Properties

Label 475.2.l.f.351.1
Level $475$
Weight $2$
Character 475.351
Analytic conductor $3.793$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(101,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 351.1
Character \(\chi\) \(=\) 475.351
Dual form 475.2.l.f.226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.340658 - 1.93197i) q^{2} +(-0.143793 + 0.120656i) q^{3} +(-1.73706 + 0.632239i) q^{4} +(0.282088 + 0.236700i) q^{6} +(0.338534 - 0.586358i) q^{7} +(-0.148561 - 0.257316i) q^{8} +(-0.514826 + 2.91972i) q^{9} +(-1.42035 - 2.46011i) q^{11} +(0.173493 - 0.300499i) q^{12} +(-3.65145 - 3.06393i) q^{13} +(-1.24815 - 0.454289i) q^{14} +(-3.27865 + 2.75111i) q^{16} +(-0.900181 - 5.10518i) q^{17} +5.81619 q^{18} +(-3.00824 - 3.15444i) q^{19} +(0.0220691 + 0.125160i) q^{21} +(-4.26900 + 3.58212i) q^{22} +(0.987537 - 0.359434i) q^{23} +(0.0524089 + 0.0190753i) q^{24} +(-4.67552 + 8.09823i) q^{26} +(-0.559818 - 0.969633i) q^{27} +(-0.217336 + 1.23257i) q^{28} +(-0.247630 + 1.40438i) q^{29} +(-0.135532 + 0.234748i) q^{31} +(5.97674 + 5.01508i) q^{32} +(0.501064 + 0.182372i) q^{33} +(-9.55639 + 3.47824i) q^{34} +(-0.951679 - 5.39724i) q^{36} -0.603754 q^{37} +(-5.06949 + 6.88641i) q^{38} +0.894735 q^{39} +(5.15980 - 4.32958i) q^{41} +(0.234288 - 0.0852737i) q^{42} +(-5.28994 - 1.92538i) q^{43} +(4.02261 + 3.37537i) q^{44} +(-1.03083 - 1.78544i) q^{46} +(-1.37102 + 7.77543i) q^{47} +(0.139507 - 0.791181i) q^{48} +(3.27079 + 5.66517i) q^{49} +(0.745413 + 0.625476i) q^{51} +(8.27993 + 3.01365i) q^{52} +(6.47288 - 2.35594i) q^{53} +(-1.68259 + 1.41186i) q^{54} -0.201172 q^{56} +(0.813167 + 0.0906217i) q^{57} +2.79757 q^{58} +(-1.75779 - 9.96889i) q^{59} +(7.02134 - 2.55556i) q^{61} +(0.499695 + 0.181874i) q^{62} +(1.53772 + 1.29030i) q^{63} +(3.37297 - 5.84216i) q^{64} +(0.181646 - 1.03016i) q^{66} +(-0.714967 + 4.05478i) q^{67} +(4.79137 + 8.29889i) q^{68} +(-0.0986326 + 0.170837i) q^{69} +(7.14680 + 2.60122i) q^{71} +(0.827775 - 0.301285i) q^{72} +(-12.3543 + 10.3665i) q^{73} +(0.205674 + 1.16643i) q^{74} +(7.21986 + 3.57753i) q^{76} -1.92334 q^{77} +(-0.304799 - 1.72860i) q^{78} +(11.3733 - 9.54332i) q^{79} +(-8.16041 - 2.97015i) q^{81} +(-10.1223 - 8.49365i) q^{82} +(7.09076 - 12.2815i) q^{83} +(-0.117467 - 0.203458i) q^{84} +(-1.91771 + 10.8759i) q^{86} +(-0.133840 - 0.231818i) q^{87} +(-0.422017 + 0.730955i) q^{88} +(6.31059 + 5.29521i) q^{89} +(-3.03270 + 1.10381i) q^{91} +(-1.48817 + 1.24872i) q^{92} +(-0.00883537 - 0.0501079i) q^{93} +15.4889 q^{94} -1.46451 q^{96} +(0.994738 + 5.64144i) q^{97} +(9.83071 - 8.24894i) q^{98} +(7.91407 - 2.88049i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 18 q^{4} - 6 q^{6} + 12 q^{9} - 12 q^{11} - 6 q^{14} - 42 q^{16} - 12 q^{19} - 54 q^{21} - 24 q^{24} + 12 q^{26} - 42 q^{31} + 36 q^{34} + 18 q^{36} + 48 q^{39} + 6 q^{41} + 6 q^{44} - 6 q^{46} - 12 q^{49}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.340658 1.93197i −0.240881 1.36611i −0.829866 0.557963i \(-0.811583\pi\)
0.588985 0.808144i \(-0.299528\pi\)
\(3\) −0.143793 + 0.120656i −0.0830188 + 0.0696611i −0.683353 0.730088i \(-0.739479\pi\)
0.600334 + 0.799750i \(0.295034\pi\)
\(4\) −1.73706 + 0.632239i −0.868531 + 0.316120i
\(5\) 0 0
\(6\) 0.282088 + 0.236700i 0.115162 + 0.0966325i
\(7\) 0.338534 0.586358i 0.127954 0.221622i −0.794930 0.606701i \(-0.792492\pi\)
0.922884 + 0.385079i \(0.125826\pi\)
\(8\) −0.148561 0.257316i −0.0525244 0.0909749i
\(9\) −0.514826 + 2.91972i −0.171609 + 0.973241i
\(10\) 0 0
\(11\) −1.42035 2.46011i −0.428250 0.741751i 0.568468 0.822706i \(-0.307536\pi\)
−0.996718 + 0.0809546i \(0.974203\pi\)
\(12\) 0.173493 0.300499i 0.0500832 0.0867467i
\(13\) −3.65145 3.06393i −1.01273 0.849781i −0.0240334 0.999711i \(-0.507651\pi\)
−0.988697 + 0.149930i \(0.952095\pi\)
\(14\) −1.24815 0.454289i −0.333581 0.121414i
\(15\) 0 0
\(16\) −3.27865 + 2.75111i −0.819663 + 0.687779i
\(17\) −0.900181 5.10518i −0.218326 1.23819i −0.875041 0.484049i \(-0.839166\pi\)
0.656715 0.754139i \(-0.271946\pi\)
\(18\) 5.81619 1.37089
\(19\) −3.00824 3.15444i −0.690138 0.723678i
\(20\) 0 0
\(21\) 0.0220691 + 0.125160i 0.00481588 + 0.0273122i
\(22\) −4.26900 + 3.58212i −0.910154 + 0.763710i
\(23\) 0.987537 0.359434i 0.205916 0.0749472i −0.237003 0.971509i \(-0.576165\pi\)
0.442919 + 0.896562i \(0.353943\pi\)
\(24\) 0.0524089 + 0.0190753i 0.0106979 + 0.00389373i
\(25\) 0 0
\(26\) −4.67552 + 8.09823i −0.916944 + 1.58819i
\(27\) −0.559818 0.969633i −0.107737 0.186606i
\(28\) −0.217336 + 1.23257i −0.0410727 + 0.232935i
\(29\) −0.247630 + 1.40438i −0.0459838 + 0.260787i −0.999129 0.0417259i \(-0.986714\pi\)
0.953145 + 0.302513i \(0.0978255\pi\)
\(30\) 0 0
\(31\) −0.135532 + 0.234748i −0.0243422 + 0.0421620i −0.877940 0.478771i \(-0.841082\pi\)
0.853598 + 0.520933i \(0.174416\pi\)
\(32\) 5.97674 + 5.01508i 1.05655 + 0.886549i
\(33\) 0.501064 + 0.182372i 0.0872240 + 0.0317469i
\(34\) −9.55639 + 3.47824i −1.63891 + 0.596513i
\(35\) 0 0
\(36\) −0.951679 5.39724i −0.158613 0.899540i
\(37\) −0.603754 −0.0992566 −0.0496283 0.998768i \(-0.515804\pi\)
−0.0496283 + 0.998768i \(0.515804\pi\)
\(38\) −5.06949 + 6.88641i −0.822380 + 1.11712i
\(39\) 0.894735 0.143272
\(40\) 0 0
\(41\) 5.15980 4.32958i 0.805825 0.676167i −0.143783 0.989609i \(-0.545927\pi\)
0.949607 + 0.313442i \(0.101482\pi\)
\(42\) 0.234288 0.0852737i 0.0361513 0.0131580i
\(43\) −5.28994 1.92538i −0.806709 0.293618i −0.0944453 0.995530i \(-0.530108\pi\)
−0.712264 + 0.701912i \(0.752330\pi\)
\(44\) 4.02261 + 3.37537i 0.606431 + 0.508856i
\(45\) 0 0
\(46\) −1.03083 1.78544i −0.151987 0.263249i
\(47\) −1.37102 + 7.77543i −0.199983 + 1.13416i 0.705157 + 0.709051i \(0.250876\pi\)
−0.905141 + 0.425112i \(0.860235\pi\)
\(48\) 0.139507 0.791181i 0.0201360 0.114197i
\(49\) 3.27079 + 5.66517i 0.467256 + 0.809311i
\(50\) 0 0
\(51\) 0.745413 + 0.625476i 0.104379 + 0.0875841i
\(52\) 8.27993 + 3.01365i 1.14822 + 0.417918i
\(53\) 6.47288 2.35594i 0.889118 0.323613i 0.143235 0.989689i \(-0.454250\pi\)
0.745884 + 0.666076i \(0.232027\pi\)
\(54\) −1.68259 + 1.41186i −0.228972 + 0.192130i
\(55\) 0 0
\(56\) −0.201172 −0.0268828
\(57\) 0.813167 + 0.0906217i 0.107707 + 0.0120031i
\(58\) 2.79757 0.367339
\(59\) −1.75779 9.96889i −0.228844 1.29784i −0.855198 0.518301i \(-0.826565\pi\)
0.626354 0.779539i \(-0.284546\pi\)
\(60\) 0 0
\(61\) 7.02134 2.55556i 0.898990 0.327206i 0.149142 0.988816i \(-0.452349\pi\)
0.749848 + 0.661610i \(0.230127\pi\)
\(62\) 0.499695 + 0.181874i 0.0634614 + 0.0230980i
\(63\) 1.53772 + 1.29030i 0.193734 + 0.162562i
\(64\) 3.37297 5.84216i 0.421622 0.730270i
\(65\) 0 0
\(66\) 0.181646 1.03016i 0.0223591 0.126805i
\(67\) −0.714967 + 4.05478i −0.0873472 + 0.495370i 0.909478 + 0.415752i \(0.136481\pi\)
−0.996825 + 0.0796188i \(0.974630\pi\)
\(68\) 4.79137 + 8.29889i 0.581039 + 1.00639i
\(69\) −0.0986326 + 0.170837i −0.0118740 + 0.0205663i
\(70\) 0 0
\(71\) 7.14680 + 2.60122i 0.848169 + 0.308708i 0.729294 0.684201i \(-0.239849\pi\)
0.118875 + 0.992909i \(0.462071\pi\)
\(72\) 0.827775 0.301285i 0.0975542 0.0355068i
\(73\) −12.3543 + 10.3665i −1.44596 + 1.21330i −0.510497 + 0.859879i \(0.670539\pi\)
−0.935463 + 0.353425i \(0.885017\pi\)
\(74\) 0.205674 + 1.16643i 0.0239091 + 0.135595i
\(75\) 0 0
\(76\) 7.21986 + 3.57753i 0.828175 + 0.410371i
\(77\) −1.92334 −0.219185
\(78\) −0.304799 1.72860i −0.0345117 0.195725i
\(79\) 11.3733 9.54332i 1.27959 1.07371i 0.286294 0.958142i \(-0.407577\pi\)
0.993300 0.115565i \(-0.0368679\pi\)
\(80\) 0 0
\(81\) −8.16041 2.97015i −0.906713 0.330016i
\(82\) −10.1223 8.49365i −1.11782 0.937966i
\(83\) 7.09076 12.2815i 0.778312 1.34808i −0.154603 0.987977i \(-0.549410\pi\)
0.932914 0.360098i \(-0.117257\pi\)
\(84\) −0.117467 0.203458i −0.0128167 0.0221991i
\(85\) 0 0
\(86\) −1.91771 + 10.8759i −0.206792 + 1.17278i
\(87\) −0.133840 0.231818i −0.0143492 0.0248535i
\(88\) −0.422017 + 0.730955i −0.0449872 + 0.0779201i
\(89\) 6.31059 + 5.29521i 0.668921 + 0.561291i 0.912746 0.408528i \(-0.133958\pi\)
−0.243825 + 0.969819i \(0.578402\pi\)
\(90\) 0 0
\(91\) −3.03270 + 1.10381i −0.317913 + 0.115711i
\(92\) −1.48817 + 1.24872i −0.155152 + 0.130188i
\(93\) −0.00883537 0.0501079i −0.000916185 0.00519594i
\(94\) 15.4889 1.59756
\(95\) 0 0
\(96\) −1.46451 −0.149471
\(97\) 0.994738 + 5.64144i 0.101000 + 0.572801i 0.992743 + 0.120258i \(0.0383721\pi\)
−0.891742 + 0.452543i \(0.850517\pi\)
\(98\) 9.83071 8.24894i 0.993051 0.833269i
\(99\) 7.91407 2.88049i 0.795394 0.289500i
\(100\) 0 0
\(101\) −1.54918 1.29992i −0.154149 0.129347i 0.562451 0.826831i \(-0.309858\pi\)
−0.716601 + 0.697484i \(0.754303\pi\)
\(102\) 0.954467 1.65319i 0.0945064 0.163690i
\(103\) −9.11792 15.7927i −0.898415 1.55610i −0.829520 0.558477i \(-0.811386\pi\)
−0.0688957 0.997624i \(-0.521948\pi\)
\(104\) −0.245934 + 1.39476i −0.0241158 + 0.136767i
\(105\) 0 0
\(106\) −6.75663 11.7028i −0.656262 1.13668i
\(107\) 3.10671 5.38097i 0.300337 0.520198i −0.675876 0.737016i \(-0.736234\pi\)
0.976212 + 0.216817i \(0.0695676\pi\)
\(108\) 1.58548 + 1.33037i 0.152563 + 0.128015i
\(109\) −15.0243 5.46840i −1.43907 0.523777i −0.499551 0.866284i \(-0.666502\pi\)
−0.939515 + 0.342507i \(0.888724\pi\)
\(110\) 0 0
\(111\) 0.0868155 0.0728469i 0.00824017 0.00691432i
\(112\) 0.503203 + 2.85381i 0.0475482 + 0.269659i
\(113\) 7.88392 0.741657 0.370828 0.928701i \(-0.379074\pi\)
0.370828 + 0.928701i \(0.379074\pi\)
\(114\) −0.101934 1.60188i −0.00954696 0.150030i
\(115\) 0 0
\(116\) −0.457755 2.59606i −0.0425015 0.241038i
\(117\) 10.8257 9.08384i 1.00084 0.839801i
\(118\) −18.6608 + 6.79196i −1.71786 + 0.625251i
\(119\) −3.29820 1.20045i −0.302346 0.110045i
\(120\) 0 0
\(121\) 1.46524 2.53787i 0.133204 0.230715i
\(122\) −7.32913 12.6944i −0.663548 1.14930i
\(123\) −0.219549 + 1.24513i −0.0197961 + 0.112269i
\(124\) 0.0870104 0.493461i 0.00781376 0.0443141i
\(125\) 0 0
\(126\) 1.96898 3.41037i 0.175410 0.303820i
\(127\) −12.0838 10.1395i −1.07226 0.899736i −0.0770082 0.997030i \(-0.524537\pi\)
−0.995256 + 0.0972942i \(0.968981\pi\)
\(128\) 2.22723 + 0.810645i 0.196861 + 0.0716516i
\(129\) 0.992966 0.361410i 0.0874258 0.0318204i
\(130\) 0 0
\(131\) −0.706095 4.00446i −0.0616918 0.349872i −0.999992 0.00404921i \(-0.998711\pi\)
0.938300 0.345822i \(-0.112400\pi\)
\(132\) −0.985682 −0.0857926
\(133\) −2.86802 + 0.696022i −0.248689 + 0.0603527i
\(134\) 8.07726 0.697769
\(135\) 0 0
\(136\) −1.17991 + 0.990064i −0.101177 + 0.0848973i
\(137\) −2.45449 + 0.893360i −0.209701 + 0.0763249i −0.444735 0.895662i \(-0.646702\pi\)
0.235034 + 0.971987i \(0.424480\pi\)
\(138\) 0.363651 + 0.132358i 0.0309560 + 0.0112671i
\(139\) 6.87238 + 5.76661i 0.582908 + 0.489118i 0.885901 0.463875i \(-0.153541\pi\)
−0.302993 + 0.952993i \(0.597986\pi\)
\(140\) 0 0
\(141\) −0.741013 1.28347i −0.0624046 0.108088i
\(142\) 2.59086 14.6935i 0.217420 1.23305i
\(143\) −2.35129 + 13.3348i −0.196624 + 1.11511i
\(144\) −6.34456 10.9891i −0.528713 0.915758i
\(145\) 0 0
\(146\) 24.2363 + 20.3367i 2.00581 + 1.68307i
\(147\) −1.15386 0.419969i −0.0951684 0.0346385i
\(148\) 1.04876 0.381717i 0.0862075 0.0313770i
\(149\) −1.32378 + 1.11078i −0.108448 + 0.0909989i −0.695399 0.718623i \(-0.744773\pi\)
0.586951 + 0.809622i \(0.300328\pi\)
\(150\) 0 0
\(151\) 11.0738 0.901177 0.450589 0.892732i \(-0.351214\pi\)
0.450589 + 0.892732i \(0.351214\pi\)
\(152\) −0.364779 + 1.24270i −0.0295875 + 0.100796i
\(153\) 15.3692 1.24252
\(154\) 0.655201 + 3.71583i 0.0527976 + 0.299430i
\(155\) 0 0
\(156\) −1.55421 + 0.565687i −0.124437 + 0.0452912i
\(157\) −1.84614 0.671940i −0.147338 0.0536267i 0.267298 0.963614i \(-0.413869\pi\)
−0.414637 + 0.909987i \(0.636091\pi\)
\(158\) −22.3118 18.7218i −1.77503 1.48943i
\(159\) −0.646495 + 1.11976i −0.0512704 + 0.0888029i
\(160\) 0 0
\(161\) 0.123558 0.700730i 0.00973771 0.0552253i
\(162\) −2.95832 + 16.7775i −0.232427 + 1.31816i
\(163\) 10.0656 + 17.4341i 0.788395 + 1.36554i 0.926950 + 0.375186i \(0.122421\pi\)
−0.138555 + 0.990355i \(0.544246\pi\)
\(164\) −6.22556 + 10.7830i −0.486134 + 0.842009i
\(165\) 0 0
\(166\) −26.1431 9.51530i −2.02910 0.738530i
\(167\) 16.7798 6.10733i 1.29846 0.472600i 0.401963 0.915656i \(-0.368328\pi\)
0.896494 + 0.443056i \(0.146106\pi\)
\(168\) 0.0289271 0.0242727i 0.00223178 0.00187268i
\(169\) 1.68799 + 9.57308i 0.129846 + 0.736391i
\(170\) 0 0
\(171\) 10.7588 7.15925i 0.822747 0.547481i
\(172\) 10.4063 0.793470
\(173\) 0.472701 + 2.68082i 0.0359388 + 0.203819i 0.997490 0.0708064i \(-0.0225572\pi\)
−0.961551 + 0.274625i \(0.911446\pi\)
\(174\) −0.402271 + 0.337545i −0.0304961 + 0.0255893i
\(175\) 0 0
\(176\) 11.4249 + 4.15831i 0.861181 + 0.313444i
\(177\) 1.45557 + 1.22137i 0.109407 + 0.0918036i
\(178\) 8.08042 13.9957i 0.605653 1.04902i
\(179\) −3.85817 6.68254i −0.288373 0.499477i 0.685049 0.728497i \(-0.259781\pi\)
−0.973422 + 0.229021i \(0.926448\pi\)
\(180\) 0 0
\(181\) −0.185874 + 1.05414i −0.0138159 + 0.0783537i −0.990936 0.134334i \(-0.957111\pi\)
0.977120 + 0.212688i \(0.0682217\pi\)
\(182\) 3.16564 + 5.48305i 0.234653 + 0.406431i
\(183\) −0.701273 + 1.21464i −0.0518396 + 0.0897888i
\(184\) −0.239198 0.200711i −0.0176339 0.0147966i
\(185\) 0 0
\(186\) −0.0937969 + 0.0341393i −0.00687752 + 0.00250321i
\(187\) −11.2807 + 9.46566i −0.824929 + 0.692198i
\(188\) −2.53439 14.3732i −0.184839 1.04827i
\(189\) −0.758069 −0.0551414
\(190\) 0 0
\(191\) 5.38296 0.389497 0.194749 0.980853i \(-0.437611\pi\)
0.194749 + 0.980853i \(0.437611\pi\)
\(192\) 0.219885 + 1.24703i 0.0158689 + 0.0899967i
\(193\) −11.8506 + 9.94387i −0.853028 + 0.715775i −0.960454 0.278438i \(-0.910183\pi\)
0.107426 + 0.994213i \(0.465739\pi\)
\(194\) 10.5602 3.84360i 0.758179 0.275954i
\(195\) 0 0
\(196\) −9.26331 7.77284i −0.661665 0.555203i
\(197\) −10.6164 + 18.3882i −0.756388 + 1.31010i 0.188294 + 0.982113i \(0.439704\pi\)
−0.944682 + 0.327989i \(0.893629\pi\)
\(198\) −8.26100 14.3085i −0.587083 1.01686i
\(199\) 1.31646 7.46602i 0.0933214 0.529252i −0.901927 0.431888i \(-0.857848\pi\)
0.995249 0.0973643i \(-0.0310412\pi\)
\(200\) 0 0
\(201\) −0.386429 0.669314i −0.0272566 0.0472098i
\(202\) −1.98366 + 3.43580i −0.139570 + 0.241742i
\(203\) 0.739638 + 0.620630i 0.0519124 + 0.0435597i
\(204\) −1.69028 0.615211i −0.118343 0.0430734i
\(205\) 0 0
\(206\) −27.4049 + 22.9954i −1.90939 + 1.60217i
\(207\) 0.541038 + 3.06838i 0.0376048 + 0.213267i
\(208\) 20.4011 1.41456
\(209\) −3.48752 + 11.8810i −0.241237 + 0.821826i
\(210\) 0 0
\(211\) −2.30936 13.0971i −0.158983 0.901639i −0.955053 0.296434i \(-0.904202\pi\)
0.796070 0.605204i \(-0.206909\pi\)
\(212\) −9.75428 + 8.18481i −0.669927 + 0.562135i
\(213\) −1.34151 + 0.488271i −0.0919189 + 0.0334558i
\(214\) −11.4542 4.16898i −0.782992 0.284986i
\(215\) 0 0
\(216\) −0.166335 + 0.288100i −0.0113176 + 0.0196027i
\(217\) 0.0917642 + 0.158940i 0.00622936 + 0.0107896i
\(218\) −5.44661 + 30.8893i −0.368891 + 2.09209i
\(219\) 0.525675 2.98125i 0.0355218 0.201454i
\(220\) 0 0
\(221\) −12.3550 + 21.3994i −0.831084 + 1.43948i
\(222\) −0.170312 0.142909i −0.0114306 0.00959142i
\(223\) 18.6805 + 6.79915i 1.25094 + 0.455304i 0.880719 0.473640i \(-0.157060\pi\)
0.370220 + 0.928944i \(0.379282\pi\)
\(224\) 4.96396 1.80673i 0.331668 0.120717i
\(225\) 0 0
\(226\) −2.68572 15.2315i −0.178651 1.01318i
\(227\) 27.3022 1.81211 0.906054 0.423163i \(-0.139080\pi\)
0.906054 + 0.423163i \(0.139080\pi\)
\(228\) −1.46982 + 0.356700i −0.0973410 + 0.0236231i
\(229\) −14.6429 −0.967633 −0.483816 0.875170i \(-0.660750\pi\)
−0.483816 + 0.875170i \(0.660750\pi\)
\(230\) 0 0
\(231\) 0.276562 0.232063i 0.0181965 0.0152686i
\(232\) 0.398158 0.144918i 0.0261403 0.00951431i
\(233\) 6.22953 + 2.26737i 0.408110 + 0.148540i 0.537914 0.843000i \(-0.319212\pi\)
−0.129804 + 0.991540i \(0.541435\pi\)
\(234\) −21.2375 17.8204i −1.38834 1.16496i
\(235\) 0 0
\(236\) 9.35611 + 16.2053i 0.609031 + 1.05487i
\(237\) −0.483933 + 2.74452i −0.0314348 + 0.178276i
\(238\) −1.19567 + 6.78096i −0.0775036 + 0.439544i
\(239\) 6.33959 + 10.9805i 0.410074 + 0.710269i 0.994897 0.100892i \(-0.0321695\pi\)
−0.584823 + 0.811161i \(0.698836\pi\)
\(240\) 0 0
\(241\) 10.8118 + 9.07218i 0.696450 + 0.584391i 0.920761 0.390127i \(-0.127569\pi\)
−0.224311 + 0.974518i \(0.572013\pi\)
\(242\) −5.40222 1.96625i −0.347268 0.126395i
\(243\) 4.68812 1.70633i 0.300743 0.109461i
\(244\) −10.5808 + 8.87833i −0.677365 + 0.568377i
\(245\) 0 0
\(246\) 2.48033 0.158140
\(247\) 1.31946 + 20.7353i 0.0839555 + 1.31936i
\(248\) 0.0805392 0.00511425
\(249\) 0.462249 + 2.62154i 0.0292938 + 0.166134i
\(250\) 0 0
\(251\) −6.55337 + 2.38523i −0.413645 + 0.150554i −0.540456 0.841372i \(-0.681748\pi\)
0.126811 + 0.991927i \(0.459526\pi\)
\(252\) −3.48689 1.26912i −0.219653 0.0799472i
\(253\) −2.28689 1.91893i −0.143776 0.120642i
\(254\) −15.4728 + 26.7996i −0.970847 + 1.68156i
\(255\) 0 0
\(256\) 3.15026 17.8660i 0.196891 1.11663i
\(257\) 2.74031 15.5410i 0.170936 0.969424i −0.771796 0.635871i \(-0.780641\pi\)
0.942731 0.333553i \(-0.108248\pi\)
\(258\) −1.03649 1.79526i −0.0645293 0.111768i
\(259\) −0.204391 + 0.354016i −0.0127003 + 0.0219975i
\(260\) 0 0
\(261\) −3.97292 1.44602i −0.245917 0.0895066i
\(262\) −7.49595 + 2.72830i −0.463102 + 0.168555i
\(263\) −15.2391 + 12.7872i −0.939686 + 0.788490i −0.977531 0.210794i \(-0.932395\pi\)
0.0378448 + 0.999284i \(0.487951\pi\)
\(264\) −0.0275114 0.156025i −0.00169321 0.00960268i
\(265\) 0 0
\(266\) 2.32170 + 5.30381i 0.142353 + 0.325198i
\(267\) −1.54632 −0.0946331
\(268\) −1.32165 7.49544i −0.0807325 0.457857i
\(269\) −8.70147 + 7.30140i −0.530538 + 0.445174i −0.868287 0.496062i \(-0.834779\pi\)
0.337749 + 0.941236i \(0.390334\pi\)
\(270\) 0 0
\(271\) −22.4471 8.17007i −1.36356 0.496296i −0.446409 0.894829i \(-0.647297\pi\)
−0.917154 + 0.398533i \(0.869519\pi\)
\(272\) 16.9963 + 14.2616i 1.03055 + 0.864737i
\(273\) 0.302898 0.524635i 0.0183322 0.0317523i
\(274\) 2.56208 + 4.43766i 0.154781 + 0.268089i
\(275\) 0 0
\(276\) 0.0633214 0.359114i 0.00381150 0.0216161i
\(277\) 2.34652 + 4.06428i 0.140988 + 0.244199i 0.927869 0.372906i \(-0.121639\pi\)
−0.786881 + 0.617105i \(0.788305\pi\)
\(278\) 8.79978 15.2417i 0.527776 0.914134i
\(279\) −0.615624 0.516570i −0.0368564 0.0309262i
\(280\) 0 0
\(281\) −21.1014 + 7.68028i −1.25880 + 0.458167i −0.883367 0.468681i \(-0.844729\pi\)
−0.375436 + 0.926848i \(0.622507\pi\)
\(282\) −2.22719 + 1.86884i −0.132628 + 0.111288i
\(283\) −1.88981 10.7176i −0.112337 0.637097i −0.988034 0.154236i \(-0.950709\pi\)
0.875697 0.482862i \(-0.160403\pi\)
\(284\) −14.0590 −0.834250
\(285\) 0 0
\(286\) 26.5634 1.57073
\(287\) −0.791919 4.49119i −0.0467455 0.265107i
\(288\) −17.7196 + 14.8685i −1.04414 + 0.876137i
\(289\) −9.27778 + 3.37683i −0.545752 + 0.198637i
\(290\) 0 0
\(291\) −0.823712 0.691177i −0.0482869 0.0405175i
\(292\) 14.9061 25.8181i 0.872312 1.51089i
\(293\) −6.23561 10.8004i −0.364288 0.630965i 0.624374 0.781126i \(-0.285354\pi\)
−0.988662 + 0.150161i \(0.952021\pi\)
\(294\) −0.418297 + 2.37228i −0.0243955 + 0.138354i
\(295\) 0 0
\(296\) 0.0896946 + 0.155356i 0.00521339 + 0.00902986i
\(297\) −1.59027 + 2.75443i −0.0922767 + 0.159828i
\(298\) 2.59695 + 2.17910i 0.150437 + 0.126232i
\(299\) −4.70722 1.71329i −0.272226 0.0990821i
\(300\) 0 0
\(301\) −2.91979 + 2.44999i −0.168294 + 0.141215i
\(302\) −3.77239 21.3943i −0.217077 1.23110i
\(303\) 0.379605 0.0218077
\(304\) 18.5412 + 2.06628i 1.06341 + 0.118510i
\(305\) 0 0
\(306\) −5.23562 29.6927i −0.299301 1.69742i
\(307\) 3.20098 2.68594i 0.182689 0.153295i −0.546857 0.837226i \(-0.684176\pi\)
0.729546 + 0.683932i \(0.239731\pi\)
\(308\) 3.34096 1.21601i 0.190369 0.0692886i
\(309\) 3.21658 + 1.17074i 0.182985 + 0.0666011i
\(310\) 0 0
\(311\) 6.04544 10.4710i 0.342806 0.593757i −0.642147 0.766582i \(-0.721956\pi\)
0.984953 + 0.172825i \(0.0552894\pi\)
\(312\) −0.132923 0.230230i −0.00752529 0.0130342i
\(313\) 1.66330 9.43307i 0.0940155 0.533188i −0.901029 0.433759i \(-0.857187\pi\)
0.995045 0.0994297i \(-0.0317018\pi\)
\(314\) −0.669264 + 3.79558i −0.0377688 + 0.214197i
\(315\) 0 0
\(316\) −13.7224 + 23.7680i −0.771948 + 1.33705i
\(317\) −8.55609 7.17941i −0.480558 0.403236i 0.370070 0.929004i \(-0.379334\pi\)
−0.850628 + 0.525768i \(0.823778\pi\)
\(318\) 2.38358 + 0.867550i 0.133664 + 0.0486498i
\(319\) 3.80665 1.38551i 0.213132 0.0775735i
\(320\) 0 0
\(321\) 0.202527 + 1.14859i 0.0113040 + 0.0641080i
\(322\) −1.39588 −0.0777893
\(323\) −13.3960 + 18.1972i −0.745374 + 1.01252i
\(324\) 16.0530 0.891833
\(325\) 0 0
\(326\) 30.2531 25.3854i 1.67556 1.40597i
\(327\) 2.82018 1.02646i 0.155956 0.0567635i
\(328\) −1.88062 0.684489i −0.103840 0.0377946i
\(329\) 4.09505 + 3.43615i 0.225767 + 0.189441i
\(330\) 0 0
\(331\) 10.8439 + 18.7822i 0.596034 + 1.03236i 0.993400 + 0.114701i \(0.0365911\pi\)
−0.397366 + 0.917660i \(0.630076\pi\)
\(332\) −4.55221 + 25.8169i −0.249835 + 1.41688i
\(333\) 0.310829 1.76280i 0.0170333 0.0966006i
\(334\) −17.5153 30.3374i −0.958396 1.65999i
\(335\) 0 0
\(336\) −0.416687 0.349642i −0.0227322 0.0190745i
\(337\) −0.0496626 0.0180757i −0.00270530 0.000984647i 0.340667 0.940184i \(-0.389347\pi\)
−0.343372 + 0.939199i \(0.611569\pi\)
\(338\) 17.9198 6.52229i 0.974711 0.354766i
\(339\) −1.13365 + 0.951246i −0.0615715 + 0.0516646i
\(340\) 0 0
\(341\) 0.770008 0.0416983
\(342\) −17.4965 18.3468i −0.946103 0.992082i
\(343\) 9.16856 0.495056
\(344\) 0.290450 + 1.64722i 0.0156600 + 0.0888124i
\(345\) 0 0
\(346\) 5.01823 1.82649i 0.269782 0.0981925i
\(347\) −23.8553 8.68262i −1.28062 0.466107i −0.389982 0.920822i \(-0.627519\pi\)
−0.890637 + 0.454715i \(0.849741\pi\)
\(348\) 0.379053 + 0.318063i 0.0203194 + 0.0170500i
\(349\) 7.80995 13.5272i 0.418057 0.724096i −0.577687 0.816259i \(-0.696044\pi\)
0.995744 + 0.0921622i \(0.0293778\pi\)
\(350\) 0 0
\(351\) −0.926741 + 5.25581i −0.0494658 + 0.280534i
\(352\) 3.84862 21.8266i 0.205132 1.16336i
\(353\) −6.23564 10.8004i −0.331890 0.574850i 0.650993 0.759084i \(-0.274353\pi\)
−0.982882 + 0.184234i \(0.941019\pi\)
\(354\) 1.86379 3.22818i 0.0990593 0.171576i
\(355\) 0 0
\(356\) −14.3097 5.20831i −0.758414 0.276040i
\(357\) 0.619100 0.225334i 0.0327662 0.0119259i
\(358\) −11.5961 + 9.73031i −0.612875 + 0.514263i
\(359\) −5.84204 33.1318i −0.308331 1.74863i −0.607396 0.794399i \(-0.707786\pi\)
0.299065 0.954233i \(-0.403325\pi\)
\(360\) 0 0
\(361\) −0.900964 + 18.9786i −0.0474191 + 0.998875i
\(362\) 2.09989 0.110368
\(363\) 0.0955195 + 0.541718i 0.00501347 + 0.0284328i
\(364\) 4.57011 3.83478i 0.239539 0.200997i
\(365\) 0 0
\(366\) 2.58554 + 0.941060i 0.135148 + 0.0491900i
\(367\) −19.6184 16.4618i −1.02407 0.859299i −0.0339392 0.999424i \(-0.510805\pi\)
−0.990134 + 0.140125i \(0.955250\pi\)
\(368\) −2.24894 + 3.89529i −0.117234 + 0.203056i
\(369\) 9.98479 + 17.2942i 0.519787 + 0.900298i
\(370\) 0 0
\(371\) 0.809867 4.59299i 0.0420462 0.238456i
\(372\) 0.0470277 + 0.0814544i 0.00243827 + 0.00422322i
\(373\) 10.8805 18.8456i 0.563372 0.975788i −0.433828 0.900996i \(-0.642837\pi\)
0.997199 0.0747923i \(-0.0238294\pi\)
\(374\) 22.1302 + 18.5695i 1.14433 + 0.960204i
\(375\) 0 0
\(376\) 2.20442 0.802344i 0.113684 0.0413777i
\(377\) 5.20713 4.36930i 0.268181 0.225031i
\(378\) 0.258242 + 1.46456i 0.0132825 + 0.0753290i
\(379\) −6.63029 −0.340575 −0.170288 0.985394i \(-0.554470\pi\)
−0.170288 + 0.985394i \(0.554470\pi\)
\(380\) 0 0
\(381\) 2.96096 0.151695
\(382\) −1.83375 10.3997i −0.0938226 0.532095i
\(383\) 20.7000 17.3693i 1.05772 0.887532i 0.0638349 0.997960i \(-0.479667\pi\)
0.993884 + 0.110429i \(0.0352224\pi\)
\(384\) −0.418069 + 0.152165i −0.0213345 + 0.00776512i
\(385\) 0 0
\(386\) 23.2482 + 19.5076i 1.18330 + 0.992910i
\(387\) 8.34499 14.4539i 0.424200 0.734735i
\(388\) −5.29466 9.17062i −0.268796 0.465568i
\(389\) 4.51305 25.5948i 0.228821 1.29771i −0.626424 0.779483i \(-0.715482\pi\)
0.855245 0.518224i \(-0.173407\pi\)
\(390\) 0 0
\(391\) −2.72394 4.71800i −0.137755 0.238599i
\(392\) 0.971827 1.68325i 0.0490847 0.0850171i
\(393\) 0.584696 + 0.490618i 0.0294940 + 0.0247484i
\(394\) 39.1419 + 14.2465i 1.97194 + 0.717727i
\(395\) 0 0
\(396\) −11.9261 + 10.0072i −0.599308 + 0.502879i
\(397\) 3.70695 + 21.0231i 0.186046 + 1.05512i 0.924604 + 0.380930i \(0.124396\pi\)
−0.738557 + 0.674191i \(0.764493\pi\)
\(398\) −14.8726 −0.745494
\(399\) 0.328421 0.446128i 0.0164416 0.0223343i
\(400\) 0 0
\(401\) 4.52547 + 25.6652i 0.225991 + 1.28166i 0.860781 + 0.508975i \(0.169975\pi\)
−0.634790 + 0.772685i \(0.718913\pi\)
\(402\) −1.16145 + 0.974574i −0.0579280 + 0.0486073i
\(403\) 1.21414 0.441911i 0.0604806 0.0220131i
\(404\) 3.51289 + 1.27859i 0.174773 + 0.0636120i
\(405\) 0 0
\(406\) 0.947073 1.64038i 0.0470024 0.0814106i
\(407\) 0.857540 + 1.48530i 0.0425067 + 0.0736237i
\(408\) 0.0502053 0.284728i 0.00248553 0.0140961i
\(409\) −4.05420 + 22.9925i −0.200467 + 1.13691i 0.703948 + 0.710252i \(0.251419\pi\)
−0.904415 + 0.426654i \(0.859692\pi\)
\(410\) 0 0
\(411\) 0.245148 0.424608i 0.0120922 0.0209444i
\(412\) 25.8232 + 21.6682i 1.27222 + 1.06752i
\(413\) −6.44041 2.34412i −0.316912 0.115346i
\(414\) 5.74370 2.09054i 0.282288 0.102744i
\(415\) 0 0
\(416\) −6.45791 36.6246i −0.316625 1.79567i
\(417\) −1.68398 −0.0824648
\(418\) 24.1417 + 2.69043i 1.18081 + 0.131593i
\(419\) 21.9951 1.07453 0.537265 0.843413i \(-0.319457\pi\)
0.537265 + 0.843413i \(0.319457\pi\)
\(420\) 0 0
\(421\) 2.85822 2.39833i 0.139301 0.116888i −0.570475 0.821315i \(-0.693241\pi\)
0.709776 + 0.704428i \(0.248796\pi\)
\(422\) −24.5164 + 8.92323i −1.19344 + 0.434376i
\(423\) −21.9963 8.00599i −1.06950 0.389264i
\(424\) −1.56784 1.31557i −0.0761410 0.0638899i
\(425\) 0 0
\(426\) 1.40032 + 2.42542i 0.0678457 + 0.117512i
\(427\) 0.878489 4.98216i 0.0425131 0.241104i
\(428\) −1.99448 + 11.3113i −0.0964069 + 0.546751i
\(429\) −1.27083 2.20115i −0.0613564 0.106272i
\(430\) 0 0
\(431\) −19.0853 16.0145i −0.919307 0.771390i 0.0545594 0.998511i \(-0.482625\pi\)
−0.973867 + 0.227120i \(0.927069\pi\)
\(432\) 4.50302 + 1.63896i 0.216651 + 0.0788547i
\(433\) 10.3105 3.75273i 0.495492 0.180345i −0.0821730 0.996618i \(-0.526186\pi\)
0.577666 + 0.816274i \(0.303964\pi\)
\(434\) 0.275807 0.231430i 0.0132392 0.0111090i
\(435\) 0 0
\(436\) 29.5555 1.41545
\(437\) −4.10456 2.03386i −0.196348 0.0972927i
\(438\) −5.93875 −0.283765
\(439\) −1.47943 8.39029i −0.0706096 0.400447i −0.999544 0.0302020i \(-0.990385\pi\)
0.928934 0.370245i \(-0.120726\pi\)
\(440\) 0 0
\(441\) −18.2246 + 6.63322i −0.867840 + 0.315868i
\(442\) 45.5518 + 16.5795i 2.16668 + 0.788606i
\(443\) −7.21394 6.05322i −0.342745 0.287597i 0.455124 0.890428i \(-0.349595\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(444\) −0.104747 + 0.181428i −0.00497109 + 0.00861018i
\(445\) 0 0
\(446\) 6.77206 38.4063i 0.320667 1.81859i
\(447\) 0.0563268 0.319445i 0.00266417 0.0151092i
\(448\) −2.28373 3.95554i −0.107896 0.186881i
\(449\) −4.86372 + 8.42421i −0.229533 + 0.397563i −0.957670 0.287869i \(-0.907053\pi\)
0.728137 + 0.685432i \(0.240387\pi\)
\(450\) 0 0
\(451\) −17.9799 6.54416i −0.846642 0.308153i
\(452\) −13.6949 + 4.98452i −0.644152 + 0.234452i
\(453\) −1.59234 + 1.33613i −0.0748146 + 0.0627769i
\(454\) −9.30069 52.7468i −0.436503 2.47553i
\(455\) 0 0
\(456\) −0.0974869 0.222704i −0.00456524 0.0104291i
\(457\) −10.4686 −0.489700 −0.244850 0.969561i \(-0.578739\pi\)
−0.244850 + 0.969561i \(0.578739\pi\)
\(458\) 4.98823 + 28.2897i 0.233085 + 1.32189i
\(459\) −4.44621 + 3.73082i −0.207531 + 0.174140i
\(460\) 0 0
\(461\) 21.3065 + 7.75492i 0.992342 + 0.361183i 0.786626 0.617429i \(-0.211826\pi\)
0.205715 + 0.978612i \(0.434048\pi\)
\(462\) −0.542552 0.455255i −0.0252418 0.0211804i
\(463\) −17.8188 + 30.8631i −0.828110 + 1.43433i 0.0714094 + 0.997447i \(0.477250\pi\)
−0.899519 + 0.436881i \(0.856083\pi\)
\(464\) −3.05172 5.28573i −0.141672 0.245384i
\(465\) 0 0
\(466\) 2.25833 12.8076i 0.104615 0.593303i
\(467\) 1.45080 + 2.51286i 0.0671350 + 0.116281i 0.897639 0.440731i \(-0.145281\pi\)
−0.830504 + 0.557013i \(0.811948\pi\)
\(468\) −13.0618 + 22.6236i −0.603780 + 1.04578i
\(469\) 2.13551 + 1.79191i 0.0986088 + 0.0827426i
\(470\) 0 0
\(471\) 0.346536 0.126129i 0.0159675 0.00581170i
\(472\) −2.30402 + 1.93330i −0.106051 + 0.0889873i
\(473\) 2.77689 + 15.7486i 0.127682 + 0.724119i
\(474\) 5.46718 0.251116
\(475\) 0 0
\(476\) 6.48816 0.297384
\(477\) 3.54627 + 20.1119i 0.162373 + 0.920862i
\(478\) 19.0543 15.9885i 0.871524 0.731296i
\(479\) −27.5809 + 10.0386i −1.26020 + 0.458676i −0.883837 0.467795i \(-0.845048\pi\)
−0.376365 + 0.926471i \(0.622826\pi\)
\(480\) 0 0
\(481\) 2.20458 + 1.84986i 0.100520 + 0.0843464i
\(482\) 13.8440 23.9786i 0.630578 1.09219i
\(483\) 0.0667810 + 0.115668i 0.00303864 + 0.00526308i
\(484\) −0.940673 + 5.33482i −0.0427578 + 0.242492i
\(485\) 0 0
\(486\) −4.89363 8.47601i −0.221979 0.384480i
\(487\) −1.70841 + 2.95906i −0.0774157 + 0.134088i −0.902134 0.431456i \(-0.858000\pi\)
0.824719 + 0.565543i \(0.191334\pi\)
\(488\) −1.70069 1.42705i −0.0769865 0.0645993i
\(489\) −3.55089 1.29242i −0.160577 0.0584451i
\(490\) 0 0
\(491\) −19.2938 + 16.1894i −0.870717 + 0.730618i −0.964249 0.264998i \(-0.914629\pi\)
0.0935323 + 0.995616i \(0.470184\pi\)
\(492\) −0.405846 2.30167i −0.0182970 0.103767i
\(493\) 7.39253 0.332943
\(494\) 39.6105 9.61281i 1.78216 0.432501i
\(495\) 0 0
\(496\) −0.201457 1.14252i −0.00904569 0.0513007i
\(497\) 3.94468 3.30998i 0.176943 0.148473i
\(498\) 4.90727 1.78610i 0.219900 0.0800370i
\(499\) 32.6388 + 11.8795i 1.46111 + 0.531801i 0.945671 0.325124i \(-0.105406\pi\)
0.515441 + 0.856925i \(0.327628\pi\)
\(500\) 0 0
\(501\) −1.67592 + 2.90278i −0.0748746 + 0.129687i
\(502\) 6.84064 + 11.8483i 0.305313 + 0.528817i
\(503\) 3.89983 22.1171i 0.173885 0.986151i −0.765538 0.643391i \(-0.777527\pi\)
0.939423 0.342760i \(-0.111362\pi\)
\(504\) 0.103569 0.587367i 0.00461332 0.0261634i
\(505\) 0 0
\(506\) −2.92826 + 5.07189i −0.130177 + 0.225473i
\(507\) −1.39778 1.17287i −0.0620774 0.0520891i
\(508\) 27.4009 + 9.97312i 1.21572 + 0.442486i
\(509\) −2.20641 + 0.803067i −0.0977974 + 0.0355953i −0.390455 0.920622i \(-0.627682\pi\)
0.292658 + 0.956217i \(0.405460\pi\)
\(510\) 0 0
\(511\) 1.89612 + 10.7534i 0.0838794 + 0.475704i
\(512\) −30.8493 −1.36336
\(513\) −1.37458 + 4.68280i −0.0606892 + 0.206751i
\(514\) −30.9583 −1.36551
\(515\) 0 0
\(516\) −1.49635 + 1.25558i −0.0658730 + 0.0552740i
\(517\) 21.0757 7.67094i 0.926909 0.337367i
\(518\) 0.753575 + 0.274279i 0.0331102 + 0.0120511i
\(519\) −0.391429 0.328448i −0.0171818 0.0144173i
\(520\) 0 0
\(521\) −0.761964 1.31976i −0.0333822 0.0578197i 0.848852 0.528631i \(-0.177295\pi\)
−0.882234 + 0.470811i \(0.843961\pi\)
\(522\) −1.44026 + 8.16814i −0.0630386 + 0.357510i
\(523\) 2.33156 13.2229i 0.101952 0.578198i −0.890442 0.455096i \(-0.849605\pi\)
0.992394 0.123101i \(-0.0392840\pi\)
\(524\) 3.75831 + 6.50958i 0.164183 + 0.284372i
\(525\) 0 0
\(526\) 29.8957 + 25.0855i 1.30351 + 1.09378i
\(527\) 1.32043 + 0.480599i 0.0575190 + 0.0209352i
\(528\) −2.14454 + 0.780548i −0.0933291 + 0.0339690i
\(529\) −16.7730 + 14.0742i −0.729260 + 0.611922i
\(530\) 0 0
\(531\) 30.0114 1.30238
\(532\) 4.54188 3.02231i 0.196915 0.131034i
\(533\) −32.1063 −1.39068
\(534\) 0.526765 + 2.98744i 0.0227954 + 0.129279i
\(535\) 0 0
\(536\) 1.14958 0.418412i 0.0496541 0.0180726i
\(537\) 1.36107 + 0.495389i 0.0587345 + 0.0213776i
\(538\) 17.0703 + 14.3237i 0.735952 + 0.617537i
\(539\) 9.29130 16.0930i 0.400205 0.693175i
\(540\) 0 0
\(541\) 2.81801 15.9817i 0.121156 0.687109i −0.862361 0.506294i \(-0.831015\pi\)
0.983517 0.180815i \(-0.0578737\pi\)
\(542\) −8.13752 + 46.1502i −0.349537 + 1.98232i
\(543\) −0.100462 0.174005i −0.00431123 0.00746726i
\(544\) 20.2227 35.0268i 0.867043 1.50176i
\(545\) 0 0
\(546\) −1.11676 0.406468i −0.0477930 0.0173952i
\(547\) −9.31688 + 3.39107i −0.398361 + 0.144992i −0.533429 0.845845i \(-0.679097\pi\)
0.135068 + 0.990836i \(0.456875\pi\)
\(548\) 3.69878 3.10364i 0.158004 0.132581i
\(549\) 3.84676 + 21.8160i 0.164176 + 0.931086i
\(550\) 0 0
\(551\) 5.17496 3.44358i 0.220461 0.146702i
\(552\) 0.0586120 0.00249469
\(553\) −1.74556 9.89954i −0.0742286 0.420971i
\(554\) 7.05270 5.91792i 0.299641 0.251428i
\(555\) 0 0
\(556\) −15.5836 5.67198i −0.660894 0.240546i
\(557\) 17.5295 + 14.7090i 0.742748 + 0.623240i 0.933574 0.358384i \(-0.116672\pi\)
−0.190826 + 0.981624i \(0.561117\pi\)
\(558\) −0.788279 + 1.36534i −0.0333705 + 0.0577994i
\(559\) 13.4167 + 23.2385i 0.567467 + 0.982882i
\(560\) 0 0
\(561\) 0.479995 2.72219i 0.0202654 0.114931i
\(562\) 22.0264 + 38.1508i 0.929128 + 1.60930i
\(563\) −6.24004 + 10.8081i −0.262986 + 0.455505i −0.967034 0.254647i \(-0.918041\pi\)
0.704048 + 0.710153i \(0.251374\pi\)
\(564\) 2.09865 + 1.76097i 0.0883690 + 0.0741504i
\(565\) 0 0
\(566\) −20.0623 + 7.30209i −0.843283 + 0.306930i
\(567\) −4.50414 + 3.77943i −0.189156 + 0.158721i
\(568\) −0.392403 2.22543i −0.0164649 0.0933768i
\(569\) 1.90233 0.0797500 0.0398750 0.999205i \(-0.487304\pi\)
0.0398750 + 0.999205i \(0.487304\pi\)
\(570\) 0 0
\(571\) −12.2153 −0.511193 −0.255596 0.966784i \(-0.582272\pi\)
−0.255596 + 0.966784i \(0.582272\pi\)
\(572\) −4.34646 24.6500i −0.181734 1.03067i
\(573\) −0.774030 + 0.649489i −0.0323356 + 0.0271328i
\(574\) −8.40707 + 3.05992i −0.350904 + 0.127719i
\(575\) 0 0
\(576\) 15.3210 + 12.8558i 0.638375 + 0.535660i
\(577\) −12.6452 + 21.9021i −0.526425 + 0.911796i 0.473100 + 0.881008i \(0.343135\pi\)
−0.999526 + 0.0307872i \(0.990199\pi\)
\(578\) 9.68448 + 16.7740i 0.402821 + 0.697707i
\(579\) 0.504245 2.85971i 0.0209557 0.118846i
\(580\) 0 0
\(581\) −4.80092 8.31544i −0.199176 0.344982i
\(582\) −1.05473 + 1.82684i −0.0437198 + 0.0757249i
\(583\) −14.9896 12.5778i −0.620805 0.520917i
\(584\) 4.50283 + 1.63890i 0.186328 + 0.0678180i
\(585\) 0 0
\(586\) −18.7418 + 15.7262i −0.774216 + 0.649644i
\(587\) 1.09777 + 6.22574i 0.0453097 + 0.256964i 0.999045 0.0436821i \(-0.0139089\pi\)
−0.953736 + 0.300646i \(0.902798\pi\)
\(588\) 2.26984 0.0936067
\(589\) 1.14821 0.278652i 0.0473112 0.0114817i
\(590\) 0 0
\(591\) −0.692087 3.92502i −0.0284687 0.161454i
\(592\) 1.97950 1.66100i 0.0813569 0.0682666i
\(593\) 0.548512 0.199642i 0.0225247 0.00819832i −0.330733 0.943724i \(-0.607296\pi\)
0.353258 + 0.935526i \(0.385074\pi\)
\(594\) 5.86320 + 2.13403i 0.240570 + 0.0875603i
\(595\) 0 0
\(596\) 1.59721 2.76645i 0.0654242 0.113318i
\(597\) 0.711526 + 1.23240i 0.0291208 + 0.0504387i
\(598\) −1.70646 + 9.67784i −0.0697825 + 0.395756i
\(599\) 7.38388 41.8761i 0.301697 1.71101i −0.336961 0.941519i \(-0.609399\pi\)
0.638658 0.769491i \(-0.279490\pi\)
\(600\) 0 0
\(601\) −8.13809 + 14.0956i −0.331960 + 0.574971i −0.982896 0.184161i \(-0.941043\pi\)
0.650936 + 0.759132i \(0.274377\pi\)
\(602\) 5.72795 + 4.80632i 0.233454 + 0.195891i
\(603\) −11.4708 4.17501i −0.467125 0.170020i
\(604\) −19.2360 + 7.00132i −0.782701 + 0.284880i
\(605\) 0 0
\(606\) −0.129315 0.733384i −0.00525308 0.0297917i
\(607\) 6.86749 0.278743 0.139371 0.990240i \(-0.455492\pi\)
0.139371 + 0.990240i \(0.455492\pi\)
\(608\) −2.15972 33.9398i −0.0875881 1.37644i
\(609\) −0.181238 −0.00734412
\(610\) 0 0
\(611\) 28.8296 24.1909i 1.16632 0.978658i
\(612\) −26.6972 + 9.71698i −1.07917 + 0.392786i
\(613\) 5.49059 + 1.99841i 0.221763 + 0.0807150i 0.450512 0.892770i \(-0.351241\pi\)
−0.228749 + 0.973485i \(0.573464\pi\)
\(614\) −6.27958 5.26920i −0.253423 0.212647i
\(615\) 0 0
\(616\) 0.285734 + 0.494906i 0.0115126 + 0.0199403i
\(617\) 6.69631 37.9767i 0.269583 1.52888i −0.486075 0.873917i \(-0.661572\pi\)
0.755658 0.654966i \(-0.227317\pi\)
\(618\) 1.16608 6.61315i 0.0469065 0.266020i
\(619\) −5.46007 9.45712i −0.219459 0.380114i 0.735184 0.677868i \(-0.237096\pi\)
−0.954643 + 0.297754i \(0.903762\pi\)
\(620\) 0 0
\(621\) −0.901359 0.756330i −0.0361703 0.0303505i
\(622\) −22.2891 8.11256i −0.893711 0.325284i
\(623\) 5.24123 1.90765i 0.209986 0.0764285i
\(624\) −2.93352 + 2.46152i −0.117435 + 0.0985396i
\(625\) 0 0
\(626\) −18.7910 −0.751039
\(627\) −0.932038 2.12919i −0.0372220 0.0850318i
\(628\) 3.63169 0.144920
\(629\) 0.543488 + 3.08228i 0.0216703 + 0.122898i
\(630\) 0 0
\(631\) −7.62467 + 2.77515i −0.303533 + 0.110477i −0.489297 0.872117i \(-0.662746\pi\)
0.185763 + 0.982595i \(0.440524\pi\)
\(632\) −4.14528 1.50876i −0.164890 0.0600152i
\(633\) 1.91231 + 1.60462i 0.0760077 + 0.0637780i
\(634\) −10.9557 + 18.9758i −0.435106 + 0.753626i
\(635\) 0 0
\(636\) 0.415045 2.35383i 0.0164576 0.0933356i
\(637\) 5.41457 30.7076i 0.214533 1.21668i
\(638\) −3.97352 6.88234i −0.157313 0.272474i
\(639\) −11.2742 + 19.5275i −0.446001 + 0.772496i
\(640\) 0 0
\(641\) −13.0690 4.75673i −0.516195 0.187880i 0.0707688 0.997493i \(-0.477455\pi\)
−0.586964 + 0.809613i \(0.699677\pi\)
\(642\) 2.15004 0.782552i 0.0848555 0.0308849i
\(643\) 29.1929 24.4957i 1.15125 0.966017i 0.151506 0.988456i \(-0.451588\pi\)
0.999748 + 0.0224393i \(0.00714324\pi\)
\(644\) 0.228402 + 1.29533i 0.00900029 + 0.0510432i
\(645\) 0 0
\(646\) 39.7198 + 19.6816i 1.56276 + 0.774364i
\(647\) 28.6072 1.12466 0.562332 0.826912i \(-0.309904\pi\)
0.562332 + 0.826912i \(0.309904\pi\)
\(648\) 0.448056 + 2.54105i 0.0176013 + 0.0998221i
\(649\) −22.0279 + 18.4836i −0.864671 + 0.725545i
\(650\) 0 0
\(651\) −0.0323722 0.0117825i −0.00126877 0.000461793i
\(652\) −28.5070 23.9202i −1.11642 0.936787i
\(653\) −5.94304 + 10.2937i −0.232569 + 0.402822i −0.958563 0.284879i \(-0.908047\pi\)
0.725994 + 0.687701i \(0.241380\pi\)
\(654\) −2.94381 5.09883i −0.115112 0.199380i
\(655\) 0 0
\(656\) −5.00599 + 28.3904i −0.195451 + 1.10846i
\(657\) −23.9069 41.4080i −0.932699 1.61548i
\(658\) 5.24352 9.08204i 0.204414 0.354055i
\(659\) −28.2769 23.7271i −1.10151 0.924278i −0.103986 0.994579i \(-0.533160\pi\)
−0.997526 + 0.0703009i \(0.977604\pi\)
\(660\) 0 0
\(661\) 8.49572 3.09219i 0.330445 0.120272i −0.171469 0.985189i \(-0.554851\pi\)
0.501914 + 0.864917i \(0.332629\pi\)
\(662\) 32.5925 27.3483i 1.26674 1.06292i
\(663\) −0.805424 4.56779i −0.0312801 0.177398i
\(664\) −4.21365 −0.163521
\(665\) 0 0
\(666\) −3.51155 −0.136070
\(667\) 0.260238 + 1.47588i 0.0100765 + 0.0571465i
\(668\) −25.2862 + 21.2176i −0.978353 + 0.820935i
\(669\) −3.50648 + 1.27626i −0.135568 + 0.0493429i
\(670\) 0 0
\(671\) −16.2597 13.6435i −0.627698 0.526701i
\(672\) −0.495787 + 0.858729i −0.0191254 + 0.0331262i
\(673\) 19.9182 + 34.4994i 0.767791 + 1.32985i 0.938758 + 0.344577i \(0.111978\pi\)
−0.170967 + 0.985277i \(0.554689\pi\)
\(674\) −0.0180037 + 0.102104i −0.000693478 + 0.00393291i
\(675\) 0 0
\(676\) −8.98462 15.5618i −0.345562 0.598532i
\(677\) −9.01941 + 15.6221i −0.346644 + 0.600405i −0.985651 0.168796i \(-0.946012\pi\)
0.639007 + 0.769201i \(0.279345\pi\)
\(678\) 2.22396 + 1.86613i 0.0854108 + 0.0716682i
\(679\) 3.64465 + 1.32655i 0.139869 + 0.0509081i
\(680\) 0 0
\(681\) −3.92585 + 3.29418i −0.150439 + 0.126233i
\(682\) −0.262309 1.48763i −0.0100443 0.0569643i
\(683\) −15.4271 −0.590301 −0.295151 0.955451i \(-0.595370\pi\)
−0.295151 + 0.955451i \(0.595370\pi\)
\(684\) −14.1624 + 19.2382i −0.541512 + 0.735591i
\(685\) 0 0
\(686\) −3.12334 17.7134i −0.119250 0.676299i
\(687\) 2.10555 1.76677i 0.0803317 0.0674063i
\(688\) 22.6408 8.24059i 0.863173 0.314169i
\(689\) −30.8538 11.2299i −1.17544 0.427824i
\(690\) 0 0
\(691\) −1.51912 + 2.63119i −0.0577901 + 0.100095i −0.893473 0.449117i \(-0.851739\pi\)
0.835683 + 0.549212i \(0.185072\pi\)
\(692\) −2.51603 4.35789i −0.0956452 0.165662i
\(693\) 0.990185 5.61562i 0.0376140 0.213320i
\(694\) −8.64803 + 49.0454i −0.328275 + 1.86174i
\(695\) 0 0
\(696\) −0.0397670 + 0.0688784i −0.00150736 + 0.00261083i
\(697\) −26.7481 22.4443i −1.01315 0.850138i
\(698\) −28.7947 10.4804i −1.08990 0.396689i
\(699\) −1.16933 + 0.425603i −0.0442283 + 0.0160978i
\(700\) 0 0
\(701\) −7.95179 45.0968i −0.300335 1.70328i −0.644690 0.764444i \(-0.723013\pi\)
0.344355 0.938840i \(-0.388098\pi\)
\(702\) 10.4697 0.395155
\(703\) 1.81624 + 1.90451i 0.0685008 + 0.0718298i
\(704\) −19.1631 −0.722238
\(705\) 0 0
\(706\) −18.7419 + 15.7263i −0.705360 + 0.591867i
\(707\) −1.28667 + 0.468309i −0.0483901 + 0.0176126i
\(708\) −3.30061 1.20132i −0.124045 0.0451485i
\(709\) 16.8950 + 14.1766i 0.634506 + 0.532414i 0.902326 0.431055i \(-0.141859\pi\)
−0.267819 + 0.963469i \(0.586303\pi\)
\(710\) 0 0
\(711\) 22.0086 + 38.1200i 0.825386 + 1.42961i
\(712\) 0.425032 2.41048i 0.0159288 0.0903365i
\(713\) −0.0494663 + 0.280537i −0.00185253 + 0.0105062i
\(714\) −0.646239 1.11932i −0.0241849 0.0418894i
\(715\) 0 0
\(716\) 10.9268 + 9.16871i 0.408355 + 0.342651i
\(717\) −2.23645 0.814003i −0.0835219 0.0303995i
\(718\) −62.0195 + 22.5732i −2.31455 + 0.842426i
\(719\) −5.43476 + 4.56031i −0.202682 + 0.170071i −0.738479 0.674276i \(-0.764456\pi\)
0.535797 + 0.844347i \(0.320011\pi\)
\(720\) 0 0
\(721\) −12.3469 −0.459822
\(722\) 36.9730 4.72459i 1.37599 0.175831i
\(723\) −2.64928 −0.0985277
\(724\) −0.343596 1.94863i −0.0127696 0.0724202i
\(725\) 0 0
\(726\) 1.01404 0.369081i 0.0376346 0.0136979i
\(727\) −26.5113 9.64932i −0.983249 0.357873i −0.200147 0.979766i \(-0.564142\pi\)
−0.783103 + 0.621893i \(0.786364\pi\)
\(728\) 0.734570 + 0.616378i 0.0272250 + 0.0228445i
\(729\) 12.5580 21.7510i 0.465110 0.805594i
\(730\) 0 0
\(731\) −5.06752 + 28.7393i −0.187429 + 1.06296i
\(732\) 0.450212 2.55328i 0.0166403 0.0943719i
\(733\) −0.517931 0.897082i −0.0191302 0.0331345i 0.856302 0.516476i \(-0.172756\pi\)
−0.875432 + 0.483341i \(0.839423\pi\)
\(734\) −25.1205 + 43.5100i −0.927214 + 1.60598i
\(735\) 0 0
\(736\) 7.70484 + 2.80433i 0.284004 + 0.103369i
\(737\) 10.9907 4.00029i 0.404848 0.147353i
\(738\) 30.0103 25.1817i 1.10470 0.926950i
\(739\) 3.37137 + 19.1200i 0.124018 + 0.703340i 0.981886 + 0.189471i \(0.0606773\pi\)
−0.857868 + 0.513869i \(0.828212\pi\)
\(740\) 0 0
\(741\) −2.69158 2.82239i −0.0988777 0.103683i
\(742\) −9.14938 −0.335884
\(743\) −2.20582 12.5098i −0.0809237 0.458941i −0.998162 0.0606022i \(-0.980698\pi\)
0.917238 0.398339i \(-0.130413\pi\)
\(744\) −0.0115810 + 0.00971758i −0.000424579 + 0.000356264i
\(745\) 0 0
\(746\) −40.1156 14.6009i −1.46874 0.534576i
\(747\) 32.2082 + 27.0259i 1.17844 + 0.988826i
\(748\) 13.6108 23.5746i 0.497660 0.861972i
\(749\) −2.10345 3.64328i −0.0768584 0.133123i
\(750\) 0 0
\(751\) −0.801897 + 4.54778i −0.0292616 + 0.165951i −0.995937 0.0900552i \(-0.971296\pi\)
0.966675 + 0.256006i \(0.0824068\pi\)
\(752\) −16.8960 29.2647i −0.616134 1.06717i
\(753\) 0.654534 1.13369i 0.0238525 0.0413138i
\(754\) −10.2152 8.57157i −0.372016 0.312158i
\(755\) 0 0
\(756\) 1.31681 0.479281i 0.0478920 0.0174313i
\(757\) −5.21680 + 4.37741i −0.189608 + 0.159100i −0.732650 0.680606i \(-0.761717\pi\)
0.543042 + 0.839705i \(0.317272\pi\)
\(758\) 2.25866 + 12.8095i 0.0820382 + 0.465262i
\(759\) 0.560370 0.0203401
\(760\) 0 0
\(761\) 24.4864 0.887632 0.443816 0.896118i \(-0.353624\pi\)
0.443816 + 0.896118i \(0.353624\pi\)
\(762\) −1.00867 5.72048i −0.0365404 0.207231i
\(763\) −8.29266 + 6.95837i −0.300215 + 0.251910i
\(764\) −9.35053 + 3.40332i −0.338290 + 0.123128i
\(765\) 0 0
\(766\) −40.6086 34.0746i −1.46725 1.23117i
\(767\) −24.1255 + 41.7867i −0.871123 + 1.50883i
\(768\) 1.70266 + 2.94910i 0.0614396 + 0.106417i
\(769\) 0.519478 2.94611i 0.0187329 0.106239i −0.974008 0.226515i \(-0.927267\pi\)
0.992741 + 0.120276i \(0.0383779\pi\)
\(770\) 0 0
\(771\) 1.48109 + 2.56533i 0.0533402 + 0.0923880i
\(772\) 14.2984 24.7656i 0.514611 0.891332i
\(773\) 15.1403 + 12.7042i 0.544557 + 0.456938i 0.873093 0.487554i \(-0.162111\pi\)
−0.328536 + 0.944491i \(0.606555\pi\)
\(774\) −30.7673 11.1984i −1.10591 0.402518i
\(775\) 0 0
\(776\) 1.30385 1.09406i 0.0468056 0.0392745i
\(777\) −0.0133243 0.0755661i −0.000478008 0.00271092i
\(778\) −50.9857 −1.82792
\(779\) −29.1793 3.25183i −1.04546 0.116509i
\(780\) 0 0
\(781\) −3.75163 21.2765i −0.134244 0.761335i
\(782\) −8.18709 + 6.86978i −0.292770 + 0.245663i
\(783\) 1.50036 0.546087i 0.0536185 0.0195155i
\(784\) −26.3093 9.57581i −0.939618 0.341993i
\(785\) 0 0
\(786\) 0.748677 1.29675i 0.0267044 0.0462534i
\(787\) −11.7733 20.3920i −0.419673 0.726895i 0.576233 0.817285i \(-0.304522\pi\)
−0.995906 + 0.0903901i \(0.971189\pi\)
\(788\) 6.81565 38.6535i 0.242798 1.37697i
\(789\) 0.648425 3.67740i 0.0230846 0.130919i
\(790\) 0 0
\(791\) 2.66897 4.62280i 0.0948977 0.164368i
\(792\) −1.91692 1.60849i −0.0681148 0.0571551i
\(793\) −33.4681 12.1814i −1.18849 0.432574i
\(794\) 39.3532 14.3234i 1.39659 0.508318i
\(795\) 0 0
\(796\) 2.43353 + 13.8013i 0.0862543 + 0.489173i
\(797\) 5.96976 0.211460 0.105730 0.994395i \(-0.466282\pi\)
0.105730 + 0.994395i \(0.466282\pi\)
\(798\) −0.973784 0.482522i −0.0344716 0.0170811i
\(799\) 40.9291 1.44797
\(800\) 0 0
\(801\) −18.7094 + 15.6991i −0.661064 + 0.554699i
\(802\) 48.0427 17.4861i 1.69645 0.617456i
\(803\) 43.0500 + 15.6689i 1.51920 + 0.552945i
\(804\) 1.09442 + 0.918325i 0.0385971 + 0.0323868i
\(805\) 0 0
\(806\) −1.26736 2.19514i −0.0446409 0.0773204i
\(807\) 0.370247 2.09978i 0.0130333 0.0739157i
\(808\) −0.104341 + 0.591747i −0.00367070 + 0.0208176i
\(809\) 12.9533 + 22.4358i 0.455414 + 0.788801i 0.998712 0.0507393i \(-0.0161577\pi\)
−0.543297 + 0.839540i \(0.682824\pi\)
\(810\) 0 0
\(811\) 21.1791 + 17.7713i 0.743698 + 0.624036i 0.933828 0.357723i \(-0.116447\pi\)
−0.190130 + 0.981759i \(0.560891\pi\)
\(812\) −1.67718 0.610445i −0.0588576 0.0214224i
\(813\) 4.21350 1.53359i 0.147774 0.0537853i
\(814\) 2.57743 2.16272i 0.0903388 0.0758032i
\(815\) 0 0
\(816\) −4.16470 −0.145794
\(817\) 9.83993 + 22.4788i 0.344256 + 0.786434i
\(818\) 45.8018 1.60142
\(819\) −1.66151 9.42291i −0.0580580 0.329263i
\(820\) 0 0
\(821\) 9.72970 3.54132i 0.339569 0.123593i −0.166607 0.986023i \(-0.553281\pi\)
0.506175 + 0.862431i \(0.331059\pi\)
\(822\) −0.903841 0.328971i −0.0315251 0.0114742i
\(823\) 32.4417 + 27.2218i 1.13085 + 0.948893i 0.999101 0.0423901i \(-0.0134972\pi\)
0.131746 + 0.991284i \(0.457942\pi\)
\(824\) −2.70914 + 4.69237i −0.0943775 + 0.163467i
\(825\) 0 0
\(826\) −2.33478 + 13.2412i −0.0812374 + 0.460720i
\(827\) −3.92136 + 22.2391i −0.136359 + 0.773330i 0.837545 + 0.546369i \(0.183990\pi\)
−0.973904 + 0.226962i \(0.927121\pi\)
\(828\) −2.87977 4.98791i −0.100079 0.173342i
\(829\) 6.32446 10.9543i 0.219657 0.380458i −0.735046 0.678017i \(-0.762839\pi\)
0.954703 + 0.297560i \(0.0961727\pi\)
\(830\) 0 0
\(831\) −0.827794 0.301292i −0.0287159 0.0104517i
\(832\) −30.2162 + 10.9978i −1.04756 + 0.381280i
\(833\) 25.9774 21.7977i 0.900065 0.755244i
\(834\) 0.573661 + 3.25339i 0.0198642 + 0.112656i
\(835\) 0 0
\(836\) −1.45358 22.8430i −0.0502732 0.790041i
\(837\) 0.303492 0.0104902
\(838\) −7.49280 42.4938i −0.258834 1.46792i
\(839\) 35.3478 29.6603i 1.22034 1.02399i 0.221535 0.975152i \(-0.428893\pi\)
0.998807 0.0488360i \(-0.0155512\pi\)
\(840\) 0 0
\(841\) 25.3401 + 9.22305i 0.873797 + 0.318036i
\(842\) −5.60717 4.70498i −0.193236 0.162144i
\(843\) 2.10755 3.65039i 0.0725880 0.125726i
\(844\) 12.2920 + 21.2903i 0.423108 + 0.732844i
\(845\) 0 0
\(846\) −7.97410 + 45.2234i −0.274155 + 1.55481i
\(847\) −0.992066 1.71831i −0.0340878 0.0590418i
\(848\) −14.7409 + 25.5319i −0.506203 + 0.876770i
\(849\) 1.56489 + 1.31310i 0.0537070 + 0.0450655i
\(850\) 0 0
\(851\) −0.596230 + 0.217010i −0.0204385 + 0.00743900i
\(852\) 2.02159 1.69631i 0.0692585 0.0581147i
\(853\) 6.50543 + 36.8941i 0.222742 + 1.26323i 0.866955 + 0.498386i \(0.166074\pi\)
−0.644214 + 0.764846i \(0.722815\pi\)
\(854\) −9.92463 −0.339614
\(855\) 0 0
\(856\) −1.84615 −0.0631000
\(857\) 5.87524 + 33.3201i 0.200694 + 1.13819i 0.904073 + 0.427379i \(0.140563\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(858\) −3.81962 + 3.20505i −0.130400 + 0.109418i
\(859\) 19.9349 7.25572i 0.680171 0.247562i 0.0212498 0.999774i \(-0.493235\pi\)
0.658921 + 0.752212i \(0.271013\pi\)
\(860\) 0 0
\(861\) 0.655764 + 0.550251i 0.0223484 + 0.0187525i
\(862\) −24.4379 + 42.3277i −0.832358 + 1.44169i
\(863\) 14.5696 + 25.2353i 0.495955 + 0.859019i 0.999989 0.00466481i \(-0.00148486\pi\)
−0.504034 + 0.863684i \(0.668152\pi\)
\(864\) 1.51690 8.60277i 0.0516060 0.292672i
\(865\) 0 0
\(866\) −10.7625 18.6412i −0.365725 0.633454i
\(867\) 0.926641 1.60499i 0.0314704 0.0545083i
\(868\) −0.259888 0.218072i −0.00882119 0.00740185i
\(869\) −39.6316 14.4247i −1.34441 0.489325i
\(870\) 0 0
\(871\) 15.0342 12.6152i 0.509416 0.427450i
\(872\) 0.824925 + 4.67838i 0.0279355 + 0.158430i
\(873\) −16.9836 −0.574806
\(874\) −2.53110 + 8.62273i −0.0856157 + 0.291668i
\(875\) 0 0
\(876\) 0.971733 + 5.51097i 0.0328318 + 0.186198i
\(877\) 4.93198 4.13842i 0.166541 0.139745i −0.555708 0.831377i \(-0.687553\pi\)
0.722249 + 0.691633i \(0.243108\pi\)
\(878\) −15.7058 + 5.71644i −0.530045 + 0.192920i
\(879\) 2.19977 + 0.800652i 0.0741965 + 0.0270053i
\(880\) 0 0
\(881\) −7.19996 + 12.4707i −0.242573 + 0.420148i −0.961446 0.274993i \(-0.911325\pi\)
0.718874 + 0.695141i \(0.244658\pi\)
\(882\) 19.0235 + 32.9497i 0.640556 + 1.10948i
\(883\) −4.48039 + 25.4096i −0.150777 + 0.855100i 0.811768 + 0.583980i \(0.198505\pi\)
−0.962545 + 0.271121i \(0.912606\pi\)
\(884\) 7.93179 44.9834i 0.266775 1.51296i
\(885\) 0 0
\(886\) −9.23713 + 15.9992i −0.310327 + 0.537503i
\(887\) −19.8739 16.6762i −0.667300 0.559931i 0.244965 0.969532i \(-0.421224\pi\)
−0.912265 + 0.409601i \(0.865668\pi\)
\(888\) −0.0316421 0.0115168i −0.00106184 0.000386478i
\(889\) −10.0362 + 3.65286i −0.336602 + 0.122513i
\(890\) 0 0
\(891\) 4.28371 + 24.2942i 0.143510 + 0.813885i
\(892\) −36.7479 −1.23041
\(893\) 28.6515 19.0656i 0.958785 0.638005i
\(894\) −0.636346 −0.0212826
\(895\) 0 0
\(896\) 1.22932 1.03152i 0.0410687 0.0344607i
\(897\) 0.883584 0.321598i 0.0295020 0.0107379i
\(898\) 17.9321 + 6.52677i 0.598404 + 0.217801i
\(899\) −0.296114 0.248469i −0.00987595 0.00828690i
\(900\) 0 0
\(901\) −17.8542 30.9245i −0.594811 1.03024i
\(902\) −6.51810 + 36.9660i −0.217029 + 1.23083i
\(903\) 0.124237 0.704583i 0.00413435 0.0234470i
\(904\) −1.17125 2.02866i −0.0389551 0.0674722i
\(905\) 0 0
\(906\) 3.12381 + 2.62118i 0.103781 + 0.0870830i
\(907\) 28.1209 + 10.2352i 0.933740 + 0.339853i 0.763691 0.645582i \(-0.223385\pi\)
0.170049 + 0.985436i \(0.445607\pi\)
\(908\) −47.4255 + 17.2615i −1.57387 + 0.572843i
\(909\) 4.59296 3.85395i 0.152339 0.127828i
\(910\) 0 0
\(911\) 3.36120 0.111362 0.0556808 0.998449i \(-0.482267\pi\)
0.0556808 + 0.998449i \(0.482267\pi\)
\(912\) −2.91540 + 1.94000i −0.0965386 + 0.0642398i
\(913\) −40.2853 −1.33325
\(914\) 3.56621 + 20.2250i 0.117960 + 0.668982i
\(915\) 0 0
\(916\) 25.4357 9.25784i 0.840419 0.305888i
\(917\) −2.58708 0.941622i −0.0854330 0.0310951i
\(918\) 8.72245 + 7.31900i 0.287884 + 0.241563i
\(919\) −3.46233 + 5.99694i −0.114212 + 0.197821i −0.917464 0.397818i \(-0.869768\pi\)
0.803253 + 0.595639i \(0.203101\pi\)
\(920\) 0 0
\(921\) −0.136202 + 0.772437i −0.00448799 + 0.0254527i
\(922\) 7.72404 43.8052i 0.254378 1.44265i
\(923\) −18.1262 31.3955i −0.596632 1.03340i
\(924\) −0.333687 + 0.577962i −0.0109775 + 0.0190136i
\(925\) 0 0
\(926\) 65.6965 + 23.9116i 2.15892 + 0.785783i
\(927\) 50.8045 18.4913i 1.66864 0.607335i
\(928\) −8.52310 + 7.15173i −0.279785 + 0.234767i
\(929\) 4.74769 + 26.9255i 0.155767 + 0.883396i 0.958082 + 0.286495i \(0.0924903\pi\)
−0.802315 + 0.596901i \(0.796399\pi\)
\(930\) 0 0
\(931\) 8.03112 27.3597i 0.263209 0.896679i
\(932\) −12.2546 −0.401413
\(933\) 0.394105 + 2.23508i 0.0129024 + 0.0731732i
\(934\) 4.36053 3.65892i 0.142681 0.119724i
\(935\) 0 0
\(936\) −3.94570 1.43612i −0.128969 0.0469409i
\(937\) 28.4491 + 23.8716i 0.929390 + 0.779851i 0.975708 0.219076i \(-0.0703041\pi\)
−0.0463175 + 0.998927i \(0.514749\pi\)
\(938\) 2.73443 4.73616i 0.0892822 0.154641i
\(939\) 0.898989 + 1.55710i 0.0293374 + 0.0508139i
\(940\) 0 0
\(941\) 8.80177 49.9173i 0.286929 1.62726i −0.411382 0.911463i \(-0.634954\pi\)
0.698311 0.715794i \(-0.253935\pi\)
\(942\) −0.361727 0.626529i −0.0117857 0.0204134i
\(943\) 3.53929 6.13023i 0.115255 0.199628i
\(944\) 33.1887 + 27.8487i 1.08020 + 0.906396i
\(945\) 0 0
\(946\) 29.4797 10.7297i 0.958468 0.348854i
\(947\) −3.11527 + 2.61402i −0.101233 + 0.0849442i −0.691999 0.721898i \(-0.743270\pi\)
0.590767 + 0.806842i \(0.298825\pi\)
\(948\) −0.894571 5.07336i −0.0290543 0.164775i
\(949\) 76.8732 2.49541
\(950\) 0 0
\(951\) 2.09655 0.0679852
\(952\) 0.181091 + 1.02702i 0.00586921 + 0.0332859i
\(953\) 11.3629 9.53460i 0.368080 0.308856i −0.439921 0.898036i \(-0.644994\pi\)
0.808002 + 0.589180i \(0.200549\pi\)
\(954\) 37.6475 13.7026i 1.21888 0.443637i
\(955\) 0 0
\(956\) −17.9546 15.0657i −0.580692 0.487258i
\(957\) −0.380198 + 0.658523i −0.0122901 + 0.0212870i
\(958\) 28.7899 + 49.8656i 0.930160 + 1.61108i
\(959\) −0.307098 + 1.74164i −0.00991671 + 0.0562405i
\(960\) 0 0
\(961\) 15.4633 + 26.7832i 0.498815 + 0.863973i
\(962\) 2.82286 4.88934i 0.0910128 0.157639i
\(963\) 14.1115 + 11.8410i 0.454738 + 0.381571i
\(964\) −24.5166 8.92330i −0.789626 0.287400i
\(965\) 0 0
\(966\) 0.200717 0.168422i 0.00645797 0.00541888i
\(967\) 9.84935 + 55.8584i 0.316734 + 1.79629i 0.562329 + 0.826914i \(0.309905\pi\)
−0.245595 + 0.969372i \(0.578983\pi\)
\(968\) −0.870712 −0.0279858
\(969\) −0.269358 4.23294i −0.00865301 0.135982i
\(970\) 0 0
\(971\) −2.18689 12.4025i −0.0701805 0.398014i −0.999581 0.0289410i \(-0.990786\pi\)
0.929401 0.369073i \(-0.120325\pi\)
\(972\) −7.06474 + 5.92802i −0.226602 + 0.190141i
\(973\) 5.70783 2.07748i 0.182985 0.0666010i
\(974\) 6.29879 + 2.29257i 0.201826 + 0.0734588i
\(975\) 0 0
\(976\) −15.9899 + 27.6953i −0.511824 + 0.886505i
\(977\) 18.4486 + 31.9540i 0.590224 + 1.02230i 0.994202 + 0.107529i \(0.0342940\pi\)
−0.403978 + 0.914769i \(0.632373\pi\)
\(978\) −1.28727 + 7.30047i −0.0411623 + 0.233443i
\(979\) 4.06359 23.0458i 0.129873 0.736546i
\(980\) 0 0
\(981\) 23.7011 41.0515i 0.756718 1.31067i
\(982\) 37.8500 + 31.7599i 1.20784 + 1.01350i
\(983\) −8.98405 3.26993i −0.286547 0.104295i 0.194748 0.980853i \(-0.437611\pi\)
−0.481295 + 0.876559i \(0.659833\pi\)
\(984\) 0.353007 0.128484i 0.0112535 0.00409592i
\(985\) 0 0
\(986\) −2.51832 14.2821i −0.0801997 0.454835i
\(987\) −1.00343 −0.0319396
\(988\) −15.4017 35.1843i −0.489992 1.11936i
\(989\) −5.91606 −0.188120
\(990\) 0 0
\(991\) −12.4584 + 10.4538i −0.395755 + 0.332077i −0.818850 0.574008i \(-0.805388\pi\)
0.423095 + 0.906085i \(0.360944\pi\)
\(992\) −1.98732 + 0.723325i −0.0630974 + 0.0229656i
\(993\) −3.82546 1.39236i −0.121397 0.0441851i
\(994\) −7.73855 6.49342i −0.245452 0.205959i
\(995\) 0 0
\(996\) −2.46040 4.26153i −0.0779607 0.135032i
\(997\) 6.36254 36.0838i 0.201504 1.14278i −0.701344 0.712823i \(-0.747416\pi\)
0.902848 0.429961i \(-0.141473\pi\)
\(998\) 11.8322 67.1039i 0.374543 2.12414i
\(999\) 0.337992 + 0.585420i 0.0106936 + 0.0185219i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.l.f.351.1 48
5.2 odd 4 95.2.p.a.9.8 yes 48
5.3 odd 4 95.2.p.a.9.1 48
5.4 even 2 inner 475.2.l.f.351.8 48
15.2 even 4 855.2.da.b.199.1 48
15.8 even 4 855.2.da.b.199.8 48
19.6 even 9 9025.2.a.cu.1.4 24
19.13 odd 18 9025.2.a.ct.1.21 24
19.17 even 9 inner 475.2.l.f.226.1 48
95.13 even 36 1805.2.b.l.1084.4 24
95.17 odd 36 95.2.p.a.74.1 yes 48
95.32 even 36 1805.2.b.l.1084.21 24
95.44 even 18 9025.2.a.cu.1.21 24
95.63 odd 36 1805.2.b.k.1084.21 24
95.74 even 18 inner 475.2.l.f.226.8 48
95.82 odd 36 1805.2.b.k.1084.4 24
95.89 odd 18 9025.2.a.ct.1.4 24
95.93 odd 36 95.2.p.a.74.8 yes 48
285.17 even 36 855.2.da.b.739.8 48
285.188 even 36 855.2.da.b.739.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.9.1 48 5.3 odd 4
95.2.p.a.9.8 yes 48 5.2 odd 4
95.2.p.a.74.1 yes 48 95.17 odd 36
95.2.p.a.74.8 yes 48 95.93 odd 36
475.2.l.f.226.1 48 19.17 even 9 inner
475.2.l.f.226.8 48 95.74 even 18 inner
475.2.l.f.351.1 48 1.1 even 1 trivial
475.2.l.f.351.8 48 5.4 even 2 inner
855.2.da.b.199.1 48 15.2 even 4
855.2.da.b.199.8 48 15.8 even 4
855.2.da.b.739.1 48 285.188 even 36
855.2.da.b.739.8 48 285.17 even 36
1805.2.b.k.1084.4 24 95.82 odd 36
1805.2.b.k.1084.21 24 95.63 odd 36
1805.2.b.l.1084.4 24 95.13 even 36
1805.2.b.l.1084.21 24 95.32 even 36
9025.2.a.ct.1.4 24 95.89 odd 18
9025.2.a.ct.1.21 24 19.13 odd 18
9025.2.a.cu.1.4 24 19.6 even 9
9025.2.a.cu.1.21 24 95.44 even 18