Properties

Label 475.2.bb.b.393.4
Level $475$
Weight $2$
Character 475.393
Analytic conductor $3.793$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(32,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bb (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 393.4
Character \(\chi\) \(=\) 475.393
Dual form 475.2.bb.b.307.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.297624 + 0.0260387i) q^{2} +(-1.75625 + 0.818952i) q^{3} +(-1.88171 - 0.331797i) q^{4} +(-0.544026 + 0.198009i) q^{6} +(-0.0866366 - 0.323332i) q^{7} +(-1.12856 - 0.302398i) q^{8} +(0.485360 - 0.578430i) q^{9} +(0.885063 + 1.53297i) q^{11} +(3.57648 - 0.958315i) q^{12} +(0.968521 - 2.07700i) q^{13} +(-0.0173660 - 0.0984873i) q^{14} +(3.26301 + 1.18764i) q^{16} +(0.238918 - 2.73085i) q^{17} +(0.159516 - 0.159516i) q^{18} +(-0.174252 - 4.35541i) q^{19} +(0.416949 + 0.496900i) q^{21} +(0.223499 + 0.479296i) q^{22} +(7.04590 - 4.93359i) q^{23} +(2.22969 - 0.393154i) q^{24} +(0.342337 - 0.592946i) q^{26} +(1.12592 - 4.20197i) q^{27} +(0.0557446 + 0.637164i) q^{28} +(4.70481 + 3.94780i) q^{29} +(-1.80927 - 1.04458i) q^{31} +(3.05804 + 1.42599i) q^{32} +(-2.80982 - 1.96746i) q^{33} +(0.142216 - 0.806545i) q^{34} +(-1.10523 + 0.927398i) q^{36} +(4.27833 + 4.27833i) q^{37} +(0.0615479 - 1.30081i) q^{38} +4.44090i q^{39} +(2.08289 - 5.72270i) q^{41} +(0.111155 + 0.158746i) q^{42} +(-3.06524 + 4.37761i) q^{43} +(-1.15680 - 3.17828i) q^{44} +(2.22549 - 1.28489i) q^{46} +(-5.75408 + 0.503417i) q^{47} +(-6.70326 + 0.586460i) q^{48} +(5.96514 - 3.44398i) q^{49} +(1.81683 + 4.99171i) q^{51} +(-2.51162 + 3.58697i) q^{52} +(-1.22167 - 1.74473i) q^{53} +(0.444513 - 1.22129i) q^{54} +0.391100i q^{56} +(3.87290 + 7.50648i) q^{57} +(1.29747 + 1.29747i) q^{58} +(-1.26888 + 1.06472i) q^{59} +(1.59718 - 9.05803i) q^{61} +(-0.511282 - 0.358003i) q^{62} +(-0.229075 - 0.106819i) q^{63} +(-5.14139 - 2.96838i) q^{64} +(-0.785040 - 0.658727i) q^{66} +(-0.957732 - 10.9469i) q^{67} +(-1.35566 + 5.05941i) q^{68} +(-8.33397 + 14.4349i) q^{69} +(-15.3710 + 2.71031i) q^{71} +(-0.722676 + 0.506024i) q^{72} +(2.33808 + 5.01402i) q^{73} +(1.16193 + 1.38473i) q^{74} +(-1.11722 + 8.25346i) q^{76} +(0.418981 - 0.418981i) q^{77} +(-0.115635 + 1.32172i) q^{78} +(-14.0660 - 5.11962i) q^{79} +(1.85719 + 10.5326i) q^{81} +(0.768931 - 1.64898i) q^{82} +(3.20933 - 0.859936i) q^{83} +(-0.619708 - 1.07337i) q^{84} +(-1.02628 + 1.22307i) q^{86} +(-11.4959 - 3.08031i) q^{87} +(-0.535283 - 1.99770i) q^{88} +(9.75391 - 3.55013i) q^{89} +(-0.755470 - 0.133210i) q^{91} +(-14.8953 + 6.94580i) q^{92} +(4.03298 + 0.352840i) q^{93} -1.72566 q^{94} -6.53849 q^{96} +(-5.97565 - 0.522802i) q^{97} +(1.86504 - 0.869685i) q^{98} +(1.31629 + 0.232098i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{3} - 12 q^{6} + 18 q^{8} - 12 q^{11} + 18 q^{12} + 12 q^{13} + 12 q^{16} + 30 q^{17} + 24 q^{21} + 24 q^{22} - 48 q^{26} + 18 q^{27} - 36 q^{31} - 18 q^{32} - 90 q^{33} + 24 q^{36}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.297624 + 0.0260387i 0.210452 + 0.0184122i 0.191894 0.981416i \(-0.438537\pi\)
0.0185578 + 0.999828i \(0.494093\pi\)
\(3\) −1.75625 + 0.818952i −1.01397 + 0.472822i −0.857293 0.514828i \(-0.827856\pi\)
−0.156676 + 0.987650i \(0.550078\pi\)
\(4\) −1.88171 0.331797i −0.940857 0.165898i
\(5\) 0 0
\(6\) −0.544026 + 0.198009i −0.222098 + 0.0808369i
\(7\) −0.0866366 0.323332i −0.0327456 0.122208i 0.947618 0.319405i \(-0.103483\pi\)
−0.980364 + 0.197197i \(0.936816\pi\)
\(8\) −1.12856 0.302398i −0.399008 0.106914i
\(9\) 0.485360 0.578430i 0.161787 0.192810i
\(10\) 0 0
\(11\) 0.885063 + 1.53297i 0.266856 + 0.462209i 0.968048 0.250764i \(-0.0806817\pi\)
−0.701192 + 0.712973i \(0.747348\pi\)
\(12\) 3.57648 0.958315i 1.03244 0.276642i
\(13\) 0.968521 2.07700i 0.268619 0.576056i −0.725012 0.688736i \(-0.758166\pi\)
0.993631 + 0.112680i \(0.0359436\pi\)
\(14\) −0.0173660 0.0984873i −0.00464125 0.0263218i
\(15\) 0 0
\(16\) 3.26301 + 1.18764i 0.815752 + 0.296909i
\(17\) 0.238918 2.73085i 0.0579462 0.662328i −0.910566 0.413363i \(-0.864354\pi\)
0.968512 0.248965i \(-0.0800905\pi\)
\(18\) 0.159516 0.159516i 0.0375984 0.0375984i
\(19\) −0.174252 4.35541i −0.0399761 0.999201i
\(20\) 0 0
\(21\) 0.416949 + 0.496900i 0.0909857 + 0.108432i
\(22\) 0.223499 + 0.479296i 0.0476502 + 0.102186i
\(23\) 7.04590 4.93359i 1.46917 1.02872i 0.480772 0.876845i \(-0.340356\pi\)
0.988399 0.151879i \(-0.0485325\pi\)
\(24\) 2.22969 0.393154i 0.455133 0.0802523i
\(25\) 0 0
\(26\) 0.342337 0.592946i 0.0671379 0.116286i
\(27\) 1.12592 4.20197i 0.216683 0.808670i
\(28\) 0.0557446 + 0.637164i 0.0105347 + 0.120413i
\(29\) 4.70481 + 3.94780i 0.873661 + 0.733089i 0.964866 0.262744i \(-0.0846273\pi\)
−0.0912048 + 0.995832i \(0.529072\pi\)
\(30\) 0 0
\(31\) −1.80927 1.04458i −0.324954 0.187612i 0.328645 0.944454i \(-0.393408\pi\)
−0.653599 + 0.756841i \(0.726742\pi\)
\(32\) 3.05804 + 1.42599i 0.540590 + 0.252081i
\(33\) −2.80982 1.96746i −0.489127 0.342490i
\(34\) 0.142216 0.806545i 0.0243898 0.138321i
\(35\) 0 0
\(36\) −1.10523 + 0.927398i −0.184205 + 0.154566i
\(37\) 4.27833 + 4.27833i 0.703353 + 0.703353i 0.965129 0.261776i \(-0.0843082\pi\)
−0.261776 + 0.965129i \(0.584308\pi\)
\(38\) 0.0615479 1.30081i 0.00998439 0.211020i
\(39\) 4.44090i 0.711113i
\(40\) 0 0
\(41\) 2.08289 5.72270i 0.325293 0.893736i −0.663992 0.747740i \(-0.731139\pi\)
0.989285 0.145996i \(-0.0466387\pi\)
\(42\) 0.111155 + 0.158746i 0.0171516 + 0.0244951i
\(43\) −3.06524 + 4.37761i −0.467444 + 0.667580i −0.981783 0.190008i \(-0.939149\pi\)
0.514338 + 0.857587i \(0.328038\pi\)
\(44\) −1.15680 3.17828i −0.174394 0.479144i
\(45\) 0 0
\(46\) 2.22549 1.28489i 0.328131 0.189446i
\(47\) −5.75408 + 0.503417i −0.839319 + 0.0734309i −0.498704 0.866772i \(-0.666191\pi\)
−0.340615 + 0.940203i \(0.610635\pi\)
\(48\) −6.70326 + 0.586460i −0.967533 + 0.0846482i
\(49\) 5.96514 3.44398i 0.852163 0.491996i
\(50\) 0 0
\(51\) 1.81683 + 4.99171i 0.254408 + 0.698979i
\(52\) −2.51162 + 3.58697i −0.348299 + 0.497423i
\(53\) −1.22167 1.74473i −0.167809 0.239656i 0.726436 0.687235i \(-0.241176\pi\)
−0.894245 + 0.447578i \(0.852287\pi\)
\(54\) 0.444513 1.22129i 0.0604906 0.166197i
\(55\) 0 0
\(56\) 0.391100i 0.0522629i
\(57\) 3.87290 + 7.50648i 0.512979 + 0.994258i
\(58\) 1.29747 + 1.29747i 0.170366 + 0.170366i
\(59\) −1.26888 + 1.06472i −0.165194 + 0.138614i −0.721637 0.692271i \(-0.756610\pi\)
0.556443 + 0.830886i \(0.312166\pi\)
\(60\) 0 0
\(61\) 1.59718 9.05803i 0.204497 1.15976i −0.693731 0.720234i \(-0.744035\pi\)
0.898229 0.439528i \(-0.144854\pi\)
\(62\) −0.511282 0.358003i −0.0649329 0.0454665i
\(63\) −0.229075 0.106819i −0.0288607 0.0134580i
\(64\) −5.14139 2.96838i −0.642674 0.371048i
\(65\) 0 0
\(66\) −0.785040 0.658727i −0.0966317 0.0810836i
\(67\) −0.957732 10.9469i −0.117006 1.33738i −0.796918 0.604087i \(-0.793538\pi\)
0.679913 0.733293i \(-0.262018\pi\)
\(68\) −1.35566 + 5.05941i −0.164398 + 0.613543i
\(69\) −8.33397 + 14.4349i −1.00329 + 1.73775i
\(70\) 0 0
\(71\) −15.3710 + 2.71031i −1.82420 + 0.321655i −0.977583 0.210553i \(-0.932474\pi\)
−0.846614 + 0.532208i \(0.821363\pi\)
\(72\) −0.722676 + 0.506024i −0.0851682 + 0.0596354i
\(73\) 2.33808 + 5.01402i 0.273651 + 0.586846i 0.994320 0.106433i \(-0.0339430\pi\)
−0.720669 + 0.693279i \(0.756165\pi\)
\(74\) 1.16193 + 1.38473i 0.135072 + 0.160972i
\(75\) 0 0
\(76\) −1.11722 + 8.25346i −0.128154 + 0.946737i
\(77\) 0.418981 0.418981i 0.0477473 0.0477473i
\(78\) −0.115635 + 1.32172i −0.0130931 + 0.149655i
\(79\) −14.0660 5.11962i −1.58255 0.576002i −0.606796 0.794857i \(-0.707546\pi\)
−0.975757 + 0.218855i \(0.929768\pi\)
\(80\) 0 0
\(81\) 1.85719 + 10.5326i 0.206354 + 1.17029i
\(82\) 0.768931 1.64898i 0.0849142 0.182099i
\(83\) 3.20933 0.859936i 0.352269 0.0943903i −0.0783450 0.996926i \(-0.524964\pi\)
0.430614 + 0.902536i \(0.358297\pi\)
\(84\) −0.619708 1.07337i −0.0676157 0.117114i
\(85\) 0 0
\(86\) −1.02628 + 1.22307i −0.110666 + 0.131887i
\(87\) −11.4959 3.08031i −1.23249 0.330244i
\(88\) −0.535283 1.99770i −0.0570613 0.212956i
\(89\) 9.75391 3.55013i 1.03391 0.376313i 0.231343 0.972872i \(-0.425688\pi\)
0.802569 + 0.596559i \(0.203466\pi\)
\(90\) 0 0
\(91\) −0.755470 0.133210i −0.0791948 0.0139642i
\(92\) −14.8953 + 6.94580i −1.55294 + 0.724150i
\(93\) 4.03298 + 0.352840i 0.418201 + 0.0365878i
\(94\) −1.72566 −0.177988
\(95\) 0 0
\(96\) −6.53849 −0.667332
\(97\) −5.97565 0.522802i −0.606736 0.0530825i −0.220352 0.975420i \(-0.570720\pi\)
−0.386384 + 0.922338i \(0.626276\pi\)
\(98\) 1.86504 0.869685i 0.188398 0.0878514i
\(99\) 1.31629 + 0.232098i 0.132292 + 0.0233267i
\(100\) 0 0
\(101\) 10.0826 3.66976i 1.00326 0.365155i 0.212416 0.977179i \(-0.431867\pi\)
0.790839 + 0.612024i \(0.209645\pi\)
\(102\) 0.410756 + 1.53296i 0.0406709 + 0.151786i
\(103\) 10.3664 + 2.77767i 1.02143 + 0.273692i 0.730398 0.683021i \(-0.239334\pi\)
0.291033 + 0.956713i \(0.406001\pi\)
\(104\) −1.72112 + 2.05115i −0.168770 + 0.201132i
\(105\) 0 0
\(106\) −0.318168 0.551083i −0.0309032 0.0535259i
\(107\) 2.12744 0.570046i 0.205668 0.0551085i −0.154514 0.987991i \(-0.549381\pi\)
0.360182 + 0.932882i \(0.382715\pi\)
\(108\) −3.51285 + 7.53334i −0.338024 + 0.724896i
\(109\) 1.51271 + 8.57902i 0.144892 + 0.821721i 0.967454 + 0.253046i \(0.0814325\pi\)
−0.822563 + 0.568675i \(0.807456\pi\)
\(110\) 0 0
\(111\) −11.0175 4.01006i −1.04574 0.380618i
\(112\) 0.101306 1.15793i 0.00957247 0.109414i
\(113\) 8.30039 8.30039i 0.780835 0.780835i −0.199137 0.979972i \(-0.563814\pi\)
0.979972 + 0.199137i \(0.0638138\pi\)
\(114\) 0.957209 + 2.33495i 0.0896509 + 0.218688i
\(115\) 0 0
\(116\) −7.54323 8.98967i −0.700372 0.834670i
\(117\) −0.731317 1.56831i −0.0676103 0.144991i
\(118\) −0.405372 + 0.283845i −0.0373176 + 0.0261300i
\(119\) −0.903671 + 0.159342i −0.0828394 + 0.0146068i
\(120\) 0 0
\(121\) 3.93333 6.81272i 0.357575 0.619338i
\(122\) 0.711217 2.65430i 0.0643906 0.240309i
\(123\) 1.02854 + 11.7563i 0.0927404 + 1.06003i
\(124\) 3.05794 + 2.56591i 0.274611 + 0.230426i
\(125\) 0 0
\(126\) −0.0653967 0.0377568i −0.00582600 0.00336364i
\(127\) 6.06809 + 2.82960i 0.538456 + 0.251086i 0.672769 0.739853i \(-0.265105\pi\)
−0.134313 + 0.990939i \(0.542883\pi\)
\(128\) −6.98083 4.88803i −0.617024 0.432045i
\(129\) 1.79826 10.1985i 0.158328 0.897924i
\(130\) 0 0
\(131\) 5.62950 4.72371i 0.491851 0.412712i −0.362838 0.931852i \(-0.618192\pi\)
0.854689 + 0.519140i \(0.173748\pi\)
\(132\) 4.63448 + 4.63448i 0.403380 + 0.403380i
\(133\) −1.39315 + 0.433679i −0.120801 + 0.0376048i
\(134\) 3.28301i 0.283609i
\(135\) 0 0
\(136\) −1.09544 + 3.00969i −0.0939331 + 0.258079i
\(137\) −3.01799 4.31014i −0.257845 0.368240i 0.669269 0.743020i \(-0.266607\pi\)
−0.927114 + 0.374780i \(0.877718\pi\)
\(138\) −2.85625 + 4.07915i −0.243140 + 0.347240i
\(139\) 6.35505 + 17.4603i 0.539028 + 1.48097i 0.848052 + 0.529913i \(0.177775\pi\)
−0.309024 + 0.951054i \(0.600002\pi\)
\(140\) 0 0
\(141\) 9.69332 5.59644i 0.816324 0.471305i
\(142\) −4.64534 + 0.406414i −0.389828 + 0.0341055i
\(143\) 4.04119 0.353558i 0.337941 0.0295660i
\(144\) 2.27070 1.31099i 0.189225 0.109249i
\(145\) 0 0
\(146\) 0.565308 + 1.55317i 0.0467853 + 0.128541i
\(147\) −7.65581 + 10.9336i −0.631441 + 0.901791i
\(148\) −6.63105 9.47012i −0.545069 0.778439i
\(149\) 6.71169 18.4402i 0.549843 1.51068i −0.284080 0.958800i \(-0.591688\pi\)
0.833923 0.551880i \(-0.186090\pi\)
\(150\) 0 0
\(151\) 1.28151i 0.104288i −0.998640 0.0521440i \(-0.983395\pi\)
0.998640 0.0521440i \(-0.0166055\pi\)
\(152\) −1.12041 + 4.96806i −0.0908776 + 0.402963i
\(153\) −1.46364 1.46364i −0.118329 0.118329i
\(154\) 0.135608 0.113789i 0.0109276 0.00916938i
\(155\) 0 0
\(156\) 1.47348 8.35649i 0.117972 0.669055i
\(157\) 13.3302 + 9.33390i 1.06387 + 0.744926i 0.968122 0.250480i \(-0.0805883\pi\)
0.0957434 + 0.995406i \(0.469477\pi\)
\(158\) −4.05308 1.88998i −0.322446 0.150359i
\(159\) 3.57440 + 2.06368i 0.283468 + 0.163661i
\(160\) 0 0
\(161\) −2.20562 1.85074i −0.173827 0.145858i
\(162\) 0.278487 + 3.18312i 0.0218800 + 0.250089i
\(163\) −2.63825 + 9.84609i −0.206644 + 0.771205i 0.782298 + 0.622904i \(0.214047\pi\)
−0.988942 + 0.148301i \(0.952619\pi\)
\(164\) −5.81818 + 10.0774i −0.454324 + 0.786912i
\(165\) 0 0
\(166\) 0.977564 0.172371i 0.0758737 0.0133786i
\(167\) −2.13302 + 1.49356i −0.165058 + 0.115575i −0.653187 0.757197i \(-0.726568\pi\)
0.488129 + 0.872772i \(0.337680\pi\)
\(168\) −0.320292 0.686868i −0.0247111 0.0529930i
\(169\) 4.98034 + 5.93534i 0.383103 + 0.456565i
\(170\) 0 0
\(171\) −2.60388 2.01315i −0.199123 0.153950i
\(172\) 7.22038 7.22038i 0.550549 0.550549i
\(173\) 1.59591 18.2413i 0.121335 1.38686i −0.654565 0.756006i \(-0.727148\pi\)
0.775900 0.630856i \(-0.217296\pi\)
\(174\) −3.34124 1.21611i −0.253299 0.0921931i
\(175\) 0 0
\(176\) 1.06735 + 6.05324i 0.0804545 + 0.456280i
\(177\) 1.35651 2.90905i 0.101962 0.218658i
\(178\) 2.99544 0.802625i 0.224518 0.0601593i
\(179\) −3.88436 6.72790i −0.290331 0.502867i 0.683557 0.729897i \(-0.260432\pi\)
−0.973888 + 0.227030i \(0.927099\pi\)
\(180\) 0 0
\(181\) −12.3085 + 14.6688i −0.914887 + 1.09032i 0.0807244 + 0.996736i \(0.474277\pi\)
−0.995611 + 0.0935835i \(0.970168\pi\)
\(182\) −0.221377 0.0593179i −0.0164096 0.00439693i
\(183\) 4.61305 + 17.2162i 0.341007 + 1.27265i
\(184\) −9.44366 + 3.43721i −0.696196 + 0.253395i
\(185\) 0 0
\(186\) 1.19112 + 0.210027i 0.0873375 + 0.0154000i
\(187\) 4.39778 2.05072i 0.321597 0.149963i
\(188\) 10.9946 + 0.961900i 0.801861 + 0.0701538i
\(189\) −1.45618 −0.105921
\(190\) 0 0
\(191\) 15.8411 1.14622 0.573110 0.819478i \(-0.305737\pi\)
0.573110 + 0.819478i \(0.305737\pi\)
\(192\) 11.4605 + 1.00267i 0.827092 + 0.0723611i
\(193\) −24.5928 + 11.4678i −1.77023 + 0.825470i −0.794252 + 0.607589i \(0.792137\pi\)
−0.975975 + 0.217882i \(0.930085\pi\)
\(194\) −1.76488 0.311197i −0.126711 0.0223426i
\(195\) 0 0
\(196\) −12.3674 + 4.50136i −0.883385 + 0.321526i
\(197\) −3.74333 13.9703i −0.266701 0.995343i −0.961201 0.275850i \(-0.911041\pi\)
0.694499 0.719493i \(-0.255626\pi\)
\(198\) 0.385716 + 0.103352i 0.0274117 + 0.00734494i
\(199\) 2.04942 2.44240i 0.145279 0.173137i −0.688498 0.725239i \(-0.741729\pi\)
0.833777 + 0.552101i \(0.186174\pi\)
\(200\) 0 0
\(201\) 10.6470 + 18.4412i 0.750983 + 1.30074i
\(202\) 3.09638 0.829671i 0.217860 0.0583755i
\(203\) 0.868843 1.86324i 0.0609808 0.130774i
\(204\) −1.76253 9.99579i −0.123402 0.699845i
\(205\) 0 0
\(206\) 3.01296 + 1.09663i 0.209923 + 0.0764057i
\(207\) 0.566063 6.47013i 0.0393441 0.449705i
\(208\) 5.62701 5.62701i 0.390163 0.390163i
\(209\) 6.52251 4.12194i 0.451172 0.285120i
\(210\) 0 0
\(211\) 0.360006 + 0.429039i 0.0247838 + 0.0295362i 0.778294 0.627900i \(-0.216085\pi\)
−0.753510 + 0.657436i \(0.771641\pi\)
\(212\) 1.71994 + 3.68842i 0.118126 + 0.253322i
\(213\) 24.7756 17.3480i 1.69759 1.18867i
\(214\) 0.648021 0.114264i 0.0442978 0.00781090i
\(215\) 0 0
\(216\) −2.54134 + 4.40173i −0.172916 + 0.299499i
\(217\) −0.180998 + 0.675493i −0.0122869 + 0.0458555i
\(218\) 0.226833 + 2.59271i 0.0153630 + 0.175600i
\(219\) −8.21248 6.89109i −0.554948 0.465656i
\(220\) 0 0
\(221\) −5.44058 3.14112i −0.365973 0.211294i
\(222\) −3.17467 1.48037i −0.213070 0.0993560i
\(223\) −18.4399 12.9118i −1.23483 0.864635i −0.240463 0.970658i \(-0.577299\pi\)
−0.994364 + 0.106023i \(0.966188\pi\)
\(224\) 0.196130 1.11231i 0.0131045 0.0743191i
\(225\) 0 0
\(226\) 2.68653 2.25426i 0.178705 0.149951i
\(227\) −11.5076 11.5076i −0.763785 0.763785i 0.213220 0.977004i \(-0.431605\pi\)
−0.977004 + 0.213220i \(0.931605\pi\)
\(228\) −4.79707 15.4101i −0.317694 1.02056i
\(229\) 11.5082i 0.760486i −0.924887 0.380243i \(-0.875840\pi\)
0.924887 0.380243i \(-0.124160\pi\)
\(230\) 0 0
\(231\) −0.392709 + 1.07896i −0.0258384 + 0.0709903i
\(232\) −4.11587 5.87808i −0.270220 0.385915i
\(233\) −10.0958 + 14.4183i −0.661398 + 0.944574i 0.338596 + 0.940932i \(0.390048\pi\)
−0.999993 + 0.00364164i \(0.998841\pi\)
\(234\) −0.176820 0.485810i −0.0115591 0.0317584i
\(235\) 0 0
\(236\) 2.74094 1.58248i 0.178420 0.103011i
\(237\) 28.8962 2.52809i 1.87701 0.164217i
\(238\) −0.273103 + 0.0238934i −0.0177026 + 0.00154878i
\(239\) −2.74935 + 1.58734i −0.177841 + 0.102676i −0.586278 0.810110i \(-0.699407\pi\)
0.408437 + 0.912786i \(0.366074\pi\)
\(240\) 0 0
\(241\) 2.63620 + 7.24289i 0.169812 + 0.466555i 0.995183 0.0980359i \(-0.0312560\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(242\) 1.34805 1.92521i 0.0866557 0.123757i
\(243\) −4.40186 6.28651i −0.282379 0.403280i
\(244\) −6.01085 + 16.5147i −0.384805 + 1.05724i
\(245\) 0 0
\(246\) 3.52573i 0.224792i
\(247\) −9.21496 3.85639i −0.586334 0.245376i
\(248\) 1.72600 + 1.72600i 0.109601 + 0.109601i
\(249\) −4.93212 + 4.13854i −0.312561 + 0.262270i
\(250\) 0 0
\(251\) −0.155567 + 0.882266i −0.00981932 + 0.0556881i −0.989324 0.145735i \(-0.953445\pi\)
0.979504 + 0.201423i \(0.0645565\pi\)
\(252\) 0.395611 + 0.277010i 0.0249211 + 0.0174500i
\(253\) 13.7991 + 6.43464i 0.867544 + 0.404542i
\(254\) 1.73233 + 1.00016i 0.108696 + 0.0627557i
\(255\) 0 0
\(256\) 7.14527 + 5.99559i 0.446579 + 0.374725i
\(257\) 0.187810 + 2.14668i 0.0117153 + 0.133906i 0.999800 0.0200056i \(-0.00636840\pi\)
−0.988085 + 0.153912i \(0.950813\pi\)
\(258\) 0.800760 2.98848i 0.0498532 0.186055i
\(259\) 1.01266 1.75398i 0.0629237 0.108987i
\(260\) 0 0
\(261\) 4.56705 0.805295i 0.282693 0.0498465i
\(262\) 1.79847 1.25930i 0.111110 0.0778000i
\(263\) −12.4532 26.7060i −0.767899 1.64676i −0.762679 0.646778i \(-0.776116\pi\)
−0.00522005 0.999986i \(-0.501662\pi\)
\(264\) 2.57611 + 3.07009i 0.158549 + 0.188951i
\(265\) 0 0
\(266\) −0.425927 + 0.0927976i −0.0261153 + 0.00568978i
\(267\) −14.2229 + 14.2229i −0.870427 + 0.870427i
\(268\) −1.82998 + 20.9168i −0.111784 + 1.27769i
\(269\) 5.89502 + 2.14561i 0.359426 + 0.130820i 0.515420 0.856938i \(-0.327636\pi\)
−0.155994 + 0.987758i \(0.549858\pi\)
\(270\) 0 0
\(271\) −1.04597 5.93198i −0.0635381 0.360342i −0.999955 0.00945382i \(-0.996991\pi\)
0.936417 0.350889i \(-0.114120\pi\)
\(272\) 4.02285 8.62703i 0.243921 0.523091i
\(273\) 1.43588 0.384744i 0.0869037 0.0232858i
\(274\) −0.785996 1.36139i −0.0474838 0.0822443i
\(275\) 0 0
\(276\) 20.4716 24.3971i 1.23224 1.46853i
\(277\) 21.8337 + 5.85032i 1.31186 + 0.351512i 0.845922 0.533306i \(-0.179051\pi\)
0.465937 + 0.884818i \(0.345717\pi\)
\(278\) 1.43677 + 5.36209i 0.0861716 + 0.321597i
\(279\) −1.48236 + 0.539536i −0.0887468 + 0.0323012i
\(280\) 0 0
\(281\) −11.8624 2.09165i −0.707649 0.124778i −0.191771 0.981440i \(-0.561423\pi\)
−0.515878 + 0.856662i \(0.672534\pi\)
\(282\) 3.03069 1.41323i 0.180475 0.0841568i
\(283\) 11.6168 + 1.01634i 0.690549 + 0.0604152i 0.427028 0.904238i \(-0.359561\pi\)
0.263521 + 0.964654i \(0.415116\pi\)
\(284\) 29.8230 1.76967
\(285\) 0 0
\(286\) 1.21196 0.0716647
\(287\) −2.03079 0.177671i −0.119874 0.0104876i
\(288\) 2.30909 1.07674i 0.136064 0.0634478i
\(289\) 9.34127 + 1.64712i 0.549487 + 0.0968893i
\(290\) 0 0
\(291\) 10.9229 3.97560i 0.640310 0.233054i
\(292\) −2.73595 10.2107i −0.160109 0.597537i
\(293\) −12.1638 3.25928i −0.710616 0.190409i −0.114635 0.993408i \(-0.536570\pi\)
−0.595981 + 0.802999i \(0.703237\pi\)
\(294\) −2.56325 + 3.05476i −0.149492 + 0.178157i
\(295\) 0 0
\(296\) −3.53461 6.12213i −0.205445 0.355841i
\(297\) 7.43802 1.99301i 0.431598 0.115646i
\(298\) 2.47772 5.31348i 0.143530 0.307802i
\(299\) −3.42297 19.4126i −0.197955 1.12266i
\(300\) 0 0
\(301\) 1.68098 + 0.611828i 0.0968903 + 0.0352652i
\(302\) 0.0333690 0.381409i 0.00192017 0.0219476i
\(303\) −14.7022 + 14.7022i −0.844617 + 0.844617i
\(304\) 4.60407 14.4187i 0.264061 0.826969i
\(305\) 0 0
\(306\) −0.397504 0.473727i −0.0227238 0.0270812i
\(307\) 6.97832 + 14.9650i 0.398273 + 0.854100i 0.998525 + 0.0542891i \(0.0172893\pi\)
−0.600252 + 0.799811i \(0.704933\pi\)
\(308\) −0.927419 + 0.649385i −0.0528446 + 0.0370022i
\(309\) −20.4807 + 3.61131i −1.16511 + 0.205440i
\(310\) 0 0
\(311\) 2.66572 4.61716i 0.151159 0.261815i −0.780495 0.625162i \(-0.785033\pi\)
0.931654 + 0.363347i \(0.118366\pi\)
\(312\) 1.34292 5.01184i 0.0760278 0.283740i
\(313\) −1.71309 19.5807i −0.0968296 1.10677i −0.876769 0.480912i \(-0.840306\pi\)
0.779939 0.625855i \(-0.215250\pi\)
\(314\) 3.72434 + 3.12509i 0.210177 + 0.176359i
\(315\) 0 0
\(316\) 24.7696 + 14.3007i 1.39340 + 0.804479i
\(317\) 16.5516 + 7.71815i 0.929632 + 0.433495i 0.827620 0.561289i \(-0.189694\pi\)
0.102012 + 0.994783i \(0.467472\pi\)
\(318\) 1.01009 + 0.707274i 0.0566431 + 0.0396619i
\(319\) −1.88783 + 10.7064i −0.105698 + 0.599443i
\(320\) 0 0
\(321\) −3.26947 + 2.74342i −0.182484 + 0.153122i
\(322\) −0.608255 0.608255i −0.0338967 0.0338967i
\(323\) −11.9356 0.564733i −0.664115 0.0314226i
\(324\) 20.4356i 1.13531i
\(325\) 0 0
\(326\) −1.04159 + 2.86174i −0.0576881 + 0.158497i
\(327\) −9.68250 13.8280i −0.535443 0.764692i
\(328\) −4.08121 + 5.82858i −0.225347 + 0.321829i
\(329\) 0.661285 + 1.81687i 0.0364578 + 0.100167i
\(330\) 0 0
\(331\) −10.5135 + 6.06999i −0.577875 + 0.333637i −0.760289 0.649585i \(-0.774942\pi\)
0.182413 + 0.983222i \(0.441609\pi\)
\(332\) −6.32436 + 0.553310i −0.347094 + 0.0303668i
\(333\) 4.55124 0.398182i 0.249406 0.0218202i
\(334\) −0.673729 + 0.388978i −0.0368648 + 0.0212839i
\(335\) 0 0
\(336\) 0.770369 + 2.11657i 0.0420271 + 0.115468i
\(337\) −11.9360 + 17.0464i −0.650195 + 0.928575i −0.999966 0.00826058i \(-0.997371\pi\)
0.349771 + 0.936835i \(0.386259\pi\)
\(338\) 1.32772 + 1.89618i 0.0722185 + 0.103139i
\(339\) −7.77992 + 21.3752i −0.422547 + 1.16094i
\(340\) 0 0
\(341\) 3.69808i 0.200262i
\(342\) −0.722556 0.666964i −0.0390713 0.0360653i
\(343\) −3.28722 3.28722i −0.177493 0.177493i
\(344\) 4.78310 4.01350i 0.257888 0.216393i
\(345\) 0 0
\(346\) 0.949961 5.38750i 0.0510702 0.289634i
\(347\) 7.40032 + 5.18176i 0.397270 + 0.278171i 0.755093 0.655618i \(-0.227592\pi\)
−0.357823 + 0.933790i \(0.616481\pi\)
\(348\) 20.6099 + 9.61055i 1.10481 + 0.515180i
\(349\) 1.17548 + 0.678665i 0.0629221 + 0.0363281i 0.531131 0.847290i \(-0.321767\pi\)
−0.468209 + 0.883618i \(0.655101\pi\)
\(350\) 0 0
\(351\) −7.63703 6.40823i −0.407634 0.342046i
\(352\) 0.520556 + 5.94999i 0.0277457 + 0.317135i
\(353\) 6.50831 24.2894i 0.346403 1.29279i −0.544563 0.838720i \(-0.683304\pi\)
0.890965 0.454072i \(-0.150029\pi\)
\(354\) 0.479479 0.830482i 0.0254840 0.0441396i
\(355\) 0 0
\(356\) −19.5320 + 3.44402i −1.03519 + 0.182533i
\(357\) 1.45658 1.01991i 0.0770902 0.0539791i
\(358\) −0.980892 2.10353i −0.0518417 0.111175i
\(359\) 1.32860 + 1.58336i 0.0701208 + 0.0835667i 0.799964 0.600047i \(-0.204852\pi\)
−0.729844 + 0.683614i \(0.760407\pi\)
\(360\) 0 0
\(361\) −18.9393 + 1.51788i −0.996804 + 0.0798883i
\(362\) −4.04527 + 4.04527i −0.212615 + 0.212615i
\(363\) −1.32861 + 15.1860i −0.0697337 + 0.797060i
\(364\) 1.37738 + 0.501325i 0.0721943 + 0.0262766i
\(365\) 0 0
\(366\) 0.924669 + 5.24406i 0.0483332 + 0.274111i
\(367\) −2.99889 + 6.43114i −0.156541 + 0.335703i −0.968899 0.247456i \(-0.920406\pi\)
0.812358 + 0.583158i \(0.198183\pi\)
\(368\) 28.8501 7.73037i 1.50392 0.402973i
\(369\) −2.29923 3.98238i −0.119693 0.207314i
\(370\) 0 0
\(371\) −0.458284 + 0.546162i −0.0237929 + 0.0283553i
\(372\) −7.47185 2.00208i −0.387397 0.103803i
\(373\) 6.17989 + 23.0637i 0.319983 + 1.19419i 0.919260 + 0.393650i \(0.128788\pi\)
−0.599277 + 0.800541i \(0.704545\pi\)
\(374\) 1.36228 0.495830i 0.0704419 0.0256388i
\(375\) 0 0
\(376\) 6.64609 + 1.17188i 0.342746 + 0.0604353i
\(377\) 12.7563 5.94835i 0.656982 0.306356i
\(378\) −0.433394 0.0379170i −0.0222914 0.00195024i
\(379\) 16.2074 0.832518 0.416259 0.909246i \(-0.363341\pi\)
0.416259 + 0.909246i \(0.363341\pi\)
\(380\) 0 0
\(381\) −12.9744 −0.664697
\(382\) 4.71468 + 0.412481i 0.241224 + 0.0211044i
\(383\) −5.70067 + 2.65826i −0.291290 + 0.135831i −0.562771 0.826613i \(-0.690265\pi\)
0.271480 + 0.962444i \(0.412487\pi\)
\(384\) 16.2631 + 2.86763i 0.829924 + 0.146338i
\(385\) 0 0
\(386\) −7.61801 + 2.77273i −0.387746 + 0.141128i
\(387\) 1.04440 + 3.89774i 0.0530897 + 0.198133i
\(388\) 11.0710 + 2.96647i 0.562045 + 0.150600i
\(389\) −13.5012 + 16.0901i −0.684537 + 0.815799i −0.990683 0.136185i \(-0.956516\pi\)
0.306147 + 0.951984i \(0.400960\pi\)
\(390\) 0 0
\(391\) −11.7895 20.4200i −0.596221 1.03268i
\(392\) −7.77350 + 2.08290i −0.392621 + 0.105202i
\(393\) −6.01830 + 12.9063i −0.303583 + 0.651036i
\(394\) −0.750336 4.25537i −0.0378014 0.214382i
\(395\) 0 0
\(396\) −2.39988 0.873483i −0.120598 0.0438942i
\(397\) −0.242726 + 2.77437i −0.0121821 + 0.139242i −0.999850 0.0173218i \(-0.994486\pi\)
0.987668 + 0.156563i \(0.0500416\pi\)
\(398\) 0.673552 0.673552i 0.0337621 0.0337621i
\(399\) 2.09155 1.90257i 0.104709 0.0952476i
\(400\) 0 0
\(401\) 14.4597 + 17.2324i 0.722083 + 0.860545i 0.994831 0.101541i \(-0.0323772\pi\)
−0.272749 + 0.962085i \(0.587933\pi\)
\(402\) 2.68862 + 5.76577i 0.134096 + 0.287570i
\(403\) −3.92191 + 2.74615i −0.195364 + 0.136795i
\(404\) −20.1902 + 3.56007i −1.00450 + 0.177120i
\(405\) 0 0
\(406\) 0.307105 0.531921i 0.0152414 0.0263988i
\(407\) −2.77197 + 10.3452i −0.137402 + 0.512790i
\(408\) −0.540932 6.18288i −0.0267801 0.306098i
\(409\) −18.6505 15.6496i −0.922209 0.773825i 0.0521935 0.998637i \(-0.483379\pi\)
−0.974402 + 0.224812i \(0.927823\pi\)
\(410\) 0 0
\(411\) 8.83014 + 5.09808i 0.435559 + 0.251470i
\(412\) −18.5850 8.66631i −0.915616 0.426959i
\(413\) 0.454188 + 0.318026i 0.0223491 + 0.0156490i
\(414\) 0.336948 1.91092i 0.0165601 0.0939168i
\(415\) 0 0
\(416\) 5.92355 4.97045i 0.290426 0.243696i
\(417\) −25.4602 25.4602i −1.24679 1.24679i
\(418\) 2.04859 1.05695i 0.100200 0.0516971i
\(419\) 3.10801i 0.151836i 0.997114 + 0.0759182i \(0.0241888\pi\)
−0.997114 + 0.0759182i \(0.975811\pi\)
\(420\) 0 0
\(421\) −7.35818 + 20.2164i −0.358616 + 0.985289i 0.620894 + 0.783894i \(0.286770\pi\)
−0.979510 + 0.201395i \(0.935453\pi\)
\(422\) 0.0959748 + 0.137066i 0.00467198 + 0.00667228i
\(423\) −2.50161 + 3.57267i −0.121632 + 0.173709i
\(424\) 0.851132 + 2.33847i 0.0413346 + 0.113566i
\(425\) 0 0
\(426\) 7.82552 4.51807i 0.379148 0.218901i
\(427\) −3.06713 + 0.268339i −0.148429 + 0.0129858i
\(428\) −4.19238 + 0.366785i −0.202646 + 0.0177292i
\(429\) −6.80778 + 3.93047i −0.328683 + 0.189765i
\(430\) 0 0
\(431\) −6.33738 17.4118i −0.305261 0.838698i −0.993564 0.113274i \(-0.963866\pi\)
0.688303 0.725424i \(-0.258356\pi\)
\(432\) 8.66429 12.3739i 0.416861 0.595339i
\(433\) 5.25844 + 7.50983i 0.252704 + 0.360899i 0.925382 0.379037i \(-0.123745\pi\)
−0.672677 + 0.739936i \(0.734856\pi\)
\(434\) −0.0714583 + 0.196330i −0.00343011 + 0.00942414i
\(435\) 0 0
\(436\) 16.6452i 0.797159i
\(437\) −22.7156 29.8281i −1.08663 1.42687i
\(438\) −2.26479 2.26479i −0.108216 0.108216i
\(439\) −13.5592 + 11.3775i −0.647147 + 0.543021i −0.906204 0.422841i \(-0.861033\pi\)
0.259057 + 0.965862i \(0.416588\pi\)
\(440\) 0 0
\(441\) 0.903144 5.12198i 0.0430068 0.243904i
\(442\) −1.53745 1.07654i −0.0731293 0.0512057i
\(443\) 4.31463 + 2.01194i 0.204994 + 0.0955903i 0.522404 0.852698i \(-0.325035\pi\)
−0.317410 + 0.948288i \(0.602813\pi\)
\(444\) 19.4013 + 11.2014i 0.920747 + 0.531593i
\(445\) 0 0
\(446\) −5.15195 4.32300i −0.243952 0.204700i
\(447\) 3.31426 + 37.8821i 0.156759 + 1.79176i
\(448\) −0.514341 + 1.91955i −0.0243003 + 0.0906901i
\(449\) 1.65599 2.86825i 0.0781508 0.135361i −0.824301 0.566151i \(-0.808432\pi\)
0.902452 + 0.430790i \(0.141765\pi\)
\(450\) 0 0
\(451\) 10.6162 1.87193i 0.499899 0.0881458i
\(452\) −18.3730 + 12.8649i −0.864193 + 0.605115i
\(453\) 1.04950 + 2.25065i 0.0493097 + 0.105745i
\(454\) −3.12529 3.72457i −0.146677 0.174803i
\(455\) 0 0
\(456\) −2.10088 9.64271i −0.0983826 0.451561i
\(457\) −20.2603 + 20.2603i −0.947736 + 0.947736i −0.998700 0.0509647i \(-0.983770\pi\)
0.0509647 + 0.998700i \(0.483770\pi\)
\(458\) 0.299660 3.42513i 0.0140022 0.160046i
\(459\) −11.2060 4.07864i −0.523049 0.190374i
\(460\) 0 0
\(461\) 2.78058 + 15.7694i 0.129504 + 0.734455i 0.978530 + 0.206104i \(0.0660785\pi\)
−0.849026 + 0.528351i \(0.822810\pi\)
\(462\) −0.144974 + 0.310898i −0.00674481 + 0.0144643i
\(463\) −27.3267 + 7.32218i −1.26998 + 0.340291i −0.830024 0.557728i \(-0.811673\pi\)
−0.439958 + 0.898018i \(0.645007\pi\)
\(464\) 10.6633 + 18.4693i 0.495029 + 0.857416i
\(465\) 0 0
\(466\) −3.38018 + 4.02835i −0.156584 + 0.186610i
\(467\) 1.48896 + 0.398965i 0.0689007 + 0.0184619i 0.293105 0.956080i \(-0.405312\pi\)
−0.224204 + 0.974542i \(0.571978\pi\)
\(468\) 0.855767 + 3.19377i 0.0395579 + 0.147632i
\(469\) −3.45652 + 1.25807i −0.159607 + 0.0580923i
\(470\) 0 0
\(471\) −31.0551 5.47586i −1.43094 0.252314i
\(472\) 1.75398 0.817894i 0.0807335 0.0376466i
\(473\) −9.42369 0.824466i −0.433302 0.0379090i
\(474\) 8.66602 0.398044
\(475\) 0 0
\(476\) 1.75332 0.0803632
\(477\) −1.60215 0.140170i −0.0733575 0.00641795i
\(478\) −0.859605 + 0.400840i −0.0393174 + 0.0183340i
\(479\) 16.5181 + 2.91258i 0.754730 + 0.133079i 0.537759 0.843099i \(-0.319271\pi\)
0.216971 + 0.976178i \(0.430382\pi\)
\(480\) 0 0
\(481\) 13.0297 4.74243i 0.594105 0.216236i
\(482\) 0.595999 + 2.22430i 0.0271470 + 0.101314i
\(483\) 5.38928 + 1.44405i 0.245221 + 0.0657067i
\(484\) −9.66184 + 11.5145i −0.439174 + 0.523388i
\(485\) 0 0
\(486\) −1.14641 1.98563i −0.0520020 0.0900702i
\(487\) −3.88785 + 1.04175i −0.176175 + 0.0472060i −0.345828 0.938298i \(-0.612402\pi\)
0.169653 + 0.985504i \(0.445735\pi\)
\(488\) −4.54165 + 9.73959i −0.205591 + 0.440891i
\(489\) −3.43005 19.4528i −0.155112 0.879685i
\(490\) 0 0
\(491\) −10.9927 4.00100i −0.496091 0.180563i 0.0818437 0.996645i \(-0.473919\pi\)
−0.577935 + 0.816083i \(0.696141\pi\)
\(492\) 1.96528 22.4632i 0.0886015 1.01272i
\(493\) 11.9049 11.9049i 0.536171 0.536171i
\(494\) −2.64218 1.38770i −0.118877 0.0624355i
\(495\) 0 0
\(496\) −4.66307 5.55723i −0.209378 0.249527i
\(497\) 2.20802 + 4.73511i 0.0990432 + 0.212399i
\(498\) −1.57568 + 1.10330i −0.0706079 + 0.0494402i
\(499\) −25.5639 + 4.50760i −1.14440 + 0.201788i −0.713527 0.700627i \(-0.752904\pi\)
−0.430868 + 0.902415i \(0.641792\pi\)
\(500\) 0 0
\(501\) 2.52296 4.36990i 0.112718 0.195233i
\(502\) −0.0692736 + 0.258533i −0.00309183 + 0.0115389i
\(503\) 2.84355 + 32.5020i 0.126788 + 1.44919i 0.747035 + 0.664784i \(0.231477\pi\)
−0.620248 + 0.784406i \(0.712968\pi\)
\(504\) 0.226224 + 0.189824i 0.0100768 + 0.00845545i
\(505\) 0 0
\(506\) 3.93940 + 2.27441i 0.175128 + 0.101110i
\(507\) −13.6075 6.34527i −0.604329 0.281803i
\(508\) −10.4796 7.33786i −0.464955 0.325565i
\(509\) −1.27621 + 7.23775i −0.0565671 + 0.320808i −0.999940 0.0109254i \(-0.996522\pi\)
0.943373 + 0.331733i \(0.107633\pi\)
\(510\) 0 0
\(511\) 1.41863 1.19037i 0.0627565 0.0526590i
\(512\) 14.0224 + 14.0224i 0.619710 + 0.619710i
\(513\) −18.4975 4.17163i −0.816686 0.184182i
\(514\) 0.643793i 0.0283965i
\(515\) 0 0
\(516\) −6.76763 + 18.5939i −0.297928 + 0.818551i
\(517\) −5.86445 8.37530i −0.257918 0.368345i
\(518\) 0.347063 0.495658i 0.0152491 0.0217780i
\(519\) 12.1360 + 33.3433i 0.532709 + 1.46361i
\(520\) 0 0
\(521\) −25.6025 + 14.7816i −1.12166 + 0.647593i −0.941825 0.336103i \(-0.890891\pi\)
−0.179839 + 0.983696i \(0.557558\pi\)
\(522\) 1.38023 0.120755i 0.0604112 0.00528529i
\(523\) 36.7539 3.21555i 1.60714 0.140606i 0.752055 0.659100i \(-0.229063\pi\)
0.855082 + 0.518494i \(0.173507\pi\)
\(524\) −12.1604 + 7.02082i −0.531230 + 0.306706i
\(525\) 0 0
\(526\) −3.01099 8.27262i −0.131285 0.360703i
\(527\) −3.28486 + 4.69127i −0.143091 + 0.204355i
\(528\) −6.83184 9.75687i −0.297318 0.424613i
\(529\) 17.4379 47.9102i 0.758169 2.08305i
\(530\) 0 0
\(531\) 1.25073i 0.0542770i
\(532\) 2.76540 0.353818i 0.119895 0.0153400i
\(533\) −9.86873 9.86873i −0.427462 0.427462i
\(534\) −4.60342 + 3.86273i −0.199209 + 0.167157i
\(535\) 0 0
\(536\) −2.22947 + 12.6439i −0.0962983 + 0.546135i
\(537\) 12.3317 + 8.63476i 0.532153 + 0.372618i
\(538\) 1.69863 + 0.792084i 0.0732332 + 0.0341492i
\(539\) 10.5590 + 6.09627i 0.454810 + 0.262585i
\(540\) 0 0
\(541\) 30.1856 + 25.3287i 1.29778 + 1.08897i 0.990524 + 0.137341i \(0.0438556\pi\)
0.307257 + 0.951627i \(0.400589\pi\)
\(542\) −0.156844 1.79274i −0.00673703 0.0770046i
\(543\) 9.60385 35.8421i 0.412141 1.53813i
\(544\) 4.62478 8.01036i 0.198286 0.343441i
\(545\) 0 0
\(546\) 0.437372 0.0771204i 0.0187178 0.00330045i
\(547\) −3.33017 + 2.33181i −0.142388 + 0.0997010i −0.642600 0.766202i \(-0.722144\pi\)
0.500212 + 0.865903i \(0.333255\pi\)
\(548\) 4.24891 + 9.11181i 0.181504 + 0.389237i
\(549\) −4.46423 5.32026i −0.190529 0.227063i
\(550\) 0 0
\(551\) 16.3745 21.1793i 0.697577 0.902269i
\(552\) 13.7705 13.7705i 0.586111 0.586111i
\(553\) −0.436704 + 4.99155i −0.0185705 + 0.212262i
\(554\) 6.34589 + 2.30972i 0.269611 + 0.0981304i
\(555\) 0 0
\(556\) −6.16509 34.9640i −0.261458 1.48280i
\(557\) −0.133737 + 0.286800i −0.00566663 + 0.0121521i −0.909121 0.416533i \(-0.863245\pi\)
0.903454 + 0.428685i \(0.141023\pi\)
\(558\) −0.455236 + 0.121980i −0.0192717 + 0.00516383i
\(559\) 6.12355 + 10.6063i 0.258999 + 0.448599i
\(560\) 0 0
\(561\) −6.04415 + 7.20314i −0.255184 + 0.304117i
\(562\) −3.47606 0.931407i −0.146629 0.0392890i
\(563\) 12.0964 + 45.1444i 0.509803 + 1.90261i 0.422330 + 0.906442i \(0.361212\pi\)
0.0874723 + 0.996167i \(0.472121\pi\)
\(564\) −20.0969 + 7.31468i −0.846233 + 0.308004i
\(565\) 0 0
\(566\) 3.43098 + 0.604975i 0.144215 + 0.0254290i
\(567\) 3.24463 1.51300i 0.136262 0.0635399i
\(568\) 18.1667 + 1.58938i 0.762258 + 0.0666889i
\(569\) −25.5911 −1.07283 −0.536417 0.843953i \(-0.680223\pi\)
−0.536417 + 0.843953i \(0.680223\pi\)
\(570\) 0 0
\(571\) −2.95798 −0.123788 −0.0618938 0.998083i \(-0.519714\pi\)
−0.0618938 + 0.998083i \(0.519714\pi\)
\(572\) −7.72167 0.675558i −0.322859 0.0282465i
\(573\) −27.8208 + 12.9731i −1.16223 + 0.541958i
\(574\) −0.599785 0.105758i −0.0250345 0.00441426i
\(575\) 0 0
\(576\) −4.21243 + 1.53320i −0.175518 + 0.0638833i
\(577\) 1.90612 + 7.11374i 0.0793528 + 0.296149i 0.994185 0.107685i \(-0.0343439\pi\)
−0.914832 + 0.403834i \(0.867677\pi\)
\(578\) 2.73730 + 0.733456i 0.113857 + 0.0305078i
\(579\) 33.7994 40.2806i 1.40466 1.67400i
\(580\) 0 0
\(581\) −0.556090 0.963176i −0.0230705 0.0399593i
\(582\) 3.35443 0.898816i 0.139046 0.0372571i
\(583\) 1.59336 3.41698i 0.0659904 0.141517i
\(584\) −1.12244 6.36567i −0.0464469 0.263413i
\(585\) 0 0
\(586\) −3.53536 1.28677i −0.146045 0.0531559i
\(587\) −0.255196 + 2.91690i −0.0105331 + 0.120394i −0.999641 0.0267997i \(-0.991468\pi\)
0.989108 + 0.147193i \(0.0470239\pi\)
\(588\) 18.0338 18.0338i 0.743701 0.743701i
\(589\) −4.23432 + 8.06213i −0.174472 + 0.332194i
\(590\) 0 0
\(591\) 18.0152 + 21.4697i 0.741047 + 0.883146i
\(592\) 8.87911 + 19.0413i 0.364929 + 0.782593i
\(593\) −2.83613 + 1.98588i −0.116466 + 0.0815502i −0.630358 0.776304i \(-0.717092\pi\)
0.513892 + 0.857855i \(0.328203\pi\)
\(594\) 2.26563 0.399491i 0.0929599 0.0163913i
\(595\) 0 0
\(596\) −18.7479 + 32.4723i −0.767943 + 1.33012i
\(597\) −1.59908 + 5.96783i −0.0654458 + 0.244247i
\(598\) −0.513277 5.86679i −0.0209895 0.239911i
\(599\) −12.9017 10.8258i −0.527151 0.442332i 0.339965 0.940438i \(-0.389585\pi\)
−0.867116 + 0.498106i \(0.834029\pi\)
\(600\) 0 0
\(601\) 3.51772 + 2.03096i 0.143491 + 0.0828445i 0.570027 0.821626i \(-0.306933\pi\)
−0.426536 + 0.904471i \(0.640266\pi\)
\(602\) 0.484370 + 0.225865i 0.0197414 + 0.00920559i
\(603\) −6.79688 4.75922i −0.276790 0.193811i
\(604\) −0.425202 + 2.41144i −0.0173012 + 0.0981201i
\(605\) 0 0
\(606\) −4.75854 + 3.99289i −0.193303 + 0.162200i
\(607\) −24.9122 24.9122i −1.01116 1.01116i −0.999937 0.0112183i \(-0.996429\pi\)
−0.0112183 0.999937i \(-0.503571\pi\)
\(608\) 5.67790 13.5675i 0.230269 0.550236i
\(609\) 3.98385i 0.161434i
\(610\) 0 0
\(611\) −4.52735 + 12.4388i −0.183157 + 0.503220i
\(612\) 2.26853 + 3.23979i 0.0916997 + 0.130961i
\(613\) −5.19022 + 7.41240i −0.209631 + 0.299384i −0.910174 0.414226i \(-0.864052\pi\)
0.700543 + 0.713610i \(0.252941\pi\)
\(614\) 1.68724 + 4.63566i 0.0680916 + 0.187080i
\(615\) 0 0
\(616\) −0.599546 + 0.346148i −0.0241564 + 0.0139467i
\(617\) 42.1238 3.68535i 1.69584 0.148367i 0.802171 0.597094i \(-0.203678\pi\)
0.893669 + 0.448727i \(0.148122\pi\)
\(618\) −6.18959 + 0.541519i −0.248982 + 0.0217831i
\(619\) 15.6339 9.02621i 0.628378 0.362794i −0.151746 0.988420i \(-0.548489\pi\)
0.780124 + 0.625625i \(0.215156\pi\)
\(620\) 0 0
\(621\) −12.7977 35.1615i −0.513555 1.41098i
\(622\) 0.913606 1.30476i 0.0366323 0.0523163i
\(623\) −1.99292 2.84618i −0.0798446 0.114030i
\(624\) −5.27417 + 14.4907i −0.211136 + 0.580091i
\(625\) 0 0
\(626\) 5.87229i 0.234704i
\(627\) −8.07948 + 12.5808i −0.322663 + 0.502427i
\(628\) −21.9866 21.9866i −0.877363 0.877363i
\(629\) 12.7056 10.6613i 0.506607 0.425094i
\(630\) 0 0
\(631\) −2.44081 + 13.8425i −0.0971672 + 0.551062i 0.896895 + 0.442244i \(0.145818\pi\)
−0.994062 + 0.108818i \(0.965293\pi\)
\(632\) 14.3263 + 10.0314i 0.569869 + 0.399026i
\(633\) −0.983622 0.458670i −0.0390954 0.0182305i
\(634\) 4.72519 + 2.72809i 0.187661 + 0.108346i
\(635\) 0 0
\(636\) −6.04127 5.06923i −0.239552 0.201008i
\(637\) −1.37577 15.7252i −0.0545101 0.623053i
\(638\) −0.840643 + 3.13732i −0.0332814 + 0.124208i
\(639\) −5.89272 + 10.2065i −0.233112 + 0.403763i
\(640\) 0 0
\(641\) 23.1158 4.07593i 0.913018 0.160990i 0.302645 0.953103i \(-0.402130\pi\)
0.610374 + 0.792114i \(0.291019\pi\)
\(642\) −1.04451 + 0.731373i −0.0412235 + 0.0288650i
\(643\) −4.67679 10.0294i −0.184435 0.395521i 0.792251 0.610195i \(-0.208909\pi\)
−0.976686 + 0.214674i \(0.931131\pi\)
\(644\) 3.53628 + 4.21437i 0.139349 + 0.166070i
\(645\) 0 0
\(646\) −3.53762 0.478866i −0.139186 0.0188407i
\(647\) 10.3878 10.3878i 0.408386 0.408386i −0.472790 0.881175i \(-0.656753\pi\)
0.881175 + 0.472790i \(0.156753\pi\)
\(648\) 1.08909 12.4484i 0.0427835 0.489018i
\(649\) −2.75522 1.00282i −0.108152 0.0393640i
\(650\) 0 0
\(651\) −0.235319 1.33456i −0.00922289 0.0523056i
\(652\) 8.23134 17.6522i 0.322364 0.691312i
\(653\) 19.7746 5.29859i 0.773841 0.207350i 0.149773 0.988720i \(-0.452146\pi\)
0.624067 + 0.781370i \(0.285479\pi\)
\(654\) −2.52168 4.36767i −0.0986054 0.170790i
\(655\) 0 0
\(656\) 13.5930 16.1995i 0.530717 0.632484i
\(657\) 4.03507 + 1.08119i 0.157423 + 0.0421813i
\(658\) 0.149505 + 0.557961i 0.00582832 + 0.0217516i
\(659\) 1.78757 0.650624i 0.0696340 0.0253447i −0.306968 0.951720i \(-0.599315\pi\)
0.376602 + 0.926375i \(0.377092\pi\)
\(660\) 0 0
\(661\) 14.1497 + 2.49497i 0.550360 + 0.0970433i 0.441911 0.897059i \(-0.354301\pi\)
0.108448 + 0.994102i \(0.465412\pi\)
\(662\) −3.28713 + 1.53281i −0.127758 + 0.0595745i
\(663\) 12.1274 + 1.06101i 0.470990 + 0.0412063i
\(664\) −3.88198 −0.150650
\(665\) 0 0
\(666\) 1.36493 0.0528898
\(667\) 52.6264 + 4.60422i 2.03770 + 0.178276i
\(668\) 4.50930 2.10272i 0.174470 0.0813566i
\(669\) 42.9591 + 7.57485i 1.66090 + 0.292861i
\(670\) 0 0
\(671\) 15.2993 5.56850i 0.590624 0.214969i
\(672\) 0.566473 + 2.11410i 0.0218522 + 0.0815534i
\(673\) −13.2264 3.54401i −0.509842 0.136612i −0.00527799 0.999986i \(-0.501680\pi\)
−0.504564 + 0.863374i \(0.668347\pi\)
\(674\) −3.99630 + 4.76261i −0.153932 + 0.183449i
\(675\) 0 0
\(676\) −7.40225 12.8211i −0.284702 0.493118i
\(677\) 30.7746 8.24603i 1.18276 0.316921i 0.386742 0.922188i \(-0.373600\pi\)
0.796023 + 0.605267i \(0.206934\pi\)
\(678\) −2.87207 + 6.15918i −0.110301 + 0.236542i
\(679\) 0.348672 + 1.97741i 0.0133808 + 0.0758862i
\(680\) 0 0
\(681\) 29.6343 + 10.7860i 1.13559 + 0.413320i
\(682\) 0.0962933 1.10064i 0.00368726 0.0421456i
\(683\) 1.98056 1.98056i 0.0757839 0.0757839i −0.668199 0.743983i \(-0.732934\pi\)
0.743983 + 0.668199i \(0.232934\pi\)
\(684\) 4.23179 + 4.65213i 0.161807 + 0.177879i
\(685\) 0 0
\(686\) −0.892759 1.06395i −0.0340857 0.0406218i
\(687\) 9.42469 + 20.2113i 0.359574 + 0.771110i
\(688\) −15.2009 + 10.6438i −0.579529 + 0.405791i
\(689\) −4.80701 + 0.847605i −0.183132 + 0.0322912i
\(690\) 0 0
\(691\) 9.82610 17.0193i 0.373802 0.647445i −0.616345 0.787476i \(-0.711387\pi\)
0.990147 + 0.140032i \(0.0447205\pi\)
\(692\) −9.05546 + 33.7954i −0.344237 + 1.28471i
\(693\) −0.0389944 0.445708i −0.00148127 0.0169310i
\(694\) 2.06759 + 1.73491i 0.0784845 + 0.0658563i
\(695\) 0 0
\(696\) 12.0424 + 6.95265i 0.456464 + 0.263540i
\(697\) −15.1302 7.05533i −0.573097 0.267240i
\(698\) 0.332180 + 0.232595i 0.0125732 + 0.00880385i
\(699\) 5.92283 33.5900i 0.224022 1.27049i
\(700\) 0 0
\(701\) 25.1461 21.1001i 0.949755 0.796939i −0.0295010 0.999565i \(-0.509392\pi\)
0.979256 + 0.202625i \(0.0649474\pi\)
\(702\) −2.10610 2.10610i −0.0794896 0.0794896i
\(703\) 17.8884 19.3794i 0.674673 0.730908i
\(704\) 10.5088i 0.396066i
\(705\) 0 0
\(706\) 2.56949 7.05962i 0.0967042 0.265692i
\(707\) −2.06007 2.94209i −0.0774770 0.110649i
\(708\) −3.51779 + 5.02392i −0.132206 + 0.188810i
\(709\) −6.40035 17.5848i −0.240370 0.660412i −0.999950 0.00999760i \(-0.996818\pi\)
0.759580 0.650414i \(-0.225405\pi\)
\(710\) 0 0
\(711\) −9.78844 + 5.65136i −0.367095 + 0.211943i
\(712\) −12.0815 + 1.05699i −0.452772 + 0.0396125i
\(713\) −17.9015 + 1.56617i −0.670415 + 0.0586537i
\(714\) 0.460069 0.265621i 0.0172176 0.00994061i
\(715\) 0 0
\(716\) 5.07695 + 13.9488i 0.189735 + 0.521291i
\(717\) 3.52859 5.03934i 0.131778 0.188198i
\(718\) 0.354194 + 0.505842i 0.0132184 + 0.0188778i
\(719\) 2.67044 7.33697i 0.0995905 0.273623i −0.879885 0.475187i \(-0.842380\pi\)
0.979475 + 0.201564i \(0.0646026\pi\)
\(720\) 0 0
\(721\) 3.59244i 0.133789i
\(722\) −5.67630 0.0413976i −0.211250 0.00154066i
\(723\) −10.5614 10.5614i −0.392782 0.392782i
\(724\) 28.0282 23.5185i 1.04166 0.874057i
\(725\) 0 0
\(726\) −0.790850 + 4.48513i −0.0293512 + 0.166459i
\(727\) −24.5663 17.2015i −0.911115 0.637970i 0.0211378 0.999777i \(-0.493271\pi\)
−0.932253 + 0.361807i \(0.882160\pi\)
\(728\) 0.812315 + 0.378788i 0.0301064 + 0.0140388i
\(729\) −14.9076 8.60690i −0.552133 0.318774i
\(730\) 0 0
\(731\) 11.2223 + 9.41660i 0.415070 + 0.348285i
\(732\) −2.96818 33.9265i −0.109707 1.25396i
\(733\) 4.87884 18.2081i 0.180204 0.672531i −0.815402 0.578895i \(-0.803484\pi\)
0.995606 0.0936365i \(-0.0298491\pi\)
\(734\) −1.06000 + 1.83597i −0.0391253 + 0.0677670i
\(735\) 0 0
\(736\) 28.5819 5.03976i 1.05354 0.185768i
\(737\) 15.9337 11.1569i 0.586926 0.410970i
\(738\) −0.580609 1.24512i −0.0213725 0.0458335i
\(739\) 19.7272 + 23.5100i 0.725678 + 0.864829i 0.995169 0.0981738i \(-0.0313001\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(740\) 0 0
\(741\) 19.3419 0.773834i 0.710544 0.0284275i
\(742\) −0.150618 + 0.150618i −0.00552935 + 0.00552935i
\(743\) −1.19259 + 13.6313i −0.0437517 + 0.500084i 0.942428 + 0.334408i \(0.108536\pi\)
−0.986180 + 0.165676i \(0.947019\pi\)
\(744\) −4.44479 1.61777i −0.162954 0.0593103i
\(745\) 0 0
\(746\) 1.23874 + 7.02522i 0.0453533 + 0.257212i
\(747\) 1.06027 2.27375i 0.0387931 0.0831921i
\(748\) −8.95578 + 2.39969i −0.327456 + 0.0877415i
\(749\) −0.368629 0.638484i −0.0134694 0.0233297i
\(750\) 0 0
\(751\) −14.7692 + 17.6012i −0.538934 + 0.642277i −0.964948 0.262440i \(-0.915473\pi\)
0.426014 + 0.904717i \(0.359917\pi\)
\(752\) −19.3735 5.19111i −0.706478 0.189300i
\(753\) −0.449318 1.67688i −0.0163741 0.0611088i
\(754\) 3.95146 1.43822i 0.143904 0.0523767i
\(755\) 0 0
\(756\) 2.74011 + 0.483156i 0.0996569 + 0.0175722i
\(757\) 2.99560 1.39687i 0.108877 0.0507702i −0.367417 0.930056i \(-0.619758\pi\)
0.476294 + 0.879286i \(0.341980\pi\)
\(758\) 4.82371 + 0.422020i 0.175205 + 0.0153284i
\(759\) −29.5043 −1.07094
\(760\) 0 0
\(761\) −39.1861 −1.42050 −0.710248 0.703952i \(-0.751417\pi\)
−0.710248 + 0.703952i \(0.751417\pi\)
\(762\) −3.86148 0.337836i −0.139887 0.0122385i
\(763\) 2.64282 1.23237i 0.0956764 0.0446146i
\(764\) −29.8084 5.25602i −1.07843 0.190156i
\(765\) 0 0
\(766\) −1.76587 + 0.642725i −0.0638036 + 0.0232226i
\(767\) 0.982478 + 3.66666i 0.0354752 + 0.132395i
\(768\) −17.4590 4.67811i −0.629996 0.168807i
\(769\) −22.2353 + 26.4990i −0.801825 + 0.955578i −0.999696 0.0246499i \(-0.992153\pi\)
0.197871 + 0.980228i \(0.436597\pi\)
\(770\) 0 0
\(771\) −2.08787 3.61629i −0.0751927 0.130238i
\(772\) 50.0815 13.4193i 1.80247 0.482972i
\(773\) 7.07654 15.1757i 0.254526 0.545832i −0.736977 0.675918i \(-0.763748\pi\)
0.991503 + 0.130086i \(0.0415253\pi\)
\(774\) 0.209345 + 1.18726i 0.00752476 + 0.0426751i
\(775\) 0 0
\(776\) 6.58582 + 2.39704i 0.236417 + 0.0860488i
\(777\) −0.342058 + 3.90974i −0.0122713 + 0.140261i
\(778\) −4.43724 + 4.43724i −0.159083 + 0.159083i
\(779\) −25.2877 8.07467i −0.906026 0.289305i
\(780\) 0 0
\(781\) −17.7591 21.1645i −0.635470 0.757324i
\(782\) −2.97713 6.38447i −0.106462 0.228308i
\(783\) 21.8858 15.3246i 0.782134 0.547656i
\(784\) 23.5545 4.15329i 0.841232 0.148332i
\(785\) 0 0
\(786\) −2.12725 + 3.68451i −0.0758766 + 0.131422i
\(787\) 11.9180 44.4784i 0.424830 1.58549i −0.339465 0.940619i \(-0.610246\pi\)
0.764295 0.644867i \(-0.223087\pi\)
\(788\) 2.40858 + 27.5301i 0.0858019 + 0.980721i
\(789\) 43.7419 + 36.7038i 1.55725 + 1.30669i
\(790\) 0 0
\(791\) −3.40290 1.96467i −0.120993 0.0698555i
\(792\) −1.41533 0.659982i −0.0502917 0.0234514i
\(793\) −17.2666 12.0902i −0.613156 0.429336i
\(794\) −0.144482 + 0.819399i −0.00512748 + 0.0290794i
\(795\) 0 0
\(796\) −4.66680 + 3.91591i −0.165410 + 0.138796i
\(797\) 14.9095 + 14.9095i 0.528121 + 0.528121i 0.920012 0.391891i \(-0.128179\pi\)
−0.391891 + 0.920012i \(0.628179\pi\)
\(798\) 0.672036 0.511789i 0.0237898 0.0181171i
\(799\) 15.8338i 0.560160i
\(800\) 0 0
\(801\) 2.68066 7.36505i 0.0947164 0.260231i
\(802\) 3.85484 + 5.50528i 0.136119 + 0.194398i
\(803\) −5.61702 + 8.02193i −0.198220 + 0.283088i
\(804\) −13.9159 38.2337i −0.490777 1.34840i
\(805\) 0 0
\(806\) −1.23876 + 0.715198i −0.0436335 + 0.0251918i
\(807\) −12.1103 + 1.05951i −0.426302 + 0.0372966i
\(808\) −12.4886 + 1.09261i −0.439347 + 0.0384379i
\(809\) −0.0883067 + 0.0509839i −0.00310470 + 0.00179250i −0.501552 0.865128i \(-0.667237\pi\)
0.498447 + 0.866920i \(0.333904\pi\)
\(810\) 0 0
\(811\) 13.8775 + 38.1282i 0.487306 + 1.33886i 0.903111 + 0.429407i \(0.141278\pi\)
−0.415805 + 0.909454i \(0.636500\pi\)
\(812\) −2.25313 + 3.21780i −0.0790694 + 0.112923i
\(813\) 6.69499 + 9.56143i 0.234803 + 0.335334i
\(814\) −1.09438 + 3.00679i −0.0383580 + 0.105388i
\(815\) 0 0
\(816\) 18.4457i 0.645730i
\(817\) 19.6004 + 12.5876i 0.685733 + 0.440383i
\(818\) −5.14334 5.14334i −0.179833 0.179833i
\(819\) −0.443728 + 0.372332i −0.0155051 + 0.0130103i
\(820\) 0 0
\(821\) −1.91779 + 10.8763i −0.0669314 + 0.379587i 0.932880 + 0.360186i \(0.117287\pi\)
−0.999812 + 0.0194006i \(0.993824\pi\)
\(822\) 2.49531 + 1.74724i 0.0870340 + 0.0609419i
\(823\) 41.8739 + 19.5261i 1.45963 + 0.680638i 0.980394 0.197047i \(-0.0631353\pi\)
0.479238 + 0.877685i \(0.340913\pi\)
\(824\) −10.8592 6.26956i −0.378298 0.218410i
\(825\) 0 0
\(826\) 0.126896 + 0.106479i 0.00441528 + 0.00370486i
\(827\) −1.94055 22.1806i −0.0674796 0.771295i −0.952260 0.305287i \(-0.901247\pi\)
0.884781 0.466008i \(-0.154308\pi\)
\(828\) −3.21194 + 11.9871i −0.111622 + 0.416581i
\(829\) −13.8403 + 23.9721i −0.480694 + 0.832587i −0.999755 0.0221506i \(-0.992949\pi\)
0.519060 + 0.854738i \(0.326282\pi\)
\(830\) 0 0
\(831\) −43.1365 + 7.60613i −1.49639 + 0.263854i
\(832\) −11.1449 + 7.80373i −0.386379 + 0.270545i
\(833\) −7.97980 17.1127i −0.276484 0.592921i
\(834\) −6.91462 8.24052i −0.239434 0.285346i
\(835\) 0 0
\(836\) −13.6411 + 5.59216i −0.471789 + 0.193409i
\(837\) −6.42639 + 6.42639i −0.222128 + 0.222128i
\(838\) −0.0809287 + 0.925019i −0.00279564 + 0.0319543i
\(839\) −35.1412 12.7903i −1.21321 0.441572i −0.345393 0.938458i \(-0.612254\pi\)
−0.867815 + 0.496887i \(0.834476\pi\)
\(840\) 0 0
\(841\) 1.51428 + 8.58788i 0.0522164 + 0.296134i
\(842\) −2.71638 + 5.82530i −0.0936127 + 0.200753i
\(843\) 22.5462 6.04123i 0.776532 0.208071i
\(844\) −0.535075 0.926777i −0.0184180 0.0319010i
\(845\) 0 0
\(846\) −0.837567 + 0.998173i −0.0287961 + 0.0343179i
\(847\) −2.54354 0.681540i −0.0873972 0.0234180i
\(848\) −1.91422 7.14395i −0.0657344 0.245324i
\(849\) −21.2344 + 7.72868i −0.728762 + 0.265248i
\(850\) 0 0
\(851\) 51.2522 + 9.03714i 1.75690 + 0.309789i
\(852\) −52.3766 + 24.4236i −1.79439 + 0.836739i
\(853\) 18.2820 + 1.59947i 0.625964 + 0.0547648i 0.395725 0.918369i \(-0.370493\pi\)
0.230240 + 0.973134i \(0.426049\pi\)
\(854\) −0.919837 −0.0314762
\(855\) 0 0
\(856\) −2.57334 −0.0879549
\(857\) −48.7757 4.26732i −1.66615 0.145769i −0.785283 0.619138i \(-0.787482\pi\)
−0.880864 + 0.473369i \(0.843038\pi\)
\(858\) −2.12850 + 0.992537i −0.0726659 + 0.0338846i
\(859\) 2.01743 + 0.355727i 0.0688338 + 0.0121373i 0.207959 0.978138i \(-0.433318\pi\)
−0.139125 + 0.990275i \(0.544429\pi\)
\(860\) 0 0
\(861\) 3.71207 1.35108i 0.126507 0.0460448i
\(862\) −1.43278 5.34719i −0.0488005 0.182126i
\(863\) −33.3761 8.94309i −1.13613 0.304426i −0.358738 0.933438i \(-0.616793\pi\)
−0.777396 + 0.629012i \(0.783460\pi\)
\(864\) 9.43506 11.2443i 0.320987 0.382538i
\(865\) 0 0
\(866\) 1.36949 + 2.37203i 0.0465372 + 0.0806048i
\(867\) −17.7545 + 4.75730i −0.602974 + 0.161566i
\(868\) 0.564713 1.21103i 0.0191676 0.0411051i
\(869\) −4.60109 26.0941i −0.156081 0.885181i
\(870\) 0 0
\(871\) −23.6644 8.61312i −0.801836 0.291844i
\(872\) 0.887084 10.1394i 0.0300405 0.343364i
\(873\) −3.20275 + 3.20275i −0.108397 + 0.108397i
\(874\) −5.98402 9.46905i −0.202412 0.320295i
\(875\) 0 0
\(876\) 13.1671 + 15.6919i 0.444875 + 0.530181i
\(877\) −17.7162 37.9925i −0.598234 1.28292i −0.939371 0.342903i \(-0.888590\pi\)
0.341137 0.940014i \(-0.389188\pi\)
\(878\) −4.33181 + 3.03316i −0.146191 + 0.102364i
\(879\) 24.0318 4.23745i 0.810572 0.142926i
\(880\) 0 0
\(881\) 2.70678 4.68828i 0.0911936 0.157952i −0.816820 0.576893i \(-0.804265\pi\)
0.908014 + 0.418941i \(0.137598\pi\)
\(882\) 0.402167 1.50091i 0.0135417 0.0505382i
\(883\) −2.66819 30.4975i −0.0897917 1.02632i −0.898751 0.438459i \(-0.855524\pi\)
0.808959 0.587864i \(-0.200031\pi\)
\(884\) 9.19539 + 7.71585i 0.309275 + 0.259512i
\(885\) 0 0
\(886\) 1.23175 + 0.711150i 0.0413814 + 0.0238916i
\(887\) 33.6111 + 15.6731i 1.12855 + 0.526252i 0.894988 0.446090i \(-0.147184\pi\)
0.233562 + 0.972342i \(0.424962\pi\)
\(888\) 11.2214 + 7.85729i 0.376565 + 0.263673i
\(889\) 0.389181 2.20715i 0.0130527 0.0740256i
\(890\) 0 0
\(891\) −14.5025 + 12.1690i −0.485852 + 0.407678i
\(892\) 30.4145 + 30.4145i 1.01835 + 1.01835i
\(893\) 3.19525 + 24.9737i 0.106925 + 0.835713i
\(894\) 11.3609i 0.379966i
\(895\) 0 0
\(896\) −0.975662 + 2.68061i −0.0325946 + 0.0895529i
\(897\) 21.9096 + 31.2901i 0.731539 + 1.04475i
\(898\) 0.567547 0.810541i 0.0189393 0.0270481i
\(899\) −4.38846 12.0572i −0.146363 0.402130i
\(900\) 0 0
\(901\) −5.05646 + 2.91935i −0.168455 + 0.0972577i
\(902\) 3.20839 0.280698i 0.106828 0.00934622i
\(903\) −3.45328 + 0.302123i −0.114918 + 0.0100540i
\(904\) −11.8776 + 6.85751i −0.395041 + 0.228077i
\(905\) 0 0
\(906\) 0.253751 + 0.697176i 0.00843032 + 0.0231621i
\(907\) 0.162899 0.232644i 0.00540896 0.00772480i −0.816438 0.577432i \(-0.804055\pi\)
0.821847 + 0.569708i \(0.192944\pi\)
\(908\) 17.8358 + 25.4721i 0.591901 + 0.845323i
\(909\) 2.77099 7.61323i 0.0919079 0.252515i
\(910\) 0 0
\(911\) 35.0022i 1.15968i −0.814732 0.579838i \(-0.803116\pi\)
0.814732 0.579838i \(-0.196884\pi\)
\(912\) 3.72233 + 29.0933i 0.123259 + 0.963375i
\(913\) 4.15872 + 4.15872i 0.137633 + 0.137633i
\(914\) −6.55749 + 5.50239i −0.216903 + 0.182003i
\(915\) 0 0
\(916\) −3.81840 + 21.6552i −0.126163 + 0.715508i
\(917\) −2.01505 1.41095i −0.0665427 0.0465937i
\(918\) −3.22896 1.50569i −0.106572 0.0496951i
\(919\) 10.2856 + 5.93841i 0.339291 + 0.195890i 0.659959 0.751302i \(-0.270574\pi\)
−0.320667 + 0.947192i \(0.603907\pi\)
\(920\) 0 0
\(921\) −24.5113 20.5674i −0.807675 0.677719i
\(922\) 0.416950 + 4.76576i 0.0137315 + 0.156952i
\(923\) −9.25777 + 34.5505i −0.304723 + 1.13724i
\(924\) 1.09696 1.89999i 0.0360874 0.0625052i
\(925\) 0 0
\(926\) −8.32375 + 1.46770i −0.273535 + 0.0482317i
\(927\) 6.63812 4.64806i 0.218025 0.152662i
\(928\) 8.75798 + 18.7815i 0.287495 + 0.616534i
\(929\) 34.7475 + 41.4104i 1.14003 + 1.35863i 0.924067 + 0.382230i \(0.124844\pi\)
0.215960 + 0.976402i \(0.430712\pi\)
\(930\) 0 0
\(931\) −16.0394 25.3805i −0.525669 0.831814i
\(932\) 23.7813 23.7813i 0.778984 0.778984i
\(933\) −0.900430 + 10.2920i −0.0294788 + 0.336944i
\(934\) 0.432760 + 0.157512i 0.0141604 + 0.00515395i
\(935\) 0 0
\(936\) 0.351083 + 1.99109i 0.0114755 + 0.0650809i
\(937\) −7.52427 + 16.1359i −0.245807 + 0.527135i −0.990040 0.140785i \(-0.955037\pi\)
0.744233 + 0.667920i \(0.232815\pi\)
\(938\) −1.06150 + 0.284428i −0.0346592 + 0.00928692i
\(939\) 19.0443 + 32.9856i 0.621486 + 1.07645i
\(940\) 0 0
\(941\) 20.1771 24.0461i 0.657754 0.783881i −0.329307 0.944223i \(-0.606815\pi\)
0.987062 + 0.160342i \(0.0512596\pi\)
\(942\) −9.10016 2.43838i −0.296499 0.0794468i
\(943\) −13.5576 50.5977i −0.441497 1.64769i
\(944\) −5.40486 + 1.96721i −0.175913 + 0.0640271i
\(945\) 0 0
\(946\) −2.78325 0.490762i −0.0904912 0.0159560i
\(947\) 22.7589 10.6127i 0.739565 0.344865i −0.0160582 0.999871i \(-0.505112\pi\)
0.755624 + 0.655006i \(0.227334\pi\)
\(948\) −55.2131 4.83052i −1.79324 0.156888i
\(949\) 12.6786 0.411564
\(950\) 0 0
\(951\) −35.3895 −1.14758
\(952\) 1.06804 + 0.0934410i 0.0346152 + 0.00302844i
\(953\) −1.38466 + 0.645677i −0.0448535 + 0.0209155i −0.444916 0.895572i \(-0.646766\pi\)
0.400062 + 0.916488i \(0.368989\pi\)
\(954\) −0.473189 0.0834359i −0.0153200 0.00270134i
\(955\) 0 0
\(956\) 5.70017 2.07469i 0.184357 0.0671003i
\(957\) −5.45253 20.3491i −0.176255 0.657794i
\(958\) 4.84033 + 1.29696i 0.156384 + 0.0419030i
\(959\) −1.13214 + 1.34923i −0.0365587 + 0.0435689i
\(960\) 0 0
\(961\) −13.3177 23.0669i −0.429603 0.744095i
\(962\) 4.00145 1.07218i 0.129012 0.0345686i
\(963\) 0.702844 1.50725i 0.0226488 0.0485706i
\(964\) −2.55740 14.5037i −0.0823682 0.467133i
\(965\) 0 0
\(966\) 1.56638 + 0.570115i 0.0503974 + 0.0183431i
\(967\) −1.75903 + 20.1058i −0.0565665 + 0.646558i 0.913998 + 0.405718i \(0.132978\pi\)
−0.970565 + 0.240840i \(0.922577\pi\)
\(968\) −6.49917 + 6.49917i −0.208891 + 0.208891i
\(969\) 21.4244 8.78288i 0.688250 0.282147i
\(970\) 0 0
\(971\) −1.63397 1.94730i −0.0524367 0.0624917i 0.739189 0.673499i \(-0.235209\pi\)
−0.791625 + 0.611007i \(0.790765\pi\)
\(972\) 6.19720 + 13.2899i 0.198775 + 0.426275i
\(973\) 5.09491 3.56750i 0.163335 0.114369i
\(974\) −1.18424 + 0.208814i −0.0379456 + 0.00669083i
\(975\) 0 0
\(976\) 15.9692 27.6595i 0.511163 0.885361i
\(977\) −15.0379 + 56.1223i −0.481106 + 1.79551i 0.115882 + 0.993263i \(0.463030\pi\)
−0.596989 + 0.802250i \(0.703636\pi\)
\(978\) −0.514339 5.87892i −0.0164468 0.187987i
\(979\) 14.0751 + 11.8104i 0.449842 + 0.377462i
\(980\) 0 0
\(981\) 5.69657 + 3.28892i 0.181877 + 0.105007i
\(982\) −3.16750 1.47703i −0.101079 0.0471338i
\(983\) 26.9174 + 18.8478i 0.858531 + 0.601150i 0.917778 0.397093i \(-0.129981\pi\)
−0.0592470 + 0.998243i \(0.518870\pi\)
\(984\) 2.39430 13.5787i 0.0763275 0.432875i
\(985\) 0 0
\(986\) 3.85318 3.23320i 0.122710 0.102966i
\(987\) −2.64930 2.64930i −0.0843283 0.0843283i
\(988\) 16.0604 + 10.3141i 0.510949 + 0.328136i
\(989\) 45.9668i 1.46166i
\(990\) 0 0
\(991\) 6.36348 17.4835i 0.202143 0.555383i −0.796653 0.604436i \(-0.793398\pi\)
0.998796 + 0.0490538i \(0.0156206\pi\)
\(992\) −4.04326 5.77437i −0.128373 0.183336i
\(993\) 13.4933 19.2705i 0.428198 0.611530i
\(994\) 0.533863 + 1.46678i 0.0169331 + 0.0465233i
\(995\) 0 0
\(996\) 10.6540 6.15109i 0.337585 0.194905i
\(997\) −51.6752 + 4.52099i −1.63657 + 0.143181i −0.867993 0.496577i \(-0.834590\pi\)
−0.768577 + 0.639758i \(0.779035\pi\)
\(998\) −7.72579 + 0.675919i −0.244555 + 0.0213958i
\(999\) 22.7945 13.1604i 0.721185 0.416376i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.bb.b.393.4 96
5.2 odd 4 inner 475.2.bb.b.32.5 96
5.3 odd 4 95.2.r.a.32.4 yes 96
5.4 even 2 95.2.r.a.13.5 yes 96
15.8 even 4 855.2.dl.a.127.5 96
15.14 odd 2 855.2.dl.a.298.4 96
19.3 odd 18 inner 475.2.bb.b.193.5 96
95.3 even 36 95.2.r.a.22.5 yes 96
95.22 even 36 inner 475.2.bb.b.307.4 96
95.79 odd 18 95.2.r.a.3.4 96
285.98 odd 36 855.2.dl.a.307.4 96
285.269 even 18 855.2.dl.a.478.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.3.4 96 95.79 odd 18
95.2.r.a.13.5 yes 96 5.4 even 2
95.2.r.a.22.5 yes 96 95.3 even 36
95.2.r.a.32.4 yes 96 5.3 odd 4
475.2.bb.b.32.5 96 5.2 odd 4 inner
475.2.bb.b.193.5 96 19.3 odd 18 inner
475.2.bb.b.307.4 96 95.22 even 36 inner
475.2.bb.b.393.4 96 1.1 even 1 trivial
855.2.dl.a.127.5 96 15.8 even 4
855.2.dl.a.298.4 96 15.14 odd 2
855.2.dl.a.307.4 96 285.98 odd 36
855.2.dl.a.478.5 96 285.269 even 18