Properties

Label 1805.2.b.l.1084.21
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-18,-3,-12,0,0,-12,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.21
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.l.1084.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.96177i q^{2} -0.187708i q^{3} -1.84854 q^{4} +(1.81111 - 1.31144i) q^{5} +0.368240 q^{6} -0.677067i q^{7} +0.297123i q^{8} +2.96477 q^{9} +(2.57274 + 3.55299i) q^{10} +2.84069 q^{11} +0.346987i q^{12} -4.76663i q^{13} +1.32825 q^{14} +(-0.246168 - 0.339961i) q^{15} -4.27997 q^{16} -5.18394i q^{17} +5.81619i q^{18} +(-3.34792 + 2.42425i) q^{20} -0.127091 q^{21} +5.57278i q^{22} +1.05091i q^{23} +0.0557724 q^{24} +(1.56026 - 4.75032i) q^{25} +9.35103 q^{26} -1.11964i q^{27} +1.25159i q^{28} -1.42605 q^{29} +(0.666925 - 0.482924i) q^{30} -0.271064 q^{31} -7.80208i q^{32} -0.533221i q^{33} +10.1697 q^{34} +(-0.887932 - 1.22625i) q^{35} -5.48050 q^{36} +0.603754i q^{37} -0.894735 q^{39} +(0.389658 + 0.538123i) q^{40} -6.73563 q^{41} -0.249324i q^{42} -5.62944i q^{43} -5.25114 q^{44} +(5.36953 - 3.88810i) q^{45} -2.06165 q^{46} -7.89538i q^{47} +0.803386i q^{48} +6.54158 q^{49} +(9.31905 + 3.06088i) q^{50} -0.973067 q^{51} +8.81132i q^{52} -6.88829i q^{53} +2.19647 q^{54} +(5.14481 - 3.72539i) q^{55} +0.201172 q^{56} -2.79757i q^{58} -10.1227 q^{59} +(0.455051 + 0.628432i) q^{60} -7.47195 q^{61} -0.531765i q^{62} -2.00735i q^{63} +6.74594 q^{64} +(-6.25114 - 8.63291i) q^{65} +1.04606 q^{66} +4.11733i q^{67} +9.58273i q^{68} +0.197265 q^{69} +(2.40561 - 1.74192i) q^{70} +7.60546 q^{71} +0.880900i q^{72} +16.1274i q^{73} -1.18443 q^{74} +(-0.891675 - 0.292874i) q^{75} -1.92334i q^{77} -1.75527i q^{78} +14.8468 q^{79} +(-7.75152 + 5.61292i) q^{80} +8.68413 q^{81} -13.2138i q^{82} +14.1815i q^{83} +0.234933 q^{84} +(-6.79841 - 9.38870i) q^{85} +11.0437 q^{86} +0.267680i q^{87} +0.844034i q^{88} +8.23788 q^{89} +(7.62757 + 10.5338i) q^{90} -3.22733 q^{91} -1.94266i q^{92} +0.0508809i q^{93} +15.4889 q^{94} -1.46451 q^{96} -5.72847i q^{97} +12.8331i q^{98} +8.42198 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} + 6 q^{10} + 12 q^{11} + 24 q^{14} + 9 q^{15} + 6 q^{16} + 21 q^{20} - 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} + 36 q^{29} - 18 q^{30} - 42 q^{31} + 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.96177i 1.38718i 0.720369 + 0.693591i \(0.243972\pi\)
−0.720369 + 0.693591i \(0.756028\pi\)
\(3\) 0.187708i 0.108373i −0.998531 0.0541867i \(-0.982743\pi\)
0.998531 0.0541867i \(-0.0172566\pi\)
\(4\) −1.84854 −0.924272
\(5\) 1.81111 1.31144i 0.809955 0.586493i
\(6\) 0.368240 0.150333
\(7\) 0.677067i 0.255907i −0.991780 0.127954i \(-0.959159\pi\)
0.991780 0.127954i \(-0.0408409\pi\)
\(8\) 0.297123i 0.105049i
\(9\) 2.96477 0.988255
\(10\) 2.57274 + 3.55299i 0.813572 + 1.12355i
\(11\) 2.84069 0.856500 0.428250 0.903660i \(-0.359130\pi\)
0.428250 + 0.903660i \(0.359130\pi\)
\(12\) 0.346987i 0.100166i
\(13\) 4.76663i 1.32203i −0.750375 0.661013i \(-0.770127\pi\)
0.750375 0.661013i \(-0.229873\pi\)
\(14\) 1.32825 0.354990
\(15\) −0.246168 0.339961i −0.0635602 0.0877775i
\(16\) −4.27997 −1.06999
\(17\) 5.18394i 1.25729i −0.777693 0.628645i \(-0.783610\pi\)
0.777693 0.628645i \(-0.216390\pi\)
\(18\) 5.81619i 1.37089i
\(19\) 0 0
\(20\) −3.34792 + 2.42425i −0.748618 + 0.542079i
\(21\) −0.127091 −0.0277336
\(22\) 5.57278i 1.18812i
\(23\) 1.05091i 0.219131i 0.993980 + 0.109565i \(0.0349459\pi\)
−0.993980 + 0.109565i \(0.965054\pi\)
\(24\) 0.0557724 0.0113845
\(25\) 1.56026 4.75032i 0.312053 0.950065i
\(26\) 9.35103 1.83389
\(27\) 1.11964i 0.215474i
\(28\) 1.25159i 0.236528i
\(29\) −1.42605 −0.264810 −0.132405 0.991196i \(-0.542270\pi\)
−0.132405 + 0.991196i \(0.542270\pi\)
\(30\) 0.666925 0.482924i 0.121763 0.0881695i
\(31\) −0.271064 −0.0486845 −0.0243422 0.999704i \(-0.507749\pi\)
−0.0243422 + 0.999704i \(0.507749\pi\)
\(32\) 7.80208i 1.37923i
\(33\) 0.533221i 0.0928218i
\(34\) 10.1697 1.74409
\(35\) −0.887932 1.22625i −0.150088 0.207273i
\(36\) −5.48050 −0.913416
\(37\) 0.603754i 0.0992566i 0.998768 + 0.0496283i \(0.0158037\pi\)
−0.998768 + 0.0496283i \(0.984196\pi\)
\(38\) 0 0
\(39\) −0.894735 −0.143272
\(40\) 0.389658 + 0.538123i 0.0616104 + 0.0850848i
\(41\) −6.73563 −1.05193 −0.525965 0.850506i \(-0.676296\pi\)
−0.525965 + 0.850506i \(0.676296\pi\)
\(42\) 0.249324i 0.0384715i
\(43\) 5.62944i 0.858482i −0.903190 0.429241i \(-0.858781\pi\)
0.903190 0.429241i \(-0.141219\pi\)
\(44\) −5.25114 −0.791639
\(45\) 5.36953 3.88810i 0.800442 0.579604i
\(46\) −2.06165 −0.303974
\(47\) 7.89538i 1.15166i −0.817570 0.575829i \(-0.804679\pi\)
0.817570 0.575829i \(-0.195321\pi\)
\(48\) 0.803386i 0.115959i
\(49\) 6.54158 0.934511
\(50\) 9.31905 + 3.06088i 1.31791 + 0.432874i
\(51\) −0.973067 −0.136257
\(52\) 8.81132i 1.22191i
\(53\) 6.88829i 0.946180i −0.881014 0.473090i \(-0.843139\pi\)
0.881014 0.473090i \(-0.156861\pi\)
\(54\) 2.19647 0.298901
\(55\) 5.14481 3.72539i 0.693726 0.502331i
\(56\) 0.201172 0.0268828
\(57\) 0 0
\(58\) 2.79757i 0.367339i
\(59\) −10.1227 −1.31786 −0.658930 0.752204i \(-0.728991\pi\)
−0.658930 + 0.752204i \(0.728991\pi\)
\(60\) 0.455051 + 0.628432i 0.0587469 + 0.0811303i
\(61\) −7.47195 −0.956686 −0.478343 0.878173i \(-0.658762\pi\)
−0.478343 + 0.878173i \(0.658762\pi\)
\(62\) 0.531765i 0.0675342i
\(63\) 2.00735i 0.252902i
\(64\) 6.74594 0.843243
\(65\) −6.25114 8.63291i −0.775358 1.07078i
\(66\) 1.04606 0.128761
\(67\) 4.11733i 0.503012i 0.967856 + 0.251506i \(0.0809259\pi\)
−0.967856 + 0.251506i \(0.919074\pi\)
\(68\) 9.58273i 1.16208i
\(69\) 0.197265 0.0237480
\(70\) 2.40561 1.74192i 0.287526 0.208199i
\(71\) 7.60546 0.902603 0.451301 0.892372i \(-0.350960\pi\)
0.451301 + 0.892372i \(0.350960\pi\)
\(72\) 0.880900i 0.103815i
\(73\) 16.1274i 1.88757i 0.330565 + 0.943783i \(0.392761\pi\)
−0.330565 + 0.943783i \(0.607239\pi\)
\(74\) −1.18443 −0.137687
\(75\) −0.891675 0.292874i −0.102962 0.0338182i
\(76\) 0 0
\(77\) 1.92334i 0.219185i
\(78\) 1.75527i 0.198745i
\(79\) 14.8468 1.67039 0.835196 0.549953i \(-0.185354\pi\)
0.835196 + 0.549953i \(0.185354\pi\)
\(80\) −7.75152 + 5.61292i −0.866646 + 0.627543i
\(81\) 8.68413 0.964904
\(82\) 13.2138i 1.45922i
\(83\) 14.1815i 1.55662i 0.627878 + 0.778312i \(0.283924\pi\)
−0.627878 + 0.778312i \(0.716076\pi\)
\(84\) 0.234933 0.0256333
\(85\) −6.79841 9.38870i −0.737391 1.01835i
\(86\) 11.0437 1.19087
\(87\) 0.267680i 0.0286983i
\(88\) 0.844034i 0.0899743i
\(89\) 8.23788 0.873214 0.436607 0.899652i \(-0.356180\pi\)
0.436607 + 0.899652i \(0.356180\pi\)
\(90\) 7.62757 + 10.5338i 0.804016 + 1.11036i
\(91\) −3.22733 −0.338316
\(92\) 1.94266i 0.202536i
\(93\) 0.0508809i 0.00527610i
\(94\) 15.4889 1.59756
\(95\) 0 0
\(96\) −1.46451 −0.149471
\(97\) 5.72847i 0.581638i −0.956778 0.290819i \(-0.906072\pi\)
0.956778 0.290819i \(-0.0939277\pi\)
\(98\) 12.8331i 1.29634i
\(99\) 8.42198 0.846441
\(100\) −2.88422 + 8.78118i −0.288422 + 0.878118i
\(101\) −2.02231 −0.201228 −0.100614 0.994926i \(-0.532081\pi\)
−0.100614 + 0.994926i \(0.532081\pi\)
\(102\) 1.90893i 0.189013i
\(103\) 18.2358i 1.79683i 0.439147 + 0.898415i \(0.355281\pi\)
−0.439147 + 0.898415i \(0.644719\pi\)
\(104\) 1.41627 0.138877
\(105\) −0.230176 + 0.166672i −0.0224629 + 0.0162655i
\(106\) 13.5133 1.31252
\(107\) 6.21341i 0.600673i 0.953833 + 0.300337i \(0.0970990\pi\)
−0.953833 + 0.300337i \(0.902901\pi\)
\(108\) 2.06969i 0.199156i
\(109\) 15.9885 1.53142 0.765711 0.643185i \(-0.222387\pi\)
0.765711 + 0.643185i \(0.222387\pi\)
\(110\) 7.30836 + 10.0929i 0.696824 + 0.962324i
\(111\) 0.113330 0.0107568
\(112\) 2.89783i 0.273819i
\(113\) 7.88392i 0.741657i 0.928701 + 0.370828i \(0.120926\pi\)
−0.928701 + 0.370828i \(0.879074\pi\)
\(114\) 0 0
\(115\) 1.37821 + 1.90333i 0.128519 + 0.177486i
\(116\) 2.63611 0.244756
\(117\) 14.1319i 1.30650i
\(118\) 19.8584i 1.82811i
\(119\) −3.50988 −0.321750
\(120\) 0.101010 0.0731420i 0.00922092 0.00667692i
\(121\) −2.93048 −0.266407
\(122\) 14.6583i 1.32710i
\(123\) 1.26433i 0.114001i
\(124\) 0.501073 0.0449977
\(125\) −3.40394 10.6496i −0.304457 0.952526i
\(126\) 3.93795 0.350821
\(127\) 15.7743i 1.39974i 0.714270 + 0.699871i \(0.246759\pi\)
−0.714270 + 0.699871i \(0.753241\pi\)
\(128\) 2.37017i 0.209495i
\(129\) −1.05669 −0.0930366
\(130\) 16.9358 12.2633i 1.48537 1.07556i
\(131\) −4.06624 −0.355269 −0.177634 0.984097i \(-0.556844\pi\)
−0.177634 + 0.984097i \(0.556844\pi\)
\(132\) 0.985682i 0.0857926i
\(133\) 0 0
\(134\) −8.07726 −0.697769
\(135\) −1.46833 2.02779i −0.126374 0.174524i
\(136\) 1.54027 0.132077
\(137\) 2.61201i 0.223159i 0.993756 + 0.111580i \(0.0355910\pi\)
−0.993756 + 0.111580i \(0.964409\pi\)
\(138\) 0.386989i 0.0329427i
\(139\) −8.97126 −0.760932 −0.380466 0.924795i \(-0.624236\pi\)
−0.380466 + 0.924795i \(0.624236\pi\)
\(140\) 1.64138 + 2.26677i 0.138722 + 0.191577i
\(141\) −1.48203 −0.124809
\(142\) 14.9202i 1.25207i
\(143\) 13.5405i 1.13232i
\(144\) −12.6891 −1.05743
\(145\) −2.58273 + 1.87017i −0.214484 + 0.155309i
\(146\) −31.6382 −2.61840
\(147\) 1.22791i 0.101276i
\(148\) 1.11607i 0.0917401i
\(149\) 1.72807 0.141569 0.0707846 0.997492i \(-0.477450\pi\)
0.0707846 + 0.997492i \(0.477450\pi\)
\(150\) 0.574552 1.74926i 0.0469120 0.142827i
\(151\) −11.0738 −0.901177 −0.450589 0.892732i \(-0.648786\pi\)
−0.450589 + 0.892732i \(0.648786\pi\)
\(152\) 0 0
\(153\) 15.3692i 1.24252i
\(154\) 3.77315 0.304049
\(155\) −0.490927 + 0.355483i −0.0394322 + 0.0285531i
\(156\) 1.65396 0.132423
\(157\) 1.96462i 0.156794i 0.996922 + 0.0783970i \(0.0249802\pi\)
−0.996922 + 0.0783970i \(0.975020\pi\)
\(158\) 29.1259i 2.31714i
\(159\) −1.29299 −0.102541
\(160\) −10.2319 14.1305i −0.808906 1.11711i
\(161\) 0.711540 0.0560772
\(162\) 17.0363i 1.33850i
\(163\) 20.1311i 1.57679i 0.615169 + 0.788395i \(0.289088\pi\)
−0.615169 + 0.788395i \(0.710912\pi\)
\(164\) 12.4511 0.972269
\(165\) −0.699286 0.965723i −0.0544393 0.0751815i
\(166\) −27.8209 −2.15932
\(167\) 17.8567i 1.38179i 0.722956 + 0.690895i \(0.242783\pi\)
−0.722956 + 0.690895i \(0.757217\pi\)
\(168\) 0.0377617i 0.00291338i
\(169\) −9.72076 −0.747751
\(170\) 18.4185 13.3369i 1.41263 1.02289i
\(171\) 0 0
\(172\) 10.4063i 0.793470i
\(173\) 2.72218i 0.206963i 0.994631 + 0.103482i \(0.0329983\pi\)
−0.994631 + 0.103482i \(0.967002\pi\)
\(174\) −0.525127 −0.0398098
\(175\) −3.21629 1.05640i −0.243129 0.0798566i
\(176\) −12.1581 −0.916450
\(177\) 1.90011i 0.142821i
\(178\) 16.1608i 1.21131i
\(179\) 7.71634 0.576746 0.288373 0.957518i \(-0.406886\pi\)
0.288373 + 0.957518i \(0.406886\pi\)
\(180\) −9.92580 + 7.18733i −0.739826 + 0.535712i
\(181\) 1.07040 0.0795625 0.0397812 0.999208i \(-0.487334\pi\)
0.0397812 + 0.999208i \(0.487334\pi\)
\(182\) 6.33128i 0.469306i
\(183\) 1.40255i 0.103679i
\(184\) −0.312251 −0.0230194
\(185\) 0.791786 + 1.09347i 0.0582133 + 0.0803933i
\(186\) −0.0998166 −0.00731891
\(187\) 14.7260i 1.07687i
\(188\) 14.5949i 1.06445i
\(189\) −0.758069 −0.0551414
\(190\) 0 0
\(191\) 5.38296 0.389497 0.194749 0.980853i \(-0.437611\pi\)
0.194749 + 0.980853i \(0.437611\pi\)
\(192\) 1.26627i 0.0913851i
\(193\) 15.4699i 1.11355i −0.830664 0.556774i \(-0.812039\pi\)
0.830664 0.556774i \(-0.187961\pi\)
\(194\) 11.2379 0.806837
\(195\) −1.62047 + 1.17339i −0.116044 + 0.0840282i
\(196\) −12.0924 −0.863742
\(197\) 21.2328i 1.51278i 0.654124 + 0.756388i \(0.273038\pi\)
−0.654124 + 0.756388i \(0.726962\pi\)
\(198\) 16.5220i 1.17417i
\(199\) −7.58119 −0.537416 −0.268708 0.963222i \(-0.586597\pi\)
−0.268708 + 0.963222i \(0.586597\pi\)
\(200\) 1.41143 + 0.463590i 0.0998032 + 0.0327808i
\(201\) 0.772857 0.0545131
\(202\) 3.96732i 0.279139i
\(203\) 0.965529i 0.0677668i
\(204\) 1.79876 0.125938
\(205\) −12.1990 + 8.83336i −0.852015 + 0.616949i
\(206\) −35.7745 −2.49253
\(207\) 3.11572i 0.216557i
\(208\) 20.4011i 1.41456i
\(209\) 0 0
\(210\) −0.326972 0.451553i −0.0225632 0.0311601i
\(211\) 13.2991 0.915548 0.457774 0.889069i \(-0.348647\pi\)
0.457774 + 0.889069i \(0.348647\pi\)
\(212\) 12.7333i 0.874527i
\(213\) 1.42761i 0.0978181i
\(214\) −12.1893 −0.833243
\(215\) −7.38266 10.1956i −0.503493 0.695331i
\(216\) 0.332669 0.0226353
\(217\) 0.183528i 0.0124587i
\(218\) 31.3658i 2.12436i
\(219\) 3.02724 0.204562
\(220\) −9.51041 + 6.88654i −0.641192 + 0.464290i
\(221\) −24.7099 −1.66217
\(222\) 0.222327i 0.0149216i
\(223\) 19.8794i 1.33122i −0.746299 0.665611i \(-0.768171\pi\)
0.746299 0.665611i \(-0.231829\pi\)
\(224\) −5.28253 −0.352954
\(225\) 4.62582 14.0836i 0.308388 0.938906i
\(226\) −15.4664 −1.02881
\(227\) 27.3022i 1.81211i −0.423163 0.906054i \(-0.639080\pi\)
0.423163 0.906054i \(-0.360920\pi\)
\(228\) 0 0
\(229\) 14.6429 0.967633 0.483816 0.875170i \(-0.339250\pi\)
0.483816 + 0.875170i \(0.339250\pi\)
\(230\) −3.73389 + 2.70373i −0.246205 + 0.178279i
\(231\) −0.361026 −0.0237538
\(232\) 0.423711i 0.0278180i
\(233\) 6.62933i 0.434302i 0.976138 + 0.217151i \(0.0696764\pi\)
−0.976138 + 0.217151i \(0.930324\pi\)
\(234\) 27.7236 1.81235
\(235\) −10.3543 14.2994i −0.675439 0.932791i
\(236\) 18.7122 1.21806
\(237\) 2.78686i 0.181026i
\(238\) 6.88557i 0.446325i
\(239\) 12.6792 0.820148 0.410074 0.912052i \(-0.365503\pi\)
0.410074 + 0.912052i \(0.365503\pi\)
\(240\) 1.05359 + 1.45502i 0.0680090 + 0.0939214i
\(241\) −14.1138 −0.909151 −0.454575 0.890708i \(-0.650209\pi\)
−0.454575 + 0.890708i \(0.650209\pi\)
\(242\) 5.74893i 0.369555i
\(243\) 4.98899i 0.320044i
\(244\) 13.8122 0.884237
\(245\) 11.8475 8.57887i 0.756912 0.548084i
\(246\) −2.48033 −0.158140
\(247\) 0 0
\(248\) 0.0805392i 0.00511425i
\(249\) 2.66199 0.168696
\(250\) 20.8920 6.67774i 1.32133 0.422338i
\(251\) 6.97395 0.440192 0.220096 0.975478i \(-0.429363\pi\)
0.220096 + 0.975478i \(0.429363\pi\)
\(252\) 3.71067i 0.233750i
\(253\) 2.98532i 0.187686i
\(254\) −30.9455 −1.94169
\(255\) −1.76234 + 1.27612i −0.110362 + 0.0799135i
\(256\) 18.1416 1.13385
\(257\) 15.7808i 0.984379i −0.870488 0.492189i \(-0.836197\pi\)
0.870488 0.492189i \(-0.163803\pi\)
\(258\) 2.07299i 0.129059i
\(259\) 0.408782 0.0254005
\(260\) 11.5555 + 15.9583i 0.716642 + 0.989692i
\(261\) −4.22789 −0.261700
\(262\) 7.97703i 0.492822i
\(263\) 19.8933i 1.22667i 0.789822 + 0.613336i \(0.210173\pi\)
−0.789822 + 0.613336i \(0.789827\pi\)
\(264\) 0.158432 0.00975082
\(265\) −9.03357 12.4755i −0.554928 0.766363i
\(266\) 0 0
\(267\) 1.54632i 0.0946331i
\(268\) 7.61107i 0.464920i
\(269\) −11.3590 −0.692568 −0.346284 0.938130i \(-0.612557\pi\)
−0.346284 + 0.938130i \(0.612557\pi\)
\(270\) 3.97805 2.88053i 0.242097 0.175303i
\(271\) 23.8877 1.45107 0.725536 0.688184i \(-0.241592\pi\)
0.725536 + 0.688184i \(0.241592\pi\)
\(272\) 22.1871i 1.34529i
\(273\) 0.605796i 0.0366645i
\(274\) −5.12416 −0.309562
\(275\) 4.43223 13.4942i 0.267273 0.813731i
\(276\) −0.364653 −0.0219496
\(277\) 4.69303i 0.281977i −0.990011 0.140988i \(-0.954972\pi\)
0.990011 0.140988i \(-0.0450280\pi\)
\(278\) 17.5996i 1.05555i
\(279\) −0.803640 −0.0481127
\(280\) 0.364346 0.263825i 0.0217738 0.0157665i
\(281\) −22.4556 −1.33959 −0.669795 0.742546i \(-0.733618\pi\)
−0.669795 + 0.742546i \(0.733618\pi\)
\(282\) 2.90740i 0.173133i
\(283\) 10.8830i 0.646926i 0.946241 + 0.323463i \(0.104847\pi\)
−0.946241 + 0.323463i \(0.895153\pi\)
\(284\) −14.0590 −0.834250
\(285\) 0 0
\(286\) 26.5634 1.57073
\(287\) 4.56048i 0.269197i
\(288\) 23.1313i 1.36303i
\(289\) −9.87320 −0.580777
\(290\) −3.66884 5.06672i −0.215442 0.297528i
\(291\) −1.07528 −0.0630340
\(292\) 29.8122i 1.74462i
\(293\) 12.4712i 0.728576i 0.931286 + 0.364288i \(0.118688\pi\)
−0.931286 + 0.364288i \(0.881312\pi\)
\(294\) 2.40887 0.140488
\(295\) −18.3333 + 13.2753i −1.06741 + 0.772916i
\(296\) −0.179389 −0.0104268
\(297\) 3.18054i 0.184553i
\(298\) 3.39008i 0.196382i
\(299\) 5.00932 0.289697
\(300\) 1.64830 + 0.541391i 0.0951646 + 0.0312572i
\(301\) −3.81151 −0.219692
\(302\) 21.7244i 1.25010i
\(303\) 0.379605i 0.0218077i
\(304\) 0 0
\(305\) −13.5326 + 9.79900i −0.774872 + 0.561089i
\(306\) 30.1508 1.72360
\(307\) 4.17858i 0.238484i −0.992865 0.119242i \(-0.961954\pi\)
0.992865 0.119242i \(-0.0380465\pi\)
\(308\) 3.55538i 0.202586i
\(309\) 3.42302 0.194729
\(310\) −0.697376 0.963086i −0.0396083 0.0546996i
\(311\) −12.0909 −0.685611 −0.342806 0.939406i \(-0.611377\pi\)
−0.342806 + 0.939406i \(0.611377\pi\)
\(312\) 0.265846i 0.0150506i
\(313\) 9.57859i 0.541414i −0.962662 0.270707i \(-0.912743\pi\)
0.962662 0.270707i \(-0.0872574\pi\)
\(314\) −3.85414 −0.217502
\(315\) −2.63251 3.63553i −0.148325 0.204839i
\(316\) −27.4449 −1.54390
\(317\) 11.1692i 0.627324i 0.949535 + 0.313662i \(0.101556\pi\)
−0.949535 + 0.313662i \(0.898444\pi\)
\(318\) 2.53655i 0.142243i
\(319\) −4.05095 −0.226810
\(320\) 12.2177 8.84688i 0.682989 0.494556i
\(321\) 1.16631 0.0650970
\(322\) 1.39588i 0.0777893i
\(323\) 0 0
\(324\) −16.0530 −0.891833
\(325\) −22.6430 7.43720i −1.25601 0.412542i
\(326\) −39.4926 −2.18729
\(327\) 3.00118i 0.165965i
\(328\) 2.00131i 0.110504i
\(329\) −5.34570 −0.294718
\(330\) 1.89453 1.37184i 0.104290 0.0755172i
\(331\) 21.6878 1.19207 0.596034 0.802959i \(-0.296742\pi\)
0.596034 + 0.802959i \(0.296742\pi\)
\(332\) 26.2151i 1.43874i
\(333\) 1.78999i 0.0980909i
\(334\) −35.0307 −1.91679
\(335\) 5.39962 + 7.45696i 0.295013 + 0.407417i
\(336\) 0.543947 0.0296747
\(337\) 0.0528499i 0.00287892i −0.999999 0.00143946i \(-0.999542\pi\)
0.999999 0.00143946i \(-0.000458194\pi\)
\(338\) 19.0699i 1.03727i
\(339\) 1.47988 0.0803758
\(340\) 12.5672 + 17.3554i 0.681550 + 0.941230i
\(341\) −0.770008 −0.0416983
\(342\) 0 0
\(343\) 9.16856i 0.495056i
\(344\) 1.67264 0.0901825
\(345\) 0.357270 0.258701i 0.0192348 0.0139280i
\(346\) −5.34029 −0.287096
\(347\) 25.3863i 1.36281i 0.731908 + 0.681403i \(0.238630\pi\)
−0.731908 + 0.681403i \(0.761370\pi\)
\(348\) 0.494819i 0.0265251i
\(349\) 15.6199 0.836114 0.418057 0.908421i \(-0.362711\pi\)
0.418057 + 0.908421i \(0.362711\pi\)
\(350\) 2.07242 6.30962i 0.110776 0.337263i
\(351\) −5.33689 −0.284862
\(352\) 22.1633i 1.18131i
\(353\) 12.4713i 0.663779i −0.943318 0.331890i \(-0.892314\pi\)
0.943318 0.331890i \(-0.107686\pi\)
\(354\) −3.72758 −0.198119
\(355\) 13.7744 9.97409i 0.731067 0.529370i
\(356\) −15.2281 −0.807087
\(357\) 0.658832i 0.0348691i
\(358\) 15.1377i 0.800051i
\(359\) 33.6430 1.77561 0.887804 0.460223i \(-0.152230\pi\)
0.887804 + 0.460223i \(0.152230\pi\)
\(360\) 1.15524 + 1.59541i 0.0608868 + 0.0840855i
\(361\) 0 0
\(362\) 2.09989i 0.110368i
\(363\) 0.550075i 0.0288714i
\(364\) 5.96586 0.312696
\(365\) 21.1500 + 29.2085i 1.10704 + 1.52884i
\(366\) −2.75147 −0.143822
\(367\) 25.6100i 1.33683i −0.743787 0.668416i \(-0.766973\pi\)
0.743787 0.668416i \(-0.233027\pi\)
\(368\) 4.49789i 0.234469i
\(369\) −19.9696 −1.03957
\(370\) −2.14513 + 1.55330i −0.111520 + 0.0807524i
\(371\) −4.66384 −0.242134
\(372\) 0.0940555i 0.00487655i
\(373\) 21.7610i 1.12674i −0.826204 0.563372i \(-0.809504\pi\)
0.826204 0.563372i \(-0.190496\pi\)
\(374\) 28.8890 1.49381
\(375\) −1.99901 + 0.638947i −0.103228 + 0.0329951i
\(376\) 2.34590 0.120980
\(377\) 6.79743i 0.350085i
\(378\) 1.48716i 0.0764911i
\(379\) −6.63029 −0.340575 −0.170288 0.985394i \(-0.554470\pi\)
−0.170288 + 0.985394i \(0.554470\pi\)
\(380\) 0 0
\(381\) 2.96096 0.151695
\(382\) 10.5601i 0.540303i
\(383\) 27.0219i 1.38075i 0.723450 + 0.690377i \(0.242555\pi\)
−0.723450 + 0.690377i \(0.757445\pi\)
\(384\) −0.444900 −0.0227037
\(385\) −2.52234 3.48338i −0.128550 0.177530i
\(386\) 30.3484 1.54469
\(387\) 16.6900i 0.848399i
\(388\) 10.5893i 0.537591i
\(389\) −25.9896 −1.31773 −0.658863 0.752263i \(-0.728962\pi\)
−0.658863 + 0.752263i \(0.728962\pi\)
\(390\) −2.30192 3.17898i −0.116562 0.160974i
\(391\) 5.44788 0.275511
\(392\) 1.94365i 0.0981693i
\(393\) 0.763266i 0.0385017i
\(394\) −41.6539 −2.09849
\(395\) 26.8892 19.4706i 1.35294 0.979672i
\(396\) −15.5684 −0.782341
\(397\) 21.3475i 1.07140i 0.844409 + 0.535699i \(0.179952\pi\)
−0.844409 + 0.535699i \(0.820048\pi\)
\(398\) 14.8726i 0.745494i
\(399\) 0 0
\(400\) −6.67789 + 20.3313i −0.333894 + 1.01656i
\(401\) −26.0611 −1.30143 −0.650716 0.759321i \(-0.725531\pi\)
−0.650716 + 0.759321i \(0.725531\pi\)
\(402\) 1.51617i 0.0756196i
\(403\) 1.29206i 0.0643621i
\(404\) 3.73834 0.185989
\(405\) 15.7279 11.3887i 0.781528 0.565909i
\(406\) −1.89415 −0.0940049
\(407\) 1.71508i 0.0850133i
\(408\) 0.289121i 0.0143136i
\(409\) −23.3472 −1.15444 −0.577222 0.816587i \(-0.695863\pi\)
−0.577222 + 0.816587i \(0.695863\pi\)
\(410\) −17.3290 23.9316i −0.855820 1.18190i
\(411\) 0.490296 0.0241845
\(412\) 33.7097i 1.66076i
\(413\) 6.85374i 0.337250i
\(414\) −6.11232 −0.300404
\(415\) 18.5982 + 25.6843i 0.912948 + 1.26079i
\(416\) −37.1896 −1.82337
\(417\) 1.68398i 0.0824648i
\(418\) 0 0
\(419\) −21.9951 −1.07453 −0.537265 0.843413i \(-0.680543\pi\)
−0.537265 + 0.843413i \(0.680543\pi\)
\(420\) 0.425491 0.308100i 0.0207618 0.0150338i
\(421\) −3.73114 −0.181845 −0.0909223 0.995858i \(-0.528982\pi\)
−0.0909223 + 0.995858i \(0.528982\pi\)
\(422\) 26.0898i 1.27003i
\(423\) 23.4079i 1.13813i
\(424\) 2.04667 0.0993951
\(425\) −24.6254 8.08831i −1.19451 0.392341i
\(426\) 2.80064 0.135691
\(427\) 5.05902i 0.244823i
\(428\) 11.4858i 0.555185i
\(429\) −2.54167 −0.122713
\(430\) 20.0013 14.4831i 0.964550 0.698436i
\(431\) 24.9141 1.20007 0.600035 0.799974i \(-0.295153\pi\)
0.600035 + 0.799974i \(0.295153\pi\)
\(432\) 4.79201i 0.230556i
\(433\) 10.9722i 0.527292i −0.964619 0.263646i \(-0.915075\pi\)
0.964619 0.263646i \(-0.0849251\pi\)
\(434\) −0.360041 −0.0172825
\(435\) 0.351046 + 0.484799i 0.0168314 + 0.0232444i
\(436\) −29.5555 −1.41545
\(437\) 0 0
\(438\) 5.93875i 0.283765i
\(439\) −8.51973 −0.406624 −0.203312 0.979114i \(-0.565171\pi\)
−0.203312 + 0.979114i \(0.565171\pi\)
\(440\) 1.10690 + 1.52864i 0.0527693 + 0.0728751i
\(441\) 19.3943 0.923536
\(442\) 48.4752i 2.30573i
\(443\) 9.41714i 0.447422i 0.974656 + 0.223711i \(0.0718171\pi\)
−0.974656 + 0.223711i \(0.928183\pi\)
\(444\) −0.209495 −0.00994218
\(445\) 14.9197 10.8035i 0.707264 0.512134i
\(446\) 38.9988 1.84665
\(447\) 0.324373i 0.0153423i
\(448\) 4.56746i 0.215792i
\(449\) 9.72743 0.459066 0.229533 0.973301i \(-0.426280\pi\)
0.229533 + 0.973301i \(0.426280\pi\)
\(450\) 27.6288 + 9.07479i 1.30243 + 0.427790i
\(451\) −19.1339 −0.900978
\(452\) 14.5738i 0.685492i
\(453\) 2.07865i 0.0976636i
\(454\) 53.5606 2.51372
\(455\) −5.84506 + 4.23244i −0.274021 + 0.198420i
\(456\) 0 0
\(457\) 10.4686i 0.489700i −0.969561 0.244850i \(-0.921261\pi\)
0.969561 0.244850i \(-0.0787387\pi\)
\(458\) 28.7261i 1.34228i
\(459\) −5.80412 −0.270913
\(460\) −2.54768 3.51838i −0.118786 0.164045i
\(461\) −22.6739 −1.05603 −0.528014 0.849236i \(-0.677063\pi\)
−0.528014 + 0.849236i \(0.677063\pi\)
\(462\) 0.708251i 0.0329508i
\(463\) 35.6376i 1.65622i −0.560566 0.828110i \(-0.689416\pi\)
0.560566 0.828110i \(-0.310584\pi\)
\(464\) 6.10344 0.283345
\(465\) 0.0667271 + 0.0921510i 0.00309439 + 0.00427340i
\(466\) −13.0052 −0.602456
\(467\) 2.90160i 0.134270i −0.997744 0.0671350i \(-0.978614\pi\)
0.997744 0.0671350i \(-0.0213858\pi\)
\(468\) 26.1235i 1.20756i
\(469\) 2.78771 0.128725
\(470\) 28.0522 20.3127i 1.29395 0.936957i
\(471\) 0.368776 0.0169923
\(472\) 3.00768i 0.138440i
\(473\) 15.9915i 0.735290i
\(474\) 5.46718 0.251116
\(475\) 0 0
\(476\) 6.48816 0.297384
\(477\) 20.4222i 0.935067i
\(478\) 24.8736i 1.13769i
\(479\) −29.3510 −1.34108 −0.670540 0.741874i \(-0.733937\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(480\) −2.65240 + 1.92062i −0.121065 + 0.0876639i
\(481\) 2.87787 0.131220
\(482\) 27.6881i 1.26116i
\(483\) 0.133562i 0.00607728i
\(484\) 5.41712 0.246233
\(485\) −7.51253 10.3749i −0.341126 0.471100i
\(486\) 9.78725 0.443959
\(487\) 3.41683i 0.154831i −0.996999 0.0774157i \(-0.975333\pi\)
0.996999 0.0774157i \(-0.0246669\pi\)
\(488\) 2.22009i 0.100499i
\(489\) 3.77877 0.170882
\(490\) 16.8298 + 23.2422i 0.760292 + 1.04997i
\(491\) −25.1863 −1.13664 −0.568320 0.822808i \(-0.692406\pi\)
−0.568320 + 0.822808i \(0.692406\pi\)
\(492\) 2.33718i 0.105368i
\(493\) 7.39253i 0.332943i
\(494\) 0 0
\(495\) 15.2532 11.0449i 0.685579 0.496431i
\(496\) 1.16015 0.0520921
\(497\) 5.14941i 0.230983i
\(498\) 5.22220i 0.234013i
\(499\) 34.7335 1.55488 0.777442 0.628955i \(-0.216517\pi\)
0.777442 + 0.628955i \(0.216517\pi\)
\(500\) 6.29233 + 19.6862i 0.281401 + 0.880393i
\(501\) 3.35184 0.149749
\(502\) 13.6813i 0.610626i
\(503\) 22.4582i 1.00136i −0.865631 0.500682i \(-0.833083\pi\)
0.865631 0.500682i \(-0.166917\pi\)
\(504\) 0.596429 0.0265670
\(505\) −3.66264 + 2.65214i −0.162985 + 0.118019i
\(506\) −5.85652 −0.260354
\(507\) 1.82467i 0.0810363i
\(508\) 29.1594i 1.29374i
\(509\) 2.34801 0.104074 0.0520369 0.998645i \(-0.483429\pi\)
0.0520369 + 0.998645i \(0.483429\pi\)
\(510\) −2.50345 3.45730i −0.110855 0.153092i
\(511\) 10.9193 0.483042
\(512\) 30.8493i 1.36336i
\(513\) 0 0
\(514\) 30.9583 1.36551
\(515\) 23.9152 + 33.0272i 1.05383 + 1.45535i
\(516\) 1.95334 0.0859911
\(517\) 22.4283i 0.986396i
\(518\) 0.801937i 0.0352351i
\(519\) 0.510975 0.0224293
\(520\) 2.56503 1.85736i 0.112484 0.0814504i
\(521\) −1.52393 −0.0667645 −0.0333822 0.999443i \(-0.510628\pi\)
−0.0333822 + 0.999443i \(0.510628\pi\)
\(522\) 8.29415i 0.363025i
\(523\) 13.4269i 0.587117i 0.955941 + 0.293559i \(0.0948396\pi\)
−0.955941 + 0.293559i \(0.905160\pi\)
\(524\) 7.51662 0.328365
\(525\) −0.198296 + 0.603724i −0.00865433 + 0.0263487i
\(526\) −39.0261 −1.70162
\(527\) 1.40518i 0.0612105i
\(528\) 2.28217i 0.0993187i
\(529\) 21.8956 0.951982
\(530\) 24.4740 17.7218i 1.06308 0.769785i
\(531\) −30.0114 −1.30238
\(532\) 0 0
\(533\) 32.1063i 1.39068i
\(534\) 3.03352 0.131273
\(535\) 8.14850 + 11.2532i 0.352290 + 0.486518i
\(536\) −1.22335 −0.0528408
\(537\) 1.44842i 0.0625039i
\(538\) 22.2837i 0.960718i
\(539\) 18.5826 0.800409
\(540\) 2.71427 + 3.74845i 0.116804 + 0.161308i
\(541\) 16.2283 0.697709 0.348854 0.937177i \(-0.386571\pi\)
0.348854 + 0.937177i \(0.386571\pi\)
\(542\) 46.8621i 2.01290i
\(543\) 0.200924i 0.00862245i
\(544\) −40.4455 −1.73409
\(545\) 28.9570 20.9679i 1.24038 0.898168i
\(546\) −1.18843 −0.0508602
\(547\) 9.91482i 0.423927i −0.977278 0.211964i \(-0.932014\pi\)
0.977278 0.211964i \(-0.0679858\pi\)
\(548\) 4.82841i 0.206260i
\(549\) −22.1526 −0.945449
\(550\) 26.4725 + 8.69501i 1.12879 + 0.370757i
\(551\) 0 0
\(552\) 0.0586120i 0.00249469i
\(553\) 10.0523i 0.427466i
\(554\) 9.20665 0.391153
\(555\) 0.205253 0.148625i 0.00871250 0.00630877i
\(556\) 16.5838 0.703308
\(557\) 22.8831i 0.969589i 0.874628 + 0.484795i \(0.161106\pi\)
−0.874628 + 0.484795i \(0.838894\pi\)
\(558\) 1.57656i 0.0667410i
\(559\) −26.8335 −1.13493
\(560\) 3.80032 + 5.24830i 0.160593 + 0.221781i
\(561\) −2.76418 −0.116704
\(562\) 44.0528i 1.85826i
\(563\) 12.4801i 0.525972i 0.964800 + 0.262986i \(0.0847074\pi\)
−0.964800 + 0.262986i \(0.915293\pi\)
\(564\) 2.73959 0.115358
\(565\) 10.3393 + 14.2787i 0.434976 + 0.600708i
\(566\) −21.3499 −0.897403
\(567\) 5.87974i 0.246926i
\(568\) 2.25976i 0.0948173i
\(569\) 1.90233 0.0797500 0.0398750 0.999205i \(-0.487304\pi\)
0.0398750 + 0.999205i \(0.487304\pi\)
\(570\) 0 0
\(571\) −12.2153 −0.511193 −0.255596 0.966784i \(-0.582272\pi\)
−0.255596 + 0.966784i \(0.582272\pi\)
\(572\) 25.0302i 1.04657i
\(573\) 1.01042i 0.0422111i
\(574\) −8.94661 −0.373424
\(575\) 4.99219 + 1.63970i 0.208189 + 0.0683804i
\(576\) 20.0001 0.833339
\(577\) 25.2903i 1.05285i 0.850221 + 0.526425i \(0.176468\pi\)
−0.850221 + 0.526425i \(0.823532\pi\)
\(578\) 19.3690i 0.805643i
\(579\) −2.90383 −0.120679
\(580\) 4.77429 3.45709i 0.198242 0.143548i
\(581\) 9.60184 0.398351
\(582\) 2.10945i 0.0874396i
\(583\) 19.5675i 0.810403i
\(584\) −4.79181 −0.198287
\(585\) −18.5332 25.5945i −0.766252 1.05820i
\(586\) −24.4657 −1.01067
\(587\) 6.32179i 0.260928i 0.991453 + 0.130464i \(0.0416467\pi\)
−0.991453 + 0.130464i \(0.958353\pi\)
\(588\) 2.26984i 0.0936067i
\(589\) 0 0
\(590\) −26.0430 35.9658i −1.07217 1.48069i
\(591\) 3.98557 0.163945
\(592\) 2.58405i 0.106204i
\(593\) 0.583715i 0.0239703i 0.999928 + 0.0119851i \(0.00381508\pi\)
−0.999928 + 0.0119851i \(0.996185\pi\)
\(594\) 6.23948 0.256009
\(595\) −6.35678 + 4.60298i −0.260603 + 0.188704i
\(596\) −3.19442 −0.130848
\(597\) 1.42305i 0.0582416i
\(598\) 9.82714i 0.401862i
\(599\) 42.5221 1.73740 0.868702 0.495335i \(-0.164955\pi\)
0.868702 + 0.495335i \(0.164955\pi\)
\(600\) 0.0870197 0.264937i 0.00355256 0.0108160i
\(601\) −16.2762 −0.663920 −0.331960 0.943294i \(-0.607710\pi\)
−0.331960 + 0.943294i \(0.607710\pi\)
\(602\) 7.47731i 0.304752i
\(603\) 12.2069i 0.497105i
\(604\) 20.4705 0.832932
\(605\) −5.30743 + 3.84314i −0.215778 + 0.156246i
\(606\) −0.744698 −0.0302513
\(607\) 6.86749i 0.278743i −0.990240 0.139371i \(-0.955492\pi\)
0.990240 0.139371i \(-0.0445082\pi\)
\(608\) 0 0
\(609\) 0.181238 0.00734412
\(610\) −19.2234 26.5478i −0.778332 1.07489i
\(611\) −37.6343 −1.52252
\(612\) 28.4106i 1.14843i
\(613\) 5.84296i 0.235995i 0.993014 + 0.117997i \(0.0376475\pi\)
−0.993014 + 0.117997i \(0.962353\pi\)
\(614\) 8.19741 0.330821
\(615\) 1.65809 + 2.28985i 0.0668608 + 0.0923357i
\(616\) 0.571468 0.0230251
\(617\) 38.5625i 1.55247i 0.630444 + 0.776234i \(0.282873\pi\)
−0.630444 + 0.776234i \(0.717127\pi\)
\(618\) 6.71517i 0.270124i
\(619\) −10.9201 −0.438917 −0.219459 0.975622i \(-0.570429\pi\)
−0.219459 + 0.975622i \(0.570429\pi\)
\(620\) 0.907500 0.657126i 0.0364461 0.0263908i
\(621\) 1.17664 0.0472170
\(622\) 23.7195i 0.951067i
\(623\) 5.57760i 0.223462i
\(624\) 3.82944 0.153300
\(625\) −20.1312 14.8235i −0.805246 0.592941i
\(626\) 18.7910 0.751039
\(627\) 0 0
\(628\) 3.63169i 0.144920i
\(629\) 3.12982 0.124794
\(630\) 7.13208 5.16438i 0.284149 0.205754i
\(631\) 8.11401 0.323014 0.161507 0.986872i \(-0.448365\pi\)
0.161507 + 0.986872i \(0.448365\pi\)
\(632\) 4.41131i 0.175473i
\(633\) 2.49635i 0.0992210i
\(634\) −21.9114 −0.870212
\(635\) 20.6870 + 28.5690i 0.820938 + 1.13373i
\(636\) 2.39015 0.0947755
\(637\) 31.1813i 1.23545i
\(638\) 7.94704i 0.314626i
\(639\) 22.5484 0.892002
\(640\) −3.10833 4.29264i −0.122867 0.169682i
\(641\) −13.9078 −0.549323 −0.274662 0.961541i \(-0.588566\pi\)
−0.274662 + 0.961541i \(0.588566\pi\)
\(642\) 2.28803i 0.0903013i
\(643\) 38.1086i 1.50286i −0.659815 0.751428i \(-0.729365\pi\)
0.659815 0.751428i \(-0.270635\pi\)
\(644\) −1.31531 −0.0518306
\(645\) −1.91379 + 1.38579i −0.0753554 + 0.0545653i
\(646\) 0 0
\(647\) 28.6072i 1.12466i 0.826912 + 0.562332i \(0.190096\pi\)
−0.826912 + 0.562332i \(0.809904\pi\)
\(648\) 2.58025i 0.101362i
\(649\) −28.7554 −1.12875
\(650\) 14.5901 44.4204i 0.572270 1.74231i
\(651\) 0.0344498 0.00135019
\(652\) 37.2132i 1.45738i
\(653\) 11.8861i 0.465139i −0.972580 0.232569i \(-0.925287\pi\)
0.972580 0.232569i \(-0.0747132\pi\)
\(654\) 5.88762 0.230224
\(655\) −7.36442 + 5.33262i −0.287752 + 0.208363i
\(656\) 28.8283 1.12556
\(657\) 47.8139i 1.86540i
\(658\) 10.4870i 0.408827i
\(659\) −36.9129 −1.43792 −0.718961 0.695051i \(-0.755382\pi\)
−0.718961 + 0.695051i \(0.755382\pi\)
\(660\) 1.29266 + 1.78518i 0.0503167 + 0.0694881i
\(661\) 9.04095 0.351652 0.175826 0.984421i \(-0.443740\pi\)
0.175826 + 0.984421i \(0.443740\pi\)
\(662\) 42.5465i 1.65361i
\(663\) 4.63825i 0.180135i
\(664\) −4.21365 −0.163521
\(665\) 0 0
\(666\) −3.51155 −0.136070
\(667\) 1.49865i 0.0580280i
\(668\) 33.0088i 1.27715i
\(669\) −3.73152 −0.144269
\(670\) −14.6288 + 10.5928i −0.565161 + 0.409236i
\(671\) −21.2255 −0.819401
\(672\) 0.991575i 0.0382508i
\(673\) 39.8365i 1.53558i −0.640700 0.767791i \(-0.721356\pi\)
0.640700 0.767791i \(-0.278644\pi\)
\(674\) 0.103679 0.00399358
\(675\) −5.31863 1.74693i −0.204714 0.0672392i
\(676\) 17.9692 0.691125
\(677\) 18.0388i 0.693288i −0.937997 0.346644i \(-0.887321\pi\)
0.937997 0.346644i \(-0.112679\pi\)
\(678\) 2.90318i 0.111496i
\(679\) −3.87856 −0.148845
\(680\) 2.78960 2.01996i 0.106976 0.0774620i
\(681\) −5.12484 −0.196384
\(682\) 1.51058i 0.0578430i
\(683\) 15.4271i 0.590301i −0.955451 0.295151i \(-0.904630\pi\)
0.955451 0.295151i \(-0.0953698\pi\)
\(684\) 0 0
\(685\) 3.42549 + 4.73065i 0.130881 + 0.180749i
\(686\) 17.9866 0.686732
\(687\) 2.74860i 0.104866i
\(688\) 24.0939i 0.918570i
\(689\) −32.8339 −1.25087
\(690\) 0.507512 + 0.700881i 0.0193207 + 0.0266821i
\(691\) 3.03824 0.115580 0.0577901 0.998329i \(-0.481595\pi\)
0.0577901 + 0.998329i \(0.481595\pi\)
\(692\) 5.03206i 0.191290i
\(693\) 5.70225i 0.216611i
\(694\) −49.8020 −1.89046
\(695\) −16.2480 + 11.7652i −0.616321 + 0.446281i
\(696\) −0.0795340 −0.00301473
\(697\) 34.9171i 1.32258i
\(698\) 30.6427i 1.15984i
\(699\) 1.24438 0.0470668
\(700\) 5.94545 + 1.95281i 0.224717 + 0.0738092i
\(701\) −45.7925 −1.72956 −0.864780 0.502151i \(-0.832542\pi\)
−0.864780 + 0.502151i \(0.832542\pi\)
\(702\) 10.4697i 0.395155i
\(703\) 0 0
\(704\) 19.1631 0.722238
\(705\) −2.68412 + 1.94359i −0.101090 + 0.0731996i
\(706\) 24.4658 0.920782
\(707\) 1.36924i 0.0514957i
\(708\) 3.51244i 0.132005i
\(709\) −22.0549 −0.828289 −0.414144 0.910211i \(-0.635919\pi\)
−0.414144 + 0.910211i \(0.635919\pi\)
\(710\) 19.5669 + 27.0221i 0.734332 + 1.01412i
\(711\) 44.0172 1.65077
\(712\) 2.44766i 0.0917301i
\(713\) 0.284865i 0.0106683i
\(714\) −1.29248 −0.0483698
\(715\) −17.7575 24.5234i −0.664094 0.917124i
\(716\) −14.2640 −0.533070
\(717\) 2.37999i 0.0888822i
\(718\) 65.9998i 2.46309i
\(719\) 7.09458 0.264583 0.132292 0.991211i \(-0.457766\pi\)
0.132292 + 0.991211i \(0.457766\pi\)
\(720\) −22.9814 + 16.6410i −0.856468 + 0.620173i
\(721\) 12.3469 0.459822
\(722\) 0 0
\(723\) 2.64928i 0.0985277i
\(724\) −1.97869 −0.0735374
\(725\) −2.22501 + 6.77418i −0.0826347 + 0.251587i
\(726\) −1.07912 −0.0400499
\(727\) 28.2127i 1.04635i 0.852225 + 0.523176i \(0.175253\pi\)
−0.852225 + 0.523176i \(0.824747\pi\)
\(728\) 0.958914i 0.0355397i
\(729\) 25.1159 0.930219
\(730\) −57.3004 + 41.4915i −2.12078 + 1.53567i
\(731\) −29.1827 −1.07936
\(732\) 2.59267i 0.0958278i
\(733\) 1.03586i 0.0382604i −0.999817 0.0191302i \(-0.993910\pi\)
0.999817 0.0191302i \(-0.00608970\pi\)
\(734\) 50.2410 1.85443
\(735\) −1.61032 2.22388i −0.0593977 0.0820291i
\(736\) 8.19932 0.302231
\(737\) 11.6961i 0.430830i
\(738\) 39.1757i 1.44208i
\(739\) −19.4150 −0.714191 −0.357095 0.934068i \(-0.616233\pi\)
−0.357095 + 0.934068i \(0.616233\pi\)
\(740\) −1.46365 2.02132i −0.0538049 0.0743053i
\(741\) 0 0
\(742\) 9.14938i 0.335884i
\(743\) 12.7028i 0.466021i −0.972474 0.233011i \(-0.925142\pi\)
0.972474 0.233011i \(-0.0748577\pi\)
\(744\) −0.0151179 −0.000554248
\(745\) 3.12973 2.26626i 0.114665 0.0830293i
\(746\) 42.6901 1.56300
\(747\) 42.0449i 1.53834i
\(748\) 27.2216i 0.995319i
\(749\) 4.20690 0.153717
\(750\) −1.25347 3.92160i −0.0457702 0.143197i
\(751\) 4.61794 0.168511 0.0842555 0.996444i \(-0.473149\pi\)
0.0842555 + 0.996444i \(0.473149\pi\)
\(752\) 33.7920i 1.23227i
\(753\) 1.30907i 0.0477051i
\(754\) −13.3350 −0.485632
\(755\) −20.0560 + 14.5227i −0.729912 + 0.528534i
\(756\) 1.40132 0.0509656
\(757\) 6.81005i 0.247515i −0.992312 0.123758i \(-0.960505\pi\)
0.992312 0.123758i \(-0.0394946\pi\)
\(758\) 13.0071i 0.472439i
\(759\) 0.560370 0.0203401
\(760\) 0 0
\(761\) 24.4864 0.887632 0.443816 0.896118i \(-0.353624\pi\)
0.443816 + 0.896118i \(0.353624\pi\)
\(762\) 5.80873i 0.210428i
\(763\) 10.8253i 0.391902i
\(764\) −9.95063 −0.360001
\(765\) −20.1557 27.8353i −0.728730 1.00639i
\(766\) −53.0107 −1.91536
\(767\) 48.2511i 1.74225i
\(768\) 3.40533i 0.122879i
\(769\) −2.99156 −0.107878 −0.0539391 0.998544i \(-0.517178\pi\)
−0.0539391 + 0.998544i \(0.517178\pi\)
\(770\) 6.83360 4.94825i 0.246266 0.178323i
\(771\) −2.96218 −0.106680
\(772\) 28.5968i 1.02922i
\(773\) 19.7642i 0.710869i 0.934701 + 0.355434i \(0.115667\pi\)
−0.934701 + 0.355434i \(0.884333\pi\)
\(774\) 32.7419 1.17688
\(775\) −0.422931 + 1.28764i −0.0151921 + 0.0462534i
\(776\) 1.70206 0.0611003
\(777\) 0.0767318i 0.00275274i
\(778\) 50.9857i 1.82792i
\(779\) 0 0
\(780\) 2.99550 2.16906i 0.107256 0.0776649i
\(781\) 21.6048 0.773079
\(782\) 10.6875i 0.382184i
\(783\) 1.59665i 0.0570596i
\(784\) −27.9978 −0.999921
\(785\) 2.57648 + 3.55815i 0.0919585 + 0.126996i
\(786\) −1.49735 −0.0534088
\(787\) 23.5466i 0.839346i −0.907675 0.419673i \(-0.862145\pi\)
0.907675 0.419673i \(-0.137855\pi\)
\(788\) 39.2498i 1.39822i
\(789\) 3.73413 0.132939
\(790\) 38.1968 + 52.7504i 1.35898 + 1.87677i
\(791\) 5.33795 0.189795
\(792\) 2.50236i 0.0889176i
\(793\) 35.6160i 1.26476i
\(794\) −41.8788 −1.48622
\(795\) −2.34175 + 1.69567i −0.0830533 + 0.0601394i
\(796\) 14.0142 0.496719
\(797\) 5.96976i 0.211460i −0.994395 0.105730i \(-0.966282\pi\)
0.994395 0.105730i \(-0.0337179\pi\)
\(798\) 0 0
\(799\) −40.9291 −1.44797
\(800\) −37.0624 12.1733i −1.31035 0.430391i
\(801\) 24.4234 0.862958
\(802\) 51.1260i 1.80532i
\(803\) 45.8129i 1.61670i
\(804\) −1.42866 −0.0503849
\(805\) 1.28868 0.933140i 0.0454200 0.0328889i
\(806\) −2.53473 −0.0892819
\(807\) 2.13217i 0.0750559i
\(808\) 0.600876i 0.0211387i
\(809\) 25.9066 0.910829 0.455414 0.890280i \(-0.349491\pi\)
0.455414 + 0.890280i \(0.349491\pi\)
\(810\) 22.3420 + 30.8546i 0.785018 + 1.08412i
\(811\) −27.6473 −0.970828 −0.485414 0.874284i \(-0.661331\pi\)
−0.485414 + 0.874284i \(0.661331\pi\)
\(812\) 1.78482i 0.0626350i
\(813\) 4.48391i 0.157258i
\(814\) −3.36459 −0.117929
\(815\) 26.4007 + 36.4597i 0.924776 + 1.27713i
\(816\) 4.16470 0.145794
\(817\) 0 0
\(818\) 45.8018i 1.60142i
\(819\) −9.56828 −0.334343
\(820\) 22.5504 16.3289i 0.787493 0.570228i
\(821\) −10.3541 −0.361362 −0.180681 0.983542i \(-0.557830\pi\)
−0.180681 + 0.983542i \(0.557830\pi\)
\(822\) 0.961847i 0.0335483i
\(823\) 42.3497i 1.47622i −0.674683 0.738108i \(-0.735719\pi\)
0.674683 0.738108i \(-0.264281\pi\)
\(824\) −5.41829 −0.188755
\(825\) −2.53297 0.831965i −0.0881867 0.0289653i
\(826\) −13.4455 −0.467827
\(827\) 22.5822i 0.785260i 0.919696 + 0.392630i \(0.128435\pi\)
−0.919696 + 0.392630i \(0.871565\pi\)
\(828\) 5.75954i 0.200158i
\(829\) −12.6489 −0.439315 −0.219657 0.975577i \(-0.570494\pi\)
−0.219657 + 0.975577i \(0.570494\pi\)
\(830\) −50.3868 + 36.4853i −1.74895 + 1.26642i
\(831\) −0.880920 −0.0305588
\(832\) 32.1554i 1.11479i
\(833\) 33.9111i 1.17495i
\(834\) −3.30358 −0.114394
\(835\) 23.4179 + 32.3404i 0.810409 + 1.11919i
\(836\) 0 0
\(837\) 0.303492i 0.0104902i
\(838\) 43.1493i 1.49057i
\(839\) 46.1433 1.59304 0.796522 0.604610i \(-0.206671\pi\)
0.796522 + 0.604610i \(0.206671\pi\)
\(840\) −0.0495221 0.0683907i −0.00170867 0.00235970i
\(841\) −26.9664 −0.929876
\(842\) 7.31964i 0.252252i
\(843\) 4.21511i 0.145176i
\(844\) −24.5840 −0.846215
\(845\) −17.6054 + 12.7482i −0.605644 + 0.438550i
\(846\) 45.9210 1.57880
\(847\) 1.98413i 0.0681756i
\(848\) 29.4817i 1.01241i
\(849\) 2.04282 0.0701095
\(850\) 15.8674 48.3093i 0.544248 1.65700i
\(851\) −0.634494 −0.0217502
\(852\) 2.63900i 0.0904105i
\(853\) 37.4633i 1.28272i −0.767241 0.641359i \(-0.778371\pi\)
0.767241 0.641359i \(-0.221629\pi\)
\(854\) −9.92463 −0.339614
\(855\) 0 0
\(856\) −1.84615 −0.0631000
\(857\) 33.8342i 1.15575i −0.816124 0.577876i \(-0.803882\pi\)
0.816124 0.577876i \(-0.196118\pi\)
\(858\) 4.98617i 0.170225i
\(859\) 21.2143 0.723822 0.361911 0.932213i \(-0.382124\pi\)
0.361911 + 0.932213i \(0.382124\pi\)
\(860\) 13.6472 + 18.8469i 0.465365 + 0.642675i
\(861\) 0.856039 0.0291737
\(862\) 48.8758i 1.66472i
\(863\) 29.1392i 0.991909i −0.868348 0.495955i \(-0.834818\pi\)
0.868348 0.495955i \(-0.165182\pi\)
\(864\) −8.73548 −0.297187
\(865\) 3.56997 + 4.93017i 0.121382 + 0.167631i
\(866\) 21.5250 0.731450
\(867\) 1.85328i 0.0629407i
\(868\) 0.339260i 0.0115152i
\(869\) 42.1751 1.43069
\(870\) −0.951065 + 0.688672i −0.0322441 + 0.0233482i
\(871\) 19.6258 0.664995
\(872\) 4.75055i 0.160874i
\(873\) 16.9836i 0.574806i
\(874\) 0 0
\(875\) −7.21047 + 2.30470i −0.243758 + 0.0779129i
\(876\) −5.59599 −0.189071
\(877\) 6.43824i 0.217404i −0.994074 0.108702i \(-0.965331\pi\)
0.994074 0.108702i \(-0.0346694\pi\)
\(878\) 16.7137i 0.564062i
\(879\) 2.34095 0.0789582
\(880\) −22.0197 + 15.9446i −0.742283 + 0.537491i
\(881\) 14.3999 0.485145 0.242573 0.970133i \(-0.422009\pi\)
0.242573 + 0.970133i \(0.422009\pi\)
\(882\) 38.0471i 1.28111i
\(883\) 25.8016i 0.868292i 0.900843 + 0.434146i \(0.142950\pi\)
−0.900843 + 0.434146i \(0.857050\pi\)
\(884\) 45.6773 1.53630
\(885\) 2.49188 + 3.44131i 0.0837635 + 0.115679i
\(886\) −18.4743 −0.620655
\(887\) 25.9435i 0.871099i 0.900165 + 0.435549i \(0.143446\pi\)
−0.900165 + 0.435549i \(0.856554\pi\)
\(888\) 0.0336728i 0.00112999i
\(889\) 10.6803 0.358204
\(890\) 21.1939 + 29.2691i 0.710422 + 0.981103i
\(891\) 24.6689 0.826440
\(892\) 36.7479i 1.23041i
\(893\) 0 0
\(894\) 0.636346 0.0212826
\(895\) 13.9752 10.1195i 0.467138 0.338257i
\(896\) −1.60476 −0.0536114
\(897\) 0.940291i 0.0313954i
\(898\) 19.0830i 0.636808i
\(899\) 0.386549 0.0128921
\(900\) −8.55102 + 26.0341i −0.285034 + 0.867805i
\(901\) −35.7085 −1.18962
\(902\) 37.5362i 1.24982i
\(903\) 0.715452i 0.0238087i
\(904\) −2.34249 −0.0779102
\(905\) 1.93862 1.40377i 0.0644420 0.0466628i
\(906\) −4.07784 −0.135477
\(907\) 29.9257i 0.993665i 0.867846 + 0.496832i \(0.165504\pi\)
−0.867846 + 0.496832i \(0.834496\pi\)
\(908\) 50.4692i 1.67488i
\(909\) −5.99569 −0.198864
\(910\) −8.30308 11.4667i −0.275244 0.380116i
\(911\) −3.36120 −0.111362 −0.0556808 0.998449i \(-0.517733\pi\)
−0.0556808 + 0.998449i \(0.517733\pi\)
\(912\) 0 0
\(913\) 40.2853i 1.33325i
\(914\) 20.5370 0.679302
\(915\) 1.83935 + 2.54017i 0.0608071 + 0.0839755i
\(916\) −27.0681 −0.894355
\(917\) 2.75312i 0.0909160i
\(918\) 11.3863i 0.375806i
\(919\) −6.92467 −0.228424 −0.114212 0.993456i \(-0.536434\pi\)
−0.114212 + 0.993456i \(0.536434\pi\)
\(920\) −0.565522 + 0.409497i −0.0186447 + 0.0135007i
\(921\) −0.784353 −0.0258453
\(922\) 44.4809i 1.46490i
\(923\) 36.2524i 1.19326i
\(924\) 0.667373 0.0219550
\(925\) 2.86803 + 0.942016i 0.0943002 + 0.0309733i
\(926\) 69.9128 2.29748
\(927\) 54.0650i 1.77573i
\(928\) 11.1261i 0.365233i
\(929\) −27.3408 −0.897024 −0.448512 0.893777i \(-0.648046\pi\)
−0.448512 + 0.893777i \(0.648046\pi\)
\(930\) −0.180779 + 0.130903i −0.00592798 + 0.00429248i
\(931\) 0 0
\(932\) 12.2546i 0.401413i
\(933\) 2.26956i 0.0743020i
\(934\) 5.69227 0.186257
\(935\) −19.3122 26.6704i −0.631576 0.872215i
\(936\) 4.19892 0.137246
\(937\) 37.1376i 1.21323i 0.794995 + 0.606617i \(0.207474\pi\)
−0.794995 + 0.606617i \(0.792526\pi\)
\(938\) 5.46885i 0.178564i
\(939\) −1.79798 −0.0586748
\(940\) 19.1404 + 26.4331i 0.624290 + 0.862153i
\(941\) −50.6874 −1.65236 −0.826180 0.563406i \(-0.809491\pi\)
−0.826180 + 0.563406i \(0.809491\pi\)
\(942\) 0.723453i 0.0235714i
\(943\) 7.07858i 0.230510i
\(944\) 43.3248 1.41010
\(945\) −1.37295 + 0.994160i −0.0446620 + 0.0323400i
\(946\) 31.3717 1.01998
\(947\) 4.06669i 0.132150i −0.997815 0.0660749i \(-0.978952\pi\)
0.997815 0.0660749i \(-0.0210476\pi\)
\(948\) 5.15163i 0.167317i
\(949\) 76.8732 2.49541
\(950\) 0 0
\(951\) 2.09655 0.0679852
\(952\) 1.04286i 0.0337994i
\(953\) 14.8332i 0.480495i 0.970712 + 0.240247i \(0.0772286\pi\)
−0.970712 + 0.240247i \(0.922771\pi\)
\(954\) 40.0636 1.29711
\(955\) 9.74914 7.05941i 0.315475 0.228437i
\(956\) −23.4380 −0.758040
\(957\) 0.760397i 0.0245801i
\(958\) 57.5798i 1.86032i
\(959\) 1.76851 0.0571081
\(960\) −1.66063 2.29336i −0.0535967 0.0740178i
\(961\) −30.9265 −0.997630
\(962\) 5.64573i 0.182026i
\(963\) 18.4213i 0.593619i
\(964\) 26.0900 0.840302
\(965\) −20.2878 28.0178i −0.653088 0.901924i
\(966\) 0.262018 0.00843028
\(967\) 56.7201i 1.82400i 0.410194 + 0.911998i \(0.365461\pi\)
−0.410194 + 0.911998i \(0.634539\pi\)
\(968\) 0.870712i 0.0279858i
\(969\) 0 0
\(970\) 20.3532 14.7379i 0.653501 0.473204i
\(971\) 12.5938 0.404154 0.202077 0.979370i \(-0.435231\pi\)
0.202077 + 0.979370i \(0.435231\pi\)
\(972\) 9.22236i 0.295807i
\(973\) 6.07415i 0.194728i
\(974\) 6.70304 0.214779
\(975\) −1.39602 + 4.25028i −0.0447085 + 0.136118i
\(976\) 31.9798 1.02365
\(977\) 36.8973i 1.18045i 0.807239 + 0.590224i \(0.200961\pi\)
−0.807239 + 0.590224i \(0.799039\pi\)
\(978\) 7.41309i 0.237044i
\(979\) 23.4013 0.747908
\(980\) −21.9007 + 15.8584i −0.699592 + 0.506579i
\(981\) 47.4022 1.51344
\(982\) 49.4097i 1.57673i
\(983\) 9.56063i 0.304937i 0.988308 + 0.152468i \(0.0487222\pi\)
−0.988308 + 0.152468i \(0.951278\pi\)
\(984\) −0.375662 −0.0119757
\(985\) 27.8455 + 38.4550i 0.887231 + 1.22528i
\(986\) −14.5024 −0.461852
\(987\) 1.00343i 0.0319396i
\(988\) 0 0
\(989\) 5.91606 0.188120
\(990\) 21.6676 + 29.9232i 0.688640 + 0.951022i
\(991\) 16.2633 0.516621 0.258310 0.966062i \(-0.416834\pi\)
0.258310 + 0.966062i \(0.416834\pi\)
\(992\) 2.11486i 0.0671469i
\(993\) 4.07097i 0.129188i
\(994\) 10.1020 0.320415
\(995\) −13.7304 + 9.94226i −0.435283 + 0.315191i
\(996\) −4.92080 −0.155921
\(997\) 36.6404i 1.16041i 0.814469 + 0.580207i \(0.197028\pi\)
−0.814469 + 0.580207i \(0.802972\pi\)
\(998\) 68.1391i 2.15690i
\(999\) 0.675985 0.0213872
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.l.1084.21 24
5.2 odd 4 9025.2.a.ct.1.4 24
5.3 odd 4 9025.2.a.ct.1.21 24
5.4 even 2 inner 1805.2.b.l.1084.4 24
19.3 odd 18 95.2.p.a.9.8 yes 48
19.13 odd 18 95.2.p.a.74.1 yes 48
19.18 odd 2 1805.2.b.k.1084.4 24
57.32 even 18 855.2.da.b.739.8 48
57.41 even 18 855.2.da.b.199.1 48
95.3 even 36 475.2.l.f.351.1 48
95.13 even 36 475.2.l.f.226.1 48
95.18 even 4 9025.2.a.cu.1.4 24
95.22 even 36 475.2.l.f.351.8 48
95.32 even 36 475.2.l.f.226.8 48
95.37 even 4 9025.2.a.cu.1.21 24
95.79 odd 18 95.2.p.a.9.1 48
95.89 odd 18 95.2.p.a.74.8 yes 48
95.94 odd 2 1805.2.b.k.1084.21 24
285.89 even 18 855.2.da.b.739.1 48
285.269 even 18 855.2.da.b.199.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.9.1 48 95.79 odd 18
95.2.p.a.9.8 yes 48 19.3 odd 18
95.2.p.a.74.1 yes 48 19.13 odd 18
95.2.p.a.74.8 yes 48 95.89 odd 18
475.2.l.f.226.1 48 95.13 even 36
475.2.l.f.226.8 48 95.32 even 36
475.2.l.f.351.1 48 95.3 even 36
475.2.l.f.351.8 48 95.22 even 36
855.2.da.b.199.1 48 57.41 even 18
855.2.da.b.199.8 48 285.269 even 18
855.2.da.b.739.1 48 285.89 even 18
855.2.da.b.739.8 48 57.32 even 18
1805.2.b.k.1084.4 24 19.18 odd 2
1805.2.b.k.1084.21 24 95.94 odd 2
1805.2.b.l.1084.4 24 5.4 even 2 inner
1805.2.b.l.1084.21 24 1.1 even 1 trivial
9025.2.a.ct.1.4 24 5.2 odd 4
9025.2.a.ct.1.21 24 5.3 odd 4
9025.2.a.cu.1.4 24 95.18 even 4
9025.2.a.cu.1.21 24 95.37 even 4