Properties

Label 475.2.bb.b.32.4
Level $475$
Weight $2$
Character 475.32
Analytic conductor $3.793$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(32,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bb (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 32.4
Character \(\chi\) \(=\) 475.32
Dual form 475.2.bb.b.193.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0741107 + 0.847089i) q^{2} +(-0.344068 - 0.737855i) q^{3} +(1.25755 + 0.221740i) q^{4} +(0.650528 - 0.236773i) q^{6} +(3.83889 - 1.02863i) q^{7} +(-0.721192 + 2.69152i) q^{8} +(1.50231 - 1.79039i) q^{9} +(-2.45629 - 4.25442i) q^{11} +(-0.269070 - 1.00418i) q^{12} +(-1.10589 - 0.515684i) q^{13} +(0.586836 + 3.32811i) q^{14} +(0.173363 + 0.0630990i) q^{16} +(1.40281 + 0.122730i) q^{17} +(1.40528 + 1.40528i) q^{18} +(-4.22304 + 1.07980i) q^{19} +(-2.07982 - 2.47863i) q^{21} +(3.78591 - 1.76540i) q^{22} +(0.867092 + 1.23834i) q^{23} +(2.23409 - 0.393931i) q^{24} +(0.518789 - 0.898569i) q^{26} +(-4.19712 - 1.12462i) q^{27} +(5.05567 - 0.442314i) q^{28} +(1.63627 + 1.37299i) q^{29} +(8.01543 + 4.62771i) q^{31} +(-2.42153 + 5.19298i) q^{32} +(-2.29401 + 3.27619i) q^{33} +(-0.207926 + 1.17921i) q^{34} +(2.28623 - 1.91838i) q^{36} +(6.74741 - 6.74741i) q^{37} +(-0.601718 - 3.65731i) q^{38} +0.993416i q^{39} +(0.783311 - 2.15213i) q^{41} +(2.25375 - 1.57810i) q^{42} +(1.09842 + 0.769121i) q^{43} +(-2.14553 - 5.89479i) q^{44} +(-1.11324 + 0.642730i) q^{46} +(0.434606 + 4.96757i) q^{47} +(-0.0130907 - 0.149627i) q^{48} +(7.61681 - 4.39757i) q^{49} +(-0.392104 - 1.07730i) q^{51} +(-1.27636 - 0.893717i) q^{52} +(-7.59734 + 5.31972i) q^{53} +(1.26370 - 3.47199i) q^{54} +11.0743i q^{56} +(2.24975 + 2.74446i) q^{57} +(-1.28431 + 1.28431i) q^{58} +(-9.46359 + 7.94090i) q^{59} +(-1.09383 + 6.20343i) q^{61} +(-4.51411 + 6.44682i) q^{62} +(3.92558 - 8.41843i) q^{63} +(-3.89991 - 2.25161i) q^{64} +(-2.60522 - 2.18604i) q^{66} +(-8.76025 + 0.766422i) q^{67} +(1.73688 + 0.465396i) q^{68} +(0.615374 - 1.06586i) q^{69} +(-2.67473 + 0.471627i) q^{71} +(3.73542 + 5.33473i) q^{72} +(0.139300 - 0.0649566i) q^{73} +(5.21560 + 6.21571i) q^{74} +(-5.55010 + 0.421490i) q^{76} +(-13.8056 - 13.8056i) q^{77} +(-0.841512 - 0.0736228i) q^{78} +(1.57856 + 0.574548i) q^{79} +(-0.603254 - 3.42123i) q^{81} +(1.76499 + 0.823030i) q^{82} +(-0.200296 - 0.747516i) q^{83} +(-2.06586 - 3.57817i) q^{84} +(-0.732919 + 0.873459i) q^{86} +(0.450082 - 1.67973i) q^{87} +(13.2223 - 3.54291i) q^{88} +(-3.86114 + 1.40534i) q^{89} +(-4.77583 - 0.842108i) q^{91} +(0.815821 + 1.74953i) q^{92} +(0.656731 - 7.50647i) q^{93} -4.24019 q^{94} +4.66483 q^{96} +(-0.860973 + 9.84096i) q^{97} +(3.16065 + 6.77803i) q^{98} +(-11.3072 - 1.99376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{3} - 12 q^{6} + 18 q^{8} - 12 q^{11} + 18 q^{12} + 12 q^{13} + 12 q^{16} + 30 q^{17} + 24 q^{21} + 24 q^{22} - 48 q^{26} + 18 q^{27} - 36 q^{31} - 18 q^{32} - 90 q^{33} + 24 q^{36}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0741107 + 0.847089i −0.0524042 + 0.598983i 0.923908 + 0.382615i \(0.124976\pi\)
−0.976312 + 0.216367i \(0.930579\pi\)
\(3\) −0.344068 0.737855i −0.198648 0.426001i 0.781599 0.623781i \(-0.214404\pi\)
−0.980246 + 0.197780i \(0.936627\pi\)
\(4\) 1.25755 + 0.221740i 0.628774 + 0.110870i
\(5\) 0 0
\(6\) 0.650528 0.236773i 0.265577 0.0966622i
\(7\) 3.83889 1.02863i 1.45096 0.388784i 0.554605 0.832114i \(-0.312869\pi\)
0.896359 + 0.443329i \(0.146203\pi\)
\(8\) −0.721192 + 2.69152i −0.254980 + 0.951597i
\(9\) 1.50231 1.79039i 0.500772 0.596796i
\(10\) 0 0
\(11\) −2.45629 4.25442i −0.740599 1.28275i −0.952223 0.305403i \(-0.901209\pi\)
0.211624 0.977351i \(-0.432125\pi\)
\(12\) −0.269070 1.00418i −0.0776737 0.289882i
\(13\) −1.10589 0.515684i −0.306718 0.143025i 0.263165 0.964751i \(-0.415234\pi\)
−0.569883 + 0.821726i \(0.693012\pi\)
\(14\) 0.586836 + 3.32811i 0.156839 + 0.889476i
\(15\) 0 0
\(16\) 0.173363 + 0.0630990i 0.0433408 + 0.0157748i
\(17\) 1.40281 + 0.122730i 0.340231 + 0.0297663i 0.255991 0.966679i \(-0.417598\pi\)
0.0842397 + 0.996446i \(0.473154\pi\)
\(18\) 1.40528 + 1.40528i 0.331228 + 0.331228i
\(19\) −4.22304 + 1.07980i −0.968831 + 0.247724i
\(20\) 0 0
\(21\) −2.07982 2.47863i −0.453853 0.540881i
\(22\) 3.78591 1.76540i 0.807158 0.376384i
\(23\) 0.867092 + 1.23834i 0.180801 + 0.258211i 0.899315 0.437302i \(-0.144066\pi\)
−0.718513 + 0.695513i \(0.755177\pi\)
\(24\) 2.23409 0.393931i 0.456032 0.0804108i
\(25\) 0 0
\(26\) 0.518789 0.898569i 0.101743 0.176224i
\(27\) −4.19712 1.12462i −0.807737 0.216432i
\(28\) 5.05567 0.442314i 0.955432 0.0835895i
\(29\) 1.63627 + 1.37299i 0.303847 + 0.254958i 0.781943 0.623350i \(-0.214229\pi\)
−0.478096 + 0.878307i \(0.658673\pi\)
\(30\) 0 0
\(31\) 8.01543 + 4.62771i 1.43961 + 0.831161i 0.997823 0.0659564i \(-0.0210098\pi\)
0.441791 + 0.897118i \(0.354343\pi\)
\(32\) −2.42153 + 5.19298i −0.428069 + 0.917997i
\(33\) −2.29401 + 3.27619i −0.399337 + 0.570312i
\(34\) −0.207926 + 1.17921i −0.0356590 + 0.202232i
\(35\) 0 0
\(36\) 2.28623 1.91838i 0.381039 0.319729i
\(37\) 6.74741 6.74741i 1.10927 1.10927i 0.116021 0.993247i \(-0.462986\pi\)
0.993247 0.116021i \(-0.0370139\pi\)
\(38\) −0.601718 3.65731i −0.0976115 0.593294i
\(39\) 0.993416i 0.159074i
\(40\) 0 0
\(41\) 0.783311 2.15213i 0.122333 0.336106i −0.863377 0.504559i \(-0.831655\pi\)
0.985710 + 0.168453i \(0.0538772\pi\)
\(42\) 2.25375 1.57810i 0.347762 0.243506i
\(43\) 1.09842 + 0.769121i 0.167507 + 0.117290i 0.654324 0.756214i \(-0.272953\pi\)
−0.486817 + 0.873504i \(0.661842\pi\)
\(44\) −2.14553 5.89479i −0.323450 0.888672i
\(45\) 0 0
\(46\) −1.11324 + 0.642730i −0.164138 + 0.0947654i
\(47\) 0.434606 + 4.96757i 0.0633939 + 0.724595i 0.959676 + 0.281110i \(0.0907026\pi\)
−0.896282 + 0.443485i \(0.853742\pi\)
\(48\) −0.0130907 0.149627i −0.00188948 0.0215968i
\(49\) 7.61681 4.39757i 1.08812 0.628224i
\(50\) 0 0
\(51\) −0.392104 1.07730i −0.0549055 0.150852i
\(52\) −1.27636 0.893717i −0.176999 0.123936i
\(53\) −7.59734 + 5.31972i −1.04358 + 0.730719i −0.963944 0.266105i \(-0.914263\pi\)
−0.0796315 + 0.996824i \(0.525374\pi\)
\(54\) 1.26370 3.47199i 0.171968 0.472478i
\(55\) 0 0
\(56\) 11.0743i 1.47987i
\(57\) 2.24975 + 2.74446i 0.297986 + 0.363513i
\(58\) −1.28431 + 1.28431i −0.168638 + 0.168638i
\(59\) −9.46359 + 7.94090i −1.23205 + 1.03382i −0.233952 + 0.972248i \(0.575166\pi\)
−0.998103 + 0.0615685i \(0.980390\pi\)
\(60\) 0 0
\(61\) −1.09383 + 6.20343i −0.140051 + 0.794268i 0.831158 + 0.556037i \(0.187679\pi\)
−0.971209 + 0.238231i \(0.923432\pi\)
\(62\) −4.51411 + 6.44682i −0.573293 + 0.818747i
\(63\) 3.92558 8.41843i 0.494576 1.06062i
\(64\) −3.89991 2.25161i −0.487489 0.281452i
\(65\) 0 0
\(66\) −2.60522 2.18604i −0.320680 0.269082i
\(67\) −8.76025 + 0.766422i −1.07023 + 0.0936334i −0.608631 0.793453i \(-0.708281\pi\)
−0.461603 + 0.887087i \(0.652726\pi\)
\(68\) 1.73688 + 0.465396i 0.210628 + 0.0564376i
\(69\) 0.615374 1.06586i 0.0740823 0.128314i
\(70\) 0 0
\(71\) −2.67473 + 0.471627i −0.317432 + 0.0559718i −0.330094 0.943948i \(-0.607081\pi\)
0.0126621 + 0.999920i \(0.495969\pi\)
\(72\) 3.73542 + 5.33473i 0.440223 + 0.628704i
\(73\) 0.139300 0.0649566i 0.0163038 0.00760259i −0.414449 0.910072i \(-0.636026\pi\)
0.430753 + 0.902470i \(0.358248\pi\)
\(74\) 5.21560 + 6.21571i 0.606302 + 0.722562i
\(75\) 0 0
\(76\) −5.55010 + 0.421490i −0.636640 + 0.0483482i
\(77\) −13.8056 13.8056i −1.57330 1.57330i
\(78\) −0.841512 0.0736228i −0.0952825 0.00833614i
\(79\) 1.57856 + 0.574548i 0.177602 + 0.0646417i 0.429290 0.903167i \(-0.358764\pi\)
−0.251689 + 0.967808i \(0.580986\pi\)
\(80\) 0 0
\(81\) −0.603254 3.42123i −0.0670283 0.380136i
\(82\) 1.76499 + 0.823030i 0.194911 + 0.0908885i
\(83\) −0.200296 0.747516i −0.0219854 0.0820505i 0.954062 0.299611i \(-0.0968568\pi\)
−0.976047 + 0.217560i \(0.930190\pi\)
\(84\) −2.06586 3.57817i −0.225403 0.390410i
\(85\) 0 0
\(86\) −0.732919 + 0.873459i −0.0790327 + 0.0941875i
\(87\) 0.450082 1.67973i 0.0482538 0.180086i
\(88\) 13.2223 3.54291i 1.40950 0.377675i
\(89\) −3.86114 + 1.40534i −0.409280 + 0.148966i −0.538452 0.842656i \(-0.680991\pi\)
0.129171 + 0.991622i \(0.458768\pi\)
\(90\) 0 0
\(91\) −4.77583 0.842108i −0.500643 0.0882769i
\(92\) 0.815821 + 1.74953i 0.0850552 + 0.182402i
\(93\) 0.656731 7.50647i 0.0680999 0.778385i
\(94\) −4.24019 −0.437342
\(95\) 0 0
\(96\) 4.66483 0.476103
\(97\) −0.860973 + 9.84096i −0.0874185 + 0.999198i 0.818152 + 0.575002i \(0.194999\pi\)
−0.905570 + 0.424196i \(0.860557\pi\)
\(98\) 3.16065 + 6.77803i 0.319273 + 0.684684i
\(99\) −11.3072 1.99376i −1.13641 0.200380i
\(100\) 0 0
\(101\) 8.19112 2.98132i 0.815047 0.296653i 0.0993398 0.995054i \(-0.468327\pi\)
0.715707 + 0.698401i \(0.246105\pi\)
\(102\) 0.941625 0.252308i 0.0932348 0.0249822i
\(103\) −0.0994278 + 0.371070i −0.00979691 + 0.0365626i −0.970651 0.240491i \(-0.922691\pi\)
0.960854 + 0.277054i \(0.0893581\pi\)
\(104\) 2.18553 2.60462i 0.214309 0.255404i
\(105\) 0 0
\(106\) −3.94323 6.82988i −0.383000 0.663376i
\(107\) −2.22050 8.28702i −0.214664 0.801137i −0.986285 0.165054i \(-0.947220\pi\)
0.771621 0.636083i \(-0.219446\pi\)
\(108\) −5.02871 2.34493i −0.483888 0.225641i
\(109\) 1.11653 + 6.33215i 0.106944 + 0.606510i 0.990426 + 0.138045i \(0.0440818\pi\)
−0.883482 + 0.468465i \(0.844807\pi\)
\(110\) 0 0
\(111\) −7.30018 2.65705i −0.692902 0.252196i
\(112\) 0.730427 + 0.0639041i 0.0690189 + 0.00603837i
\(113\) −11.4607 11.4607i −1.07813 1.07813i −0.996677 0.0814546i \(-0.974043\pi\)
−0.0814546 0.996677i \(-0.525957\pi\)
\(114\) −2.49154 + 1.70234i −0.233354 + 0.159439i
\(115\) 0 0
\(116\) 1.75324 + 2.08942i 0.162784 + 0.193998i
\(117\) −2.58467 + 1.20525i −0.238953 + 0.111425i
\(118\) −6.02529 8.60501i −0.554673 0.792156i
\(119\) 5.51146 0.971819i 0.505235 0.0890865i
\(120\) 0 0
\(121\) −6.56670 + 11.3739i −0.596973 + 1.03399i
\(122\) −5.17379 1.38631i −0.468413 0.125511i
\(123\) −1.85747 + 0.162508i −0.167483 + 0.0146528i
\(124\) 9.05364 + 7.59691i 0.813041 + 0.682222i
\(125\) 0 0
\(126\) 6.84023 + 3.94921i 0.609376 + 0.351824i
\(127\) −1.58848 + 3.40651i −0.140955 + 0.302279i −0.964094 0.265561i \(-0.914443\pi\)
0.823139 + 0.567840i \(0.192221\pi\)
\(128\) −4.37663 + 6.25048i −0.386843 + 0.552469i
\(129\) 0.189570 1.07510i 0.0166907 0.0946577i
\(130\) 0 0
\(131\) −6.85330 + 5.75060i −0.598775 + 0.502432i −0.891052 0.453902i \(-0.850032\pi\)
0.292277 + 0.956334i \(0.405587\pi\)
\(132\) −3.61129 + 3.61129i −0.314323 + 0.314323i
\(133\) −15.1010 + 8.48917i −1.30943 + 0.736105i
\(134\) 7.47751i 0.645959i
\(135\) 0 0
\(136\) −1.34202 + 3.68718i −0.115077 + 0.316173i
\(137\) 4.67796 3.27554i 0.399665 0.279848i −0.356415 0.934328i \(-0.616001\pi\)
0.756080 + 0.654479i \(0.227112\pi\)
\(138\) 0.857272 + 0.600268i 0.0729758 + 0.0510982i
\(139\) −3.42015 9.39679i −0.290094 0.797026i −0.996052 0.0887722i \(-0.971706\pi\)
0.705958 0.708253i \(-0.250517\pi\)
\(140\) 0 0
\(141\) 3.51582 2.02986i 0.296085 0.170945i
\(142\) −0.201284 2.30069i −0.0168914 0.193069i
\(143\) 0.522445 + 5.97158i 0.0436891 + 0.499368i
\(144\) 0.373418 0.215593i 0.0311182 0.0179661i
\(145\) 0 0
\(146\) 0.0447004 + 0.122813i 0.00369943 + 0.0101641i
\(147\) −5.86547 4.10704i −0.483776 0.338743i
\(148\) 9.98136 6.98902i 0.820463 0.574494i
\(149\) 1.44345 3.96584i 0.118252 0.324894i −0.866419 0.499318i \(-0.833584\pi\)
0.984671 + 0.174424i \(0.0558062\pi\)
\(150\) 0 0
\(151\) 16.0056i 1.30252i −0.758856 0.651258i \(-0.774242\pi\)
0.758856 0.651258i \(-0.225758\pi\)
\(152\) 0.139302 12.1451i 0.0112989 0.985101i
\(153\) 2.32719 2.32719i 0.188142 0.188142i
\(154\) 12.7177 10.6714i 1.02482 0.859930i
\(155\) 0 0
\(156\) −0.220280 + 1.24927i −0.0176365 + 0.100021i
\(157\) −7.23463 + 10.3321i −0.577386 + 0.824593i −0.996522 0.0833309i \(-0.973444\pi\)
0.419136 + 0.907923i \(0.362333\pi\)
\(158\) −0.603681 + 1.29460i −0.0480263 + 0.102993i
\(159\) 6.53918 + 3.77540i 0.518591 + 0.299409i
\(160\) 0 0
\(161\) 4.60245 + 3.86192i 0.362724 + 0.304362i
\(162\) 2.94279 0.257461i 0.231208 0.0202280i
\(163\) −10.3009 2.76013i −0.806833 0.216190i −0.168251 0.985744i \(-0.553812\pi\)
−0.638582 + 0.769554i \(0.720479\pi\)
\(164\) 1.46226 2.53271i 0.114184 0.197772i
\(165\) 0 0
\(166\) 0.648057 0.114270i 0.0502990 0.00886907i
\(167\) 1.34413 + 1.91962i 0.104012 + 0.148545i 0.867784 0.496941i \(-0.165544\pi\)
−0.763772 + 0.645486i \(0.776655\pi\)
\(168\) 8.17123 3.81031i 0.630424 0.293972i
\(169\) −7.39918 8.81800i −0.569168 0.678308i
\(170\) 0 0
\(171\) −4.41106 + 9.18308i −0.337322 + 0.702248i
\(172\) 1.21077 + 1.21077i 0.0923203 + 0.0923203i
\(173\) 12.5886 + 1.10136i 0.957090 + 0.0837345i 0.554986 0.831860i \(-0.312724\pi\)
0.402104 + 0.915594i \(0.368279\pi\)
\(174\) 1.38952 + 0.505745i 0.105340 + 0.0383405i
\(175\) 0 0
\(176\) −0.157380 0.892548i −0.0118630 0.0672784i
\(177\) 9.11535 + 4.25056i 0.685152 + 0.319491i
\(178\) −0.904298 3.37488i −0.0677800 0.252958i
\(179\) 3.40041 + 5.88969i 0.254159 + 0.440216i 0.964667 0.263473i \(-0.0848681\pi\)
−0.710508 + 0.703689i \(0.751535\pi\)
\(180\) 0 0
\(181\) 12.5267 14.9288i 0.931106 1.10965i −0.0626462 0.998036i \(-0.519954\pi\)
0.993752 0.111613i \(-0.0356016\pi\)
\(182\) 1.06728 3.98315i 0.0791121 0.295250i
\(183\) 4.95359 1.32731i 0.366180 0.0981175i
\(184\) −3.95835 + 1.44072i −0.291813 + 0.106211i
\(185\) 0 0
\(186\) 6.30998 + 1.11262i 0.462670 + 0.0815813i
\(187\) −2.92355 6.26958i −0.213791 0.458477i
\(188\) −0.554970 + 6.34333i −0.0404753 + 0.462635i
\(189\) −17.2691 −1.25614
\(190\) 0 0
\(191\) −18.5918 −1.34525 −0.672627 0.739982i \(-0.734834\pi\)
−0.672627 + 0.739982i \(0.734834\pi\)
\(192\) −0.319533 + 3.65228i −0.0230603 + 0.263580i
\(193\) 7.75406 + 16.6286i 0.558149 + 1.19696i 0.959676 + 0.281108i \(0.0907018\pi\)
−0.401527 + 0.915847i \(0.631520\pi\)
\(194\) −8.27237 1.45864i −0.593921 0.104724i
\(195\) 0 0
\(196\) 10.5536 3.84120i 0.753830 0.274372i
\(197\) 10.9281 2.92819i 0.778598 0.208625i 0.152431 0.988314i \(-0.451290\pi\)
0.626166 + 0.779690i \(0.284623\pi\)
\(198\) 2.52688 9.43043i 0.179577 0.670191i
\(199\) −7.77099 + 9.26110i −0.550871 + 0.656502i −0.967588 0.252534i \(-0.918736\pi\)
0.416717 + 0.909036i \(0.363180\pi\)
\(200\) 0 0
\(201\) 3.57963 + 6.20009i 0.252487 + 0.437321i
\(202\) 1.91840 + 7.15956i 0.134978 + 0.503745i
\(203\) 7.69373 + 3.58765i 0.539994 + 0.251803i
\(204\) −0.254210 1.44170i −0.0177983 0.100939i
\(205\) 0 0
\(206\) −0.306960 0.111724i −0.0213870 0.00778421i
\(207\) 3.51975 + 0.307938i 0.244639 + 0.0214032i
\(208\) −0.159181 0.159181i −0.0110372 0.0110372i
\(209\) 14.9669 + 15.3142i 1.03528 + 1.05931i
\(210\) 0 0
\(211\) 4.77188 + 5.68690i 0.328509 + 0.391502i 0.904866 0.425696i \(-0.139971\pi\)
−0.576357 + 0.817198i \(0.695526\pi\)
\(212\) −10.7336 + 5.00517i −0.737188 + 0.343756i
\(213\) 1.26828 + 1.81129i 0.0869011 + 0.124108i
\(214\) 7.18441 1.26681i 0.491116 0.0865970i
\(215\) 0 0
\(216\) 6.05386 10.4856i 0.411913 0.713454i
\(217\) 35.5305 + 9.52038i 2.41197 + 0.646285i
\(218\) −5.44664 + 0.476520i −0.368893 + 0.0322740i
\(219\) −0.0958571 0.0804337i −0.00647742 0.00543520i
\(220\) 0 0
\(221\) −1.48806 0.859131i −0.100098 0.0577914i
\(222\) 2.79178 5.98699i 0.187372 0.401820i
\(223\) 8.33065 11.8974i 0.557861 0.796708i −0.436837 0.899540i \(-0.643902\pi\)
0.994699 + 0.102832i \(0.0327904\pi\)
\(224\) −3.95433 + 22.4261i −0.264210 + 1.49841i
\(225\) 0 0
\(226\) 10.5576 8.85887i 0.702281 0.589283i
\(227\) −3.07432 + 3.07432i −0.204050 + 0.204050i −0.801733 0.597683i \(-0.796088\pi\)
0.597683 + 0.801733i \(0.296088\pi\)
\(228\) 2.22061 + 3.95015i 0.147063 + 0.261605i
\(229\) 18.5866i 1.22824i 0.789214 + 0.614119i \(0.210488\pi\)
−0.789214 + 0.614119i \(0.789512\pi\)
\(230\) 0 0
\(231\) −5.43648 + 14.9366i −0.357694 + 0.982757i
\(232\) −4.87549 + 3.41386i −0.320092 + 0.224131i
\(233\) 18.0369 + 12.6296i 1.18164 + 0.827390i 0.988116 0.153707i \(-0.0491211\pi\)
0.193519 + 0.981097i \(0.438010\pi\)
\(234\) −0.829403 2.27877i −0.0542198 0.148968i
\(235\) 0 0
\(236\) −13.6617 + 7.88760i −0.889303 + 0.513439i
\(237\) −0.119197 1.36243i −0.00774269 0.0884993i
\(238\) 0.414760 + 4.74072i 0.0268849 + 0.307295i
\(239\) −2.93366 + 1.69375i −0.189763 + 0.109560i −0.591872 0.806032i \(-0.701611\pi\)
0.402109 + 0.915592i \(0.368277\pi\)
\(240\) 0 0
\(241\) −0.0368288 0.101186i −0.00237235 0.00651798i 0.938501 0.345277i \(-0.112215\pi\)
−0.940873 + 0.338759i \(0.889993\pi\)
\(242\) −9.14801 6.40550i −0.588056 0.411761i
\(243\) −12.9949 + 9.09913i −0.833623 + 0.583709i
\(244\) −2.75109 + 7.55856i −0.176121 + 0.483887i
\(245\) 0 0
\(246\) 1.58549i 0.101087i
\(247\) 5.22704 + 0.983611i 0.332589 + 0.0625857i
\(248\) −18.2363 + 18.2363i −1.15800 + 1.15800i
\(249\) −0.482643 + 0.404986i −0.0305863 + 0.0256649i
\(250\) 0 0
\(251\) 3.71248 21.0545i 0.234330 1.32895i −0.609691 0.792639i \(-0.708706\pi\)
0.844020 0.536311i \(-0.180183\pi\)
\(252\) 6.80330 9.71612i 0.428567 0.612058i
\(253\) 3.13857 6.73067i 0.197320 0.423154i
\(254\) −2.76790 1.59805i −0.173673 0.100270i
\(255\) 0 0
\(256\) −11.8697 9.95986i −0.741856 0.622491i
\(257\) 12.5607 1.09892i 0.783518 0.0685489i 0.311625 0.950205i \(-0.399127\pi\)
0.471892 + 0.881656i \(0.343571\pi\)
\(258\) 0.896660 + 0.240259i 0.0558236 + 0.0149579i
\(259\) 18.9620 32.8431i 1.17824 2.04077i
\(260\) 0 0
\(261\) 4.91637 0.866889i 0.304316 0.0536591i
\(262\) −4.36337 6.23153i −0.269570 0.384985i
\(263\) −24.1482 + 11.2605i −1.48904 + 0.694351i −0.985509 0.169626i \(-0.945744\pi\)
−0.503532 + 0.863977i \(0.667966\pi\)
\(264\) −7.16352 8.53715i −0.440884 0.525426i
\(265\) 0 0
\(266\) −6.07194 13.4211i −0.372294 0.822899i
\(267\) 2.36543 + 2.36543i 0.144762 + 0.144762i
\(268\) −11.1864 0.978681i −0.683317 0.0597825i
\(269\) 12.1556 + 4.42428i 0.741141 + 0.269753i 0.684873 0.728662i \(-0.259858\pi\)
0.0562682 + 0.998416i \(0.482080\pi\)
\(270\) 0 0
\(271\) 3.22437 + 18.2863i 0.195866 + 1.11081i 0.911180 + 0.412009i \(0.135173\pi\)
−0.715313 + 0.698804i \(0.753716\pi\)
\(272\) 0.235451 + 0.109793i 0.0142763 + 0.00665715i
\(273\) 1.02185 + 3.81361i 0.0618455 + 0.230810i
\(274\) 2.42799 + 4.20540i 0.146680 + 0.254058i
\(275\) 0 0
\(276\) 1.01021 1.20392i 0.0608072 0.0724672i
\(277\) 4.08087 15.2300i 0.245195 0.915082i −0.728090 0.685482i \(-0.759592\pi\)
0.973285 0.229600i \(-0.0737418\pi\)
\(278\) 8.21339 2.20077i 0.492607 0.131994i
\(279\) 20.3271 7.39846i 1.21695 0.442934i
\(280\) 0 0
\(281\) 0.225686 + 0.0397945i 0.0134633 + 0.00237394i 0.180376 0.983598i \(-0.442269\pi\)
−0.166912 + 0.985972i \(0.553380\pi\)
\(282\) 1.45891 + 3.12865i 0.0868769 + 0.186308i
\(283\) 1.12979 12.9136i 0.0671591 0.767632i −0.885708 0.464243i \(-0.846326\pi\)
0.952867 0.303389i \(-0.0981181\pi\)
\(284\) −3.46818 −0.205799
\(285\) 0 0
\(286\) −5.09718 −0.301403
\(287\) 0.793305 9.06752i 0.0468273 0.535239i
\(288\) 5.65956 + 12.1370i 0.333493 + 0.715177i
\(289\) −14.7889 2.60769i −0.869937 0.153393i
\(290\) 0 0
\(291\) 7.55744 2.75068i 0.443025 0.161248i
\(292\) 0.189580 0.0507977i 0.0110943 0.00297271i
\(293\) −1.97297 + 7.36321i −0.115262 + 0.430163i −0.999306 0.0372396i \(-0.988144\pi\)
0.884044 + 0.467403i \(0.154810\pi\)
\(294\) 3.91373 4.66420i 0.228253 0.272022i
\(295\) 0 0
\(296\) 13.2946 + 23.0270i 0.772735 + 1.33842i
\(297\) 5.52476 + 20.6187i 0.320579 + 1.19642i
\(298\) 3.25244 + 1.51664i 0.188409 + 0.0878566i
\(299\) −0.320317 1.81661i −0.0185244 0.105057i
\(300\) 0 0
\(301\) 5.00785 + 1.82271i 0.288648 + 0.105059i
\(302\) 13.5582 + 1.18619i 0.780184 + 0.0682573i
\(303\) −5.01808 5.01808i −0.288281 0.288281i
\(304\) −0.800253 0.0792713i −0.0458977 0.00454652i
\(305\) 0 0
\(306\) 1.79887 + 2.14381i 0.102835 + 0.122553i
\(307\) −24.9542 + 11.6364i −1.42421 + 0.664122i −0.973530 0.228561i \(-0.926598\pi\)
−0.450685 + 0.892683i \(0.648820\pi\)
\(308\) −14.3000 20.4225i −0.814817 1.16368i
\(309\) 0.308006 0.0543097i 0.0175218 0.00308957i
\(310\) 0 0
\(311\) 3.61837 6.26721i 0.205179 0.355381i −0.745011 0.667053i \(-0.767556\pi\)
0.950190 + 0.311672i \(0.100889\pi\)
\(312\) −2.67380 0.716443i −0.151374 0.0405606i
\(313\) 5.80964 0.508278i 0.328381 0.0287296i 0.0782264 0.996936i \(-0.475074\pi\)
0.250154 + 0.968206i \(0.419519\pi\)
\(314\) −8.21606 6.89409i −0.463659 0.389056i
\(315\) 0 0
\(316\) 1.85771 + 1.07255i 0.104504 + 0.0603356i
\(317\) 1.23887 2.65676i 0.0695818 0.149219i −0.868441 0.495793i \(-0.834877\pi\)
0.938022 + 0.346574i \(0.112655\pi\)
\(318\) −3.68272 + 5.25947i −0.206517 + 0.294937i
\(319\) 1.82213 10.3338i 0.102020 0.578582i
\(320\) 0 0
\(321\) −5.35062 + 4.48970i −0.298643 + 0.250591i
\(322\) −3.61248 + 3.61248i −0.201316 + 0.201316i
\(323\) −6.05663 + 0.996463i −0.337000 + 0.0554447i
\(324\) 4.43612i 0.246451i
\(325\) 0 0
\(326\) 3.10149 8.52127i 0.171776 0.471949i
\(327\) 4.28805 3.00253i 0.237130 0.166040i
\(328\) 5.22759 + 3.66040i 0.288645 + 0.202112i
\(329\) 6.77819 + 18.6229i 0.373694 + 1.02671i
\(330\) 0 0
\(331\) 7.17253 4.14106i 0.394238 0.227613i −0.289757 0.957100i \(-0.593574\pi\)
0.683995 + 0.729487i \(0.260241\pi\)
\(332\) −0.0861283 0.984451i −0.00472690 0.0540288i
\(333\) −1.94376 22.2172i −0.106517 1.21750i
\(334\) −1.72571 + 0.996337i −0.0944264 + 0.0545171i
\(335\) 0 0
\(336\) −0.204164 0.560937i −0.0111381 0.0306016i
\(337\) −12.2046 8.54575i −0.664827 0.465517i 0.191813 0.981431i \(-0.438563\pi\)
−0.856640 + 0.515915i \(0.827452\pi\)
\(338\) 8.01799 5.61426i 0.436121 0.305375i
\(339\) −4.51308 + 12.3996i −0.245117 + 0.673453i
\(340\) 0 0
\(341\) 45.4680i 2.46223i
\(342\) −7.45198 4.41713i −0.402957 0.238851i
\(343\) 5.04480 5.04480i 0.272394 0.272394i
\(344\) −2.86228 + 2.40174i −0.154324 + 0.129493i
\(345\) 0 0
\(346\) −1.86589 + 10.5820i −0.100311 + 0.568892i
\(347\) −3.73392 + 5.33259i −0.200447 + 0.286268i −0.906774 0.421618i \(-0.861462\pi\)
0.706326 + 0.707887i \(0.250351\pi\)
\(348\) 0.938461 2.01254i 0.0503068 0.107883i
\(349\) 21.2321 + 12.2584i 1.13653 + 0.656176i 0.945569 0.325422i \(-0.105506\pi\)
0.190961 + 0.981598i \(0.438840\pi\)
\(350\) 0 0
\(351\) 4.06160 + 3.40809i 0.216792 + 0.181910i
\(352\) 28.0410 2.45327i 1.49459 0.130760i
\(353\) 18.5195 + 4.96227i 0.985691 + 0.264115i 0.715440 0.698675i \(-0.246226\pi\)
0.270251 + 0.962790i \(0.412893\pi\)
\(354\) −4.27615 + 7.40650i −0.227275 + 0.393651i
\(355\) 0 0
\(356\) −5.16719 + 0.911116i −0.273861 + 0.0482890i
\(357\) −2.61338 3.73229i −0.138315 0.197534i
\(358\) −5.24110 + 2.44397i −0.277001 + 0.129168i
\(359\) −12.6054 15.0226i −0.665289 0.792860i 0.322846 0.946452i \(-0.395360\pi\)
−0.988134 + 0.153592i \(0.950916\pi\)
\(360\) 0 0
\(361\) 16.6681 9.12009i 0.877266 0.480005i
\(362\) 11.7177 + 11.7177i 0.615866 + 0.615866i
\(363\) 10.6516 + 0.931899i 0.559067 + 0.0489120i
\(364\) −5.81910 2.11798i −0.305004 0.111012i
\(365\) 0 0
\(366\) 0.757236 + 4.29450i 0.0395813 + 0.224477i
\(367\) −12.5944 5.87286i −0.657421 0.306561i 0.0651311 0.997877i \(-0.479253\pi\)
−0.722552 + 0.691316i \(0.757031\pi\)
\(368\) 0.0721840 + 0.269394i 0.00376285 + 0.0140431i
\(369\) −2.67637 4.63561i −0.139326 0.241320i
\(370\) 0 0
\(371\) −23.6934 + 28.2366i −1.23010 + 1.46597i
\(372\) 2.49035 9.29412i 0.129119 0.481878i
\(373\) 35.6461 9.55135i 1.84569 0.494550i 0.846407 0.532536i \(-0.178761\pi\)
0.999278 + 0.0379859i \(0.0120942\pi\)
\(374\) 5.52756 2.01187i 0.285823 0.104031i
\(375\) 0 0
\(376\) −13.6838 2.41282i −0.705687 0.124432i
\(377\) −1.10150 2.36217i −0.0567300 0.121658i
\(378\) 1.27983 14.6285i 0.0658271 0.752407i
\(379\) −2.15198 −0.110540 −0.0552699 0.998471i \(-0.517602\pi\)
−0.0552699 + 0.998471i \(0.517602\pi\)
\(380\) 0 0
\(381\) 3.06006 0.156771
\(382\) 1.37785 15.7489i 0.0704969 0.805783i
\(383\) −4.96338 10.6440i −0.253617 0.543883i 0.737739 0.675086i \(-0.235894\pi\)
−0.991355 + 0.131203i \(0.958116\pi\)
\(384\) 6.11781 + 1.07873i 0.312198 + 0.0550489i
\(385\) 0 0
\(386\) −14.6606 + 5.33602i −0.746205 + 0.271596i
\(387\) 3.02720 0.811135i 0.153881 0.0412323i
\(388\) −3.26484 + 12.1846i −0.165747 + 0.618578i
\(389\) 2.20372 2.62629i 0.111733 0.133158i −0.707279 0.706934i \(-0.750078\pi\)
0.819012 + 0.573776i \(0.194522\pi\)
\(390\) 0 0
\(391\) 1.06438 + 1.84356i 0.0538281 + 0.0932330i
\(392\) 6.34298 + 23.6723i 0.320369 + 1.19563i
\(393\) 6.60111 + 3.07815i 0.332982 + 0.155272i
\(394\) 1.67054 + 9.47412i 0.0841607 + 0.477299i
\(395\) 0 0
\(396\) −13.7772 5.01450i −0.692331 0.251988i
\(397\) −8.57163 0.749921i −0.430198 0.0376375i −0.129999 0.991514i \(-0.541497\pi\)
−0.300199 + 0.953877i \(0.597053\pi\)
\(398\) −7.26907 7.26907i −0.364365 0.364365i
\(399\) 11.4596 + 8.22154i 0.573696 + 0.411592i
\(400\) 0 0
\(401\) −9.47424 11.2910i −0.473121 0.563844i 0.475720 0.879597i \(-0.342187\pi\)
−0.948841 + 0.315753i \(0.897743\pi\)
\(402\) −5.51732 + 2.57277i −0.275179 + 0.128318i
\(403\) −6.47774 9.25116i −0.322679 0.460833i
\(404\) 10.9618 1.93286i 0.545370 0.0961634i
\(405\) 0 0
\(406\) −3.60924 + 6.25140i −0.179124 + 0.310252i
\(407\) −45.2799 12.1327i −2.24444 0.601396i
\(408\) 3.18235 0.278419i 0.157550 0.0137838i
\(409\) −28.3413 23.7811i −1.40139 1.17590i −0.960480 0.278348i \(-0.910213\pi\)
−0.440905 0.897554i \(-0.645342\pi\)
\(410\) 0 0
\(411\) −4.02641 2.32465i −0.198608 0.114666i
\(412\) −0.207316 + 0.444591i −0.0102137 + 0.0219034i
\(413\) −28.1615 + 40.2187i −1.38573 + 1.97903i
\(414\) −0.521702 + 2.95872i −0.0256402 + 0.145413i
\(415\) 0 0
\(416\) 5.35587 4.49411i 0.262593 0.220342i
\(417\) −5.75671 + 5.75671i −0.281907 + 0.281907i
\(418\) −14.0817 + 11.5434i −0.688760 + 0.564605i
\(419\) 9.21192i 0.450032i −0.974355 0.225016i \(-0.927757\pi\)
0.974355 0.225016i \(-0.0722434\pi\)
\(420\) 0 0
\(421\) −0.789738 + 2.16979i −0.0384895 + 0.105749i −0.957449 0.288604i \(-0.906809\pi\)
0.918959 + 0.394353i \(0.129031\pi\)
\(422\) −5.17096 + 3.62074i −0.251718 + 0.176255i
\(423\) 9.54681 + 6.68475i 0.464182 + 0.325023i
\(424\) −8.83901 24.2850i −0.429260 1.17938i
\(425\) 0 0
\(426\) −1.62832 + 0.940111i −0.0788923 + 0.0455485i
\(427\) 2.18192 + 24.9394i 0.105590 + 1.20690i
\(428\) −0.954825 10.9137i −0.0461532 0.527534i
\(429\) 4.22640 2.44012i 0.204053 0.117810i
\(430\) 0 0
\(431\) 6.23851 + 17.1402i 0.300498 + 0.825612i 0.994413 + 0.105556i \(0.0336621\pi\)
−0.693915 + 0.720057i \(0.744116\pi\)
\(432\) −0.656664 0.459801i −0.0315938 0.0221222i
\(433\) −17.8019 + 12.4651i −0.855507 + 0.599032i −0.916916 0.399080i \(-0.869329\pi\)
0.0614092 + 0.998113i \(0.480441\pi\)
\(434\) −10.6978 + 29.3920i −0.513511 + 1.41086i
\(435\) 0 0
\(436\) 8.21056i 0.393215i
\(437\) −4.99892 4.29324i −0.239131 0.205374i
\(438\) 0.0752385 0.0752385i 0.00359504 0.00359504i
\(439\) −7.23611 + 6.07181i −0.345361 + 0.289792i −0.798924 0.601432i \(-0.794597\pi\)
0.453563 + 0.891224i \(0.350153\pi\)
\(440\) 0 0
\(441\) 3.56949 20.2436i 0.169976 0.963980i
\(442\) 0.838042 1.19685i 0.0398616 0.0569282i
\(443\) 14.4220 30.9280i 0.685208 1.46943i −0.188042 0.982161i \(-0.560214\pi\)
0.873250 0.487273i \(-0.162008\pi\)
\(444\) −8.59115 4.96010i −0.407718 0.235396i
\(445\) 0 0
\(446\) 9.46077 + 7.93852i 0.447980 + 0.375900i
\(447\) −3.42286 + 0.299461i −0.161896 + 0.0141640i
\(448\) −17.2874 4.63214i −0.816752 0.218848i
\(449\) 20.6242 35.7221i 0.973316 1.68583i 0.287931 0.957651i \(-0.407033\pi\)
0.685385 0.728181i \(-0.259634\pi\)
\(450\) 0 0
\(451\) −11.0801 + 1.95372i −0.521741 + 0.0919970i
\(452\) −11.8711 16.9537i −0.558369 0.797433i
\(453\) −11.8098 + 5.50700i −0.554873 + 0.258742i
\(454\) −2.37638 2.83206i −0.111529 0.132915i
\(455\) 0 0
\(456\) −9.00929 + 4.07597i −0.421899 + 0.190875i
\(457\) 12.9398 + 12.9398i 0.605300 + 0.605300i 0.941714 0.336414i \(-0.109214\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(458\) −15.7445 1.37747i −0.735693 0.0643648i
\(459\) −5.74973 2.09273i −0.268374 0.0976803i
\(460\) 0 0
\(461\) 5.56561 + 31.5641i 0.259216 + 1.47009i 0.785014 + 0.619479i \(0.212656\pi\)
−0.525797 + 0.850610i \(0.676233\pi\)
\(462\) −12.2497 5.71215i −0.569910 0.265753i
\(463\) −9.97438 37.2249i −0.463549 1.72999i −0.661656 0.749807i \(-0.730146\pi\)
0.198108 0.980180i \(-0.436520\pi\)
\(464\) 0.197034 + 0.341273i 0.00914706 + 0.0158432i
\(465\) 0 0
\(466\) −12.0351 + 14.3429i −0.557515 + 0.664420i
\(467\) −2.53409 + 9.45734i −0.117263 + 0.437633i −0.999446 0.0332738i \(-0.989407\pi\)
0.882183 + 0.470907i \(0.156073\pi\)
\(468\) −3.51760 + 0.942537i −0.162601 + 0.0435688i
\(469\) −32.8412 + 11.9532i −1.51647 + 0.551949i
\(470\) 0 0
\(471\) 10.1128 + 1.78316i 0.465974 + 0.0821637i
\(472\) −14.5480 31.1984i −0.669628 1.43602i
\(473\) 0.574128 6.56232i 0.0263984 0.301736i
\(474\) 1.16293 0.0534153
\(475\) 0 0
\(476\) 7.14642 0.327555
\(477\) −1.88924 + 21.5941i −0.0865023 + 0.988726i
\(478\) −1.21734 2.61060i −0.0556800 0.119406i
\(479\) 12.0119 + 2.11802i 0.548837 + 0.0967747i 0.441189 0.897414i \(-0.354557\pi\)
0.107648 + 0.994189i \(0.465668\pi\)
\(480\) 0 0
\(481\) −10.9414 + 3.98235i −0.498886 + 0.181580i
\(482\) 0.0884433 0.0236983i 0.00402848 0.00107943i
\(483\) 1.26598 4.72470i 0.0576041 0.214981i
\(484\) −10.7800 + 12.8471i −0.489999 + 0.583958i
\(485\) 0 0
\(486\) −6.74471 11.6822i −0.305946 0.529915i
\(487\) 2.75407 + 10.2783i 0.124799 + 0.465756i 0.999832 0.0183065i \(-0.00582746\pi\)
−0.875034 + 0.484062i \(0.839161\pi\)
\(488\) −15.9078 7.41794i −0.720113 0.335794i
\(489\) 1.50765 + 8.55028i 0.0681781 + 0.386657i
\(490\) 0 0
\(491\) 36.5384 + 13.2989i 1.64896 + 0.600171i 0.988571 0.150756i \(-0.0481709\pi\)
0.660385 + 0.750927i \(0.270393\pi\)
\(492\) −2.37189 0.207514i −0.106933 0.00935544i
\(493\) 2.12686 + 2.12686i 0.0957888 + 0.0957888i
\(494\) −1.22059 + 4.35488i −0.0549168 + 0.195935i
\(495\) 0 0
\(496\) 1.09758 + 1.30804i 0.0492826 + 0.0587328i
\(497\) −9.78286 + 4.56182i −0.438821 + 0.204626i
\(498\) −0.307290 0.438856i −0.0137700 0.0196656i
\(499\) 16.0108 2.82313i 0.716740 0.126381i 0.196627 0.980478i \(-0.437001\pi\)
0.520113 + 0.854098i \(0.325890\pi\)
\(500\) 0 0
\(501\) 0.953931 1.65226i 0.0426185 0.0738174i
\(502\) 17.5599 + 4.70517i 0.783738 + 0.210002i
\(503\) 28.6678 2.50810i 1.27823 0.111831i 0.572261 0.820071i \(-0.306066\pi\)
0.705971 + 0.708240i \(0.250511\pi\)
\(504\) 19.8273 + 16.6371i 0.883178 + 0.741074i
\(505\) 0 0
\(506\) 5.46888 + 3.15746i 0.243121 + 0.140366i
\(507\) −3.96059 + 8.49351i −0.175896 + 0.377210i
\(508\) −2.75295 + 3.93162i −0.122142 + 0.174437i
\(509\) −3.87905 + 21.9992i −0.171936 + 0.975097i 0.769686 + 0.638423i \(0.220413\pi\)
−0.941621 + 0.336673i \(0.890698\pi\)
\(510\) 0 0
\(511\) 0.467940 0.392649i 0.0207005 0.0173697i
\(512\) −1.47449 + 1.47449i −0.0651637 + 0.0651637i
\(513\) 18.9390 + 0.217225i 0.836176 + 0.00959073i
\(514\) 10.7215i 0.472906i
\(515\) 0 0
\(516\) 0.476786 1.30996i 0.0209893 0.0576678i
\(517\) 20.0666 14.0508i 0.882528 0.617953i
\(518\) 26.4158 + 18.4965i 1.16064 + 0.812691i
\(519\) −3.51867 9.66747i −0.154453 0.424355i
\(520\) 0 0
\(521\) −23.6960 + 13.6809i −1.03814 + 0.599371i −0.919306 0.393543i \(-0.871249\pi\)
−0.118835 + 0.992914i \(0.537916\pi\)
\(522\) 0.369976 + 4.22885i 0.0161934 + 0.185092i
\(523\) 0.813771 + 9.30145i 0.0355837 + 0.406724i 0.993009 + 0.118042i \(0.0376616\pi\)
−0.957425 + 0.288682i \(0.906783\pi\)
\(524\) −9.89348 + 5.71200i −0.432199 + 0.249530i
\(525\) 0 0
\(526\) −7.74899 21.2902i −0.337872 0.928296i
\(527\) 10.6761 + 7.47552i 0.465060 + 0.325639i
\(528\) −0.604422 + 0.423221i −0.0263041 + 0.0184183i
\(529\) 7.08484 19.4654i 0.308036 0.846323i
\(530\) 0 0
\(531\) 28.8732i 1.25299i
\(532\) −20.8727 + 7.32704i −0.904945 + 0.317667i
\(533\) −1.97607 + 1.97607i −0.0855932 + 0.0855932i
\(534\) −2.17904 + 1.82843i −0.0942962 + 0.0791239i
\(535\) 0 0
\(536\) 4.25497 24.1311i 0.183787 1.04231i
\(537\) 3.17577 4.53547i 0.137044 0.195720i
\(538\) −4.64863 + 9.96901i −0.200416 + 0.429795i
\(539\) −37.4182 21.6034i −1.61171 0.930524i
\(540\) 0 0
\(541\) 19.4951 + 16.3584i 0.838162 + 0.703301i 0.957149 0.289594i \(-0.0935204\pi\)
−0.118988 + 0.992896i \(0.537965\pi\)
\(542\) −15.7291 + 1.37612i −0.675622 + 0.0591093i
\(543\) −15.3253 4.10641i −0.657673 0.176223i
\(544\) −4.03426 + 6.98755i −0.172968 + 0.299589i
\(545\) 0 0
\(546\) −3.30620 + 0.582973i −0.141492 + 0.0249489i
\(547\) −17.3018 24.7095i −0.739771 1.05650i −0.995953 0.0898741i \(-0.971354\pi\)
0.256182 0.966629i \(-0.417535\pi\)
\(548\) 6.60907 3.08186i 0.282326 0.131651i
\(549\) 9.46327 + 11.2779i 0.403883 + 0.481329i
\(550\) 0 0
\(551\) −8.39256 4.03134i −0.357535 0.171741i
\(552\) 2.42498 + 2.42498i 0.103214 + 0.103214i
\(553\) 6.65090 + 0.581878i 0.282825 + 0.0247440i
\(554\) 12.5987 + 4.58556i 0.535269 + 0.194822i
\(555\) 0 0
\(556\) −2.21736 12.5753i −0.0940372 0.533311i
\(557\) 26.2184 + 12.2258i 1.11091 + 0.518025i 0.889398 0.457133i \(-0.151124\pi\)
0.221510 + 0.975158i \(0.428902\pi\)
\(558\) 4.76070 + 17.7672i 0.201537 + 0.752145i
\(559\) −0.818106 1.41700i −0.0346022 0.0599327i
\(560\) 0 0
\(561\) −3.62014 + 4.31432i −0.152843 + 0.182151i
\(562\) −0.0504352 + 0.188227i −0.00212748 + 0.00793987i
\(563\) 18.9758 5.08454i 0.799734 0.214288i 0.164267 0.986416i \(-0.447474\pi\)
0.635467 + 0.772128i \(0.280808\pi\)
\(564\) 4.87141 1.77305i 0.205123 0.0746588i
\(565\) 0 0
\(566\) 10.8552 + 1.91407i 0.456279 + 0.0804543i
\(567\) −5.83499 12.5132i −0.245047 0.525504i
\(568\) 0.659597 7.53923i 0.0276761 0.316339i
\(569\) 28.9346 1.21300 0.606501 0.795082i \(-0.292572\pi\)
0.606501 + 0.795082i \(0.292572\pi\)
\(570\) 0 0
\(571\) −24.1433 −1.01037 −0.505184 0.863012i \(-0.668575\pi\)
−0.505184 + 0.863012i \(0.668575\pi\)
\(572\) −0.667135 + 7.62539i −0.0278943 + 0.318834i
\(573\) 6.39683 + 13.7180i 0.267231 + 0.573079i
\(574\) 7.62220 + 1.34400i 0.318145 + 0.0560975i
\(575\) 0 0
\(576\) −9.89016 + 3.59972i −0.412090 + 0.149988i
\(577\) −26.2166 + 7.02471i −1.09141 + 0.292442i −0.759262 0.650785i \(-0.774440\pi\)
−0.332148 + 0.943227i \(0.607773\pi\)
\(578\) 3.30496 12.3343i 0.137468 0.513039i
\(579\) 9.60160 11.4427i 0.399029 0.475544i
\(580\) 0 0
\(581\) −1.53783 2.66360i −0.0638000 0.110505i
\(582\) 1.76999 + 6.60568i 0.0733683 + 0.273814i
\(583\) 41.2936 + 19.2555i 1.71020 + 0.797481i
\(584\) 0.0743703 + 0.421775i 0.00307746 + 0.0174532i
\(585\) 0 0
\(586\) −6.09108 2.21697i −0.251620 0.0915822i
\(587\) 36.8062 + 3.22012i 1.51915 + 0.132909i 0.815968 0.578097i \(-0.196204\pi\)
0.703186 + 0.711006i \(0.251760\pi\)
\(588\) −6.46541 6.46541i −0.266629 0.266629i
\(589\) −38.8465 10.8879i −1.60064 0.448628i
\(590\) 0 0
\(591\) −5.92060 7.05589i −0.243541 0.290241i
\(592\) 1.59551 0.743997i 0.0655750 0.0305781i
\(593\) 1.82350 + 2.60423i 0.0748823 + 0.106943i 0.854846 0.518882i \(-0.173651\pi\)
−0.779964 + 0.625825i \(0.784763\pi\)
\(594\) −17.8753 + 3.15190i −0.733433 + 0.129324i
\(595\) 0 0
\(596\) 2.69459 4.66716i 0.110375 0.191174i
\(597\) 9.50710 + 2.54742i 0.389100 + 0.104259i
\(598\) 1.56257 0.136707i 0.0638981 0.00559036i
\(599\) −5.95719 4.99867i −0.243404 0.204240i 0.512922 0.858435i \(-0.328563\pi\)
−0.756326 + 0.654195i \(0.773008\pi\)
\(600\) 0 0
\(601\) 16.9764 + 9.80133i 0.692482 + 0.399805i 0.804541 0.593897i \(-0.202411\pi\)
−0.112059 + 0.993702i \(0.535745\pi\)
\(602\) −1.91513 + 4.10701i −0.0780549 + 0.167389i
\(603\) −11.7885 + 16.8357i −0.480063 + 0.685601i
\(604\) 3.54907 20.1278i 0.144410 0.818988i
\(605\) 0 0
\(606\) 4.62266 3.87887i 0.187783 0.157568i
\(607\) 16.2338 16.2338i 0.658910 0.658910i −0.296212 0.955122i \(-0.595724\pi\)
0.955122 + 0.296212i \(0.0957236\pi\)
\(608\) 4.61879 24.5449i 0.187317 0.995427i
\(609\) 6.91125i 0.280058i
\(610\) 0 0
\(611\) 2.08107 5.71770i 0.0841912 0.231314i
\(612\) 3.44258 2.41052i 0.139158 0.0974396i
\(613\) −30.4501 21.3214i −1.22987 0.861162i −0.236001 0.971753i \(-0.575837\pi\)
−0.993866 + 0.110590i \(0.964726\pi\)
\(614\) −8.00766 22.0009i −0.323163 0.887882i
\(615\) 0 0
\(616\) 47.1147 27.2017i 1.89830 1.09599i
\(617\) −0.00700337 0.0800488i −0.000281945 0.00322264i 0.996052 0.0887670i \(-0.0282926\pi\)
−0.996334 + 0.0855443i \(0.972737\pi\)
\(618\) 0.0231787 + 0.264933i 0.000932382 + 0.0106572i
\(619\) −24.9397 + 14.3989i −1.00241 + 0.578741i −0.908960 0.416883i \(-0.863123\pi\)
−0.0934491 + 0.995624i \(0.529789\pi\)
\(620\) 0 0
\(621\) −2.24664 6.17259i −0.0901545 0.247697i
\(622\) 5.04072 + 3.52955i 0.202115 + 0.141522i
\(623\) −13.3769 + 9.36663i −0.535935 + 0.375266i
\(624\) −0.0626836 + 0.172222i −0.00250935 + 0.00689439i
\(625\) 0 0
\(626\) 4.95896i 0.198200i
\(627\) 6.15006 16.3126i 0.245610 0.651461i
\(628\) −11.3889 + 11.3889i −0.454468 + 0.454468i
\(629\) 10.2934 8.63721i 0.410426 0.344388i
\(630\) 0 0
\(631\) −1.03534 + 5.87173i −0.0412164 + 0.233750i −0.998456 0.0555461i \(-0.982310\pi\)
0.957240 + 0.289296i \(0.0934211\pi\)
\(632\) −2.68485 + 3.83436i −0.106798 + 0.152523i
\(633\) 2.55426 5.47763i 0.101523 0.217716i
\(634\) 2.15870 + 1.24633i 0.0857331 + 0.0494980i
\(635\) 0 0
\(636\) 7.38618 + 6.19774i 0.292881 + 0.245756i
\(637\) −10.6911 + 0.935350i −0.423597 + 0.0370599i
\(638\) 8.61862 + 2.30935i 0.341214 + 0.0914281i
\(639\) −3.17389 + 5.49734i −0.125557 + 0.217471i
\(640\) 0 0
\(641\) −23.2634 + 4.10197i −0.918850 + 0.162018i −0.613019 0.790068i \(-0.710045\pi\)
−0.305831 + 0.952086i \(0.598934\pi\)
\(642\) −3.40664 4.86519i −0.134449 0.192014i
\(643\) 16.0066 7.46400i 0.631239 0.294351i −0.0805441 0.996751i \(-0.525666\pi\)
0.711783 + 0.702400i \(0.247888\pi\)
\(644\) 4.93146 + 5.87709i 0.194327 + 0.231590i
\(645\) 0 0
\(646\) −0.395233 5.20435i −0.0155502 0.204762i
\(647\) −5.50558 5.50558i −0.216447 0.216447i 0.590553 0.806999i \(-0.298910\pi\)
−0.806999 + 0.590553i \(0.798910\pi\)
\(648\) 9.64337 + 0.843686i 0.378827 + 0.0331431i
\(649\) 57.0292 + 20.7569i 2.23859 + 0.814780i
\(650\) 0 0
\(651\) −5.20024 29.4920i −0.203814 1.15588i
\(652\) −12.3419 5.75512i −0.483346 0.225388i
\(653\) −0.674379 2.51682i −0.0263905 0.0984907i 0.951474 0.307728i \(-0.0995686\pi\)
−0.977865 + 0.209237i \(0.932902\pi\)
\(654\) 2.22562 + 3.85488i 0.0870285 + 0.150738i
\(655\) 0 0
\(656\) 0.271594 0.323674i 0.0106040 0.0126373i
\(657\) 0.0929746 0.346986i 0.00362729 0.0135372i
\(658\) −16.2776 + 4.36157i −0.634567 + 0.170032i
\(659\) 25.1582 9.15684i 0.980025 0.356700i 0.198175 0.980167i \(-0.436499\pi\)
0.781850 + 0.623467i \(0.214276\pi\)
\(660\) 0 0
\(661\) −36.0063 6.34888i −1.40048 0.246943i −0.578140 0.815937i \(-0.696221\pi\)
−0.822341 + 0.568995i \(0.807333\pi\)
\(662\) 2.97629 + 6.38267i 0.115677 + 0.248070i
\(663\) −0.121922 + 1.39357i −0.00473505 + 0.0541218i
\(664\) 2.15641 0.0836849
\(665\) 0 0
\(666\) 18.9640 0.734841
\(667\) −0.281429 + 3.21675i −0.0108970 + 0.124553i
\(668\) 1.26466 + 2.71206i 0.0489310 + 0.104933i
\(669\) −11.6449 2.05330i −0.450216 0.0793853i
\(670\) 0 0
\(671\) 29.0787 10.5838i 1.12257 0.408583i
\(672\) 17.9078 4.79837i 0.690808 0.185101i
\(673\) 4.66494 17.4098i 0.179820 0.671098i −0.815860 0.578249i \(-0.803736\pi\)
0.995680 0.0928486i \(-0.0295973\pi\)
\(674\) 8.14350 9.70505i 0.313676 0.373825i
\(675\) 0 0
\(676\) −7.34952 12.7297i −0.282674 0.489606i
\(677\) −11.0963 41.4118i −0.426464 1.59158i −0.760706 0.649097i \(-0.775147\pi\)
0.334242 0.942487i \(-0.391520\pi\)
\(678\) −10.1691 4.74193i −0.390542 0.182113i
\(679\) 6.81750 + 38.6640i 0.261632 + 1.48379i
\(680\) 0 0
\(681\) 3.32617 + 1.21063i 0.127459 + 0.0463914i
\(682\) 38.5154 + 3.36966i 1.47483 + 0.129031i
\(683\) 17.1640 + 17.1640i 0.656763 + 0.656763i 0.954613 0.297850i \(-0.0962696\pi\)
−0.297850 + 0.954613i \(0.596270\pi\)
\(684\) −7.58337 + 10.5701i −0.289957 + 0.404156i
\(685\) 0 0
\(686\) 3.89953 + 4.64727i 0.148885 + 0.177434i
\(687\) 13.7142 6.39505i 0.523230 0.243986i
\(688\) 0.141895 + 0.202647i 0.00540968 + 0.00772583i
\(689\) 11.1451 1.96518i 0.424595 0.0748675i
\(690\) 0 0
\(691\) 6.09079 10.5496i 0.231705 0.401324i −0.726605 0.687055i \(-0.758903\pi\)
0.958310 + 0.285731i \(0.0922363\pi\)
\(692\) 15.5865 + 4.17639i 0.592510 + 0.158762i
\(693\) −45.4578 + 3.97704i −1.72680 + 0.151075i
\(694\) −4.24046 3.55817i −0.160966 0.135066i
\(695\) 0 0
\(696\) 4.19643 + 2.42281i 0.159065 + 0.0918364i
\(697\) 1.36296 2.92289i 0.0516259 0.110712i
\(698\) −11.9575 + 17.0770i −0.452597 + 0.646375i
\(699\) 3.11288 17.6540i 0.117740 0.667737i
\(700\) 0 0
\(701\) 23.1767 19.4476i 0.875372 0.734524i −0.0898504 0.995955i \(-0.528639\pi\)
0.965222 + 0.261431i \(0.0841944\pi\)
\(702\) −3.18797 + 3.18797i −0.120322 + 0.120322i
\(703\) −21.2087 + 35.7804i −0.799900 + 1.34948i
\(704\) 22.1224i 0.833771i
\(705\) 0 0
\(706\) −5.57598 + 15.3199i −0.209855 + 0.576571i
\(707\) 28.3781 19.8706i 1.06727 0.747310i
\(708\) 10.5205 + 7.36651i 0.395383 + 0.276850i
\(709\) 0.671174 + 1.84404i 0.0252065 + 0.0692542i 0.951658 0.307161i \(-0.0993789\pi\)
−0.926451 + 0.376415i \(0.877157\pi\)
\(710\) 0 0
\(711\) 3.40015 1.96308i 0.127516 0.0736212i
\(712\) −0.997885 11.4059i −0.0373973 0.427453i
\(713\) 1.21946 + 13.9384i 0.0456690 + 0.521999i
\(714\) 3.35526 1.93716i 0.125568 0.0724965i
\(715\) 0 0
\(716\) 2.97021 + 8.16057i 0.111002 + 0.304975i
\(717\) 2.25912 + 1.58185i 0.0843684 + 0.0590754i
\(718\) 13.6596 9.56458i 0.509773 0.356947i
\(719\) −4.78058 + 13.1345i −0.178285 + 0.489835i −0.996357 0.0852814i \(-0.972821\pi\)
0.818072 + 0.575117i \(0.195043\pi\)
\(720\) 0 0
\(721\) 1.52677i 0.0568599i
\(722\) 6.49025 + 14.7952i 0.241542 + 0.550621i
\(723\) −0.0619893 + 0.0619893i −0.00230541 + 0.00230541i
\(724\) 19.0633 15.9960i 0.708481 0.594486i
\(725\) 0 0
\(726\) −1.57880 + 8.95383i −0.0585949 + 0.332308i
\(727\) −13.9674 + 19.9475i −0.518022 + 0.739813i −0.989887 0.141858i \(-0.954692\pi\)
0.471865 + 0.881671i \(0.343581\pi\)
\(728\) 5.71084 12.2469i 0.211658 0.453902i
\(729\) 2.15924 + 1.24664i 0.0799718 + 0.0461717i
\(730\) 0 0
\(731\) 1.44648 + 1.21374i 0.0534999 + 0.0448917i
\(732\) 6.52369 0.570749i 0.241122 0.0210955i
\(733\) −17.2215 4.61450i −0.636092 0.170440i −0.0736595 0.997283i \(-0.523468\pi\)
−0.562433 + 0.826843i \(0.690134\pi\)
\(734\) 5.90821 10.2333i 0.218076 0.377719i
\(735\) 0 0
\(736\) −8.53033 + 1.50413i −0.314432 + 0.0554429i
\(737\) 24.7784 + 35.3872i 0.912723 + 1.30350i
\(738\) 4.12512 1.92357i 0.151848 0.0708078i
\(739\) 18.5274 + 22.0801i 0.681543 + 0.812231i 0.990305 0.138908i \(-0.0443593\pi\)
−0.308763 + 0.951139i \(0.599915\pi\)
\(740\) 0 0
\(741\) −1.07269 4.19523i −0.0394064 0.154116i
\(742\) −22.1630 22.1630i −0.813630 0.813630i
\(743\) 6.33768 + 0.554475i 0.232507 + 0.0203417i 0.202814 0.979217i \(-0.434991\pi\)
0.0296933 + 0.999559i \(0.490547\pi\)
\(744\) 19.7302 + 7.18121i 0.723345 + 0.263276i
\(745\) 0 0
\(746\) 5.44908 + 30.9033i 0.199505 + 1.13145i
\(747\) −1.63925 0.764396i −0.0599771 0.0279678i
\(748\) −2.28629 8.53257i −0.0835952 0.311982i
\(749\) −17.0485 29.5289i −0.622939 1.07896i
\(750\) 0 0
\(751\) 33.4145 39.8218i 1.21931 1.45312i 0.366891 0.930264i \(-0.380422\pi\)
0.852421 0.522856i \(-0.175133\pi\)
\(752\) −0.238104 + 0.888618i −0.00868277 + 0.0324046i
\(753\) −16.8125 + 4.50491i −0.612683 + 0.164168i
\(754\) 2.08260 0.758005i 0.0758439 0.0276049i
\(755\) 0 0
\(756\) −21.7167 3.82924i −0.789829 0.139268i
\(757\) 22.6581 + 48.5905i 0.823523 + 1.76605i 0.615871 + 0.787847i \(0.288804\pi\)
0.207652 + 0.978203i \(0.433418\pi\)
\(758\) 0.159485 1.82292i 0.00579275 0.0662115i
\(759\) −6.04614 −0.219461
\(760\) 0 0
\(761\) 28.6371 1.03809 0.519046 0.854746i \(-0.326287\pi\)
0.519046 + 0.854746i \(0.326287\pi\)
\(762\) −0.226783 + 2.59214i −0.00821548 + 0.0939034i
\(763\) 10.7997 + 23.1599i 0.390974 + 0.838446i
\(764\) −23.3800 4.12253i −0.845860 0.149148i
\(765\) 0 0
\(766\) 9.38426 3.41559i 0.339067 0.123410i
\(767\) 14.5607 3.90152i 0.525755 0.140876i
\(768\) −3.26496 + 12.1850i −0.117814 + 0.439688i
\(769\) −3.77330 + 4.49684i −0.136069 + 0.162160i −0.829776 0.558097i \(-0.811532\pi\)
0.693707 + 0.720257i \(0.255976\pi\)
\(770\) 0 0
\(771\) −5.13259 8.88991i −0.184846 0.320162i
\(772\) 6.06387 + 22.6307i 0.218244 + 0.814496i
\(773\) −41.1245 19.1767i −1.47915 0.689738i −0.495295 0.868725i \(-0.664940\pi\)
−0.983851 + 0.178987i \(0.942718\pi\)
\(774\) 0.462756 + 2.62442i 0.0166334 + 0.0943329i
\(775\) 0 0
\(776\) −25.8663 9.41455i −0.928544 0.337963i
\(777\) −30.7577 2.69095i −1.10343 0.0965372i
\(778\) 2.06138 + 2.06138i 0.0739040 + 0.0739040i
\(779\) −0.984074 + 9.93434i −0.0352581 + 0.355935i
\(780\) 0 0
\(781\) 8.57640 + 10.2210i 0.306888 + 0.365735i
\(782\) −1.64054 + 0.764998i −0.0586658 + 0.0273563i
\(783\) −5.32352 7.60278i −0.190247 0.271701i
\(784\) 1.59796 0.281763i 0.0570699 0.0100630i
\(785\) 0 0
\(786\) −3.09668 + 5.36360i −0.110455 + 0.191313i
\(787\) −24.6233 6.59781i −0.877728 0.235186i −0.208301 0.978065i \(-0.566793\pi\)
−0.669426 + 0.742878i \(0.733460\pi\)
\(788\) 14.3919 1.25913i 0.512692 0.0448547i
\(789\) 16.6172 + 13.9435i 0.591588 + 0.496402i
\(790\) 0 0
\(791\) −55.7851 32.2076i −1.98349 1.14517i
\(792\) 13.5209 28.9956i 0.480444 1.03032i
\(793\) 4.40867 6.29623i 0.156556 0.223586i
\(794\) 1.27050 7.20536i 0.0450884 0.255709i
\(795\) 0 0
\(796\) −11.8259 + 9.92314i −0.419159 + 0.351716i
\(797\) 37.6403 37.6403i 1.33329 1.33329i 0.430880 0.902409i \(-0.358203\pi\)
0.902409 0.430880i \(-0.141797\pi\)
\(798\) −7.81365 + 9.09797i −0.276600 + 0.322065i
\(799\) 7.02189i 0.248417i
\(800\) 0 0
\(801\) −3.28455 + 9.02422i −0.116054 + 0.318855i
\(802\) 10.2666 7.18875i 0.362526 0.253844i
\(803\) −0.618513 0.433087i −0.0218268 0.0152833i
\(804\) 3.12674 + 8.59066i 0.110272 + 0.302969i
\(805\) 0 0
\(806\) 8.31663 4.80161i 0.292941 0.169129i
\(807\) −0.917874 10.4913i −0.0323107 0.369313i
\(808\) 2.11694 + 24.1967i 0.0744736 + 0.851237i
\(809\) −22.8364 + 13.1846i −0.802885 + 0.463546i −0.844479 0.535589i \(-0.820090\pi\)
0.0415941 + 0.999135i \(0.486756\pi\)
\(810\) 0 0
\(811\) 3.15115 + 8.65771i 0.110652 + 0.304013i 0.982643 0.185509i \(-0.0593934\pi\)
−0.871991 + 0.489522i \(0.837171\pi\)
\(812\) 8.87971 + 6.21764i 0.311617 + 0.218196i
\(813\) 12.3832 8.67084i 0.434299 0.304100i
\(814\) 13.6332 37.4569i 0.477844 1.31286i
\(815\) 0 0
\(816\) 0.211505i 0.00740415i
\(817\) −5.46916 2.06195i −0.191342 0.0721385i
\(818\) 22.2451 22.2451i 0.777783 0.777783i
\(819\) −8.68250 + 7.28548i −0.303391 + 0.254575i
\(820\) 0 0
\(821\) 2.89232 16.4031i 0.100943 0.572473i −0.891821 0.452388i \(-0.850572\pi\)
0.992764 0.120085i \(-0.0383168\pi\)
\(822\) 2.26759 3.23845i 0.0790911 0.112954i
\(823\) −11.5057 + 24.6740i −0.401063 + 0.860082i 0.597252 + 0.802054i \(0.296259\pi\)
−0.998315 + 0.0580287i \(0.981519\pi\)
\(824\) −0.927036 0.535225i −0.0322948 0.0186454i
\(825\) 0 0
\(826\) −31.9818 26.8359i −1.11279 0.933740i
\(827\) −19.3437 + 1.69235i −0.672646 + 0.0588489i −0.418361 0.908281i \(-0.637395\pi\)
−0.254284 + 0.967130i \(0.581840\pi\)
\(828\) 4.35797 + 1.16771i 0.151450 + 0.0405809i
\(829\) −23.2647 + 40.2956i −0.808016 + 1.39953i 0.106219 + 0.994343i \(0.466125\pi\)
−0.914236 + 0.405183i \(0.867208\pi\)
\(830\) 0 0
\(831\) −12.6416 + 2.22906i −0.438533 + 0.0773253i
\(832\) 3.15174 + 4.50116i 0.109267 + 0.156050i
\(833\) 11.2246 5.23413i 0.388910 0.181352i
\(834\) −4.44981 5.30308i −0.154084 0.183631i
\(835\) 0 0
\(836\) 15.4258 + 22.5771i 0.533514 + 0.780847i
\(837\) −28.4374 28.4374i −0.982939 0.982939i
\(838\) 7.80332 + 0.682702i 0.269561 + 0.0235835i
\(839\) −52.2864 19.0307i −1.80513 0.657013i −0.997755 0.0669723i \(-0.978666\pi\)
−0.807374 0.590041i \(-0.799112\pi\)
\(840\) 0 0
\(841\) −4.24353 24.0663i −0.146329 0.829872i
\(842\) −1.77948 0.829783i −0.0613248 0.0285962i
\(843\) −0.0482886 0.180215i −0.00166315 0.00620695i
\(844\) 4.73985 + 8.20966i 0.163152 + 0.282588i
\(845\) 0 0
\(846\) −6.37010 + 7.59159i −0.219008 + 0.261004i
\(847\) −13.5094 + 50.4176i −0.464187 + 1.73237i
\(848\) −1.65277 + 0.442858i −0.0567563 + 0.0152078i
\(849\) −9.91707 + 3.60952i −0.340353 + 0.123878i
\(850\) 0 0
\(851\) 14.2062 + 2.50493i 0.486982 + 0.0858680i
\(852\) 1.19329 + 2.55901i 0.0408814 + 0.0876704i
\(853\) −0.873658 + 9.98595i −0.0299135 + 0.341913i 0.966460 + 0.256819i \(0.0826744\pi\)
−0.996373 + 0.0850935i \(0.972881\pi\)
\(854\) −21.2876 −0.728447
\(855\) 0 0
\(856\) 23.9061 0.817094
\(857\) 1.25616 14.3580i 0.0429096 0.490459i −0.944085 0.329703i \(-0.893051\pi\)
0.986994 0.160756i \(-0.0513932\pi\)
\(858\) 1.75377 + 3.76098i 0.0598729 + 0.128398i
\(859\) 29.4418 + 5.19139i 1.00454 + 0.177128i 0.651637 0.758531i \(-0.274083\pi\)
0.352906 + 0.935659i \(0.385194\pi\)
\(860\) 0 0
\(861\) −6.96347 + 2.53449i −0.237314 + 0.0863753i
\(862\) −14.9816 + 4.01430i −0.510275 + 0.136728i
\(863\) 10.4833 39.1242i 0.356856 1.33180i −0.521278 0.853387i \(-0.674544\pi\)
0.878133 0.478416i \(-0.158789\pi\)
\(864\) 16.0035 19.0723i 0.544452 0.648852i
\(865\) 0 0
\(866\) −9.23970 16.0036i −0.313978 0.543825i
\(867\) 3.16429 + 11.8093i 0.107465 + 0.401065i
\(868\) 42.5703 + 19.8509i 1.44493 + 0.673782i
\(869\) −1.43303 8.12709i −0.0486121 0.275693i
\(870\) 0 0
\(871\) 10.0831 + 3.66994i 0.341652 + 0.124351i
\(872\) −17.8484 1.56153i −0.604422 0.0528801i
\(873\) 16.3257 + 16.3257i 0.552541 + 0.552541i
\(874\) 4.00723 3.91635i 0.135547 0.132473i
\(875\) 0 0
\(876\) −0.102710 0.122404i −0.00347023 0.00413566i
\(877\) 19.2255 8.96500i 0.649199 0.302727i −0.0699829 0.997548i \(-0.522294\pi\)
0.719182 + 0.694822i \(0.244517\pi\)
\(878\) −4.60710 6.57962i −0.155482 0.222051i
\(879\) 6.11182 1.07768i 0.206146 0.0363492i
\(880\) 0 0
\(881\) 6.83139 11.8323i 0.230155 0.398641i −0.727698 0.685897i \(-0.759410\pi\)
0.957854 + 0.287256i \(0.0927432\pi\)
\(882\) 16.8836 + 4.52394i 0.568500 + 0.152329i
\(883\) 14.5546 1.27336i 0.489800 0.0428520i 0.160419 0.987049i \(-0.448715\pi\)
0.329381 + 0.944197i \(0.393160\pi\)
\(884\) −1.68080 1.41036i −0.0565315 0.0474355i
\(885\) 0 0
\(886\) 25.1300 + 14.5088i 0.844257 + 0.487432i
\(887\) −2.51587 + 5.39531i −0.0844747 + 0.181157i −0.944008 0.329924i \(-0.892977\pi\)
0.859533 + 0.511081i \(0.170755\pi\)
\(888\) 12.4163 17.7324i 0.416665 0.595059i
\(889\) −2.59398 + 14.7112i −0.0869992 + 0.493397i
\(890\) 0 0
\(891\) −13.0735 + 10.9700i −0.437980 + 0.367509i
\(892\) 13.1143 13.1143i 0.439099 0.439099i
\(893\) −7.19936 20.5090i −0.240917 0.686306i
\(894\) 2.92166i 0.0977149i
\(895\) 0 0
\(896\) −10.3720 + 28.4968i −0.346504 + 0.952012i
\(897\) −1.23018 + 0.861383i −0.0410746 + 0.0287607i
\(898\) 28.7314 + 20.1179i 0.958778 + 0.671344i
\(899\) 6.76157 + 18.5773i 0.225511 + 0.619586i
\(900\) 0 0
\(901\) −11.3105 + 6.53012i −0.376807 + 0.217550i
\(902\) −0.833821 9.53061i −0.0277632 0.317335i
\(903\) −0.378144 4.32220i −0.0125838 0.143834i
\(904\) 39.1121 22.5814i 1.30085 0.751045i
\(905\) 0 0
\(906\) −3.78969 10.4121i −0.125904 0.345918i
\(907\) −33.1934 23.2423i −1.10217 0.771747i −0.126713 0.991939i \(-0.540443\pi\)
−0.975456 + 0.220192i \(0.929332\pi\)
\(908\) −4.54780 + 3.18440i −0.150924 + 0.105678i
\(909\) 6.96791 19.1442i 0.231111 0.634972i
\(910\) 0 0
\(911\) 24.1659i 0.800652i 0.916373 + 0.400326i \(0.131103\pi\)
−0.916373 + 0.400326i \(0.868897\pi\)
\(912\) 0.216850 + 0.617746i 0.00718064 + 0.0204556i
\(913\) −2.68826 + 2.68826i −0.0889684 + 0.0889684i
\(914\) −11.9202 + 10.0022i −0.394284 + 0.330844i
\(915\) 0 0
\(916\) −4.12139 + 23.3735i −0.136174 + 0.772283i
\(917\) −20.3938 + 29.1254i −0.673463 + 0.961805i
\(918\) 2.19885 4.71544i 0.0725727 0.155633i
\(919\) −10.9705 6.33379i −0.361882 0.208933i 0.308024 0.951379i \(-0.400332\pi\)
−0.669906 + 0.742446i \(0.733666\pi\)
\(920\) 0 0
\(921\) 17.1719 + 14.4089i 0.565833 + 0.474790i
\(922\) −27.1501 + 2.37533i −0.894141 + 0.0782272i
\(923\) 3.20116 + 0.857749i 0.105368 + 0.0282332i
\(924\) −10.1487 + 17.5780i −0.333867 + 0.578275i
\(925\) 0 0
\(926\) 32.2720 5.69043i 1.06052 0.186999i
\(927\) 0.514987 + 0.735478i 0.0169144 + 0.0241563i
\(928\) −11.0922 + 5.17236i −0.364118 + 0.169791i
\(929\) −7.06706 8.42219i −0.231863 0.276323i 0.637551 0.770408i \(-0.279948\pi\)
−0.869414 + 0.494085i \(0.835503\pi\)
\(930\) 0 0
\(931\) −27.4176 + 26.7957i −0.898574 + 0.878195i
\(932\) 19.8818 + 19.8818i 0.651249 + 0.651249i
\(933\) −5.86926 0.513493i −0.192151 0.0168110i
\(934\) −7.82341 2.84749i −0.255990 0.0931726i
\(935\) 0 0
\(936\) −1.37992 7.82591i −0.0451041 0.255798i
\(937\) 45.8065 + 21.3599i 1.49643 + 0.697798i 0.986703 0.162536i \(-0.0519674\pi\)
0.509730 + 0.860334i \(0.329745\pi\)
\(938\) −7.69157 28.7053i −0.251139 0.937262i
\(939\) −2.37395 4.11180i −0.0774708 0.134183i
\(940\) 0 0
\(941\) 8.30693 9.89982i 0.270798 0.322725i −0.613457 0.789728i \(-0.710222\pi\)
0.884256 + 0.467003i \(0.154666\pi\)
\(942\) −2.25996 + 8.43430i −0.0736336 + 0.274804i
\(943\) 3.34426 0.896091i 0.108904 0.0291808i
\(944\) −2.14170 + 0.779515i −0.0697064 + 0.0253711i
\(945\) 0 0
\(946\) 5.51632 + 0.972676i 0.179351 + 0.0316244i
\(947\) 9.38977 + 20.1364i 0.305126 + 0.654346i 0.997757 0.0669472i \(-0.0213259\pi\)
−0.692630 + 0.721293i \(0.743548\pi\)
\(948\) 0.152209 1.73975i 0.00494350 0.0565045i
\(949\) −0.187547 −0.00608804
\(950\) 0 0
\(951\) −2.38656 −0.0773896
\(952\) −1.35915 + 15.5351i −0.0440501 + 0.503495i
\(953\) −0.0877126 0.188100i −0.00284129 0.00609316i 0.904882 0.425662i \(-0.139959\pi\)
−0.907723 + 0.419569i \(0.862181\pi\)
\(954\) −18.1521 3.20071i −0.587696 0.103627i
\(955\) 0 0
\(956\) −4.06479 + 1.47946i −0.131465 + 0.0478493i
\(957\) −8.25179 + 2.21106i −0.266743 + 0.0714734i
\(958\) −2.68436 + 10.0182i −0.0867277 + 0.323672i
\(959\) 14.5888 17.3863i 0.471099 0.561433i
\(960\) 0 0
\(961\) 27.3314 + 47.3394i 0.881659 + 1.52708i
\(962\) −2.56253 9.56349i −0.0826193 0.308339i
\(963\) −18.1729 8.47416i −0.585613 0.273076i
\(964\) −0.0238770 0.135413i −0.000769025 0.00436136i
\(965\) 0 0
\(966\) 3.90842 + 1.42255i 0.125751 + 0.0457698i
\(967\) −31.7239 2.77548i −1.02017 0.0892534i −0.435222 0.900323i \(-0.643330\pi\)
−0.584949 + 0.811070i \(0.698886\pi\)
\(968\) −25.8772 25.8772i −0.831723 0.831723i
\(969\) 2.81913 + 4.12606i 0.0905637 + 0.132548i
\(970\) 0 0
\(971\) 8.61657 + 10.2688i 0.276519 + 0.329542i 0.886373 0.462971i \(-0.153217\pi\)
−0.609855 + 0.792513i \(0.708772\pi\)
\(972\) −18.3593 + 8.56110i −0.588876 + 0.274598i
\(973\) −22.7954 32.5552i −0.730786 1.04367i
\(974\) −8.91077 + 1.57121i −0.285520 + 0.0503448i
\(975\) 0 0
\(976\) −0.581061 + 1.00643i −0.0185993 + 0.0322149i
\(977\) −12.4193 3.32775i −0.397330 0.106464i 0.0546207 0.998507i \(-0.482605\pi\)
−0.451951 + 0.892043i \(0.649272\pi\)
\(978\) −7.35459 + 0.643443i −0.235174 + 0.0205750i
\(979\) 15.4630 + 12.9750i 0.494199 + 0.414682i
\(980\) 0 0
\(981\) 13.0144 + 7.51386i 0.415518 + 0.239899i
\(982\) −13.9732 + 29.9657i −0.445904 + 0.956244i
\(983\) 7.59418 10.8456i 0.242217 0.345921i −0.679576 0.733606i \(-0.737836\pi\)
0.921792 + 0.387684i \(0.126725\pi\)
\(984\) 0.902200 5.11663i 0.0287611 0.163112i
\(985\) 0 0
\(986\) −1.95926 + 1.64402i −0.0623956 + 0.0523561i
\(987\) 11.4089 11.4089i 0.363148 0.363148i
\(988\) 6.35515 + 2.39598i 0.202184 + 0.0762263i
\(989\) 2.02711i 0.0644583i
\(990\) 0 0
\(991\) −0.111950 + 0.307581i −0.00355622 + 0.00977062i −0.941458 0.337130i \(-0.890544\pi\)
0.937902 + 0.346901i \(0.112766\pi\)
\(992\) −43.4412 + 30.4178i −1.37926 + 0.965767i
\(993\) −5.52334 3.86749i −0.175278 0.122731i
\(994\) −3.13926 8.62504i −0.0995712 0.273570i
\(995\) 0 0
\(996\) −0.696748 + 0.402268i −0.0220773 + 0.0127463i
\(997\) −2.69227 30.7728i −0.0852650 0.974584i −0.911511 0.411275i \(-0.865084\pi\)
0.826246 0.563309i \(-0.190472\pi\)
\(998\) 1.20487 + 13.7718i 0.0381396 + 0.435938i
\(999\) −35.9080 + 20.7315i −1.13608 + 0.655915i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.bb.b.32.4 96
5.2 odd 4 95.2.r.a.13.4 yes 96
5.3 odd 4 inner 475.2.bb.b.393.5 96
5.4 even 2 95.2.r.a.32.5 yes 96
15.2 even 4 855.2.dl.a.298.5 96
15.14 odd 2 855.2.dl.a.127.4 96
19.3 odd 18 inner 475.2.bb.b.307.5 96
95.3 even 36 inner 475.2.bb.b.193.4 96
95.22 even 36 95.2.r.a.3.5 96
95.79 odd 18 95.2.r.a.22.4 yes 96
285.212 odd 36 855.2.dl.a.478.4 96
285.269 even 18 855.2.dl.a.307.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.3.5 96 95.22 even 36
95.2.r.a.13.4 yes 96 5.2 odd 4
95.2.r.a.22.4 yes 96 95.79 odd 18
95.2.r.a.32.5 yes 96 5.4 even 2
475.2.bb.b.32.4 96 1.1 even 1 trivial
475.2.bb.b.193.4 96 95.3 even 36 inner
475.2.bb.b.307.5 96 19.3 odd 18 inner
475.2.bb.b.393.5 96 5.3 odd 4 inner
855.2.dl.a.127.4 96 15.14 odd 2
855.2.dl.a.298.5 96 15.2 even 4
855.2.dl.a.307.5 96 285.269 even 18
855.2.dl.a.478.4 96 285.212 odd 36