Properties

Label 855.2.dl.a.298.4
Level $855$
Weight $2$
Character 855.298
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 298.4
Character \(\chi\) \(=\) 855.298
Dual form 855.2.dl.a.307.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.297624 + 0.0260387i) q^{2} +(-1.88171 - 0.331797i) q^{4} +(-1.13754 + 1.92510i) q^{5} +(0.0866366 + 0.323332i) q^{7} +(-1.12856 - 0.302398i) q^{8} +(-0.388686 + 0.543336i) q^{10} +(-0.885063 - 1.53297i) q^{11} +(-0.968521 + 2.07700i) q^{13} +(0.0173660 + 0.0984873i) q^{14} +(3.26301 + 1.18764i) q^{16} +(0.238918 - 2.73085i) q^{17} +(-0.174252 - 4.35541i) q^{19} +(2.77926 - 3.24505i) q^{20} +(-0.223499 - 0.479296i) q^{22} +(7.04590 - 4.93359i) q^{23} +(-2.41202 - 4.37975i) q^{25} +(-0.342337 + 0.592946i) q^{26} +(-0.0557446 - 0.637164i) q^{28} +(-4.70481 - 3.94780i) q^{29} +(-1.80927 - 1.04458i) q^{31} +(3.05804 + 1.42599i) q^{32} +(0.142216 - 0.806545i) q^{34} +(-0.720999 - 0.201018i) q^{35} +(-4.27833 - 4.27833i) q^{37} +(0.0615479 - 1.30081i) q^{38} +(1.86593 - 1.82861i) q^{40} +(-2.08289 + 5.72270i) q^{41} +(3.06524 - 4.37761i) q^{43} +(1.15680 + 3.17828i) q^{44} +(2.22549 - 1.28489i) q^{46} +(-5.75408 + 0.503417i) q^{47} +(5.96514 - 3.44398i) q^{49} +(-0.603830 - 1.36632i) q^{50} +(2.51162 - 3.58697i) q^{52} +(-1.22167 - 1.74473i) q^{53} +(3.95792 + 0.0399817i) q^{55} -0.391100i q^{56} +(-1.29747 - 1.29747i) q^{58} +(1.26888 - 1.06472i) q^{59} +(1.59718 - 9.05803i) q^{61} +(-0.511282 - 0.358003i) q^{62} +(-5.14139 - 2.96838i) q^{64} +(-2.89670 - 4.22716i) q^{65} +(0.957732 + 10.9469i) q^{67} +(-1.35566 + 5.05941i) q^{68} +(-0.209352 - 0.0786018i) q^{70} +(15.3710 - 2.71031i) q^{71} +(-2.33808 - 5.01402i) q^{73} +(-1.16193 - 1.38473i) q^{74} +(-1.11722 + 8.25346i) q^{76} +(0.418981 - 0.418981i) q^{77} +(-14.0660 - 5.11962i) q^{79} +(-5.99811 + 4.93063i) q^{80} +(-0.768931 + 1.64898i) q^{82} +(3.20933 - 0.859936i) q^{83} +(4.98538 + 3.56639i) q^{85} +(1.02628 - 1.22307i) q^{86} +(0.535283 + 1.99770i) q^{88} +(-9.75391 + 3.55013i) q^{89} +(-0.755470 - 0.133210i) q^{91} +(-14.8953 + 6.94580i) q^{92} -1.72566 q^{94} +(8.58282 + 4.61900i) q^{95} +(5.97565 + 0.522802i) q^{97} +(1.86504 - 0.869685i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.297624 + 0.0260387i 0.210452 + 0.0184122i 0.191894 0.981416i \(-0.438537\pi\)
0.0185578 + 0.999828i \(0.494093\pi\)
\(3\) 0 0
\(4\) −1.88171 0.331797i −0.940857 0.165898i
\(5\) −1.13754 + 1.92510i −0.508722 + 0.860931i
\(6\) 0 0
\(7\) 0.0866366 + 0.323332i 0.0327456 + 0.122208i 0.980364 0.197197i \(-0.0631837\pi\)
−0.947618 + 0.319405i \(0.896517\pi\)
\(8\) −1.12856 0.302398i −0.399008 0.106914i
\(9\) 0 0
\(10\) −0.388686 + 0.543336i −0.122913 + 0.171818i
\(11\) −0.885063 1.53297i −0.266856 0.462209i 0.701192 0.712973i \(-0.252652\pi\)
−0.968048 + 0.250764i \(0.919318\pi\)
\(12\) 0 0
\(13\) −0.968521 + 2.07700i −0.268619 + 0.576056i −0.993631 0.112680i \(-0.964056\pi\)
0.725012 + 0.688736i \(0.241834\pi\)
\(14\) 0.0173660 + 0.0984873i 0.00464125 + 0.0263218i
\(15\) 0 0
\(16\) 3.26301 + 1.18764i 0.815752 + 0.296909i
\(17\) 0.238918 2.73085i 0.0579462 0.662328i −0.910566 0.413363i \(-0.864354\pi\)
0.968512 0.248965i \(-0.0800905\pi\)
\(18\) 0 0
\(19\) −0.174252 4.35541i −0.0399761 0.999201i
\(20\) 2.77926 3.24505i 0.621462 0.725616i
\(21\) 0 0
\(22\) −0.223499 0.479296i −0.0476502 0.102186i
\(23\) 7.04590 4.93359i 1.46917 1.02872i 0.480772 0.876845i \(-0.340356\pi\)
0.988399 0.151879i \(-0.0485325\pi\)
\(24\) 0 0
\(25\) −2.41202 4.37975i −0.482403 0.875949i
\(26\) −0.342337 + 0.592946i −0.0671379 + 0.116286i
\(27\) 0 0
\(28\) −0.0557446 0.637164i −0.0105347 0.120413i
\(29\) −4.70481 3.94780i −0.873661 0.733089i 0.0912048 0.995832i \(-0.470928\pi\)
−0.964866 + 0.262744i \(0.915373\pi\)
\(30\) 0 0
\(31\) −1.80927 1.04458i −0.324954 0.187612i 0.328645 0.944454i \(-0.393408\pi\)
−0.653599 + 0.756841i \(0.726742\pi\)
\(32\) 3.05804 + 1.42599i 0.540590 + 0.252081i
\(33\) 0 0
\(34\) 0.142216 0.806545i 0.0243898 0.138321i
\(35\) −0.720999 0.201018i −0.121871 0.0339783i
\(36\) 0 0
\(37\) −4.27833 4.27833i −0.703353 0.703353i 0.261776 0.965129i \(-0.415692\pi\)
−0.965129 + 0.261776i \(0.915692\pi\)
\(38\) 0.0615479 1.30081i 0.00998439 0.211020i
\(39\) 0 0
\(40\) 1.86593 1.82861i 0.295030 0.289129i
\(41\) −2.08289 + 5.72270i −0.325293 + 0.893736i 0.663992 + 0.747740i \(0.268861\pi\)
−0.989285 + 0.145996i \(0.953361\pi\)
\(42\) 0 0
\(43\) 3.06524 4.37761i 0.467444 0.667580i −0.514338 0.857587i \(-0.671962\pi\)
0.981783 + 0.190008i \(0.0608513\pi\)
\(44\) 1.15680 + 3.17828i 0.174394 + 0.479144i
\(45\) 0 0
\(46\) 2.22549 1.28489i 0.328131 0.189446i
\(47\) −5.75408 + 0.503417i −0.839319 + 0.0734309i −0.498704 0.866772i \(-0.666191\pi\)
−0.340615 + 0.940203i \(0.610635\pi\)
\(48\) 0 0
\(49\) 5.96514 3.44398i 0.852163 0.491996i
\(50\) −0.603830 1.36632i −0.0853945 0.193227i
\(51\) 0 0
\(52\) 2.51162 3.58697i 0.348299 0.497423i
\(53\) −1.22167 1.74473i −0.167809 0.239656i 0.726436 0.687235i \(-0.241176\pi\)
−0.894245 + 0.447578i \(0.852287\pi\)
\(54\) 0 0
\(55\) 3.95792 + 0.0399817i 0.533686 + 0.00539113i
\(56\) 0.391100i 0.0522629i
\(57\) 0 0
\(58\) −1.29747 1.29747i −0.170366 0.170366i
\(59\) 1.26888 1.06472i 0.165194 0.138614i −0.556443 0.830886i \(-0.687834\pi\)
0.721637 + 0.692271i \(0.243390\pi\)
\(60\) 0 0
\(61\) 1.59718 9.05803i 0.204497 1.15976i −0.693731 0.720234i \(-0.744035\pi\)
0.898229 0.439528i \(-0.144854\pi\)
\(62\) −0.511282 0.358003i −0.0649329 0.0454665i
\(63\) 0 0
\(64\) −5.14139 2.96838i −0.642674 0.371048i
\(65\) −2.89670 4.22716i −0.359292 0.524315i
\(66\) 0 0
\(67\) 0.957732 + 10.9469i 0.117006 + 1.33738i 0.796918 + 0.604087i \(0.206462\pi\)
−0.679913 + 0.733293i \(0.737982\pi\)
\(68\) −1.35566 + 5.05941i −0.164398 + 0.613543i
\(69\) 0 0
\(70\) −0.209352 0.0786018i −0.0250224 0.00939471i
\(71\) 15.3710 2.71031i 1.82420 0.321655i 0.846614 0.532208i \(-0.178637\pi\)
0.977583 + 0.210553i \(0.0675263\pi\)
\(72\) 0 0
\(73\) −2.33808 5.01402i −0.273651 0.586846i 0.720669 0.693279i \(-0.243835\pi\)
−0.994320 + 0.106433i \(0.966057\pi\)
\(74\) −1.16193 1.38473i −0.135072 0.160972i
\(75\) 0 0
\(76\) −1.11722 + 8.25346i −0.128154 + 0.946737i
\(77\) 0.418981 0.418981i 0.0477473 0.0477473i
\(78\) 0 0
\(79\) −14.0660 5.11962i −1.58255 0.576002i −0.606796 0.794857i \(-0.707546\pi\)
−0.975757 + 0.218855i \(0.929768\pi\)
\(80\) −5.99811 + 4.93063i −0.670609 + 0.551261i
\(81\) 0 0
\(82\) −0.768931 + 1.64898i −0.0849142 + 0.182099i
\(83\) 3.20933 0.859936i 0.352269 0.0943903i −0.0783450 0.996926i \(-0.524964\pi\)
0.430614 + 0.902536i \(0.358297\pi\)
\(84\) 0 0
\(85\) 4.98538 + 3.56639i 0.540740 + 0.386829i
\(86\) 1.02628 1.22307i 0.110666 0.131887i
\(87\) 0 0
\(88\) 0.535283 + 1.99770i 0.0570613 + 0.212956i
\(89\) −9.75391 + 3.55013i −1.03391 + 0.376313i −0.802569 0.596559i \(-0.796534\pi\)
−0.231343 + 0.972872i \(0.574312\pi\)
\(90\) 0 0
\(91\) −0.755470 0.133210i −0.0791948 0.0139642i
\(92\) −14.8953 + 6.94580i −1.55294 + 0.724150i
\(93\) 0 0
\(94\) −1.72566 −0.177988
\(95\) 8.58282 + 4.61900i 0.880579 + 0.473899i
\(96\) 0 0
\(97\) 5.97565 + 0.522802i 0.606736 + 0.0530825i 0.386384 0.922338i \(-0.373724\pi\)
0.220352 + 0.975420i \(0.429280\pi\)
\(98\) 1.86504 0.869685i 0.188398 0.0878514i
\(99\) 0 0
\(100\) 3.08554 + 9.04173i 0.308554 + 0.904173i
\(101\) −10.0826 + 3.66976i −1.00326 + 0.365155i −0.790839 0.612024i \(-0.790355\pi\)
−0.212416 + 0.977179i \(0.568133\pi\)
\(102\) 0 0
\(103\) −10.3664 2.77767i −1.02143 0.273692i −0.291033 0.956713i \(-0.593999\pi\)
−0.730398 + 0.683021i \(0.760666\pi\)
\(104\) 1.72112 2.05115i 0.168770 0.201132i
\(105\) 0 0
\(106\) −0.318168 0.551083i −0.0309032 0.0535259i
\(107\) 2.12744 0.570046i 0.205668 0.0551085i −0.154514 0.987991i \(-0.549381\pi\)
0.360182 + 0.932882i \(0.382715\pi\)
\(108\) 0 0
\(109\) 1.51271 + 8.57902i 0.144892 + 0.821721i 0.967454 + 0.253046i \(0.0814325\pi\)
−0.822563 + 0.568675i \(0.807456\pi\)
\(110\) 1.17693 + 0.114959i 0.112216 + 0.0109609i
\(111\) 0 0
\(112\) −0.101306 + 1.15793i −0.00957247 + 0.109414i
\(113\) 8.30039 8.30039i 0.780835 0.780835i −0.199137 0.979972i \(-0.563814\pi\)
0.979972 + 0.199137i \(0.0638138\pi\)
\(114\) 0 0
\(115\) 1.48268 + 19.1762i 0.138260 + 1.78819i
\(116\) 7.54323 + 8.98967i 0.700372 + 0.834670i
\(117\) 0 0
\(118\) 0.405372 0.283845i 0.0373176 0.0261300i
\(119\) 0.903671 0.159342i 0.0828394 0.0146068i
\(120\) 0 0
\(121\) 3.93333 6.81272i 0.357575 0.619338i
\(122\) 0.711217 2.65430i 0.0643906 0.240309i
\(123\) 0 0
\(124\) 3.05794 + 2.56591i 0.274611 + 0.230426i
\(125\) 11.1752 + 0.338758i 0.999541 + 0.0302994i
\(126\) 0 0
\(127\) −6.06809 2.82960i −0.538456 0.251086i 0.134313 0.990939i \(-0.457117\pi\)
−0.672769 + 0.739853i \(0.734895\pi\)
\(128\) −6.98083 4.88803i −0.617024 0.432045i
\(129\) 0 0
\(130\) −0.752058 1.33353i −0.0659598 0.116958i
\(131\) −5.62950 + 4.72371i −0.491851 + 0.412712i −0.854689 0.519140i \(-0.826252\pi\)
0.362838 + 0.931852i \(0.381808\pi\)
\(132\) 0 0
\(133\) 1.39315 0.433679i 0.120801 0.0376048i
\(134\) 3.28301i 0.283609i
\(135\) 0 0
\(136\) −1.09544 + 3.00969i −0.0939331 + 0.258079i
\(137\) −3.01799 4.31014i −0.257845 0.368240i 0.669269 0.743020i \(-0.266607\pi\)
−0.927114 + 0.374780i \(0.877718\pi\)
\(138\) 0 0
\(139\) 6.35505 + 17.4603i 0.539028 + 1.48097i 0.848052 + 0.529913i \(0.177775\pi\)
−0.309024 + 0.951054i \(0.600002\pi\)
\(140\) 1.29002 + 0.617484i 0.109026 + 0.0521870i
\(141\) 0 0
\(142\) 4.64534 0.406414i 0.389828 0.0341055i
\(143\) 4.04119 0.353558i 0.337941 0.0295660i
\(144\) 0 0
\(145\) 12.9518 4.56645i 1.07559 0.379223i
\(146\) −0.565308 1.55317i −0.0467853 0.128541i
\(147\) 0 0
\(148\) 6.63105 + 9.47012i 0.545069 + 0.778439i
\(149\) −6.71169 + 18.4402i −0.549843 + 1.51068i 0.284080 + 0.958800i \(0.408312\pi\)
−0.833923 + 0.551880i \(0.813910\pi\)
\(150\) 0 0
\(151\) 1.28151i 0.104288i −0.998640 0.0521440i \(-0.983395\pi\)
0.998640 0.0521440i \(-0.0166055\pi\)
\(152\) −1.12041 + 4.96806i −0.0908776 + 0.402963i
\(153\) 0 0
\(154\) 0.135608 0.113789i 0.0109276 0.00916938i
\(155\) 4.06903 2.29477i 0.326833 0.184320i
\(156\) 0 0
\(157\) −13.3302 9.33390i −1.06387 0.744926i −0.0957434 0.995406i \(-0.530523\pi\)
−0.968122 + 0.250480i \(0.919412\pi\)
\(158\) −4.05308 1.88998i −0.322446 0.150359i
\(159\) 0 0
\(160\) −6.22381 + 4.26492i −0.492035 + 0.337171i
\(161\) 2.20562 + 1.85074i 0.173827 + 0.145858i
\(162\) 0 0
\(163\) 2.63825 9.84609i 0.206644 0.771205i −0.782298 0.622904i \(-0.785953\pi\)
0.988942 0.148301i \(-0.0473806\pi\)
\(164\) 5.81818 10.0774i 0.454324 0.786912i
\(165\) 0 0
\(166\) 0.977564 0.172371i 0.0758737 0.0133786i
\(167\) −2.13302 + 1.49356i −0.165058 + 0.115575i −0.653187 0.757197i \(-0.726568\pi\)
0.488129 + 0.872772i \(0.337680\pi\)
\(168\) 0 0
\(169\) 4.98034 + 5.93534i 0.383103 + 0.456565i
\(170\) 1.39090 + 1.19125i 0.106677 + 0.0913651i
\(171\) 0 0
\(172\) −7.22038 + 7.22038i −0.550549 + 0.550549i
\(173\) 1.59591 18.2413i 0.121335 1.38686i −0.654565 0.756006i \(-0.727148\pi\)
0.775900 0.630856i \(-0.217296\pi\)
\(174\) 0 0
\(175\) 1.20714 1.15933i 0.0912515 0.0876370i
\(176\) −1.06735 6.05324i −0.0804545 0.456280i
\(177\) 0 0
\(178\) −2.99544 + 0.802625i −0.224518 + 0.0601593i
\(179\) 3.88436 + 6.72790i 0.290331 + 0.502867i 0.973888 0.227030i \(-0.0729014\pi\)
−0.683557 + 0.729897i \(0.739568\pi\)
\(180\) 0 0
\(181\) −12.3085 + 14.6688i −0.914887 + 1.09032i 0.0807244 + 0.996736i \(0.474277\pi\)
−0.995611 + 0.0935835i \(0.970168\pi\)
\(182\) −0.221377 0.0593179i −0.0164096 0.00439693i
\(183\) 0 0
\(184\) −9.44366 + 3.43721i −0.696196 + 0.253395i
\(185\) 13.1030 3.36945i 0.963349 0.247727i
\(186\) 0 0
\(187\) −4.39778 + 2.05072i −0.321597 + 0.149963i
\(188\) 10.9946 + 0.961900i 0.801861 + 0.0701538i
\(189\) 0 0
\(190\) 2.43418 + 1.59821i 0.176594 + 0.115946i
\(191\) −15.8411 −1.14622 −0.573110 0.819478i \(-0.694263\pi\)
−0.573110 + 0.819478i \(0.694263\pi\)
\(192\) 0 0
\(193\) 24.5928 11.4678i 1.77023 0.825470i 0.794252 0.607589i \(-0.207863\pi\)
0.975975 0.217882i \(-0.0699147\pi\)
\(194\) 1.76488 + 0.311197i 0.126711 + 0.0223426i
\(195\) 0 0
\(196\) −12.3674 + 4.50136i −0.883385 + 0.321526i
\(197\) −3.74333 13.9703i −0.266701 0.995343i −0.961201 0.275850i \(-0.911041\pi\)
0.694499 0.719493i \(-0.255626\pi\)
\(198\) 0 0
\(199\) 2.04942 2.44240i 0.145279 0.173137i −0.688498 0.725239i \(-0.741729\pi\)
0.833777 + 0.552101i \(0.186174\pi\)
\(200\) 1.39769 + 5.67222i 0.0988315 + 0.401086i
\(201\) 0 0
\(202\) −3.09638 + 0.829671i −0.217860 + 0.0583755i
\(203\) 0.868843 1.86324i 0.0609808 0.130774i
\(204\) 0 0
\(205\) −8.64740 10.5196i −0.603961 0.734718i
\(206\) −3.01296 1.09663i −0.209923 0.0764057i
\(207\) 0 0
\(208\) −5.62701 + 5.62701i −0.390163 + 0.390163i
\(209\) −6.52251 + 4.12194i −0.451172 + 0.285120i
\(210\) 0 0
\(211\) 0.360006 + 0.429039i 0.0247838 + 0.0295362i 0.778294 0.627900i \(-0.216085\pi\)
−0.753510 + 0.657436i \(0.771641\pi\)
\(212\) 1.71994 + 3.68842i 0.118126 + 0.253322i
\(213\) 0 0
\(214\) 0.648021 0.114264i 0.0442978 0.00781090i
\(215\) 4.94052 + 10.8806i 0.336940 + 0.742050i
\(216\) 0 0
\(217\) 0.180998 0.675493i 0.0122869 0.0458555i
\(218\) 0.226833 + 2.59271i 0.0153630 + 0.175600i
\(219\) 0 0
\(220\) −7.43440 1.38846i −0.501227 0.0936099i
\(221\) 5.44058 + 3.14112i 0.365973 + 0.211294i
\(222\) 0 0
\(223\) 18.4399 + 12.9118i 1.23483 + 0.864635i 0.994364 0.106023i \(-0.0338117\pi\)
0.240463 + 0.970658i \(0.422701\pi\)
\(224\) −0.196130 + 1.11231i −0.0131045 + 0.0743191i
\(225\) 0 0
\(226\) 2.68653 2.25426i 0.178705 0.149951i
\(227\) −11.5076 11.5076i −0.763785 0.763785i 0.213220 0.977004i \(-0.431605\pi\)
−0.977004 + 0.213220i \(0.931605\pi\)
\(228\) 0 0
\(229\) 11.5082i 0.760486i −0.924887 0.380243i \(-0.875840\pi\)
0.924887 0.380243i \(-0.124160\pi\)
\(230\) −0.0580433 + 5.74590i −0.00382726 + 0.378874i
\(231\) 0 0
\(232\) 4.11587 + 5.87808i 0.270220 + 0.385915i
\(233\) −10.0958 + 14.4183i −0.661398 + 0.944574i 0.338596 + 0.940932i \(0.390048\pi\)
−0.999993 + 0.00364164i \(0.998841\pi\)
\(234\) 0 0
\(235\) 5.57636 11.6498i 0.363761 0.759951i
\(236\) −2.74094 + 1.58248i −0.178420 + 0.103011i
\(237\) 0 0
\(238\) 0.273103 0.0238934i 0.0177026 0.00154878i
\(239\) 2.74935 1.58734i 0.177841 0.102676i −0.408437 0.912786i \(-0.633926\pi\)
0.586278 + 0.810110i \(0.300593\pi\)
\(240\) 0 0
\(241\) 2.63620 + 7.24289i 0.169812 + 0.466555i 0.995183 0.0980359i \(-0.0312560\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(242\) 1.34805 1.92521i 0.0866557 0.123757i
\(243\) 0 0
\(244\) −6.01085 + 16.5147i −0.384805 + 1.05724i
\(245\) −0.155578 + 15.4011i −0.00993949 + 0.983943i
\(246\) 0 0
\(247\) 9.21496 + 3.85639i 0.586334 + 0.245376i
\(248\) 1.72600 + 1.72600i 0.109601 + 0.109601i
\(249\) 0 0
\(250\) 3.31719 + 0.391810i 0.209797 + 0.0247803i
\(251\) 0.155567 0.882266i 0.00981932 0.0556881i −0.979504 0.201423i \(-0.935443\pi\)
0.989324 + 0.145735i \(0.0465546\pi\)
\(252\) 0 0
\(253\) −13.7991 6.43464i −0.867544 0.404542i
\(254\) −1.73233 1.00016i −0.108696 0.0627557i
\(255\) 0 0
\(256\) 7.14527 + 5.99559i 0.446579 + 0.374725i
\(257\) 0.187810 + 2.14668i 0.0117153 + 0.133906i 0.999800 0.0200056i \(-0.00636840\pi\)
−0.988085 + 0.153912i \(0.950813\pi\)
\(258\) 0 0
\(259\) 1.01266 1.75398i 0.0629237 0.108987i
\(260\) 4.04820 + 8.91543i 0.251059 + 0.552911i
\(261\) 0 0
\(262\) −1.79847 + 1.25930i −0.111110 + 0.0778000i
\(263\) −12.4532 26.7060i −0.767899 1.64676i −0.762679 0.646778i \(-0.776116\pi\)
−0.00522005 0.999986i \(-0.501662\pi\)
\(264\) 0 0
\(265\) 4.74847 0.367145i 0.291696 0.0225535i
\(266\) 0.425927 0.0927976i 0.0261153 0.00568978i
\(267\) 0 0
\(268\) 1.82998 20.9168i 0.111784 1.27769i
\(269\) −5.89502 2.14561i −0.359426 0.130820i 0.155994 0.987758i \(-0.450142\pi\)
−0.515420 + 0.856938i \(0.672364\pi\)
\(270\) 0 0
\(271\) −1.04597 5.93198i −0.0635381 0.360342i −0.999955 0.00945382i \(-0.996991\pi\)
0.936417 0.350889i \(-0.114120\pi\)
\(272\) 4.02285 8.62703i 0.243921 0.523091i
\(273\) 0 0
\(274\) −0.785996 1.36139i −0.0474838 0.0822443i
\(275\) −4.57925 + 7.57391i −0.276139 + 0.456724i
\(276\) 0 0
\(277\) −21.8337 5.85032i −1.31186 0.351512i −0.465937 0.884818i \(-0.654283\pi\)
−0.845922 + 0.533306i \(0.820949\pi\)
\(278\) 1.43677 + 5.36209i 0.0861716 + 0.321597i
\(279\) 0 0
\(280\) 0.752906 + 0.444891i 0.0449948 + 0.0265873i
\(281\) 11.8624 + 2.09165i 0.707649 + 0.124778i 0.515878 0.856662i \(-0.327466\pi\)
0.191771 + 0.981440i \(0.438577\pi\)
\(282\) 0 0
\(283\) −11.6168 1.01634i −0.690549 0.0604152i −0.263521 0.964654i \(-0.584884\pi\)
−0.427028 + 0.904238i \(0.640439\pi\)
\(284\) −29.8230 −1.76967
\(285\) 0 0
\(286\) 1.21196 0.0716647
\(287\) −2.03079 0.177671i −0.119874 0.0104876i
\(288\) 0 0
\(289\) 9.34127 + 1.64712i 0.549487 + 0.0968893i
\(290\) 3.97367 1.02184i 0.233342 0.0600043i
\(291\) 0 0
\(292\) 2.73595 + 10.2107i 0.160109 + 0.597537i
\(293\) −12.1638 3.25928i −0.710616 0.190409i −0.114635 0.993408i \(-0.536570\pi\)
−0.595981 + 0.802999i \(0.703237\pi\)
\(294\) 0 0
\(295\) 0.606286 + 3.65387i 0.0352993 + 0.212737i
\(296\) 3.53461 + 6.12213i 0.205445 + 0.355841i
\(297\) 0 0
\(298\) −2.47772 + 5.31348i −0.143530 + 0.307802i
\(299\) 3.42297 + 19.4126i 0.197955 + 1.12266i
\(300\) 0 0
\(301\) 1.68098 + 0.611828i 0.0968903 + 0.0352652i
\(302\) 0.0333690 0.381409i 0.00192017 0.0219476i
\(303\) 0 0
\(304\) 4.60407 14.4187i 0.264061 0.826969i
\(305\) 15.6208 + 13.3786i 0.894442 + 0.766055i
\(306\) 0 0
\(307\) −6.97832 14.9650i −0.398273 0.854100i −0.998525 0.0542891i \(-0.982711\pi\)
0.600252 0.799811i \(-0.295067\pi\)
\(308\) −0.927419 + 0.649385i −0.0528446 + 0.0370022i
\(309\) 0 0
\(310\) 1.27079 0.577026i 0.0721763 0.0327729i
\(311\) −2.66572 + 4.61716i −0.151159 + 0.261815i −0.931654 0.363347i \(-0.881634\pi\)
0.780495 + 0.625162i \(0.214967\pi\)
\(312\) 0 0
\(313\) 1.71309 + 19.5807i 0.0968296 + 1.10677i 0.876769 + 0.480912i \(0.159694\pi\)
−0.779939 + 0.625855i \(0.784750\pi\)
\(314\) −3.72434 3.12509i −0.210177 0.176359i
\(315\) 0 0
\(316\) 24.7696 + 14.3007i 1.39340 + 0.804479i
\(317\) 16.5516 + 7.71815i 0.929632 + 0.433495i 0.827620 0.561289i \(-0.189694\pi\)
0.102012 + 0.994783i \(0.467472\pi\)
\(318\) 0 0
\(319\) −1.88783 + 10.7064i −0.105698 + 0.599443i
\(320\) 11.5630 6.52104i 0.646389 0.364537i
\(321\) 0 0
\(322\) 0.608255 + 0.608255i 0.0338967 + 0.0338967i
\(323\) −11.9356 0.564733i −0.664115 0.0314226i
\(324\) 0 0
\(325\) 11.4328 0.767879i 0.634179 0.0425943i
\(326\) 1.04159 2.86174i 0.0576881 0.158497i
\(327\) 0 0
\(328\) 4.08121 5.82858i 0.225347 0.321829i
\(329\) −0.661285 1.81687i −0.0364578 0.100167i
\(330\) 0 0
\(331\) −10.5135 + 6.06999i −0.577875 + 0.333637i −0.760289 0.649585i \(-0.774942\pi\)
0.182413 + 0.983222i \(0.441609\pi\)
\(332\) −6.32436 + 0.553310i −0.347094 + 0.0303668i
\(333\) 0 0
\(334\) −0.673729 + 0.388978i −0.0368648 + 0.0212839i
\(335\) −22.1634 10.6088i −1.21092 0.579622i
\(336\) 0 0
\(337\) 11.9360 17.0464i 0.650195 0.928575i −0.349771 0.936835i \(-0.613741\pi\)
0.999966 + 0.00826058i \(0.00262945\pi\)
\(338\) 1.32772 + 1.89618i 0.0722185 + 0.103139i
\(339\) 0 0
\(340\) −8.19774 8.36505i −0.444585 0.453659i
\(341\) 3.69808i 0.200262i
\(342\) 0 0
\(343\) 3.28722 + 3.28722i 0.177493 + 0.177493i
\(344\) −4.78310 + 4.01350i −0.257888 + 0.216393i
\(345\) 0 0
\(346\) 0.949961 5.38750i 0.0510702 0.289634i
\(347\) 7.40032 + 5.18176i 0.397270 + 0.278171i 0.755093 0.655618i \(-0.227592\pi\)
−0.357823 + 0.933790i \(0.616481\pi\)
\(348\) 0 0
\(349\) 1.17548 + 0.678665i 0.0629221 + 0.0363281i 0.531131 0.847290i \(-0.321767\pi\)
−0.468209 + 0.883618i \(0.655101\pi\)
\(350\) 0.389462 0.313611i 0.0208176 0.0167632i
\(351\) 0 0
\(352\) −0.520556 5.94999i −0.0277457 0.317135i
\(353\) 6.50831 24.2894i 0.346403 1.29279i −0.544563 0.838720i \(-0.683304\pi\)
0.890965 0.454072i \(-0.150029\pi\)
\(354\) 0 0
\(355\) −12.2674 + 32.6737i −0.651087 + 1.73414i
\(356\) 19.5320 3.44402i 1.03519 0.182533i
\(357\) 0 0
\(358\) 0.980892 + 2.10353i 0.0518417 + 0.111175i
\(359\) −1.32860 1.58336i −0.0701208 0.0835667i 0.729844 0.683614i \(-0.239593\pi\)
−0.799964 + 0.600047i \(0.795148\pi\)
\(360\) 0 0
\(361\) −18.9393 + 1.51788i −0.996804 + 0.0798883i
\(362\) −4.04527 + 4.04527i −0.212615 + 0.212615i
\(363\) 0 0
\(364\) 1.37738 + 0.501325i 0.0721943 + 0.0262766i
\(365\) 12.3121 + 1.20261i 0.644446 + 0.0629474i
\(366\) 0 0
\(367\) 2.99889 6.43114i 0.156541 0.335703i −0.812358 0.583158i \(-0.801817\pi\)
0.968899 + 0.247456i \(0.0795945\pi\)
\(368\) 28.8501 7.73037i 1.50392 0.402973i
\(369\) 0 0
\(370\) 3.98749 0.661643i 0.207300 0.0343972i
\(371\) 0.458284 0.546162i 0.0237929 0.0283553i
\(372\) 0 0
\(373\) −6.17989 23.0637i −0.319983 1.19419i −0.919260 0.393650i \(-0.871212\pi\)
0.599277 0.800541i \(-0.295455\pi\)
\(374\) −1.36228 + 0.495830i −0.0704419 + 0.0256388i
\(375\) 0 0
\(376\) 6.64609 + 1.17188i 0.342746 + 0.0604353i
\(377\) 12.7563 5.94835i 0.656982 0.306356i
\(378\) 0 0
\(379\) 16.2074 0.832518 0.416259 0.909246i \(-0.363341\pi\)
0.416259 + 0.909246i \(0.363341\pi\)
\(380\) −14.6178 11.5394i −0.749880 0.591958i
\(381\) 0 0
\(382\) −4.71468 0.412481i −0.241224 0.0211044i
\(383\) −5.70067 + 2.65826i −0.291290 + 0.135831i −0.562771 0.826613i \(-0.690265\pi\)
0.271480 + 0.962444i \(0.412487\pi\)
\(384\) 0 0
\(385\) 0.329973 + 1.28319i 0.0168170 + 0.0653972i
\(386\) 7.61801 2.77273i 0.387746 0.141128i
\(387\) 0 0
\(388\) −11.0710 2.96647i −0.562045 0.150600i
\(389\) 13.5012 16.0901i 0.684537 0.815799i −0.306147 0.951984i \(-0.599040\pi\)
0.990683 + 0.136185i \(0.0434843\pi\)
\(390\) 0 0
\(391\) −11.7895 20.4200i −0.596221 1.03268i
\(392\) −7.77350 + 2.08290i −0.392621 + 0.105202i
\(393\) 0 0
\(394\) −0.750336 4.25537i −0.0378014 0.214382i
\(395\) 25.8564 21.2548i 1.30098 1.06944i
\(396\) 0 0
\(397\) 0.242726 2.77437i 0.0121821 0.139242i −0.987668 0.156563i \(-0.949958\pi\)
0.999850 + 0.0173218i \(0.00551397\pi\)
\(398\) 0.673552 0.673552i 0.0337621 0.0337621i
\(399\) 0 0
\(400\) −2.66887 17.1557i −0.133444 0.857787i
\(401\) −14.4597 17.2324i −0.722083 0.860545i 0.272749 0.962085i \(-0.412067\pi\)
−0.994831 + 0.101541i \(0.967623\pi\)
\(402\) 0 0
\(403\) 3.92191 2.74615i 0.195364 0.136795i
\(404\) 20.1902 3.56007i 1.00450 0.177120i
\(405\) 0 0
\(406\) 0.307105 0.531921i 0.0152414 0.0263988i
\(407\) −2.77197 + 10.3452i −0.137402 + 0.512790i
\(408\) 0 0
\(409\) −18.6505 15.6496i −0.922209 0.773825i 0.0521935 0.998637i \(-0.483379\pi\)
−0.974402 + 0.224812i \(0.927823\pi\)
\(410\) −2.29976 3.35604i −0.113577 0.165743i
\(411\) 0 0
\(412\) 18.5850 + 8.66631i 0.915616 + 0.426959i
\(413\) 0.454188 + 0.318026i 0.0223491 + 0.0156490i
\(414\) 0 0
\(415\) −1.99527 + 7.15648i −0.0979438 + 0.351298i
\(416\) −5.92355 + 4.97045i −0.290426 + 0.243696i
\(417\) 0 0
\(418\) −2.04859 + 1.05695i −0.100200 + 0.0516971i
\(419\) 3.10801i 0.151836i −0.997114 0.0759182i \(-0.975811\pi\)
0.997114 0.0759182i \(-0.0241888\pi\)
\(420\) 0 0
\(421\) −7.35818 + 20.2164i −0.358616 + 0.985289i 0.620894 + 0.783894i \(0.286770\pi\)
−0.979510 + 0.201395i \(0.935453\pi\)
\(422\) 0.0959748 + 0.137066i 0.00467198 + 0.00667228i
\(423\) 0 0
\(424\) 0.851132 + 2.33847i 0.0413346 + 0.113566i
\(425\) −12.5367 + 5.54045i −0.608120 + 0.268751i
\(426\) 0 0
\(427\) 3.06713 0.268339i 0.148429 0.0129858i
\(428\) −4.19238 + 0.366785i −0.202646 + 0.0177292i
\(429\) 0 0
\(430\) 1.18710 + 3.36697i 0.0572470 + 0.162370i
\(431\) 6.33738 + 17.4118i 0.305261 + 0.838698i 0.993564 + 0.113274i \(0.0361339\pi\)
−0.688303 + 0.725424i \(0.741644\pi\)
\(432\) 0 0
\(433\) −5.25844 7.50983i −0.252704 0.360899i 0.672677 0.739936i \(-0.265144\pi\)
−0.925382 + 0.379037i \(0.876255\pi\)
\(434\) 0.0714583 0.196330i 0.00343011 0.00942414i
\(435\) 0 0
\(436\) 16.6452i 0.797159i
\(437\) −22.7156 29.8281i −1.08663 1.42687i
\(438\) 0 0
\(439\) −13.5592 + 11.3775i −0.647147 + 0.543021i −0.906204 0.422841i \(-0.861033\pi\)
0.259057 + 0.965862i \(0.416588\pi\)
\(440\) −4.45468 1.24199i −0.212368 0.0592095i
\(441\) 0 0
\(442\) 1.53745 + 1.07654i 0.0731293 + 0.0512057i
\(443\) 4.31463 + 2.01194i 0.204994 + 0.0955903i 0.522404 0.852698i \(-0.325035\pi\)
−0.317410 + 0.948288i \(0.602813\pi\)
\(444\) 0 0
\(445\) 4.26108 22.8157i 0.201995 1.08157i
\(446\) 5.15195 + 4.32300i 0.243952 + 0.204700i
\(447\) 0 0
\(448\) 0.514341 1.91955i 0.0243003 0.0906901i
\(449\) −1.65599 + 2.86825i −0.0781508 + 0.135361i −0.902452 0.430790i \(-0.858235\pi\)
0.824301 + 0.566151i \(0.191568\pi\)
\(450\) 0 0
\(451\) 10.6162 1.87193i 0.499899 0.0881458i
\(452\) −18.3730 + 12.8649i −0.864193 + 0.605115i
\(453\) 0 0
\(454\) −3.12529 3.72457i −0.146677 0.174803i
\(455\) 1.11582 1.30282i 0.0523103 0.0610773i
\(456\) 0 0
\(457\) 20.2603 20.2603i 0.947736 0.947736i −0.0509647 0.998700i \(-0.516230\pi\)
0.998700 + 0.0509647i \(0.0162296\pi\)
\(458\) 0.299660 3.42513i 0.0140022 0.160046i
\(459\) 0 0
\(460\) 3.57263 36.5761i 0.166575 1.70537i
\(461\) −2.78058 15.7694i −0.129504 0.734455i −0.978530 0.206104i \(-0.933921\pi\)
0.849026 0.528351i \(-0.177190\pi\)
\(462\) 0 0
\(463\) 27.3267 7.32218i 1.26998 0.340291i 0.439958 0.898018i \(-0.354993\pi\)
0.830024 + 0.557728i \(0.188327\pi\)
\(464\) −10.6633 18.4693i −0.495029 0.857416i
\(465\) 0 0
\(466\) −3.38018 + 4.02835i −0.156584 + 0.186610i
\(467\) 1.48896 + 0.398965i 0.0689007 + 0.0184619i 0.293105 0.956080i \(-0.405312\pi\)
−0.224204 + 0.974542i \(0.571978\pi\)
\(468\) 0 0
\(469\) −3.45652 + 1.25807i −0.159607 + 0.0580923i
\(470\) 1.96300 3.32207i 0.0905466 0.153236i
\(471\) 0 0
\(472\) −1.75398 + 0.817894i −0.0807335 + 0.0376466i
\(473\) −9.42369 0.824466i −0.433302 0.0379090i
\(474\) 0 0
\(475\) −18.6553 + 11.2685i −0.855965 + 0.517035i
\(476\) −1.75332 −0.0803632
\(477\) 0 0
\(478\) 0.859605 0.400840i 0.0393174 0.0183340i
\(479\) −16.5181 2.91258i −0.754730 0.133079i −0.216971 0.976178i \(-0.569618\pi\)
−0.537759 + 0.843099i \(0.680729\pi\)
\(480\) 0 0
\(481\) 13.0297 4.74243i 0.594105 0.216236i
\(482\) 0.595999 + 2.22430i 0.0271470 + 0.101314i
\(483\) 0 0
\(484\) −9.66184 + 11.5145i −0.439174 + 0.523388i
\(485\) −7.80398 + 10.9090i −0.354360 + 0.495353i
\(486\) 0 0
\(487\) 3.88785 1.04175i 0.176175 0.0472060i −0.169653 0.985504i \(-0.554265\pi\)
0.345828 + 0.938298i \(0.387598\pi\)
\(488\) −4.54165 + 9.73959i −0.205591 + 0.440891i
\(489\) 0 0
\(490\) −0.447330 + 4.57970i −0.0202083 + 0.206890i
\(491\) 10.9927 + 4.00100i 0.496091 + 0.180563i 0.577935 0.816083i \(-0.303859\pi\)
−0.0818437 + 0.996645i \(0.526081\pi\)
\(492\) 0 0
\(493\) −11.9049 + 11.9049i −0.536171 + 0.536171i
\(494\) 2.64218 + 1.38770i 0.118877 + 0.0624355i
\(495\) 0 0
\(496\) −4.66307 5.55723i −0.209378 0.249527i
\(497\) 2.20802 + 4.73511i 0.0990432 + 0.212399i
\(498\) 0 0
\(499\) −25.5639 + 4.50760i −1.14440 + 0.201788i −0.713527 0.700627i \(-0.752904\pi\)
−0.430868 + 0.902415i \(0.641792\pi\)
\(500\) −20.9161 4.34534i −0.935398 0.194330i
\(501\) 0 0
\(502\) 0.0692736 0.258533i 0.00309183 0.0115389i
\(503\) 2.84355 + 32.5020i 0.126788 + 1.44919i 0.747035 + 0.664784i \(0.231477\pi\)
−0.620248 + 0.784406i \(0.712968\pi\)
\(504\) 0 0
\(505\) 4.40467 23.5845i 0.196005 1.04950i
\(506\) −3.93940 2.27441i −0.175128 0.101110i
\(507\) 0 0
\(508\) 10.4796 + 7.33786i 0.464955 + 0.325565i
\(509\) 1.27621 7.23775i 0.0565671 0.320808i −0.943373 0.331733i \(-0.892367\pi\)
0.999940 + 0.0109254i \(0.00347774\pi\)
\(510\) 0 0
\(511\) 1.41863 1.19037i 0.0627565 0.0526590i
\(512\) 14.0224 + 14.0224i 0.619710 + 0.619710i
\(513\) 0 0
\(514\) 0.643793i 0.0283965i
\(515\) 17.1395 16.7966i 0.755255 0.740149i
\(516\) 0 0
\(517\) 5.86445 + 8.37530i 0.257918 + 0.368345i
\(518\) 0.347063 0.495658i 0.0152491 0.0217780i
\(519\) 0 0
\(520\) 1.99083 + 5.64659i 0.0873036 + 0.247619i
\(521\) 25.6025 14.7816i 1.12166 0.647593i 0.179839 0.983696i \(-0.442442\pi\)
0.941825 + 0.336103i \(0.109109\pi\)
\(522\) 0 0
\(523\) −36.7539 + 3.21555i −1.60714 + 0.140606i −0.855082 0.518494i \(-0.826493\pi\)
−0.752055 + 0.659100i \(0.770937\pi\)
\(524\) 12.1604 7.02082i 0.531230 0.306706i
\(525\) 0 0
\(526\) −3.01099 8.27262i −0.131285 0.360703i
\(527\) −3.28486 + 4.69127i −0.143091 + 0.204355i
\(528\) 0 0
\(529\) 17.4379 47.9102i 0.758169 2.08305i
\(530\) 1.42282 + 0.0143729i 0.0618032 + 0.000624317i
\(531\) 0 0
\(532\) −2.76540 + 0.353818i −0.119895 + 0.0153400i
\(533\) −9.86873 9.86873i −0.427462 0.427462i
\(534\) 0 0
\(535\) −1.32265 + 4.74399i −0.0571831 + 0.205100i
\(536\) 2.22947 12.6439i 0.0962983 0.546135i
\(537\) 0 0
\(538\) −1.69863 0.792084i −0.0732332 0.0341492i
\(539\) −10.5590 6.09627i −0.454810 0.262585i
\(540\) 0 0
\(541\) 30.1856 + 25.3287i 1.29778 + 1.08897i 0.990524 + 0.137341i \(0.0438556\pi\)
0.307257 + 0.951627i \(0.400589\pi\)
\(542\) −0.156844 1.79274i −0.00673703 0.0770046i
\(543\) 0 0
\(544\) 4.62478 8.01036i 0.198286 0.343441i
\(545\) −18.2362 6.84683i −0.781154 0.293286i
\(546\) 0 0
\(547\) 3.33017 2.33181i 0.142388 0.0997010i −0.500212 0.865903i \(-0.666745\pi\)
0.642600 + 0.766202i \(0.277856\pi\)
\(548\) 4.24891 + 9.11181i 0.181504 + 0.389237i
\(549\) 0 0
\(550\) −1.56011 + 2.13494i −0.0665233 + 0.0910341i
\(551\) −16.3745 + 21.1793i −0.697577 + 0.902269i
\(552\) 0 0
\(553\) 0.436704 4.99155i 0.0185705 0.212262i
\(554\) −6.34589 2.30972i −0.269611 0.0981304i
\(555\) 0 0
\(556\) −6.16509 34.9640i −0.261458 1.48280i
\(557\) −0.133737 + 0.286800i −0.00566663 + 0.0121521i −0.909121 0.416533i \(-0.863245\pi\)
0.903454 + 0.428685i \(0.141023\pi\)
\(558\) 0 0
\(559\) 6.12355 + 10.6063i 0.258999 + 0.448599i
\(560\) −2.11389 1.51221i −0.0893280 0.0639025i
\(561\) 0 0
\(562\) 3.47606 + 0.931407i 0.146629 + 0.0392890i
\(563\) 12.0964 + 45.1444i 0.509803 + 1.90261i 0.422330 + 0.906442i \(0.361212\pi\)
0.0874723 + 0.996167i \(0.472121\pi\)
\(564\) 0 0
\(565\) 6.53707 + 25.4211i 0.275017 + 1.06947i
\(566\) −3.43098 0.604975i −0.144215 0.0254290i
\(567\) 0 0
\(568\) −18.1667 1.58938i −0.762258 0.0666889i
\(569\) 25.5911 1.07283 0.536417 0.843953i \(-0.319777\pi\)
0.536417 + 0.843953i \(0.319777\pi\)
\(570\) 0 0
\(571\) −2.95798 −0.123788 −0.0618938 0.998083i \(-0.519714\pi\)
−0.0618938 + 0.998083i \(0.519714\pi\)
\(572\) −7.72167 0.675558i −0.322859 0.0282465i
\(573\) 0 0
\(574\) −0.599785 0.105758i −0.0250345 0.00441426i
\(575\) −38.6027 18.9594i −1.60984 0.790660i
\(576\) 0 0
\(577\) −1.90612 7.11374i −0.0793528 0.296149i 0.914832 0.403834i \(-0.132323\pi\)
−0.994185 + 0.107685i \(0.965656\pi\)
\(578\) 2.73730 + 0.733456i 0.113857 + 0.0305078i
\(579\) 0 0
\(580\) −25.8867 + 4.29538i −1.07489 + 0.178356i
\(581\) 0.556090 + 0.963176i 0.0230705 + 0.0399593i
\(582\) 0 0
\(583\) −1.59336 + 3.41698i −0.0659904 + 0.141517i
\(584\) 1.12244 + 6.36567i 0.0464469 + 0.263413i
\(585\) 0 0
\(586\) −3.53536 1.28677i −0.146045 0.0531559i
\(587\) −0.255196 + 2.91690i −0.0105331 + 0.120394i −0.999641 0.0267997i \(-0.991468\pi\)
0.989108 + 0.147193i \(0.0470239\pi\)
\(588\) 0 0
\(589\) −4.23432 + 8.06213i −0.174472 + 0.332194i
\(590\) 0.0853031 + 1.10327i 0.00351187 + 0.0454208i
\(591\) 0 0
\(592\) −8.87911 19.0413i −0.364929 0.782593i
\(593\) −2.83613 + 1.98588i −0.116466 + 0.0815502i −0.630358 0.776304i \(-0.717092\pi\)
0.513892 + 0.857855i \(0.328203\pi\)
\(594\) 0 0
\(595\) −0.721211 + 1.92091i −0.0295668 + 0.0787498i
\(596\) 18.7479 32.4723i 0.767943 1.33012i
\(597\) 0 0
\(598\) 0.513277 + 5.86679i 0.0209895 + 0.239911i
\(599\) 12.9017 + 10.8258i 0.527151 + 0.442332i 0.867116 0.498106i \(-0.165971\pi\)
−0.339965 + 0.940438i \(0.610415\pi\)
\(600\) 0 0
\(601\) 3.51772 + 2.03096i 0.143491 + 0.0828445i 0.570027 0.821626i \(-0.306933\pi\)
−0.426536 + 0.904471i \(0.640266\pi\)
\(602\) 0.484370 + 0.225865i 0.0197414 + 0.00920559i
\(603\) 0 0
\(604\) −0.425202 + 2.41144i −0.0173012 + 0.0981201i
\(605\) 8.64086 + 15.3218i 0.351301 + 0.622919i
\(606\) 0 0
\(607\) 24.9122 + 24.9122i 1.01116 + 1.01116i 0.999937 + 0.0112183i \(0.00357098\pi\)
0.0112183 + 0.999937i \(0.496429\pi\)
\(608\) 5.67790 13.5675i 0.230269 0.550236i
\(609\) 0 0
\(610\) 4.30075 + 4.38853i 0.174132 + 0.177686i
\(611\) 4.52735 12.4388i 0.183157 0.503220i
\(612\) 0 0
\(613\) 5.19022 7.41240i 0.209631 0.299384i −0.700543 0.713610i \(-0.747059\pi\)
0.910174 + 0.414226i \(0.135948\pi\)
\(614\) −1.68724 4.63566i −0.0680916 0.187080i
\(615\) 0 0
\(616\) −0.599546 + 0.346148i −0.0241564 + 0.0139467i
\(617\) 42.1238 3.68535i 1.69584 0.148367i 0.802171 0.597094i \(-0.203678\pi\)
0.893669 + 0.448727i \(0.148122\pi\)
\(618\) 0 0
\(619\) 15.6339 9.02621i 0.628378 0.362794i −0.151746 0.988420i \(-0.548489\pi\)
0.780124 + 0.625625i \(0.215156\pi\)
\(620\) −8.41815 + 2.96801i −0.338081 + 0.119198i
\(621\) 0 0
\(622\) −0.913606 + 1.30476i −0.0366323 + 0.0523163i
\(623\) −1.99292 2.84618i −0.0798446 0.114030i
\(624\) 0 0
\(625\) −13.3644 + 21.1280i −0.534574 + 0.845121i
\(626\) 5.87229i 0.234704i
\(627\) 0 0
\(628\) 21.9866 + 21.9866i 0.877363 + 0.877363i
\(629\) −12.7056 + 10.6613i −0.506607 + 0.425094i
\(630\) 0 0
\(631\) −2.44081 + 13.8425i −0.0971672 + 0.551062i 0.896895 + 0.442244i \(0.145818\pi\)
−0.994062 + 0.108818i \(0.965293\pi\)
\(632\) 14.3263 + 10.0314i 0.569869 + 0.399026i
\(633\) 0 0
\(634\) 4.72519 + 2.72809i 0.187661 + 0.108346i
\(635\) 12.3499 8.46290i 0.490092 0.335840i
\(636\) 0 0
\(637\) 1.37577 + 15.7252i 0.0545101 + 0.623053i
\(638\) −0.840643 + 3.13732i −0.0332814 + 0.124208i
\(639\) 0 0
\(640\) 17.3509 7.87848i 0.685855 0.311424i
\(641\) −23.1158 + 4.07593i −0.913018 + 0.160990i −0.610374 0.792114i \(-0.708981\pi\)
−0.302645 + 0.953103i \(0.597870\pi\)
\(642\) 0 0
\(643\) 4.67679 + 10.0294i 0.184435 + 0.395521i 0.976686 0.214674i \(-0.0688688\pi\)
−0.792251 + 0.610195i \(0.791091\pi\)
\(644\) −3.53628 4.21437i −0.139349 0.166070i
\(645\) 0 0
\(646\) −3.53762 0.478866i −0.139186 0.0188407i
\(647\) 10.3878 10.3878i 0.408386 0.408386i −0.472790 0.881175i \(-0.656753\pi\)
0.881175 + 0.472790i \(0.156753\pi\)
\(648\) 0 0
\(649\) −2.75522 1.00282i −0.108152 0.0393640i
\(650\) 3.42267 + 0.0691567i 0.134248 + 0.00271255i
\(651\) 0 0
\(652\) −8.23134 + 17.6522i −0.322364 + 0.691312i
\(653\) 19.7746 5.29859i 0.773841 0.207350i 0.149773 0.988720i \(-0.452146\pi\)
0.624067 + 0.781370i \(0.285479\pi\)
\(654\) 0 0
\(655\) −2.68984 16.2107i −0.105101 0.633406i
\(656\) −13.5930 + 16.1995i −0.530717 + 0.632484i
\(657\) 0 0
\(658\) −0.149505 0.557961i −0.00582832 0.0217516i
\(659\) −1.78757 + 0.650624i −0.0696340 + 0.0253447i −0.376602 0.926375i \(-0.622908\pi\)
0.306968 + 0.951720i \(0.400685\pi\)
\(660\) 0 0
\(661\) 14.1497 + 2.49497i 0.550360 + 0.0970433i 0.441911 0.897059i \(-0.354301\pi\)
0.108448 + 0.994102i \(0.465412\pi\)
\(662\) −3.28713 + 1.53281i −0.127758 + 0.0595745i
\(663\) 0 0
\(664\) −3.88198 −0.150650
\(665\) −0.749883 + 3.17528i −0.0290792 + 0.123132i
\(666\) 0 0
\(667\) −52.6264 4.60422i −2.03770 0.178276i
\(668\) 4.50930 2.10272i 0.174470 0.0813566i
\(669\) 0 0
\(670\) −6.32011 3.73454i −0.244167 0.144278i
\(671\) −15.2993 + 5.56850i −0.590624 + 0.214969i
\(672\) 0 0
\(673\) 13.2264 + 3.54401i 0.509842 + 0.136612i 0.504564 0.863374i \(-0.331653\pi\)
0.00527799 + 0.999986i \(0.498320\pi\)
\(674\) 3.99630 4.76261i 0.153932 0.183449i
\(675\) 0 0
\(676\) −7.40225 12.8211i −0.284702 0.493118i
\(677\) 30.7746 8.24603i 1.18276 0.316921i 0.386742 0.922188i \(-0.373600\pi\)
0.796023 + 0.605267i \(0.206934\pi\)
\(678\) 0 0
\(679\) 0.348672 + 1.97741i 0.0133808 + 0.0758862i
\(680\) −4.54786 5.53247i −0.174402 0.212160i
\(681\) 0 0
\(682\) −0.0962933 + 1.10064i −0.00368726 + 0.0421456i
\(683\) 1.98056 1.98056i 0.0757839 0.0757839i −0.668199 0.743983i \(-0.732934\pi\)
0.743983 + 0.668199i \(0.232934\pi\)
\(684\) 0 0
\(685\) 11.7305 0.906989i 0.448201 0.0346543i
\(686\) 0.892759 + 1.06395i 0.0340857 + 0.0406218i
\(687\) 0 0
\(688\) 15.2009 10.6438i 0.579529 0.405791i
\(689\) 4.80701 0.847605i 0.183132 0.0322912i
\(690\) 0 0
\(691\) 9.82610 17.0193i 0.373802 0.647445i −0.616345 0.787476i \(-0.711387\pi\)
0.990147 + 0.140032i \(0.0447205\pi\)
\(692\) −9.05546 + 33.7954i −0.344237 + 1.28471i
\(693\) 0 0
\(694\) 2.06759 + 1.73491i 0.0784845 + 0.0658563i
\(695\) −40.8420 7.62771i −1.54923 0.289335i
\(696\) 0 0
\(697\) 15.1302 + 7.05533i 0.573097 + 0.267240i
\(698\) 0.332180 + 0.232595i 0.0125732 + 0.00880385i
\(699\) 0 0
\(700\) −2.65616 + 1.78100i −0.100393 + 0.0673154i
\(701\) −25.1461 + 21.1001i −0.949755 + 0.796939i −0.979256 0.202625i \(-0.935053\pi\)
0.0295010 + 0.999565i \(0.490608\pi\)
\(702\) 0 0
\(703\) −17.8884 + 19.3794i −0.674673 + 0.730908i
\(704\) 10.5088i 0.396066i
\(705\) 0 0
\(706\) 2.56949 7.05962i 0.0967042 0.265692i
\(707\) −2.06007 2.94209i −0.0774770 0.110649i
\(708\) 0 0
\(709\) −6.40035 17.5848i −0.240370 0.660412i −0.999950 0.00999760i \(-0.996818\pi\)
0.759580 0.650414i \(-0.225405\pi\)
\(710\) −4.50186 + 9.40504i −0.168952 + 0.352965i
\(711\) 0 0
\(712\) 12.0815 1.05699i 0.452772 0.0396125i
\(713\) −17.9015 + 1.56617i −0.670415 + 0.0586537i
\(714\) 0 0
\(715\) −3.91637 + 8.18187i −0.146464 + 0.305985i
\(716\) −5.07695 13.9488i −0.189735 0.521291i
\(717\) 0 0
\(718\) −0.354194 0.505842i −0.0132184 0.0188778i
\(719\) −2.67044 + 7.33697i −0.0995905 + 0.273623i −0.979475 0.201564i \(-0.935397\pi\)
0.879885 + 0.475187i \(0.157620\pi\)
\(720\) 0 0
\(721\) 3.59244i 0.133789i
\(722\) −5.67630 0.0413976i −0.211250 0.00154066i
\(723\) 0 0
\(724\) 28.0282 23.5185i 1.04166 0.874057i
\(725\) −5.94231 + 30.1280i −0.220692 + 1.11893i
\(726\) 0 0
\(727\) 24.5663 + 17.2015i 0.911115 + 0.637970i 0.932253 0.361807i \(-0.117840\pi\)
−0.0211378 + 0.999777i \(0.506729\pi\)
\(728\) 0.812315 + 0.378788i 0.0301064 + 0.0140388i
\(729\) 0 0
\(730\) 3.63307 + 0.678517i 0.134466 + 0.0251130i
\(731\) −11.2223 9.41660i −0.415070 0.348285i
\(732\) 0 0
\(733\) −4.87884 + 18.2081i −0.180204 + 0.672531i 0.815402 + 0.578895i \(0.196516\pi\)
−0.995606 + 0.0936365i \(0.970151\pi\)
\(734\) 1.06000 1.83597i 0.0391253 0.0677670i
\(735\) 0 0
\(736\) 28.5819 5.03976i 1.05354 0.185768i
\(737\) 15.9337 11.1569i 0.586926 0.410970i
\(738\) 0 0
\(739\) 19.7272 + 23.5100i 0.725678 + 0.864829i 0.995169 0.0981738i \(-0.0313001\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(740\) −25.7740 + 1.99281i −0.947471 + 0.0732572i
\(741\) 0 0
\(742\) 0.150618 0.150618i 0.00552935 0.00552935i
\(743\) −1.19259 + 13.6313i −0.0437517 + 0.500084i 0.942428 + 0.334408i \(0.108536\pi\)
−0.986180 + 0.165676i \(0.947019\pi\)
\(744\) 0 0
\(745\) −27.8644 33.8971i −1.02087 1.24189i
\(746\) −1.23874 7.02522i −0.0453533 0.257212i
\(747\) 0 0
\(748\) 8.95578 2.39969i 0.327456 0.0877415i
\(749\) 0.368629 + 0.638484i 0.0134694 + 0.0233297i
\(750\) 0 0
\(751\) −14.7692 + 17.6012i −0.538934 + 0.642277i −0.964948 0.262440i \(-0.915473\pi\)
0.426014 + 0.904717i \(0.359917\pi\)
\(752\) −19.3735 5.19111i −0.706478 0.189300i
\(753\) 0 0
\(754\) 3.95146 1.43822i 0.143904 0.0523767i
\(755\) 2.46704 + 1.45777i 0.0897848 + 0.0530537i
\(756\) 0 0
\(757\) −2.99560 + 1.39687i −0.108877 + 0.0507702i −0.476294 0.879286i \(-0.658020\pi\)
0.367417 + 0.930056i \(0.380242\pi\)
\(758\) 4.82371 + 0.422020i 0.175205 + 0.0153284i
\(759\) 0 0
\(760\) −8.28950 7.80827i −0.300692 0.283236i
\(761\) 39.1861 1.42050 0.710248 0.703952i \(-0.248583\pi\)
0.710248 + 0.703952i \(0.248583\pi\)
\(762\) 0 0
\(763\) −2.64282 + 1.23237i −0.0956764 + 0.0446146i
\(764\) 29.8084 + 5.25602i 1.07843 + 0.190156i
\(765\) 0 0
\(766\) −1.76587 + 0.642725i −0.0638036 + 0.0232226i
\(767\) 0.982478 + 3.66666i 0.0354752 + 0.132395i
\(768\) 0 0
\(769\) −22.2353 + 26.4990i −0.801825 + 0.955578i −0.999696 0.0246499i \(-0.992153\pi\)
0.197871 + 0.980228i \(0.436597\pi\)
\(770\) 0.0647954 + 0.390499i 0.00233506 + 0.0140726i
\(771\) 0 0
\(772\) −50.0815 + 13.4193i −1.80247 + 0.482972i
\(773\) 7.07654 15.1757i 0.254526 0.545832i −0.736977 0.675918i \(-0.763748\pi\)
0.991503 + 0.130086i \(0.0415253\pi\)
\(774\) 0 0
\(775\) −0.211019 + 10.4437i −0.00758004 + 0.375148i
\(776\) −6.58582 2.39704i −0.236417 0.0860488i
\(777\) 0 0
\(778\) 4.43724 4.43724i 0.159083 0.159083i
\(779\) 25.2877 + 8.07467i 0.906026 + 0.289305i
\(780\) 0 0
\(781\) −17.7591 21.1645i −0.635470 0.757324i
\(782\) −2.97713 6.38447i −0.106462 0.228308i
\(783\) 0 0
\(784\) 23.5545 4.15329i 0.841232 0.148332i
\(785\) 33.1323 15.0443i 1.18254 0.536953i
\(786\) 0 0
\(787\) −11.9180 + 44.4784i −0.424830 + 1.58549i 0.339465 + 0.940619i \(0.389754\pi\)
−0.764295 + 0.644867i \(0.776913\pi\)
\(788\) 2.40858 + 27.5301i 0.0858019 + 0.980721i
\(789\) 0 0
\(790\) 8.24894 5.65266i 0.293484 0.201113i
\(791\) 3.40290 + 1.96467i 0.120993 + 0.0698555i
\(792\) 0 0
\(793\) 17.2666 + 12.0902i 0.613156 + 0.429336i
\(794\) 0.144482 0.819399i 0.00512748 0.0290794i
\(795\) 0 0
\(796\) −4.66680 + 3.91591i −0.165410 + 0.138796i
\(797\) 14.9095 + 14.9095i 0.528121 + 0.528121i 0.920012 0.391891i \(-0.128179\pi\)
−0.391891 + 0.920012i \(0.628179\pi\)
\(798\) 0 0
\(799\) 15.8338i 0.560160i
\(800\) −1.13058 16.8330i −0.0399719 0.595135i
\(801\) 0 0
\(802\) −3.85484 5.50528i −0.136119 0.194398i
\(803\) −5.61702 + 8.02193i −0.198220 + 0.283088i
\(804\) 0 0
\(805\) −6.07183 + 2.14076i −0.214004 + 0.0754518i
\(806\) 1.23876 0.715198i 0.0436335 0.0251918i
\(807\) 0 0
\(808\) 12.4886 1.09261i 0.439347 0.0384379i
\(809\) 0.0883067 0.0509839i 0.00310470 0.00179250i −0.498447 0.866920i \(-0.666096\pi\)
0.501552 + 0.865128i \(0.332763\pi\)
\(810\) 0 0
\(811\) 13.8775 + 38.1282i 0.487306 + 1.33886i 0.903111 + 0.429407i \(0.141278\pi\)
−0.415805 + 0.909454i \(0.636500\pi\)
\(812\) −2.25313 + 3.21780i −0.0790694 + 0.112923i
\(813\) 0 0
\(814\) −1.09438 + 3.00679i −0.0383580 + 0.105388i
\(815\) 15.9536 + 16.2792i 0.558830 + 0.570235i
\(816\) 0 0
\(817\) −19.6004 12.5876i −0.685733 0.440383i
\(818\) −5.14334 5.14334i −0.179833 0.179833i
\(819\) 0 0
\(820\) 12.7816 + 22.6640i 0.446352 + 0.791461i
\(821\) 1.91779 10.8763i 0.0669314 0.379587i −0.932880 0.360186i \(-0.882713\pi\)
0.999812 0.0194006i \(-0.00617579\pi\)
\(822\) 0 0
\(823\) −41.8739 19.5261i −1.45963 0.680638i −0.479238 0.877685i \(-0.659087\pi\)
−0.980394 + 0.197047i \(0.936865\pi\)
\(824\) 10.8592 + 6.26956i 0.378298 + 0.218410i
\(825\) 0 0
\(826\) 0.126896 + 0.106479i 0.00441528 + 0.00370486i
\(827\) −1.94055 22.1806i −0.0674796 0.771295i −0.952260 0.305287i \(-0.901247\pi\)
0.884781 0.466008i \(-0.154308\pi\)
\(828\) 0 0
\(829\) −13.8403 + 23.9721i −0.480694 + 0.832587i −0.999755 0.0221506i \(-0.992949\pi\)
0.519060 + 0.854738i \(0.326282\pi\)
\(830\) −0.780185 + 2.07799i −0.0270806 + 0.0721280i
\(831\) 0 0
\(832\) 11.1449 7.80373i 0.386379 0.270545i
\(833\) −7.97980 17.1127i −0.276484 0.592921i
\(834\) 0 0
\(835\) −0.448855 5.80526i −0.0155333 0.200899i
\(836\) 13.6411 5.59216i 0.471789 0.193409i
\(837\) 0 0
\(838\) 0.0809287 0.925019i 0.00279564 0.0319543i
\(839\) 35.1412 + 12.7903i 1.21321 + 0.441572i 0.867815 0.496887i \(-0.165524\pi\)
0.345393 + 0.938458i \(0.387746\pi\)
\(840\) 0 0
\(841\) 1.51428 + 8.58788i 0.0522164 + 0.296134i
\(842\) −2.71638 + 5.82530i −0.0936127 + 0.200753i
\(843\) 0 0
\(844\) −0.535075 0.926777i −0.0184180 0.0319010i
\(845\) −17.0915 + 2.83598i −0.587964 + 0.0975607i
\(846\) 0 0
\(847\) 2.54354 + 0.681540i 0.0873972 + 0.0234180i
\(848\) −1.91422 7.14395i −0.0657344 0.245324i
\(849\) 0 0
\(850\) −3.87549 + 1.32253i −0.132928 + 0.0453624i
\(851\) −51.2522 9.03714i −1.75690 0.309789i
\(852\) 0 0
\(853\) −18.2820 1.59947i −0.625964 0.0547648i −0.230240 0.973134i \(-0.573951\pi\)
−0.395725 + 0.918369i \(0.629507\pi\)
\(854\) 0.919837 0.0314762
\(855\) 0 0
\(856\) −2.57334 −0.0879549
\(857\) −48.7757 4.26732i −1.66615 0.145769i −0.785283 0.619138i \(-0.787482\pi\)
−0.880864 + 0.473369i \(0.843038\pi\)
\(858\) 0 0
\(859\) 2.01743 + 0.355727i 0.0688338 + 0.0121373i 0.207959 0.978138i \(-0.433318\pi\)
−0.139125 + 0.990275i \(0.544429\pi\)
\(860\) −5.68649 22.1134i −0.193908 0.754061i
\(861\) 0 0
\(862\) 1.43278 + 5.34719i 0.0488005 + 0.182126i
\(863\) −33.3761 8.94309i −1.13613 0.304426i −0.358738 0.933438i \(-0.616793\pi\)
−0.777396 + 0.629012i \(0.783460\pi\)
\(864\) 0 0
\(865\) 33.3010 + 23.8225i 1.13227 + 0.809989i
\(866\) −1.36949 2.37203i −0.0465372 0.0806048i
\(867\) 0 0
\(868\) −0.564713 + 1.21103i −0.0191676 + 0.0411051i
\(869\) 4.60109 + 26.0941i 0.156081 + 0.885181i
\(870\) 0 0
\(871\) −23.6644 8.61312i −0.801836 0.291844i
\(872\) 0.887084 10.1394i 0.0300405 0.343364i
\(873\) 0 0
\(874\) −5.98402 9.46905i −0.202412 0.320295i
\(875\) 0.858651 + 3.64265i 0.0290277 + 0.123144i
\(876\) 0 0
\(877\) 17.7162 + 37.9925i 0.598234 + 1.28292i 0.939371 + 0.342903i \(0.111410\pi\)
−0.341137 + 0.940014i \(0.610812\pi\)
\(878\) −4.33181 + 3.03316i −0.146191 + 0.102364i
\(879\) 0 0
\(880\) 12.8672 + 4.83103i 0.433754 + 0.162854i
\(881\) −2.70678 + 4.68828i −0.0911936 + 0.157952i −0.908014 0.418941i \(-0.862402\pi\)
0.816820 + 0.576893i \(0.195735\pi\)
\(882\) 0 0
\(883\) 2.66819 + 30.4975i 0.0897917 + 1.02632i 0.898751 + 0.438459i \(0.144476\pi\)
−0.808959 + 0.587864i \(0.799969\pi\)
\(884\) −9.19539 7.71585i −0.309275 0.259512i
\(885\) 0 0
\(886\) 1.23175 + 0.711150i 0.0413814 + 0.0238916i
\(887\) 33.6111 + 15.6731i 1.12855 + 0.526252i 0.894988 0.446090i \(-0.147184\pi\)
0.233562 + 0.972342i \(0.424962\pi\)
\(888\) 0 0
\(889\) 0.389181 2.20715i 0.0130527 0.0740256i
\(890\) 1.86229 6.67953i 0.0624241 0.223898i
\(891\) 0 0
\(892\) −30.4145 30.4145i −1.01835 1.01835i
\(893\) 3.19525 + 24.9737i 0.106925 + 0.835713i
\(894\) 0 0
\(895\) −17.3705 0.175471i −0.580631 0.00586536i
\(896\) 0.975662 2.68061i 0.0325946 0.0895529i
\(897\) 0 0
\(898\) −0.567547 + 0.810541i −0.0189393 + 0.0270481i
\(899\) 4.38846 + 12.0572i 0.146363 + 0.402130i
\(900\) 0 0
\(901\) −5.05646 + 2.91935i −0.168455 + 0.0972577i
\(902\) 3.20839 0.280698i 0.106828 0.00934622i
\(903\) 0 0
\(904\) −11.8776 + 6.85751i −0.395041 + 0.228077i
\(905\) −14.2374 40.3814i −0.473266 1.34232i
\(906\) 0 0
\(907\) −0.162899 + 0.232644i −0.00540896 + 0.00772480i −0.821847 0.569708i \(-0.807056\pi\)
0.816438 + 0.577432i \(0.195945\pi\)
\(908\) 17.8358 + 25.4721i 0.591901 + 0.845323i
\(909\) 0 0
\(910\) 0.366018 0.358697i 0.0121334 0.0118907i
\(911\) 35.0022i 1.15968i 0.814732 + 0.579838i \(0.196884\pi\)
−0.814732 + 0.579838i \(0.803116\pi\)
\(912\) 0 0
\(913\) −4.15872 4.15872i −0.137633 0.137633i
\(914\) 6.55749 5.50239i 0.216903 0.182003i
\(915\) 0 0
\(916\) −3.81840 + 21.6552i −0.126163 + 0.715508i
\(917\) −2.01505 1.41095i −0.0665427 0.0465937i
\(918\) 0 0
\(919\) 10.2856 + 5.93841i 0.339291 + 0.195890i 0.659959 0.751302i \(-0.270574\pi\)
−0.320667 + 0.947192i \(0.603907\pi\)
\(920\) 4.12555 22.0899i 0.136015 0.728284i
\(921\) 0 0
\(922\) −0.416950 4.76576i −0.0137315 0.156952i
\(923\) −9.25777 + 34.5505i −0.304723 + 1.13724i
\(924\) 0 0
\(925\) −8.41860 + 29.0574i −0.276802 + 0.955401i
\(926\) 8.32375 1.46770i 0.273535 0.0482317i
\(927\) 0 0
\(928\) −8.75798 18.7815i −0.287495 0.616534i
\(929\) −34.7475 41.4104i −1.14003 1.35863i −0.924067 0.382230i \(-0.875156\pi\)
−0.215960 0.976402i \(-0.569288\pi\)
\(930\) 0 0
\(931\) −16.0394 25.3805i −0.525669 0.831814i
\(932\) 23.7813 23.7813i 0.778984 0.778984i
\(933\) 0 0
\(934\) 0.432760 + 0.157512i 0.0141604 + 0.00515395i
\(935\) 1.05480 10.7989i 0.0344958 0.353163i
\(936\) 0 0
\(937\) 7.52427 16.1359i 0.245807 0.527135i −0.744233 0.667920i \(-0.767185\pi\)
0.990040 + 0.140785i \(0.0449626\pi\)
\(938\) −1.06150 + 0.284428i −0.0346592 + 0.00928692i
\(939\) 0 0
\(940\) −14.3585 + 20.0714i −0.468322 + 0.654658i
\(941\) −20.1771 + 24.0461i −0.657754 + 0.783881i −0.987062 0.160342i \(-0.948740\pi\)
0.329307 + 0.944223i \(0.393185\pi\)
\(942\) 0 0
\(943\) 13.5576 + 50.5977i 0.441497 + 1.64769i
\(944\) 5.40486 1.96721i 0.175913 0.0640271i
\(945\) 0 0
\(946\) −2.78325 0.490762i −0.0904912 0.0159560i
\(947\) 22.7589 10.6127i 0.739565 0.344865i −0.0160582 0.999871i \(-0.505112\pi\)
0.755624 + 0.655006i \(0.227334\pi\)
\(948\) 0 0
\(949\) 12.6786 0.411564
\(950\) −5.84568 + 2.86802i −0.189659 + 0.0930507i
\(951\) 0 0
\(952\) −1.06804 0.0934410i −0.0346152 0.00302844i
\(953\) −1.38466 + 0.645677i −0.0448535 + 0.0209155i −0.444916 0.895572i \(-0.646766\pi\)
0.400062 + 0.916488i \(0.368989\pi\)
\(954\) 0 0
\(955\) 18.0198 30.4956i 0.583108 0.986816i
\(956\) −5.70017 + 2.07469i −0.184357 + 0.0671003i
\(957\) 0 0
\(958\) −4.84033 1.29696i −0.156384 0.0419030i
\(959\) 1.13214 1.34923i 0.0365587 0.0435689i
\(960\) 0 0
\(961\) −13.3177 23.0669i −0.429603 0.744095i
\(962\) 4.00145 1.07218i 0.129012 0.0345686i
\(963\) 0 0
\(964\) −2.55740 14.5037i −0.0823682 0.467133i
\(965\) −5.89856 + 60.3886i −0.189881 + 1.94398i
\(966\) 0 0
\(967\) 1.75903 20.1058i 0.0565665 0.646558i −0.913998 0.405718i \(-0.867022\pi\)
0.970565 0.240840i \(-0.0774229\pi\)
\(968\) −6.49917 + 6.49917i −0.208891 + 0.208891i
\(969\) 0 0
\(970\) −2.60671 + 3.04358i −0.0836963 + 0.0977234i
\(971\) 1.63397 + 1.94730i 0.0524367 + 0.0624917i 0.791625 0.611007i \(-0.209235\pi\)
−0.739189 + 0.673499i \(0.764791\pi\)
\(972\) 0 0
\(973\) −5.09491 + 3.56750i −0.163335 + 0.114369i
\(974\) 1.18424 0.208814i 0.0379456 0.00669083i
\(975\) 0 0
\(976\) 15.9692 27.6595i 0.511163 0.885361i
\(977\) −15.0379 + 56.1223i −0.481106 + 1.79551i 0.115882 + 0.993263i \(0.463030\pi\)
−0.596989 + 0.802250i \(0.703636\pi\)
\(978\) 0 0
\(979\) 14.0751 + 11.8104i 0.449842 + 0.377462i
\(980\) 5.40280 28.9289i 0.172586 0.924100i
\(981\) 0 0
\(982\) 3.16750 + 1.47703i 0.101079 + 0.0471338i
\(983\) 26.9174 + 18.8478i 0.858531 + 0.601150i 0.917778 0.397093i \(-0.129981\pi\)
−0.0592470 + 0.998243i \(0.518870\pi\)
\(984\) 0 0
\(985\) 31.1524 + 8.68546i 0.992598 + 0.276742i
\(986\) −3.85318 + 3.23320i −0.122710 + 0.102966i
\(987\) 0 0
\(988\) −16.0604 10.3141i −0.510949 0.328136i
\(989\) 45.9668i 1.46166i
\(990\) 0 0
\(991\) 6.36348 17.4835i 0.202143 0.555383i −0.796653 0.604436i \(-0.793398\pi\)
0.998796 + 0.0490538i \(0.0156206\pi\)
\(992\) −4.04326 5.77437i −0.128373 0.183336i
\(993\) 0 0
\(994\) 0.533863 + 1.46678i 0.0169331 + 0.0465233i
\(995\) 2.37057 + 6.72365i 0.0751522 + 0.213154i
\(996\) 0 0
\(997\) 51.6752 4.52099i 1.63657 0.143181i 0.768577 0.639758i \(-0.220965\pi\)
0.867993 + 0.496577i \(0.165410\pi\)
\(998\) −7.72579 + 0.675919i −0.244555 + 0.0213958i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.298.4 96
3.2 odd 2 95.2.r.a.13.5 yes 96
5.2 odd 4 inner 855.2.dl.a.127.5 96
15.2 even 4 95.2.r.a.32.4 yes 96
15.8 even 4 475.2.bb.b.32.5 96
15.14 odd 2 475.2.bb.b.393.4 96
19.3 odd 18 inner 855.2.dl.a.478.5 96
57.41 even 18 95.2.r.a.3.4 96
95.22 even 36 inner 855.2.dl.a.307.4 96
285.98 odd 36 475.2.bb.b.307.4 96
285.212 odd 36 95.2.r.a.22.5 yes 96
285.269 even 18 475.2.bb.b.193.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.3.4 96 57.41 even 18
95.2.r.a.13.5 yes 96 3.2 odd 2
95.2.r.a.22.5 yes 96 285.212 odd 36
95.2.r.a.32.4 yes 96 15.2 even 4
475.2.bb.b.32.5 96 15.8 even 4
475.2.bb.b.193.5 96 285.269 even 18
475.2.bb.b.307.4 96 285.98 odd 36
475.2.bb.b.393.4 96 15.14 odd 2
855.2.dl.a.127.5 96 5.2 odd 4 inner
855.2.dl.a.298.4 96 1.1 even 1 trivial
855.2.dl.a.307.4 96 95.22 even 36 inner
855.2.dl.a.478.5 96 19.3 odd 18 inner