Properties

Label 1805.2.b.l
Level $1805$
Weight $2$
Character orbit 1805.b
Analytic conductor $14.413$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} + 6 q^{10} + 12 q^{11} + 24 q^{14} + 9 q^{15} + 6 q^{16} + 21 q^{20} - 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} + 36 q^{29} - 18 q^{30} - 42 q^{31} + 6 q^{34} + 27 q^{35} - 6 q^{36} - 24 q^{39} - 12 q^{40} - 60 q^{41} + 30 q^{44} + 9 q^{45} - 6 q^{46} - 12 q^{49} - 18 q^{50} - 30 q^{51} + 24 q^{54} + 33 q^{55} - 18 q^{56} + 60 q^{59} + 42 q^{60} + 30 q^{61} - 18 q^{65} + 36 q^{66} + 66 q^{69} - 9 q^{70} - 96 q^{71} - 24 q^{74} - 36 q^{75} + 72 q^{79} - 42 q^{80} - 96 q^{81} - 54 q^{84} - 27 q^{85} - 108 q^{86} + 84 q^{89} + 93 q^{90} - 96 q^{91} + 36 q^{94} - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1084.1 2.68669i 2.14658i −5.21828 −1.71227 + 1.43810i −5.76720 2.78303i 8.64651i −1.60782 3.86371 + 4.60034i
1084.2 2.37097i 2.28512i −3.62149 1.17411 1.90301i −5.41794 1.63677i 3.84450i −2.22176 −4.51198 2.78378i
1084.3 2.32462i 1.14858i −3.40387 −2.01201 + 0.975617i 2.67001 0.143302i 3.26348i 1.68077 2.26794 + 4.67716i
1084.4 1.96177i 0.187708i −1.84854 1.81111 + 1.31144i 0.368240 0.677067i 0.297123i 2.96477 2.57274 3.55299i
1084.5 1.78468i 2.38377i −1.18508 −1.16534 1.90840i 4.25426 4.23911i 1.45438i −2.68235 −3.40588 + 2.07976i
1084.6 1.61907i 1.18857i −0.621387 0.326390 + 2.21212i 1.92438 2.23190i 2.23207i 1.58730 3.58157 0.528448i
1084.7 1.47917i 2.48321i −0.187941 0.111989 2.23326i −3.67308 3.24988i 2.68034i −3.16631 −3.30337 0.165651i
1084.8 1.22159i 0.804421i 0.507728 −2.23387 + 0.0991400i 0.982669 3.79180i 3.06341i 2.35291 0.121108 + 2.72886i
1084.9 1.04740i 0.531453i 0.902948 1.65192 + 1.50704i −0.556645 2.74033i 3.04056i 2.71756 1.57847 1.73023i
1084.10 0.449373i 1.95684i 1.79806 1.87757 + 1.21438i −0.879352 2.06079i 1.70675i −0.829224 0.545709 0.843732i
1084.11 0.249751i 2.30156i 1.93762 −2.08007 + 0.820550i −0.574816 3.96043i 0.983424i −2.29718 0.204933 + 0.519499i
1084.12 0.244477i 2.73837i 1.94023 0.750459 2.10637i 0.669469 1.94027i 0.963297i −4.49866 −0.514961 0.183470i
1084.13 0.244477i 2.73837i 1.94023 0.750459 + 2.10637i 0.669469 1.94027i 0.963297i −4.49866 −0.514961 + 0.183470i
1084.14 0.249751i 2.30156i 1.93762 −2.08007 0.820550i −0.574816 3.96043i 0.983424i −2.29718 0.204933 0.519499i
1084.15 0.449373i 1.95684i 1.79806 1.87757 1.21438i −0.879352 2.06079i 1.70675i −0.829224 0.545709 + 0.843732i
1084.16 1.04740i 0.531453i 0.902948 1.65192 1.50704i −0.556645 2.74033i 3.04056i 2.71756 1.57847 + 1.73023i
1084.17 1.22159i 0.804421i 0.507728 −2.23387 0.0991400i 0.982669 3.79180i 3.06341i 2.35291 0.121108 2.72886i
1084.18 1.47917i 2.48321i −0.187941 0.111989 + 2.23326i −3.67308 3.24988i 2.68034i −3.16631 −3.30337 + 0.165651i
1084.19 1.61907i 1.18857i −0.621387 0.326390 2.21212i 1.92438 2.23190i 2.23207i 1.58730 3.58157 + 0.528448i
1084.20 1.78468i 2.38377i −1.18508 −1.16534 + 1.90840i 4.25426 4.23911i 1.45438i −2.68235 −3.40588 2.07976i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1084.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1805.2.b.l 24
5.b even 2 1 inner 1805.2.b.l 24
5.c odd 4 2 9025.2.a.ct 24
19.b odd 2 1 1805.2.b.k 24
19.f odd 18 2 95.2.p.a 48
57.j even 18 2 855.2.da.b 48
95.d odd 2 1 1805.2.b.k 24
95.g even 4 2 9025.2.a.cu 24
95.o odd 18 2 95.2.p.a 48
95.r even 36 4 475.2.l.f 48
285.bf even 18 2 855.2.da.b 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.p.a 48 19.f odd 18 2
95.2.p.a 48 95.o odd 18 2
475.2.l.f 48 95.r even 36 4
855.2.da.b 48 57.j even 18 2
855.2.da.b 48 285.bf even 18 2
1805.2.b.k 24 19.b odd 2 1
1805.2.b.k 24 95.d odd 2 1
1805.2.b.l 24 1.a even 1 1 trivial
1805.2.b.l 24 5.b even 2 1 inner
9025.2.a.ct 24 5.c odd 4 2
9025.2.a.cu 24 95.g even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1805, [\chi])\):

\( T_{2}^{24} + 33 T_{2}^{22} + 468 T_{2}^{20} + 3743 T_{2}^{18} + 18618 T_{2}^{16} + 59871 T_{2}^{14} + 125215 T_{2}^{12} + 166671 T_{2}^{10} + 133557 T_{2}^{8} + 57610 T_{2}^{6} + 10782 T_{2}^{4} + 783 T_{2}^{2} + \cdots + 19 \) Copy content Toggle raw display
\( T_{29}^{12} - 18 T_{29}^{11} + 45 T_{29}^{10} + 756 T_{29}^{9} - 3600 T_{29}^{8} - 9369 T_{29}^{7} + 65511 T_{29}^{6} + 13797 T_{29}^{5} - 425574 T_{29}^{4} + 286713 T_{29}^{3} + 757431 T_{29}^{2} - 567891 T_{29} - 263169 \) Copy content Toggle raw display