58101 6.58101i 0.401251 0.401251i −0.477423 0.878674i \(-0.658429\pi\)
0.878674 + 0.477423i \(0.158429\pi\)
\(270\) −14.6485 15.9517i −0.891481 0.970789i
\(271\) 8.66129i 0.526136i 0.964777 + 0.263068i \(0.0847343\pi\)
−0.964777 + 0.263068i \(0.915266\pi\)
\(272\) 12.2946 18.7111i 0.745470 1.13453i
\(273\) 0.393115 0.119908i 0.0237924 0.00725719i
\(274\) −18.8108 2.75325i −1.13640 0.166330i
\(275\) 6.17139 + 6.17139i 0.372149 + 0.372149i
\(276\) −8.24669 8.15827i −0.496392 0.491070i
\(277\) 13.1249 13.1249i 0.788601 0.788601i −0.192664 0.981265i \(-0.561713\pi\)
0.981265 + 0.192664i \(0.0617126\pi\)
\(278\) −10.3152 13.8526i −0.618667 0.830822i
\(279\) −14.5181 + 9.76515i −0.869173 + 0.584624i
\(280\) 3.27131 + 8.97858i 0.195498 + 0.536573i
\(281\) 26.1560 1.56033 0.780167 0.625571i \(-0.215134\pi\)
0.780167 + 0.625571i \(0.215134\pi\)
\(282\) 9.31888 12.6564i 0.554931 0.753676i
\(283\) −17.9070 17.9070i −1.06446 1.06446i −0.997774 0.0666843i \(-0.978758\pi\)
−0.0666843 0.997774i \(-0.521242\pi\)
\(284\) 3.95874 13.2338i 0.234908 0.785279i
\(285\) −5.05359 + 9.48955i −0.299349 + 0.562112i
\(286\) −0.685846 0.100384i −0.0405549 0.00593584i
\(287\) −0.699331 −0.0412802
\(288\) −2.27657 + 16.8172i −0.134148 + 0.990961i
\(289\) −14.3288 −0.842873
\(290\) 20.4900 + 2.99903i 1.20322 + 0.176109i
\(291\) −10.0549 + 18.8809i −0.589426 + 1.10682i
\(292\) 4.05754 13.5640i 0.237449 0.793775i
\(293\) −0.654687 0.654687i −0.0382472 0.0382472i 0.687725 0.725972i \(-0.258610\pi\)
−0.725972 + 0.687725i \(0.758610\pi\)
\(294\) −8.25779 + 11.2153i −0.481604 + 0.654087i
\(295\) −37.7220 −2.19626
\(296\) 18.1610 6.61688i 1.05559 0.384598i
\(297\) 7.76170 9.54683i 0.450379 0.553963i
\(298\) −13.9038 18.6718i −0.805427 1.08163i
\(299\) −0.490134 + 0.490134i −0.0283452 + 0.0283452i
\(300\) −9.07697 8.97965i −0.524059 0.518440i
\(301\) 1.70727 + 1.70727i 0.0984054 + 0.0984054i
\(302\) 1.13454 + 0.166058i 0.0652855 + 0.00955554i
\(303\) 19.4257 5.92525i 1.11598 0.340397i
\(304\) 8.24989 1.70727i 0.473163 0.0979186i
\(305\) 18.9203i 1.08337i
\(306\) 21.4161 10.2602i 1.22427 0.586538i
\(307\) −0.971231 + 0.971231i −0.0554311 + 0.0554311i −0.734279 0.678848i \(-0.762480\pi\)
0.678848 + 0.734279i \(0.262480\pi\)
\(308\) −4.77798 + 2.57763i −0.272251 + 0.146874i
\(309\) 9.95314 18.6899i 0.566214 1.06323i
\(310\) −19.4966 + 14.5181i −1.10733 + 0.824570i
\(311\) 33.1343i 1.87887i −0.342723 0.939437i \(-0.611349\pi\)
0.342723 0.939437i \(-0.388651\pi\)
\(312\) 1.00414 + 0.141447i 0.0568480 + 0.00800787i
\(313\) 13.2285i 0.747717i 0.927486 + 0.373858i \(0.121965\pi\)
−0.927486 + 0.373858i \(0.878035\pi\)
\(314\) −6.59129 8.85160i −0.371968 0.499524i
\(315\) −1.94688 + 9.94688i −0.109694 + 0.560443i
\(316\) −5.63565 + 18.8396i −0.317030 + 1.05981i
\(317\) −7.89038 + 7.89038i −0.443168 + 0.443168i −0.893075 0.449907i \(-0.851457\pi\)
0.449907 + 0.893075i \(0.351457\pi\)
\(318\) 0.563566 0.0855916i 0.0316032 0.00479974i
\(319\) 11.7648i 0.658703i
\(320\) −2.03932 + 23.4890i −0.114002 + 1.31308i
\(321\) −0.510711 1.67435i −0.0285051 0.0934530i
\(322\) −0.786230 + 5.37169i −0.0438149 + 0.299353i
\(323\) −8.33587 8.33587i −0.463820 0.463820i
\(324\) −11.2795 + 14.0275i −0.626641 + 0.779308i
\(325\) −0.539481 + 0.539481i −0.0299250 + 0.0299250i
\(326\) −16.1611 + 12.0342i −0.895078 + 0.666515i
\(327\) 29.2787 8.93060i 1.61911 0.493864i
\(328\) −1.56404 0.728692i −0.0863596 0.0402353i
\(329\) −7.35561 −0.405528
\(330\) 10.1353 13.7652i 0.557928 0.757747i
\(331\) −3.02877 3.02877i −0.166476 0.166476i 0.618952 0.785429i \(-0.287557\pi\)
−0.785429 + 0.618952i \(0.787557\pi\)
\(332\) −10.8653 20.1403i −0.596312 1.10535i
\(333\) 20.1196 + 3.93796i 1.10255 + 0.215799i
\(334\) −0.485078 + 3.31415i −0.0265423 + 0.181342i
\(335\) −2.64937 −0.144750
\(336\) 6.96952 3.80856i 0.380219 0.207774i
\(337\) 15.2285 0.829547 0.414774 0.909925i \(-0.363861\pi\)
0.414774 + 0.909925i \(0.363861\pi\)
\(338\) −2.65375 + 18.1310i −0.144345 + 0.986197i
\(339\) −8.37361 4.45930i −0.454792 0.242196i
\(340\) 29.0361 15.6644i 1.57470 0.849523i
\(341\) −9.76515 9.76515i −0.528813 0.528813i
\(342\) 8.42831 + 2.96831i 0.455751 + 0.160508i
\(343\) 14.5426 0.785227
\(344\) 2.03932 + 5.59722i 0.109953 + 0.301782i
\(345\) −4.98718 16.3503i −0.268501 0.880269i
\(346\) −8.37904 + 6.23940i −0.450460 + 0.335432i
\(347\) −16.2175 + 16.2175i −0.870600 + 0.870600i −0.992538 0.121938i \(-0.961089\pi\)
0.121938 + 0.992538i \(0.461089\pi\)
\(348\) −0.0927648 17.2111i −0.00497271 0.922611i
\(349\) −6.14637 6.14637i −0.329007 0.329007i 0.523202 0.852209i \(-0.324737\pi\)
−0.852209 + 0.523202i \(0.824737\pi\)
\(350\) −0.865389 + 5.91252i −0.0462570 + 0.316037i
\(351\) 0.834549 + 0.678500i 0.0445449 + 0.0362156i
\(352\) −13.3717 + 0.786230i −0.712714 + 0.0419062i
\(353\) 22.9507i 1.22154i 0.791806 + 0.610772i \(0.209141\pi\)
−0.791806 + 0.610772i \(0.790859\pi\)
\(354\) 4.70759 + 30.9965i 0.250206 + 1.64744i
\(355\) 14.3931 14.3931i 0.763907 0.763907i
\(356\) 0.939148 + 0.280936i 0.0497747 + 0.0148896i
\(357\) −9.80936 5.22390i −0.519167 0.276478i
\(358\) −8.51806 11.4391i −0.450193 0.604575i
\(359\) 18.3408i 0.967993i −0.875070 0.483996i \(-0.839185\pi\)
0.875070 0.483996i \(-0.160815\pi\)
\(360\) −14.7187 + 20.2174i −0.775741 + 1.06555i
\(361\) 14.5640i 0.766528i
\(362\) 10.7986 8.04113i 0.567563 0.422632i
\(363\) −8.24490 4.39076i −0.432745 0.230455i
\(364\) −0.225327 0.417674i −0.0118103 0.0218920i
\(365\) 14.7523 14.7523i 0.772172 0.772172i
\(366\) 15.5469 2.36119i 0.812652 0.123422i
\(367\) 2.86833i 0.149725i −0.997194 0.0748627i \(-0.976148\pi\)
0.997194 0.0748627i \(-0.0238519\pi\)
\(368\) −7.35561 + 11.1944i −0.383437 + 0.583550i
\(369\) −1.02142 1.51857i −0.0531731 0.0790536i
\(370\) 28.1825 + 4.12494i 1.46514 + 0.214446i
\(371\) −0.188638 0.188638i −0.00979359 0.00979359i
\(372\) 14.3627 + 14.2087i 0.744673 + 0.736689i
\(373\) −17.2253 + 17.2253i −0.891894 + 0.891894i −0.994701 0.102808i \(-0.967217\pi\)
0.102808 + 0.994701i \(0.467217\pi\)
\(374\) 11.1944 + 15.0333i 0.578850 + 0.777352i
\(375\) 1.95715 + 6.41646i 0.101067 + 0.331344i
\(376\) −16.4507 7.66442i −0.848378 0.395262i
\(377\) −1.02844 −0.0529672
\(378\) 8.41640 + 0.358429i 0.432893 + 0.0184356i
\(379\) 5.83956 + 5.83956i 0.299958 + 0.299958i 0.840997 0.541039i \(-0.181969\pi\)
−0.541039 + 0.840997i \(0.681969\pi\)
\(380\) 11.8938 + 3.55789i 0.610137 + 0.182516i
\(381\) −11.0132 5.86499i −0.564223 0.300473i
\(382\) 35.7220 + 5.22846i 1.82769 + 0.267511i
\(383\) 30.7659 1.57206 0.786031 0.618187i \(-0.212133\pi\)
0.786031 + 0.618187i \(0.212133\pi\)
\(384\) 19.5556 1.25563i 0.997945 0.0640763i
\(385\) −8.00000 −0.407718
\(386\) −12.7042 1.85946i −0.646628 0.0946441i
\(387\) −1.21368 + 6.20086i −0.0616949 + 0.315207i
\(388\) 23.6644 + 7.07896i 1.20138 + 0.359380i
\(389\) −11.0299 11.0299i −0.559237 0.559237i 0.369853 0.929090i \(-0.379408\pi\)
−0.929090 + 0.369853i \(0.879408\pi\)
\(390\) 1.20330 + 0.885989i 0.0609315 + 0.0448638i
\(391\) 18.7434 0.947894
\(392\) 14.5775 + 6.79171i 0.736275 + 0.343033i
\(393\) −21.2047 + 6.46787i −1.06963 + 0.326261i
\(394\) −3.80344 5.10773i −0.191615 0.257324i
\(395\) −20.4900 + 20.4900i −1.03096 + 1.03096i
\(396\) −12.5758 6.61039i −0.631957 0.332185i
\(397\) −1.75325 1.75325i −0.0879931 0.0879931i 0.661740 0.749733i \(-0.269818\pi\)
−0.749733 + 0.661740i \(0.769818\pi\)
\(398\) −27.3622 4.00489i −1.37155 0.200747i
\(399\) −1.22008 4.00000i −0.0610806 0.200250i
\(400\) −8.09617 + 12.3215i −0.404809 + 0.616075i
\(401\) 24.4693i 1.22194i −0.791654 0.610970i \(-0.790780\pi\)
0.791654 0.610970i \(-0.209220\pi\)
\(402\) 0.330633 + 2.17701i 0.0164905 + 0.108579i
\(403\) 0.853635 0.853635i 0.0425226 0.0425226i
\(404\) −11.1345 20.6393i −0.553961 1.02684i
\(405\) −24.4428 + 10.3005i −1.21457 + 0.511838i
\(406\) −6.46052 + 4.81079i −0.320630 + 0.238755i
\(407\) 16.1816i 0.802093i
\(408\) −16.4952 21.9043i −0.816635 1.08443i
\(409\) 8.78623i 0.434451i −0.976121 0.217226i \(-0.930299\pi\)
0.976121 0.217226i \(-0.0697007\pi\)
\(410\) −1.51857 2.03932i −0.0749969 0.100715i
\(411\) −10.9445 + 20.5513i −0.539851 + 1.01372i
\(412\) −23.4250 7.00735i −1.15407 0.345227i
\(413\) 10.3752 10.3752i 0.510530 0.510530i
\(414\) −12.8128 + 6.13847i −0.629713 + 0.301689i
\(415\) 33.7220i 1.65535i
\(416\) −0.0687294 1.16891i −0.00336974 0.0573103i
\(417\) −20.2327 + 6.17139i −0.990798 + 0.302214i
\(418\) −1.02142 + 6.97858i −0.0499594 + 0.341333i
\(419\) 3.52202 + 3.52202i 0.172062 + 0.172062i 0.787885 0.615823i \(-0.211176\pi\)
−0.615823 + 0.787885i \(0.711176\pi\)
\(420\) 11.7034 0.0630795i 0.571069 0.00307796i
\(421\) 11.2253 11.2253i 0.547089 0.547089i −0.378509 0.925598i \(-0.623563\pi\)
0.925598 + 0.378509i \(0.123563\pi\)
\(422\) 16.5912 12.3546i 0.807648 0.601411i
\(423\) −10.7434 15.9724i −0.522361 0.776605i
\(424\) −0.225327 0.618442i −0.0109428 0.0300342i
\(425\) 20.6305 1.00073
\(426\) −13.6232 10.0307i −0.660044 0.485990i
\(427\) −5.20390 5.20390i −0.251835 0.251835i
\(428\) −1.77895 + 0.959708i −0.0859887 + 0.0463892i
\(429\) −0.399038 + 0.749307i −0.0192657 + 0.0361769i
\(430\) −1.27131 + 8.68585i −0.0613079 + 0.418869i
\(431\) 12.1336 0.584454 0.292227 0.956349i \(-0.405604\pi\)
0.292227 + 0.956349i \(0.405604\pi\)
\(432\) 18.4496 + 9.57138i 0.887658 + 0.460503i
\(433\) −12.1495 −0.583868 −0.291934 0.956439i \(-0.594299\pi\)
−0.291934 + 0.956439i \(0.594299\pi\)
\(434\) 1.36933 9.35553i 0.0657298 0.449080i
\(435\) 11.9215 22.3860i 0.571591 1.07332i
\(436\) −16.7820 31.1077i −0.803713 1.48979i
\(437\) 4.98718 + 4.98718i 0.238569 + 0.238569i
\(438\) −13.9632 10.2811i −0.667186 0.491248i
\(439\) 27.1035 1.29358 0.646790 0.762668i \(-0.276111\pi\)
0.646790 + 0.762668i \(0.276111\pi\)
\(440\) −17.8918 8.33587i −0.852959 0.397397i
\(441\) 9.52009 + 14.1537i 0.453337 + 0.673986i
\(442\) −1.31415 + 0.978577i −0.0625079 + 0.0465462i
\(443\) 28.8412 28.8412i 1.37029 1.37029i 0.510276 0.860011i \(-0.329543\pi\)
0.860011 0.510276i \(-0.170457\pi\)
\(444\) −0.127591 23.6726i −0.00605520 1.12345i
\(445\) 1.02142 + 1.02142i 0.0484201 + 0.0484201i
\(446\) −4.63248 + 31.6501i −0.219354 + 1.49868i
\(447\) −27.2714 + 8.31836i −1.28990 + 0.393445i
\(448\) −5.89962 7.02142i −0.278731 0.331731i
\(449\) 9.67586i 0.456632i −0.973587 0.228316i \(-0.926678\pi\)
0.973587 0.228316i \(-0.0733220\pi\)
\(450\) −14.1028 + 6.75650i −0.664811 + 0.318504i
\(451\) 1.02142 1.02142i 0.0480969 0.0480969i
\(452\) −3.13950 + 10.4951i −0.147670 + 0.493648i
\(453\) 0.660097 1.23952i 0.0310140 0.0582377i
\(454\) −1.75011 2.35027i −0.0821370 0.110304i
\(455\) 0.699331i 0.0327851i
\(456\) 1.43924 10.2172i 0.0673988 0.478465i
\(457\) 4.20077i 0.196504i 0.995162 + 0.0982518i \(0.0313251\pi\)
−0.995162 + 0.0982518i \(0.968675\pi\)
\(458\) 12.0598 8.98028i 0.563519 0.419621i
\(459\) −2.98377 28.9305i −0.139271 1.35036i
\(460\) −17.3717 + 9.37169i −0.809959 + 0.436957i
\(461\) −27.5406 + 27.5406i −1.28269 + 1.28269i −0.343565 + 0.939129i \(0.611634\pi\)
−0.939129 + 0.343565i \(0.888366\pi\)
\(462\) 0.998377 + 6.57367i 0.0464487 + 0.305835i
\(463\) 37.4109i 1.73863i 0.494255 + 0.869317i \(0.335441\pi\)
−0.494255 + 0.869317i \(0.664559\pi\)
\(464\) −19.4616 + 4.02747i −0.903481 + 0.186971i
\(465\) 8.68585 + 28.4762i 0.402796 + 1.32055i
\(466\) 25.7220 + 3.76481i 1.19155 + 0.174401i
\(467\) 16.9168 + 16.9168i 0.782817 + 0.782817i 0.980305 0.197489i \(-0.0632785\pi\)
−0.197489 + 0.980305i \(0.563279\pi\)
\(468\) 0.577856 1.09933i 0.0267114 0.0508166i
\(469\) 0.728692 0.728692i 0.0336479 0.0336479i
\(470\) −15.9724 21.4497i −0.736753 0.989402i
\(471\) −12.9284 + 3.94343i −0.595709 + 0.181704i
\(472\) 34.0147 12.3931i 1.56565 0.570439i
\(473\) −4.98718 −0.229311
\(474\) 19.3939 + 14.2797i 0.890792 + 0.655889i
\(475\) 5.48929 + 5.48929i 0.251866 + 0.251866i
\(476\) −3.67780 + 12.2946i −0.168572 + 0.563523i
\(477\) 0.134101 0.685139i 0.00614005 0.0313703i
\(478\) 18.9357 + 2.77154i 0.866100 + 0.126767i
\(479\) 18.5500 0.847573 0.423786 0.905762i \(-0.360701\pi\)
0.423786 + 0.905762i \(0.360701\pi\)
\(480\) 26.2402 + 12.0537i 1.19770 + 0.550175i
\(481\) −1.41454 −0.0644974
\(482\) −6.82608 0.999102i −0.310919 0.0455079i
\(483\) 5.86873 + 3.12535i 0.267037 + 0.142208i
\(484\) −3.09124 + 10.3338i −0.140511 + 0.469717i
\(485\) 25.7376 + 25.7376i 1.16868 + 1.16868i
\(486\) 11.5144 + 18.7994i 0.522306 + 0.852758i
\(487\) −40.9259 −1.85453 −0.927264 0.374408i \(-0.877846\pi\)
−0.927264 + 0.374408i \(0.877846\pi\)
\(488\) −6.21604 17.0608i −0.281387 0.772306i
\(489\) 7.19983 + 23.6044i 0.325587 + 1.06743i
\(490\) 14.1537 + 19.0073i 0.639400 + 0.858664i
\(491\) 5.04360 5.04360i 0.227615 0.227615i −0.584081 0.811696i \(-0.698545\pi\)
0.811696 + 0.584081i \(0.198545\pi\)
\(492\) −1.48622 + 1.50232i −0.0670038 + 0.0677300i
\(493\) 19.6644 + 19.6644i 0.885641 + 0.885641i
\(494\) −0.610042 0.0892891i −0.0274471 0.00401731i
\(495\) −11.6846 17.3717i −0.525182 0.780800i
\(496\) 12.8108 19.4966i 0.575221 0.875425i
\(497\) 7.91748i 0.355147i
\(498\) −27.7096 + 4.20840i −1.24170 + 0.188583i
\(499\) −11.4647 + 11.4647i −0.513232 + 0.513232i −0.915515 0.402283i \(-0.868217\pi\)
0.402283 + 0.915515i \(0.368217\pi\)
\(500\) 6.81730 3.67780i 0.304879 0.164476i
\(501\) 3.62081 + 1.92824i 0.161766 + 0.0861472i
\(502\) −8.39312 + 6.24989i −0.374603 + 0.278946i
\(503\) 32.7159i 1.45873i 0.684125 + 0.729365i \(0.260184\pi\)
−0.684125 + 0.729365i \(0.739816\pi\)
\(504\) −1.51239 9.60894i −0.0673671 0.428016i
\(505\) 34.5573i 1.53778i
\(506\) −6.69739 8.99408i −0.297735 0.399836i
\(507\) 19.8087 + 10.5490i 0.879734 + 0.468495i
\(508\) −4.12915 + 13.8034i −0.183202 + 0.612429i
\(509\) 10.1389 10.1389i 0.449399 0.449399i −0.445756 0.895155i \(-0.647065\pi\)
0.895155 + 0.445756i \(0.147065\pi\)
\(510\) −6.06721 39.9486i −0.268660 1.76896i
\(511\) 8.11508i 0.358990i
\(512\) −5.87815 21.8506i −0.259780 0.965668i
\(513\) 6.90383 8.49165i 0.304811 0.374916i
\(514\) 2.62831 17.9572i 0.115930 0.792056i
\(515\) −25.4772 25.4772i −1.12266 1.12266i
\(516\) 7.29589 0.0393236i 0.321184 0.00173112i
\(517\) 10.7434 10.7434i 0.472494 0.472494i
\(518\) −8.88596 + 6.61688i −0.390427 + 0.290729i
\(519\) 3.73290 + 12.2382i 0.163856 + 0.537197i
\(520\) 0.728692 1.56404i 0.0319553 0.0685877i
\(521\) 6.08735 0.266692 0.133346 0.991070i \(-0.457428\pi\)
0.133346 + 0.991070i \(0.457428\pi\)
\(522\) −19.8825 7.00227i −0.870233 0.306481i
\(523\) 15.8824 + 15.8824i 0.694489 + 0.694489i 0.963216 0.268727i \(-0.0866030\pi\)
−0.268727 + 0.963216i \(0.586603\pi\)
\(524\) 12.1541 + 22.5293i 0.530956 + 0.984199i
\(525\) 6.45960 + 3.44001i 0.281920 + 0.150134i
\(526\) 5.79923 39.6216i 0.252859 1.72758i
\(527\) −32.6442 −1.42200
\(528\) −4.61681 + 15.7422i −0.200921 + 0.685090i
\(529\) 11.7862 0.512445
\(530\) 0.140468 0.959708i 0.00610154 0.0416870i
\(531\) 37.6831 + 7.37563i 1.63531 + 0.320075i
\(532\) −4.24989 + 2.29273i −0.184256 + 0.0994025i
\(533\) 0.0892891 + 0.0892891i 0.00386754 + 0.00386754i
\(534\) 0.711841 0.966782i 0.0308044 0.0418368i
\(535\) −2.97858 −0.128775
\(536\) 2.38899 0.870418i 0.103189 0.0375964i
\(537\) −16.7076 + 5.09617i −0.720987 + 0.219916i
\(538\) −10.5567 + 7.86098i −0.455131 + 0.338911i
\(539\) −9.52009 + 9.52009i −0.410059 + 0.410059i
\(540\) 17.2307 + 25.3214i 0.741490 + 1.08966i
\(541\) −25.6184 25.6184i −1.10142 1.10142i −0.994239 0.107184i \(-0.965817\pi\)
−0.107184 0.994239i \(-0.534183\pi\)
\(542\) 1.77392 12.1198i 0.0761963 0.520589i
\(543\) −4.81084 15.7722i −0.206453 0.676848i
\(544\) −21.0361 + 23.6644i −0.901916 + 1.01460i
\(545\) 52.0852i 2.23108i
\(546\) −0.574646 + 0.0872745i −0.0245926 + 0.00373500i
\(547\) −27.2113 + 27.2113i −1.16347 + 1.16347i −0.179758 + 0.983711i \(0.557532\pi\)
−0.983711 + 0.179758i \(0.942468\pi\)
\(548\) 25.7581 + 7.70527i 1.10033 + 0.329153i
\(549\) 3.69941 18.9007i 0.157887 0.806664i
\(550\) −7.37169 9.89962i −0.314330 0.422121i
\(551\) 10.4645i 0.445802i
\(552\) 9.86873 + 13.1049i 0.420041 + 0.557782i
\(553\) 11.2713i 0.479305i
\(554\) −21.0539 + 15.6777i −0.894495 + 0.666080i
\(555\) 16.3971 30.7902i 0.696018 1.30697i
\(556\) 11.5970 + 21.4966i 0.491823 + 0.911660i
\(557\) −26.1831 + 26.1831i −1.10941 + 1.10941i −0.116184 + 0.993228i \(0.537066\pi\)
−0.993228 + 0.116184i \(0.962934\pi\)
\(558\) 22.3152 10.6910i 0.944677 0.452585i
\(559\) 0.435961i 0.0184392i
\(560\) −2.73865 13.2338i −0.115729 0.559228i
\(561\) 21.9572 6.69739i 0.927032 0.282764i
\(562\) −36.6002 5.35700i −1.54388 0.225971i
\(563\) −25.0435 25.0435i −1.05546 1.05546i −0.998369 0.0570880i \(-0.981818\pi\)
−0.0570880 0.998369i \(-0.518182\pi\)
\(564\) −15.6321 + 15.8015i −0.658230 + 0.665364i
\(565\) −11.4145 + 11.4145i −0.480213 + 0.480213i
\(566\) 21.3898 + 28.7248i 0.899079 + 1.20739i
\(567\) 3.88975 9.55596i 0.163354 0.401312i
\(568\) −8.24989 + 17.7073i −0.346157 + 0.742981i
\(569\) −12.5449 −0.525911 −0.262955 0.964808i \(-0.584697\pi\)
−0.262955 + 0.964808i \(0.584697\pi\)
\(570\) 9.01506 12.2437i 0.377599 0.512834i
\(571\) −4.48615 4.48615i −0.187740 0.187740i 0.606979 0.794718i \(-0.292381\pi\)
−0.794718 + 0.606979i \(0.792381\pi\)
\(572\) 0.939148 + 0.280936i 0.0392677 + 0.0117465i
\(573\) 20.7837 39.0273i 0.868251 1.63039i
\(574\) 0.978577 + 0.143230i 0.0408450 + 0.00597830i
\(575\) −12.3428 −0.514730
\(576\) 6.62994 23.0661i 0.276248 0.961087i
\(577\) 4.48508 0.186716 0.0933581 0.995633i \(-0.470240\pi\)
0.0933581 + 0.995633i \(0.470240\pi\)
\(578\) 20.0504 + 2.93469i 0.833987 + 0.122067i
\(579\) −7.39156 + 13.8798i −0.307183 + 0.576823i
\(580\) −28.0575 8.39312i −1.16503 0.348505i
\(581\) 9.27502 + 9.27502i 0.384793 + 0.384793i
\(582\) 17.9368 24.3607i 0.743504 1.00979i
\(583\) 0.551038 0.0228217
\(584\) −8.45578 + 18.1492i −0.349903 + 0.751019i
\(585\) 1.51857 1.02142i 0.0627852 0.0422306i
\(586\) 0.782020 + 1.05019i 0.0323049 + 0.0433830i
\(587\) 11.9808 11.9808i 0.494501 0.494501i −0.415220 0.909721i \(-0.636295\pi\)
0.909721 + 0.415220i \(0.136295\pi\)
\(588\) 13.8522 14.0023i 0.571253 0.577444i
\(589\) −8.68585 8.68585i −0.357894 0.357894i
\(590\) 52.7845 + 7.72583i 2.17310 + 0.318067i
\(591\) −7.46020 + 2.27552i −0.306872 + 0.0936023i
\(592\) −26.7679 + 5.53948i −1.10016 + 0.227671i
\(593\) 3.27696i 0.134569i −0.997734 0.0672843i \(-0.978567\pi\)
0.997734 0.0672843i \(-0.0214334\pi\)
\(594\) −12.8163 + 11.7692i −0.525858 + 0.482898i
\(595\) −13.3717 + 13.3717i −0.548186 + 0.548186i
\(596\) 15.6315 + 28.9751i 0.640292 + 1.18687i
\(597\) −15.9199 + 29.8941i −0.651556 + 1.22348i
\(598\) 0.786230 0.585462i 0.0321514 0.0239413i
\(599\) 38.9889i 1.59304i −0.604611 0.796521i \(-0.706671\pi\)
0.604611 0.796521i \(-0.293329\pi\)
\(600\) 10.8623 + 14.4243i 0.443453 + 0.588870i
\(601\) 23.5787i 0.961797i −0.876776 0.480898i \(-0.840311\pi\)
0.876776 0.480898i \(-0.159689\pi\)
\(602\) −2.03932 2.73865i −0.0831166 0.111619i
\(603\) 2.64663 + 0.518020i 0.107779 + 0.0210954i
\(604\) −1.55356 0.464730i −0.0632133 0.0189096i
\(605\) −11.2391 + 11.2391i −0.456934 + 0.456934i
\(606\) −28.3960 + 4.31265i −1.15351 + 0.175189i
\(607\) 22.2829i 0.904434i −0.891908 0.452217i \(-0.850633\pi\)
0.891908 0.452217i \(-0.149367\pi\)
\(608\) −11.8938 + 0.699331i −0.482356 + 0.0283616i
\(609\) 2.87819 + 9.43605i 0.116630 + 0.382368i
\(610\) 3.87506 26.4752i 0.156896 1.07195i
\(611\) 0.939148 + 0.939148i 0.0379939 + 0.0379939i
\(612\) −32.0690 + 9.97095i −1.29631 + 0.403052i
\(613\) 22.1611 22.1611i 0.895077 0.895077i −0.0999189 0.994996i \(-0.531858\pi\)
0.994996 + 0.0999189i \(0.0318583\pi\)
\(614\) 1.55797 1.16013i 0.0628744 0.0468190i
\(615\) −2.97858 + 0.908529i −0.120108 + 0.0366354i
\(616\) 7.21377 2.62831i 0.290651 0.105898i
\(617\) −25.7376 −1.03616 −0.518078 0.855334i \(-0.673352\pi\)
−0.518078 + 0.855334i \(0.673352\pi\)
\(618\) −17.7553 + 24.1143i −0.714225 + 0.970019i
\(619\) 7.71462 + 7.71462i 0.310077 + 0.310077i 0.844939 0.534863i \(-0.179637\pi\)
−0.534863 + 0.844939i \(0.679637\pi\)
\(620\) 30.2552 16.3221i 1.21508 0.655510i
\(621\) 1.78513 + 17.3085i 0.0716347 + 0.694567i
\(622\) −6.78623 + 46.3650i −0.272103 + 1.85907i
\(623\) −0.561872 −0.0225109
\(624\) −1.37612 0.403585i −0.0550890 0.0161563i
\(625\) 29.8438 1.19375
\(626\) 2.70932 18.5106i 0.108286 0.739834i
\(627\) 7.62430 + 4.06027i 0.304485 + 0.162151i
\(628\) 7.41033 + 13.7360i 0.295704 + 0.548128i
\(629\) 27.0469 + 27.0469i 1.07843 + 1.07843i
\(630\) 4.76150 13.5200i 0.189703 0.538649i
\(631\) 2.26817 0.0902945 0.0451473 0.998980i \(-0.485624\pi\)
0.0451473 + 0.998980i \(0.485624\pi\)
\(632\) 11.7445 25.2080i 0.467172 1.00272i
\(633\) −7.39147 24.2327i −0.293785 0.963162i
\(634\) 12.6571 9.42502i 0.502677 0.374315i
\(635\) −15.0127 + 15.0127i −0.595761 + 0.595761i
\(636\) −0.806130 + 0.00434490i −0.0319651 + 0.000172286i
\(637\) −0.832212 0.832212i −0.0329734 0.0329734i
\(638\) 2.40955 16.4625i 0.0953950 0.651758i
\(639\) −17.1925 + 11.5640i −0.680125 + 0.457466i
\(640\) 7.66442 32.4507i 0.302963 1.28272i
\(641\) 20.0686i 0.792662i −0.918108 0.396331i \(-0.870283\pi\)
0.918108 0.396331i \(-0.129717\pi\)
\(642\) 0.371718 + 2.44752i 0.0146705 + 0.0965960i
\(643\) 14.0748 14.0748i 0.555054 0.555054i −0.372841 0.927895i \(-0.621616\pi\)
0.927895 + 0.372841i \(0.121616\pi\)
\(644\) 2.20035 7.35561i 0.0867060 0.289851i
\(645\) 9.48955 + 5.05359i 0.373651 + 0.198985i
\(646\) 9.95715 + 13.3717i 0.391759 + 0.526102i
\(647\) 1.95003i 0.0766638i 0.999265 + 0.0383319i \(0.0122044\pi\)
−0.999265 + 0.0383319i \(0.987796\pi\)
\(648\) 18.6565 17.3186i 0.732896 0.680340i
\(649\) 30.3074i 1.18967i
\(650\) 0.865389 0.644407i 0.0339433 0.0252757i
\(651\) −10.2212 5.44322i −0.400600 0.213337i
\(652\) 25.0790 13.5296i 0.982168 0.529861i
\(653\) 5.80289 5.80289i 0.227085 0.227085i −0.584389 0.811474i \(-0.698666\pi\)
0.811474 + 0.584389i \(0.198666\pi\)
\(654\) −42.7988 + 6.50008i −1.67357 + 0.254173i
\(655\) 37.7220i 1.47392i
\(656\) 2.03932 + 1.33999i 0.0796222 + 0.0523179i
\(657\) −17.6216 + 11.8526i −0.687483 + 0.462416i
\(658\) 10.2927 + 1.50650i 0.401252 + 0.0587295i
\(659\) 5.49262 + 5.49262i 0.213962 + 0.213962i 0.805948 0.591986i \(-0.201656\pi\)
−0.591986 + 0.805948i \(0.701656\pi\)
\(660\) −17.0016 + 17.1858i −0.661785 + 0.668958i
\(661\) −5.86833 + 5.86833i −0.228251 + 0.228251i −0.811962 0.583710i \(-0.801600\pi\)
0.583710 + 0.811962i \(0.301600\pi\)
\(662\) 3.61785 + 4.85849i 0.140612 + 0.188831i
\(663\) 0.585462 + 1.91942i 0.0227375 + 0.0745439i
\(664\) 11.0790 + 30.4078i 0.429947 + 1.18005i
\(665\) −7.11579 −0.275938
\(666\) −27.3469 9.63110i −1.05967 0.373197i
\(667\) −11.7648 11.7648i −0.455535 0.455535i
\(668\) 1.35754 4.53816i 0.0525249 0.175587i
\(669\) 34.5787 + 18.4146i 1.33689 + 0.711950i
\(670\) 3.70727 + 0.542616i 0.143224 + 0.0209631i
\(671\) 15.2013 0.586841
\(672\) −10.5325 + 3.90191i −0.406301 + 0.150519i
\(673\) −22.8929 −0.882456 −0.441228 0.897395i \(-0.645457\pi\)
−0.441228 + 0.897395i \(0.645457\pi\)
\(674\) −21.3093 3.11894i −0.820802 0.120137i
\(675\) 1.96486 + 19.0512i 0.0756273 + 0.733280i
\(676\) 7.42682 24.8273i 0.285647 0.954895i
\(677\) −13.7685 13.7685i −0.529168 0.529168i 0.391156 0.920324i \(-0.372075\pi\)
−0.920324 + 0.391156i \(0.872075\pi\)
\(678\) 10.8039 + 7.95492i 0.414922 + 0.305507i
\(679\) −14.1579 −0.543331
\(680\) −43.8386 + 15.9724i −1.68113 + 0.612514i
\(681\) −3.43274 + 1.04706i −0.131543 + 0.0401233i
\(682\) 11.6644 + 15.6644i 0.446654 + 0.599822i
\(683\) −5.72238 + 5.72238i −0.218961 + 0.218961i −0.808060 0.589100i \(-0.799483\pi\)
0.589100 + 0.808060i \(0.299483\pi\)
\(684\) −11.1858 5.87977i −0.427701 0.224818i
\(685\) 28.0147 + 28.0147i 1.07039 + 1.07039i
\(686\) −20.3495 2.97847i −0.776949 0.113719i
\(687\) −5.37271 17.6142i −0.204982 0.672025i
\(688\) −1.70727 8.24989i −0.0650890 0.314524i
\(689\) 0.0481697i 0.00183512i
\(690\) 3.62988 + 23.9004i 0.138187 + 0.909874i
\(691\) 24.2327 24.2327i 0.921854 0.921854i −0.0753061 0.997160i \(-0.523993\pi\)
0.997160 + 0.0753061i \(0.0239934\pi\)
\(692\) 13.0027 7.01471i 0.494289 0.266659i
\(693\) 7.99175 + 1.56421i 0.303581 + 0.0594194i
\(694\) 26.0147 19.3717i 0.987504 0.735339i
\(695\) 35.9929i 1.36529i
\(696\) −3.39519 + 24.1026i −0.128695 + 0.913605i
\(697\) 3.41454i 0.129335i
\(698\) 7.34180 + 9.85947i 0.277891 + 0.373187i
\(699\) 14.9655 28.1020i 0.566048 1.06292i
\(700\) 2.42188 8.09617i 0.0915386 0.306007i
\(701\) −10.9100 + 10.9100i −0.412064 + 0.412064i −0.882457 0.470393i \(-0.844112\pi\)
0.470393 + 0.882457i \(0.344112\pi\)
\(702\) −1.02882 1.12035i −0.0388305 0.0422849i
\(703\) 14.3931i 0.542847i
\(704\) 18.8721 + 1.63848i 0.711269 + 0.0617525i
\(705\) −31.3288 + 9.55596i −1.17991 + 0.359898i
\(706\) 4.70054 32.1151i 0.176907 1.20867i
\(707\) 9.50478 + 9.50478i 0.357464 + 0.357464i
\(708\) −0.238972 44.3376i −0.00898112 1.66631i
\(709\) −14.0031 + 14.0031i −0.525899 + 0.525899i −0.919347 0.393448i \(-0.871282\pi\)
0.393448 + 0.919347i \(0.371282\pi\)
\(710\) −23.0882 + 17.1925i −0.866485 + 0.645223i
\(711\) 24.4752 16.4625i 0.917892 0.617394i
\(712\) −1.25662 0.585462i −0.0470937 0.0219411i
\(713\) 19.5303 0.731416
\(714\) 12.6564 + 9.31888i 0.473653 + 0.348750i
\(715\) 1.02142 + 1.02142i 0.0381990 + 0.0381990i
\(716\) 9.57652 + 17.7514i 0.357891 + 0.663400i
\(717\) 11.0172 20.6879i 0.411443 0.772602i
\(718\) −3.75639 + 25.6644i −0.140187 + 0.957788i
\(719\) 30.0665 1.12129 0.560646 0.828055i \(-0.310553\pi\)
0.560646 + 0.828055i \(0.310553\pi\)
\(720\) 24.7366 25.2757i 0.921879 0.941971i
\(721\) 14.0147 0.521934
\(722\) 2.98286 20.3795i 0.111011 0.758447i
\(723\) −3.97154 + 7.45769i −0.147703 + 0.277355i
\(724\) −16.7575 + 9.04033i −0.622786 + 0.335981i
\(725\) −12.9493 12.9493i −0.480925 0.480925i
\(726\) 10.6379 + 7.83264i 0.394808 + 0.290697i
\(727\) 9.48194 0.351666 0.175833 0.984420i \(-0.443738\pi\)
0.175833 + 0.984420i \(0.443738\pi\)
\(728\) 0.229757 + 0.630602i 0.00851537 + 0.0233717i
\(729\) 26.4316 5.51071i 0.978950 0.204100i
\(730\) −23.6644 + 17.6216i −0.875860 + 0.652204i
\(731\) −8.33587 + 8.33587i −0.308313 + 0.308313i
\(732\) −22.2385 + 0.119862i −0.821959 + 0.00443021i
\(733\) −29.4752 29.4752i −1.08869 1.08869i −0.995663 0.0930283i \(-0.970345\pi\)
−0.0930283 0.995663i \(-0.529655\pi\)
\(734\) −0.587462 + 4.01366i −0.0216836 + 0.148147i
\(735\) 27.7616 8.46787i 1.02400 0.312342i
\(736\) 12.5855 14.1579i 0.463906 0.521868i
\(737\) 2.12861i 0.0784085i
\(738\) 1.11826 + 2.33414i 0.0411638 + 0.0859209i
\(739\) 22.1077 22.1077i 0.813246 0.813246i −0.171873 0.985119i \(-0.554982\pi\)
0.985119 + 0.171873i \(0.0549819\pi\)
\(740\) −38.5910 11.5441i −1.41863 0.424370i
\(741\) −0.354934 + 0.666489i −0.0130388 + 0.0244841i
\(742\) 0.225327 + 0.302597i 0.00827201 + 0.0111087i
\(743\) 0.908529i 0.0333307i 0.999861 + 0.0166653i \(0.00530499\pi\)
−0.999861 + 0.0166653i \(0.994695\pi\)
\(744\) −17.1877 22.8240i −0.630133 0.836768i
\(745\) 48.5145i 1.77743i
\(746\) 27.6314 20.5756i 1.01166 0.753325i
\(747\) −6.59352 + 33.6872i −0.241244 + 1.23255i
\(748\) −12.5855 23.3288i −0.460170 0.852987i
\(749\) 0.819240 0.819240i 0.0299344 0.0299344i
\(750\) −1.42450 9.37942i −0.0520154 0.342488i
\(751\) 39.1182i 1.42744i −0.700429 0.713722i \(-0.747008\pi\)
0.700429 0.713722i \(-0.252992\pi\)
\(752\) 21.4497 + 14.0941i 0.782191 + 0.513960i
\(753\) 3.73917 + 12.2587i 0.136263 + 0.446733i
\(754\) 1.43910 + 0.210634i 0.0524088 + 0.00767084i
\(755\) −1.68966 1.68966i −0.0614930 0.0614930i
\(756\) −11.7037 2.22531i −0.425659 0.0809339i
\(757\) −8.97544 + 8.97544i −0.326218 + 0.326218i −0.851146 0.524928i \(-0.824092\pi\)
0.524928 + 0.851146i \(0.324092\pi\)
\(758\) −6.97532 9.36732i −0.253355 0.340236i
\(759\) −13.1365 + 4.00691i −0.476825 + 0.145442i
\(760\) −15.9143 7.41454i −0.577273 0.268954i
\(761\) 30.6766 1.11202 0.556012 0.831174i \(-0.312331\pi\)
0.556012 + 0.831174i \(0.312331\pi\)
\(762\) 14.2096 + 10.4625i 0.514760 + 0.379017i
\(763\) 14.3257 + 14.3257i 0.518626 + 0.518626i
\(764\) −48.9151 14.6324i −1.76968 0.529382i
\(765\) −48.5664 9.50581i −1.75592 0.343683i
\(766\) −43.0508 6.30115i −1.55549 0.227670i
\(767\) −2.64937 −0.0956630
\(768\) −27.6215 2.24817i −0.996704 0.0811240i
\(769\) −41.7795 −1.50661 −0.753304 0.657673i \(-0.771541\pi\)
−0.753304 + 0.657673i \(0.771541\pi\)
\(770\) 11.1944 + 1.63848i 0.403419 + 0.0590467i
\(771\) −19.6187 10.4478i −0.706551 0.376268i
\(772\) 17.3963 + 5.20390i 0.626105 + 0.187293i
\(773\) −17.6074 17.6074i −0.633293 0.633293i 0.315599 0.948892i \(-0.397794\pi\)