Properties

Label 855.2.dl.a.127.4
Level $855$
Weight $2$
Character 855.127
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 127.4
Character \(\chi\) \(=\) 855.127
Dual form 855.2.dl.a.478.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0741107 + 0.847089i) q^{2} +(1.25755 + 0.221740i) q^{4} +(-0.654653 - 2.13809i) q^{5} +(-3.83889 + 1.02863i) q^{7} +(-0.721192 + 2.69152i) q^{8} +(1.85967 - 0.396094i) q^{10} +(2.45629 + 4.25442i) q^{11} +(1.10589 + 0.515684i) q^{13} +(-0.586836 - 3.32811i) q^{14} +(0.173363 + 0.0630990i) q^{16} +(1.40281 + 0.122730i) q^{17} +(-4.22304 + 1.07980i) q^{19} +(-0.349158 - 2.83391i) q^{20} +(-3.78591 + 1.76540i) q^{22} +(0.867092 + 1.23834i) q^{23} +(-4.14286 + 2.79941i) q^{25} +(-0.518789 + 0.898569i) q^{26} +(-5.05567 + 0.442314i) q^{28} +(-1.63627 - 1.37299i) q^{29} +(8.01543 + 4.62771i) q^{31} +(-2.42153 + 5.19298i) q^{32} +(-0.207926 + 1.17921i) q^{34} +(4.71244 + 7.53450i) q^{35} +(-6.74741 + 6.74741i) q^{37} +(-0.601718 - 3.65731i) q^{38} +(6.22685 - 0.220040i) q^{40} +(-0.783311 + 2.15213i) q^{41} +(-1.09842 - 0.769121i) q^{43} +(2.14553 + 5.89479i) q^{44} +(-1.11324 + 0.642730i) q^{46} +(0.434606 + 4.96757i) q^{47} +(7.61681 - 4.39757i) q^{49} +(-2.06432 - 3.71684i) q^{50} +(1.27636 + 0.893717i) q^{52} +(-7.59734 + 5.31972i) q^{53} +(7.48831 - 8.03693i) q^{55} -11.0743i q^{56} +(1.28431 - 1.28431i) q^{58} +(9.46359 - 7.94090i) q^{59} +(-1.09383 + 6.20343i) q^{61} +(-4.51411 + 6.44682i) q^{62} +(-3.89991 - 2.25161i) q^{64} +(0.378607 - 2.70208i) q^{65} +(8.76025 - 0.766422i) q^{67} +(1.73688 + 0.465396i) q^{68} +(-6.73163 + 3.43347i) q^{70} +(2.67473 - 0.471627i) q^{71} +(-0.139300 + 0.0649566i) q^{73} +(-5.21560 - 6.21571i) q^{74} +(-5.55010 + 0.421490i) q^{76} +(-13.8056 - 13.8056i) q^{77} +(1.57856 + 0.574548i) q^{79} +(0.0214188 - 0.411974i) q^{80} +(-1.76499 - 0.823030i) q^{82} +(-0.200296 - 0.747516i) q^{83} +(-0.655944 - 3.07967i) q^{85} +(0.732919 - 0.873459i) q^{86} +(-13.2223 + 3.54291i) q^{88} +(3.86114 - 1.40534i) q^{89} +(-4.77583 - 0.842108i) q^{91} +(0.815821 + 1.74953i) q^{92} -4.24019 q^{94} +(5.07334 + 8.32233i) q^{95} +(0.860973 - 9.84096i) q^{97} +(3.16065 + 6.77803i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0741107 + 0.847089i −0.0524042 + 0.598983i 0.923908 + 0.382615i \(0.124976\pi\)
−0.976312 + 0.216367i \(0.930579\pi\)
\(3\) 0 0
\(4\) 1.25755 + 0.221740i 0.628774 + 0.110870i
\(5\) −0.654653 2.13809i −0.292770 0.956183i
\(6\) 0 0
\(7\) −3.83889 + 1.02863i −1.45096 + 0.388784i −0.896359 0.443329i \(-0.853797\pi\)
−0.554605 + 0.832114i \(0.687131\pi\)
\(8\) −0.721192 + 2.69152i −0.254980 + 0.951597i
\(9\) 0 0
\(10\) 1.85967 0.396094i 0.588079 0.125256i
\(11\) 2.45629 + 4.25442i 0.740599 + 1.28275i 0.952223 + 0.305403i \(0.0987913\pi\)
−0.211624 + 0.977351i \(0.567875\pi\)
\(12\) 0 0
\(13\) 1.10589 + 0.515684i 0.306718 + 0.143025i 0.569883 0.821726i \(-0.306988\pi\)
−0.263165 + 0.964751i \(0.584766\pi\)
\(14\) −0.586836 3.32811i −0.156839 0.889476i
\(15\) 0 0
\(16\) 0.173363 + 0.0630990i 0.0433408 + 0.0157748i
\(17\) 1.40281 + 0.122730i 0.340231 + 0.0297663i 0.255991 0.966679i \(-0.417598\pi\)
0.0842397 + 0.996446i \(0.473154\pi\)
\(18\) 0 0
\(19\) −4.22304 + 1.07980i −0.968831 + 0.247724i
\(20\) −0.349158 2.83391i −0.0780740 0.633682i
\(21\) 0 0
\(22\) −3.78591 + 1.76540i −0.807158 + 0.376384i
\(23\) 0.867092 + 1.23834i 0.180801 + 0.258211i 0.899315 0.437302i \(-0.144066\pi\)
−0.718513 + 0.695513i \(0.755177\pi\)
\(24\) 0 0
\(25\) −4.14286 + 2.79941i −0.828572 + 0.559882i
\(26\) −0.518789 + 0.898569i −0.101743 + 0.176224i
\(27\) 0 0
\(28\) −5.05567 + 0.442314i −0.955432 + 0.0835895i
\(29\) −1.63627 1.37299i −0.303847 0.254958i 0.478096 0.878307i \(-0.341327\pi\)
−0.781943 + 0.623350i \(0.785771\pi\)
\(30\) 0 0
\(31\) 8.01543 + 4.62771i 1.43961 + 0.831161i 0.997823 0.0659564i \(-0.0210098\pi\)
0.441791 + 0.897118i \(0.354343\pi\)
\(32\) −2.42153 + 5.19298i −0.428069 + 0.917997i
\(33\) 0 0
\(34\) −0.207926 + 1.17921i −0.0356590 + 0.202232i
\(35\) 4.71244 + 7.53450i 0.796547 + 1.27356i
\(36\) 0 0
\(37\) −6.74741 + 6.74741i −1.10927 + 1.10927i −0.116021 + 0.993247i \(0.537014\pi\)
−0.993247 + 0.116021i \(0.962986\pi\)
\(38\) −0.601718 3.65731i −0.0976115 0.593294i
\(39\) 0 0
\(40\) 6.22685 0.220040i 0.984552 0.0347914i
\(41\) −0.783311 + 2.15213i −0.122333 + 0.336106i −0.985710 0.168453i \(-0.946123\pi\)
0.863377 + 0.504559i \(0.168345\pi\)
\(42\) 0 0
\(43\) −1.09842 0.769121i −0.167507 0.117290i 0.486817 0.873504i \(-0.338158\pi\)
−0.654324 + 0.756214i \(0.727047\pi\)
\(44\) 2.14553 + 5.89479i 0.323450 + 0.888672i
\(45\) 0 0
\(46\) −1.11324 + 0.642730i −0.164138 + 0.0947654i
\(47\) 0.434606 + 4.96757i 0.0633939 + 0.724595i 0.959676 + 0.281110i \(0.0907026\pi\)
−0.896282 + 0.443485i \(0.853742\pi\)
\(48\) 0 0
\(49\) 7.61681 4.39757i 1.08812 0.628224i
\(50\) −2.06432 3.71684i −0.291939 0.525640i
\(51\) 0 0
\(52\) 1.27636 + 0.893717i 0.176999 + 0.123936i
\(53\) −7.59734 + 5.31972i −1.04358 + 0.730719i −0.963944 0.266105i \(-0.914263\pi\)
−0.0796315 + 0.996824i \(0.525374\pi\)
\(54\) 0 0
\(55\) 7.48831 8.03693i 1.00972 1.08370i
\(56\) 11.0743i 1.47987i
\(57\) 0 0
\(58\) 1.28431 1.28431i 0.168638 0.168638i
\(59\) 9.46359 7.94090i 1.23205 1.03382i 0.233952 0.972248i \(-0.424834\pi\)
0.998103 0.0615685i \(-0.0196103\pi\)
\(60\) 0 0
\(61\) −1.09383 + 6.20343i −0.140051 + 0.794268i 0.831158 + 0.556037i \(0.187679\pi\)
−0.971209 + 0.238231i \(0.923432\pi\)
\(62\) −4.51411 + 6.44682i −0.573293 + 0.818747i
\(63\) 0 0
\(64\) −3.89991 2.25161i −0.487489 0.281452i
\(65\) 0.378607 2.70208i 0.0469604 0.335152i
\(66\) 0 0
\(67\) 8.76025 0.766422i 1.07023 0.0936334i 0.461603 0.887087i \(-0.347274\pi\)
0.608631 + 0.793453i \(0.291719\pi\)
\(68\) 1.73688 + 0.465396i 0.210628 + 0.0564376i
\(69\) 0 0
\(70\) −6.73163 + 3.43347i −0.804584 + 0.410378i
\(71\) 2.67473 0.471627i 0.317432 0.0559718i −0.0126621 0.999920i \(-0.504031\pi\)
0.330094 + 0.943948i \(0.392919\pi\)
\(72\) 0 0
\(73\) −0.139300 + 0.0649566i −0.0163038 + 0.00760259i −0.430753 0.902470i \(-0.641752\pi\)
0.414449 + 0.910072i \(0.363974\pi\)
\(74\) −5.21560 6.21571i −0.606302 0.722562i
\(75\) 0 0
\(76\) −5.55010 + 0.421490i −0.636640 + 0.0483482i
\(77\) −13.8056 13.8056i −1.57330 1.57330i
\(78\) 0 0
\(79\) 1.57856 + 0.574548i 0.177602 + 0.0646417i 0.429290 0.903167i \(-0.358764\pi\)
−0.251689 + 0.967808i \(0.580986\pi\)
\(80\) 0.0214188 0.411974i 0.00239469 0.0460601i
\(81\) 0 0
\(82\) −1.76499 0.823030i −0.194911 0.0908885i
\(83\) −0.200296 0.747516i −0.0219854 0.0820505i 0.954062 0.299611i \(-0.0968568\pi\)
−0.976047 + 0.217560i \(0.930190\pi\)
\(84\) 0 0
\(85\) −0.655944 3.07967i −0.0711471 0.334037i
\(86\) 0.732919 0.873459i 0.0790327 0.0941875i
\(87\) 0 0
\(88\) −13.2223 + 3.54291i −1.40950 + 0.377675i
\(89\) 3.86114 1.40534i 0.409280 0.148966i −0.129171 0.991622i \(-0.541232\pi\)
0.538452 + 0.842656i \(0.319009\pi\)
\(90\) 0 0
\(91\) −4.77583 0.842108i −0.500643 0.0882769i
\(92\) 0.815821 + 1.74953i 0.0850552 + 0.182402i
\(93\) 0 0
\(94\) −4.24019 −0.437342
\(95\) 5.07334 + 8.32233i 0.520513 + 0.853853i
\(96\) 0 0
\(97\) 0.860973 9.84096i 0.0874185 0.999198i −0.818152 0.575002i \(-0.805001\pi\)
0.905570 0.424196i \(-0.139443\pi\)
\(98\) 3.16065 + 6.77803i 0.319273 + 0.684684i
\(99\) 0 0
\(100\) −5.83058 + 2.60176i −0.583058 + 0.260176i
\(101\) −8.19112 + 2.98132i −0.815047 + 0.296653i −0.715707 0.698401i \(-0.753895\pi\)
−0.0993398 + 0.995054i \(0.531673\pi\)
\(102\) 0 0
\(103\) 0.0994278 0.371070i 0.00979691 0.0365626i −0.960854 0.277054i \(-0.910642\pi\)
0.970651 + 0.240491i \(0.0773086\pi\)
\(104\) −2.18553 + 2.60462i −0.214309 + 0.255404i
\(105\) 0 0
\(106\) −3.94323 6.82988i −0.383000 0.663376i
\(107\) −2.22050 8.28702i −0.214664 0.801137i −0.986285 0.165054i \(-0.947220\pi\)
0.771621 0.636083i \(-0.219446\pi\)
\(108\) 0 0
\(109\) 1.11653 + 6.33215i 0.106944 + 0.606510i 0.990426 + 0.138045i \(0.0440818\pi\)
−0.883482 + 0.468465i \(0.844807\pi\)
\(110\) 6.25303 + 6.93889i 0.596203 + 0.661597i
\(111\) 0 0
\(112\) −0.730427 0.0639041i −0.0690189 0.00603837i
\(113\) −11.4607 11.4607i −1.07813 1.07813i −0.996677 0.0814546i \(-0.974043\pi\)
−0.0814546 0.996677i \(-0.525957\pi\)
\(114\) 0 0
\(115\) 2.08003 2.66460i 0.193964 0.248475i
\(116\) −1.75324 2.08942i −0.162784 0.193998i
\(117\) 0 0
\(118\) 6.02529 + 8.60501i 0.554673 + 0.792156i
\(119\) −5.51146 + 0.971819i −0.505235 + 0.0890865i
\(120\) 0 0
\(121\) −6.56670 + 11.3739i −0.596973 + 1.03399i
\(122\) −5.17379 1.38631i −0.468413 0.125511i
\(123\) 0 0
\(124\) 9.05364 + 7.59691i 0.813041 + 0.682222i
\(125\) 8.69753 + 7.02517i 0.777931 + 0.628350i
\(126\) 0 0
\(127\) 1.58848 3.40651i 0.140955 0.302279i −0.823139 0.567840i \(-0.807779\pi\)
0.964094 + 0.265561i \(0.0855571\pi\)
\(128\) −4.37663 + 6.25048i −0.386843 + 0.552469i
\(129\) 0 0
\(130\) 2.26085 + 0.520967i 0.198289 + 0.0456918i
\(131\) 6.85330 5.75060i 0.598775 0.502432i −0.292277 0.956334i \(-0.594413\pi\)
0.891052 + 0.453902i \(0.149968\pi\)
\(132\) 0 0
\(133\) 15.1010 8.48917i 1.30943 0.736105i
\(134\) 7.47751i 0.645959i
\(135\) 0 0
\(136\) −1.34202 + 3.68718i −0.115077 + 0.316173i
\(137\) 4.67796 3.27554i 0.399665 0.279848i −0.356415 0.934328i \(-0.616001\pi\)
0.756080 + 0.654479i \(0.227112\pi\)
\(138\) 0 0
\(139\) −3.42015 9.39679i −0.290094 0.797026i −0.996052 0.0887722i \(-0.971706\pi\)
0.705958 0.708253i \(-0.250517\pi\)
\(140\) 4.25542 + 10.5199i 0.359648 + 0.889096i
\(141\) 0 0
\(142\) 0.201284 + 2.30069i 0.0168914 + 0.193069i
\(143\) 0.522445 + 5.97158i 0.0436891 + 0.499368i
\(144\) 0 0
\(145\) −1.86439 + 4.39731i −0.154829 + 0.365177i
\(146\) −0.0447004 0.122813i −0.00369943 0.0101641i
\(147\) 0 0
\(148\) −9.98136 + 6.98902i −0.820463 + 0.574494i
\(149\) −1.44345 + 3.96584i −0.118252 + 0.324894i −0.984671 0.174424i \(-0.944194\pi\)
0.866419 + 0.499318i \(0.166416\pi\)
\(150\) 0 0
\(151\) 16.0056i 1.30252i −0.758856 0.651258i \(-0.774242\pi\)
0.758856 0.651258i \(-0.225758\pi\)
\(152\) 0.139302 12.1451i 0.0112989 0.985101i
\(153\) 0 0
\(154\) 12.7177 10.6714i 1.02482 0.859930i
\(155\) 4.64714 20.1673i 0.373267 1.61987i
\(156\) 0 0
\(157\) 7.23463 10.3321i 0.577386 0.824593i −0.419136 0.907923i \(-0.637667\pi\)
0.996522 + 0.0833309i \(0.0265558\pi\)
\(158\) −0.603681 + 1.29460i −0.0480263 + 0.102993i
\(159\) 0 0
\(160\) 12.6883 + 1.77784i 1.00310 + 0.140551i
\(161\) −4.60245 3.86192i −0.362724 0.304362i
\(162\) 0 0
\(163\) 10.3009 + 2.76013i 0.806833 + 0.216190i 0.638582 0.769554i \(-0.279521\pi\)
0.168251 + 0.985744i \(0.446188\pi\)
\(164\) −1.46226 + 2.53271i −0.114184 + 0.197772i
\(165\) 0 0
\(166\) 0.648057 0.114270i 0.0502990 0.00886907i
\(167\) 1.34413 + 1.91962i 0.104012 + 0.148545i 0.867784 0.496941i \(-0.165544\pi\)
−0.763772 + 0.645486i \(0.776655\pi\)
\(168\) 0 0
\(169\) −7.39918 8.81800i −0.569168 0.678308i
\(170\) 2.65737 0.327406i 0.203811 0.0251109i
\(171\) 0 0
\(172\) −1.21077 1.21077i −0.0923203 0.0923203i
\(173\) 12.5886 + 1.10136i 0.957090 + 0.0837345i 0.554986 0.831860i \(-0.312724\pi\)
0.402104 + 0.915594i \(0.368279\pi\)
\(174\) 0 0
\(175\) 13.0244 15.0081i 0.984554 1.13450i
\(176\) 0.157380 + 0.892548i 0.0118630 + 0.0672784i
\(177\) 0 0
\(178\) 0.904298 + 3.37488i 0.0677800 + 0.252958i
\(179\) −3.40041 5.88969i −0.254159 0.440216i 0.710508 0.703689i \(-0.248465\pi\)
−0.964667 + 0.263473i \(0.915132\pi\)
\(180\) 0 0
\(181\) 12.5267 14.9288i 0.931106 1.10965i −0.0626462 0.998036i \(-0.519954\pi\)
0.993752 0.111613i \(-0.0356016\pi\)
\(182\) 1.06728 3.98315i 0.0791121 0.295250i
\(183\) 0 0
\(184\) −3.95835 + 1.44072i −0.291813 + 0.106211i
\(185\) 18.8438 + 10.0094i 1.38542 + 0.735903i
\(186\) 0 0
\(187\) 2.92355 + 6.26958i 0.213791 + 0.458477i
\(188\) −0.554970 + 6.34333i −0.0404753 + 0.462635i
\(189\) 0 0
\(190\) −7.42575 + 3.68080i −0.538720 + 0.267033i
\(191\) 18.5918 1.34525 0.672627 0.739982i \(-0.265166\pi\)
0.672627 + 0.739982i \(0.265166\pi\)
\(192\) 0 0
\(193\) −7.75406 16.6286i −0.558149 1.19696i −0.959676 0.281108i \(-0.909298\pi\)
0.401527 0.915847i \(-0.368480\pi\)
\(194\) 8.27237 + 1.45864i 0.593921 + 0.104724i
\(195\) 0 0
\(196\) 10.5536 3.84120i 0.753830 0.274372i
\(197\) 10.9281 2.92819i 0.778598 0.208625i 0.152431 0.988314i \(-0.451290\pi\)
0.626166 + 0.779690i \(0.284623\pi\)
\(198\) 0 0
\(199\) −7.77099 + 9.26110i −0.550871 + 0.656502i −0.967588 0.252534i \(-0.918736\pi\)
0.416717 + 0.909036i \(0.363180\pi\)
\(200\) −4.54689 13.1695i −0.321514 0.931226i
\(201\) 0 0
\(202\) −1.91840 7.15956i −0.134978 0.503745i
\(203\) 7.69373 + 3.58765i 0.539994 + 0.251803i
\(204\) 0 0
\(205\) 5.11424 + 0.265893i 0.357194 + 0.0185708i
\(206\) 0.306960 + 0.111724i 0.0213870 + 0.00778421i
\(207\) 0 0
\(208\) 0.159181 + 0.159181i 0.0110372 + 0.0110372i
\(209\) −14.9669 15.3142i −1.03528 1.05931i
\(210\) 0 0
\(211\) 4.77188 + 5.68690i 0.328509 + 0.391502i 0.904866 0.425696i \(-0.139971\pi\)
−0.576357 + 0.817198i \(0.695526\pi\)
\(212\) −10.7336 + 5.00517i −0.737188 + 0.343756i
\(213\) 0 0
\(214\) 7.18441 1.26681i 0.491116 0.0865970i
\(215\) −0.925368 + 2.85203i −0.0631096 + 0.194507i
\(216\) 0 0
\(217\) −35.5305 9.52038i −2.41197 0.646285i
\(218\) −5.44664 + 0.476520i −0.368893 + 0.0322740i
\(219\) 0 0
\(220\) 11.1990 8.44637i 0.755037 0.569454i
\(221\) 1.48806 + 0.859131i 0.100098 + 0.0577914i
\(222\) 0 0
\(223\) −8.33065 + 11.8974i −0.557861 + 0.796708i −0.994699 0.102832i \(-0.967210\pi\)
0.436837 + 0.899540i \(0.356098\pi\)
\(224\) 3.95433 22.4261i 0.264210 1.49841i
\(225\) 0 0
\(226\) 10.5576 8.85887i 0.702281 0.589283i
\(227\) −3.07432 + 3.07432i −0.204050 + 0.204050i −0.801733 0.597683i \(-0.796088\pi\)
0.597683 + 0.801733i \(0.296088\pi\)
\(228\) 0 0
\(229\) 18.5866i 1.22824i 0.789214 + 0.614119i \(0.210488\pi\)
−0.789214 + 0.614119i \(0.789512\pi\)
\(230\) 2.10300 + 1.95945i 0.138668 + 0.129202i
\(231\) 0 0
\(232\) 4.87549 3.41386i 0.320092 0.224131i
\(233\) 18.0369 + 12.6296i 1.18164 + 0.827390i 0.988116 0.153707i \(-0.0491211\pi\)
0.193519 + 0.981097i \(0.438010\pi\)
\(234\) 0 0
\(235\) 10.3366 4.18126i 0.674286 0.272756i
\(236\) 13.6617 7.88760i 0.889303 0.513439i
\(237\) 0 0
\(238\) −0.414760 4.74072i −0.0268849 0.307295i
\(239\) 2.93366 1.69375i 0.189763 0.109560i −0.402109 0.915592i \(-0.631723\pi\)
0.591872 + 0.806032i \(0.298389\pi\)
\(240\) 0 0
\(241\) −0.0368288 0.101186i −0.00237235 0.00651798i 0.938501 0.345277i \(-0.112215\pi\)
−0.940873 + 0.338759i \(0.889993\pi\)
\(242\) −9.14801 6.40550i −0.588056 0.411761i
\(243\) 0 0
\(244\) −2.75109 + 7.55856i −0.176121 + 0.483887i
\(245\) −14.3888 13.4066i −0.919264 0.856513i
\(246\) 0 0
\(247\) −5.22704 0.983611i −0.332589 0.0625857i
\(248\) −18.2363 + 18.2363i −1.15800 + 1.15800i
\(249\) 0 0
\(250\) −6.59552 + 6.84694i −0.417138 + 0.433039i
\(251\) −3.71248 + 21.0545i −0.234330 + 1.32895i 0.609691 + 0.792639i \(0.291294\pi\)
−0.844020 + 0.536311i \(0.819817\pi\)
\(252\) 0 0
\(253\) −3.13857 + 6.73067i −0.197320 + 0.423154i
\(254\) 2.76790 + 1.59805i 0.173673 + 0.100270i
\(255\) 0 0
\(256\) −11.8697 9.95986i −0.741856 0.622491i
\(257\) 12.5607 1.09892i 0.783518 0.0685489i 0.311625 0.950205i \(-0.399127\pi\)
0.471892 + 0.881656i \(0.343571\pi\)
\(258\) 0 0
\(259\) 18.9620 32.8431i 1.17824 2.04077i
\(260\) 1.07528 3.31405i 0.0666857 0.205528i
\(261\) 0 0
\(262\) 4.36337 + 6.23153i 0.269570 + 0.384985i
\(263\) −24.1482 + 11.2605i −1.48904 + 0.694351i −0.985509 0.169626i \(-0.945744\pi\)
−0.503532 + 0.863977i \(0.667966\pi\)
\(264\) 0 0
\(265\) 16.3477 + 12.7612i 1.00423 + 0.783917i
\(266\) 6.07194 + 13.4211i 0.372294 + 0.822899i
\(267\) 0 0
\(268\) 11.1864 + 0.978681i 0.683317 + 0.0597825i
\(269\) −12.1556 4.42428i −0.741141 0.269753i −0.0562682 0.998416i \(-0.517920\pi\)
−0.684873 + 0.728662i \(0.740142\pi\)
\(270\) 0 0
\(271\) 3.22437 + 18.2863i 0.195866 + 1.11081i 0.911180 + 0.412009i \(0.135173\pi\)
−0.715313 + 0.698804i \(0.753716\pi\)
\(272\) 0.235451 + 0.109793i 0.0142763 + 0.00665715i
\(273\) 0 0
\(274\) 2.42799 + 4.20540i 0.146680 + 0.254058i
\(275\) −22.0859 10.7493i −1.33183 0.648206i
\(276\) 0 0
\(277\) −4.08087 + 15.2300i −0.245195 + 0.915082i 0.728090 + 0.685482i \(0.240408\pi\)
−0.973285 + 0.229600i \(0.926258\pi\)
\(278\) 8.21339 2.20077i 0.492607 0.131994i
\(279\) 0 0
\(280\) −23.6778 + 7.24982i −1.41502 + 0.433259i
\(281\) −0.225686 0.0397945i −0.0134633 0.00237394i 0.166912 0.985972i \(-0.446620\pi\)
−0.180376 + 0.983598i \(0.557731\pi\)
\(282\) 0 0
\(283\) −1.12979 + 12.9136i −0.0671591 + 0.767632i 0.885708 + 0.464243i \(0.153674\pi\)
−0.952867 + 0.303389i \(0.901882\pi\)
\(284\) 3.46818 0.205799
\(285\) 0 0
\(286\) −5.09718 −0.301403
\(287\) 0.793305 9.06752i 0.0468273 0.535239i
\(288\) 0 0
\(289\) −14.7889 2.60769i −0.869937 0.153393i
\(290\) −3.58675 1.90519i −0.210621 0.111877i
\(291\) 0 0
\(292\) −0.189580 + 0.0507977i −0.0110943 + 0.00297271i
\(293\) −1.97297 + 7.36321i −0.115262 + 0.430163i −0.999306 0.0372396i \(-0.988144\pi\)
0.884044 + 0.467403i \(0.154810\pi\)
\(294\) 0 0
\(295\) −23.1737 15.0355i −1.34923 0.875400i
\(296\) −13.2946 23.0270i −0.772735 1.33842i
\(297\) 0 0
\(298\) −3.25244 1.51664i −0.188409 0.0878566i
\(299\) 0.320317 + 1.81661i 0.0185244 + 0.105057i
\(300\) 0 0
\(301\) 5.00785 + 1.82271i 0.288648 + 0.105059i
\(302\) 13.5582 + 1.18619i 0.780184 + 0.0682573i
\(303\) 0 0
\(304\) −0.800253 0.0792713i −0.0458977 0.00454652i
\(305\) 13.9796 1.72238i 0.800468 0.0986231i
\(306\) 0 0
\(307\) 24.9542 11.6364i 1.42421 0.664122i 0.450685 0.892683i \(-0.351180\pi\)
0.973530 + 0.228561i \(0.0734022\pi\)
\(308\) −14.3000 20.4225i −0.814817 1.16368i
\(309\) 0 0
\(310\) 16.7391 + 5.43115i 0.950715 + 0.308469i
\(311\) −3.61837 + 6.26721i −0.205179 + 0.355381i −0.950190 0.311672i \(-0.899111\pi\)
0.745011 + 0.667053i \(0.232444\pi\)
\(312\) 0 0
\(313\) −5.80964 + 0.508278i −0.328381 + 0.0287296i −0.250154 0.968206i \(-0.580481\pi\)
−0.0782264 + 0.996936i \(0.524926\pi\)
\(314\) 8.21606 + 6.89409i 0.463659 + 0.389056i
\(315\) 0 0
\(316\) 1.85771 + 1.07255i 0.104504 + 0.0603356i
\(317\) 1.23887 2.65676i 0.0695818 0.149219i −0.868441 0.495793i \(-0.834877\pi\)
0.938022 + 0.346574i \(0.112655\pi\)
\(318\) 0 0
\(319\) 1.82213 10.3338i 0.102020 0.578582i
\(320\) −2.26107 + 9.81238i −0.126398 + 0.548529i
\(321\) 0 0
\(322\) 3.61248 3.61248i 0.201316 0.201316i
\(323\) −6.05663 + 0.996463i −0.337000 + 0.0554447i
\(324\) 0 0
\(325\) −6.02516 + 0.959430i −0.334215 + 0.0532196i
\(326\) −3.10149 + 8.52127i −0.171776 + 0.471949i
\(327\) 0 0
\(328\) −5.22759 3.66040i −0.288645 0.202112i
\(329\) −6.77819 18.6229i −0.373694 1.02671i
\(330\) 0 0
\(331\) 7.17253 4.14106i 0.394238 0.227613i −0.289757 0.957100i \(-0.593574\pi\)
0.683995 + 0.729487i \(0.260241\pi\)
\(332\) −0.0861283 0.984451i −0.00472690 0.0540288i
\(333\) 0 0
\(334\) −1.72571 + 0.996337i −0.0944264 + 0.0545171i
\(335\) −7.37360 18.2285i −0.402863 0.995927i
\(336\) 0 0
\(337\) 12.2046 + 8.54575i 0.664827 + 0.465517i 0.856640 0.515915i \(-0.172548\pi\)
−0.191813 + 0.981431i \(0.561437\pi\)
\(338\) 8.01799 5.61426i 0.436121 0.305375i
\(339\) 0 0
\(340\) −0.141995 4.01828i −0.00770078 0.217922i
\(341\) 45.4680i 2.46223i
\(342\) 0 0
\(343\) −5.04480 + 5.04480i −0.272394 + 0.272394i
\(344\) 2.86228 2.40174i 0.154324 0.129493i
\(345\) 0 0
\(346\) −1.86589 + 10.5820i −0.100311 + 0.568892i
\(347\) −3.73392 + 5.33259i −0.200447 + 0.286268i −0.906774 0.421618i \(-0.861462\pi\)
0.706326 + 0.707887i \(0.250351\pi\)
\(348\) 0 0
\(349\) 21.2321 + 12.2584i 1.13653 + 0.656176i 0.945569 0.325422i \(-0.105506\pi\)
0.190961 + 0.981598i \(0.438840\pi\)
\(350\) 11.7479 + 12.1451i 0.627954 + 0.649184i
\(351\) 0 0
\(352\) −28.0410 + 2.45327i −1.49459 + 0.130760i
\(353\) 18.5195 + 4.96227i 0.985691 + 0.264115i 0.715440 0.698675i \(-0.246226\pi\)
0.270251 + 0.962790i \(0.412893\pi\)
\(354\) 0 0
\(355\) −2.75940 5.41006i −0.146454 0.287136i
\(356\) 5.16719 0.911116i 0.273861 0.0482890i
\(357\) 0 0
\(358\) 5.24110 2.44397i 0.277001 0.129168i
\(359\) 12.6054 + 15.0226i 0.665289 + 0.792860i 0.988134 0.153592i \(-0.0490840\pi\)
−0.322846 + 0.946452i \(0.604640\pi\)
\(360\) 0 0
\(361\) 16.6681 9.12009i 0.877266 0.480005i
\(362\) 11.7177 + 11.7177i 0.615866 + 0.615866i
\(363\) 0 0
\(364\) −5.81910 2.11798i −0.305004 0.111012i
\(365\) 0.230076 + 0.255312i 0.0120427 + 0.0133636i
\(366\) 0 0
\(367\) 12.5944 + 5.87286i 0.657421 + 0.306561i 0.722552 0.691316i \(-0.242969\pi\)
−0.0651311 + 0.997877i \(0.520747\pi\)
\(368\) 0.0721840 + 0.269394i 0.00376285 + 0.0140431i
\(369\) 0 0
\(370\) −9.87535 + 15.2206i −0.513395 + 0.791280i
\(371\) 23.6934 28.2366i 1.23010 1.46597i
\(372\) 0 0
\(373\) −35.6461 + 9.55135i −1.84569 + 0.494550i −0.999278 0.0379859i \(-0.987906\pi\)
−0.846407 + 0.532536i \(0.821239\pi\)
\(374\) −5.52756 + 2.01187i −0.285823 + 0.104031i
\(375\) 0 0
\(376\) −13.6838 2.41282i −0.705687 0.124432i
\(377\) −1.10150 2.36217i −0.0567300 0.121658i
\(378\) 0 0
\(379\) −2.15198 −0.110540 −0.0552699 0.998471i \(-0.517602\pi\)
−0.0552699 + 0.998471i \(0.517602\pi\)
\(380\) 4.53457 + 11.5907i 0.232619 + 0.594590i
\(381\) 0 0
\(382\) −1.37785 + 15.7489i −0.0704969 + 0.805783i
\(383\) −4.96338 10.6440i −0.253617 0.543883i 0.737739 0.675086i \(-0.235894\pi\)
−0.991355 + 0.131203i \(0.958116\pi\)
\(384\) 0 0
\(385\) −20.4798 + 38.5555i −1.04375 + 1.96497i
\(386\) 14.6606 5.33602i 0.746205 0.271596i
\(387\) 0 0
\(388\) 3.26484 12.1846i 0.165747 0.618578i
\(389\) −2.20372 + 2.62629i −0.111733 + 0.133158i −0.819012 0.573776i \(-0.805478\pi\)
0.707279 + 0.706934i \(0.249922\pi\)
\(390\) 0 0
\(391\) 1.06438 + 1.84356i 0.0538281 + 0.0932330i
\(392\) 6.34298 + 23.6723i 0.320369 + 1.19563i
\(393\) 0 0
\(394\) 1.67054 + 9.47412i 0.0841607 + 0.477299i
\(395\) 0.195029 3.75123i 0.00981296 0.188745i
\(396\) 0 0
\(397\) 8.57163 + 0.749921i 0.430198 + 0.0376375i 0.300199 0.953877i \(-0.402947\pi\)
0.129999 + 0.991514i \(0.458503\pi\)
\(398\) −7.26907 7.26907i −0.364365 0.364365i
\(399\) 0 0
\(400\) −0.894860 + 0.223905i −0.0447430 + 0.0111952i
\(401\) 9.47424 + 11.2910i 0.473121 + 0.563844i 0.948841 0.315753i \(-0.102257\pi\)
−0.475720 + 0.879597i \(0.657813\pi\)
\(402\) 0 0
\(403\) 6.47774 + 9.25116i 0.322679 + 0.460833i
\(404\) −10.9618 + 1.93286i −0.545370 + 0.0961634i
\(405\) 0 0
\(406\) −3.60924 + 6.25140i −0.179124 + 0.310252i
\(407\) −45.2799 12.1327i −2.24444 0.601396i
\(408\) 0 0
\(409\) −28.3413 23.7811i −1.40139 1.17590i −0.960480 0.278348i \(-0.910213\pi\)
−0.440905 0.897554i \(-0.645342\pi\)
\(410\) −0.604255 + 4.31251i −0.0298420 + 0.212980i
\(411\) 0 0
\(412\) 0.207316 0.444591i 0.0102137 0.0219034i
\(413\) −28.1615 + 40.2187i −1.38573 + 1.97903i
\(414\) 0 0
\(415\) −1.46713 + 0.917615i −0.0720187 + 0.0450439i
\(416\) −5.35587 + 4.49411i −0.262593 + 0.220342i
\(417\) 0 0
\(418\) 14.0817 11.5434i 0.688760 0.564605i
\(419\) 9.21192i 0.450032i 0.974355 + 0.225016i \(0.0722434\pi\)
−0.974355 + 0.225016i \(0.927757\pi\)
\(420\) 0 0
\(421\) −0.789738 + 2.16979i −0.0384895 + 0.105749i −0.957449 0.288604i \(-0.906809\pi\)
0.918959 + 0.394353i \(0.129031\pi\)
\(422\) −5.17096 + 3.62074i −0.251718 + 0.176255i
\(423\) 0 0
\(424\) −8.83901 24.2850i −0.429260 1.17938i
\(425\) −6.15520 + 3.41858i −0.298571 + 0.165826i
\(426\) 0 0
\(427\) −2.18192 24.9394i −0.105590 1.20690i
\(428\) −0.954825 10.9137i −0.0461532 0.527534i
\(429\) 0 0
\(430\) −2.34734 0.995235i −0.113199 0.0479945i
\(431\) −6.23851 17.1402i −0.300498 0.825612i −0.994413 0.105556i \(-0.966338\pi\)
0.693915 0.720057i \(-0.255884\pi\)
\(432\) 0 0
\(433\) 17.8019 12.4651i 0.855507 0.599032i −0.0614092 0.998113i \(-0.519559\pi\)
0.916916 + 0.399080i \(0.130671\pi\)
\(434\) 10.6978 29.3920i 0.513511 1.41086i
\(435\) 0 0
\(436\) 8.21056i 0.393215i
\(437\) −4.99892 4.29324i −0.239131 0.205374i
\(438\) 0 0
\(439\) −7.23611 + 6.07181i −0.345361 + 0.289792i −0.798924 0.601432i \(-0.794597\pi\)
0.453563 + 0.891224i \(0.350153\pi\)
\(440\) 16.2311 + 25.9511i 0.773786 + 1.23717i
\(441\) 0 0
\(442\) −0.838042 + 1.19685i −0.0398616 + 0.0569282i
\(443\) 14.4220 30.9280i 0.685208 1.46943i −0.188042 0.982161i \(-0.560214\pi\)
0.873250 0.487273i \(-0.162008\pi\)
\(444\) 0 0
\(445\) −5.53246 7.33546i −0.262264 0.347734i
\(446\) −9.46077 7.93852i −0.447980 0.375900i
\(447\) 0 0
\(448\) 17.2874 + 4.63214i 0.816752 + 0.218848i
\(449\) −20.6242 + 35.7221i −0.973316 + 1.68583i −0.287931 + 0.957651i \(0.592967\pi\)
−0.685385 + 0.728181i \(0.740366\pi\)
\(450\) 0 0
\(451\) −11.0801 + 1.95372i −0.521741 + 0.0919970i
\(452\) −11.8711 16.9537i −0.558369 0.797433i
\(453\) 0 0
\(454\) −2.37638 2.83206i −0.111529 0.132915i
\(455\) 1.32601 + 10.7624i 0.0621642 + 0.504551i
\(456\) 0 0
\(457\) −12.9398 12.9398i −0.605300 0.605300i 0.336414 0.941714i \(-0.390786\pi\)
−0.941714 + 0.336414i \(0.890786\pi\)
\(458\) −15.7445 1.37747i −0.735693 0.0643648i
\(459\) 0 0
\(460\) 3.20658 2.88964i 0.149508 0.134730i
\(461\) −5.56561 31.5641i −0.259216 1.47009i −0.785014 0.619479i \(-0.787344\pi\)
0.525797 0.850610i \(-0.323767\pi\)
\(462\) 0 0
\(463\) 9.97438 + 37.2249i 0.463549 + 1.72999i 0.661656 + 0.749807i \(0.269854\pi\)
−0.198108 + 0.980180i \(0.563480\pi\)
\(464\) −0.197034 0.341273i −0.00914706 0.0158432i
\(465\) 0 0
\(466\) −12.0351 + 14.3429i −0.557515 + 0.664420i
\(467\) −2.53409 + 9.45734i −0.117263 + 0.437633i −0.999446 0.0332738i \(-0.989407\pi\)
0.882183 + 0.470907i \(0.156073\pi\)
\(468\) 0 0
\(469\) −32.8412 + 11.9532i −1.51647 + 0.551949i
\(470\) 2.77585 + 9.06590i 0.128040 + 0.418179i
\(471\) 0 0
\(472\) 14.5480 + 31.1984i 0.669628 + 1.43602i
\(473\) 0.574128 6.56232i 0.0263984 0.301736i
\(474\) 0 0
\(475\) 14.4726 16.2955i 0.664050 0.747688i
\(476\) −7.14642 −0.327555
\(477\) 0 0
\(478\) 1.21734 + 2.61060i 0.0556800 + 0.119406i
\(479\) −12.0119 2.11802i −0.548837 0.0967747i −0.107648 0.994189i \(-0.534332\pi\)
−0.441189 + 0.897414i \(0.645443\pi\)
\(480\) 0 0
\(481\) −10.9414 + 3.98235i −0.498886 + 0.181580i
\(482\) 0.0884433 0.0236983i 0.00402848 0.00107943i
\(483\) 0 0
\(484\) −10.7800 + 12.8471i −0.489999 + 0.583958i
\(485\) −21.6045 + 4.60157i −0.981010 + 0.208947i
\(486\) 0 0
\(487\) −2.75407 10.2783i −0.124799 0.465756i 0.875034 0.484062i \(-0.160839\pi\)
−0.999832 + 0.0183065i \(0.994173\pi\)
\(488\) −15.9078 7.41794i −0.720113 0.335794i
\(489\) 0 0
\(490\) 12.4229 11.1950i 0.561210 0.505738i
\(491\) −36.5384 13.2989i −1.64896 0.600171i −0.660385 0.750927i \(-0.729607\pi\)
−0.988571 + 0.150756i \(0.951829\pi\)
\(492\) 0 0
\(493\) −2.12686 2.12686i −0.0957888 0.0957888i
\(494\) 1.22059 4.35488i 0.0549168 0.195935i
\(495\) 0 0
\(496\) 1.09758 + 1.30804i 0.0492826 + 0.0587328i
\(497\) −9.78286 + 4.56182i −0.438821 + 0.204626i
\(498\) 0 0
\(499\) 16.0108 2.82313i 0.716740 0.126381i 0.196627 0.980478i \(-0.437001\pi\)
0.520113 + 0.854098i \(0.325890\pi\)
\(500\) 9.37980 + 10.7631i 0.419477 + 0.481339i
\(501\) 0 0
\(502\) −17.5599 4.70517i −0.783738 0.210002i
\(503\) 28.6678 2.50810i 1.27823 0.111831i 0.572261 0.820071i \(-0.306066\pi\)
0.705971 + 0.708240i \(0.250511\pi\)
\(504\) 0 0
\(505\) 11.7367 + 15.5616i 0.522275 + 0.692483i
\(506\) −5.46888 3.15746i −0.243121 0.140366i
\(507\) 0 0
\(508\) 2.75295 3.93162i 0.122142 0.174437i
\(509\) 3.87905 21.9992i 0.171936 0.975097i −0.769686 0.638423i \(-0.779587\pi\)
0.941621 0.336673i \(-0.109302\pi\)
\(510\) 0 0
\(511\) 0.467940 0.392649i 0.0207005 0.0173697i
\(512\) −1.47449 + 1.47449i −0.0651637 + 0.0651637i
\(513\) 0 0
\(514\) 10.7215i 0.472906i
\(515\) −0.858471 + 0.0303360i −0.0378288 + 0.00133677i
\(516\) 0 0
\(517\) −20.0666 + 14.0508i −0.882528 + 0.617953i
\(518\) 26.4158 + 18.4965i 1.16064 + 0.812691i
\(519\) 0 0
\(520\) 6.99967 + 2.96775i 0.306956 + 0.130144i
\(521\) 23.6960 13.6809i 1.03814 0.599371i 0.118835 0.992914i \(-0.462084\pi\)
0.919306 + 0.393543i \(0.128751\pi\)
\(522\) 0 0
\(523\) −0.813771 9.30145i −0.0355837 0.406724i −0.993009 0.118042i \(-0.962338\pi\)
0.957425 0.288682i \(-0.0932172\pi\)
\(524\) 9.89348 5.71200i 0.432199 0.249530i
\(525\) 0 0
\(526\) −7.74899 21.2902i −0.337872 0.928296i
\(527\) 10.6761 + 7.47552i 0.465060 + 0.325639i
\(528\) 0 0
\(529\) 7.08484 19.4654i 0.308036 0.846323i
\(530\) −12.0214 + 12.9022i −0.522178 + 0.560435i
\(531\) 0 0
\(532\) 20.8727 7.32704i 0.904945 0.317667i
\(533\) −1.97607 + 1.97607i −0.0855932 + 0.0855932i
\(534\) 0 0
\(535\) −16.2647 + 10.1728i −0.703186 + 0.439806i
\(536\) −4.25497 + 24.1311i −0.183787 + 1.04231i
\(537\) 0 0
\(538\) 4.64863 9.96901i 0.200416 0.429795i
\(539\) 37.4182 + 21.6034i 1.61171 + 0.930524i
\(540\) 0 0
\(541\) 19.4951 + 16.3584i 0.838162 + 0.703301i 0.957149 0.289594i \(-0.0935204\pi\)
−0.118988 + 0.992896i \(0.537965\pi\)
\(542\) −15.7291 + 1.37612i −0.675622 + 0.0591093i
\(543\) 0 0
\(544\) −4.03426 + 6.98755i −0.172968 + 0.299589i
\(545\) 12.8078 6.53260i 0.548625 0.279826i
\(546\) 0 0
\(547\) 17.3018 + 24.7095i 0.739771 + 1.05650i 0.995953 + 0.0898741i \(0.0286465\pi\)
−0.256182 + 0.966629i \(0.582465\pi\)
\(548\) 6.60907 3.08186i 0.282326 0.131651i
\(549\) 0 0
\(550\) 10.7424 17.9121i 0.458058 0.763775i
\(551\) 8.39256 + 4.03134i 0.357535 + 0.171741i
\(552\) 0 0
\(553\) −6.65090 0.581878i −0.282825 0.0247440i
\(554\) −12.5987 4.58556i −0.535269 0.194822i
\(555\) 0 0
\(556\) −2.21736 12.5753i −0.0940372 0.533311i
\(557\) 26.2184 + 12.2258i 1.11091 + 0.518025i 0.889398 0.457133i \(-0.151124\pi\)
0.221510 + 0.975158i \(0.428902\pi\)
\(558\) 0 0
\(559\) −0.818106 1.41700i −0.0346022 0.0599327i
\(560\) 0.341543 + 1.60355i 0.0144328 + 0.0677625i
\(561\) 0 0
\(562\) 0.0504352 0.188227i 0.00212748 0.00793987i
\(563\) 18.9758 5.08454i 0.799734 0.214288i 0.164267 0.986416i \(-0.447474\pi\)
0.635467 + 0.772128i \(0.280808\pi\)
\(564\) 0 0
\(565\) −17.0012 + 32.0068i −0.715247 + 1.34654i
\(566\) −10.8552 1.91407i −0.456279 0.0804543i
\(567\) 0 0
\(568\) −0.659597 + 7.53923i −0.0276761 + 0.316339i
\(569\) −28.9346 −1.21300 −0.606501 0.795082i \(-0.707428\pi\)
−0.606501 + 0.795082i \(0.707428\pi\)
\(570\) 0 0
\(571\) −24.1433 −1.01037 −0.505184 0.863012i \(-0.668575\pi\)
−0.505184 + 0.863012i \(0.668575\pi\)
\(572\) −0.667135 + 7.62539i −0.0278943 + 0.318834i
\(573\) 0 0
\(574\) 7.62220 + 1.34400i 0.318145 + 0.0560975i
\(575\) −7.05885 2.70290i −0.294374 0.112719i
\(576\) 0 0
\(577\) 26.2166 7.02471i 1.09141 0.292442i 0.332148 0.943227i \(-0.392227\pi\)
0.759262 + 0.650785i \(0.225560\pi\)
\(578\) 3.30496 12.3343i 0.137468 0.513039i
\(579\) 0 0
\(580\) −3.31962 + 5.11642i −0.137840 + 0.212448i
\(581\) 1.53783 + 2.66360i 0.0638000 + 0.110505i
\(582\) 0 0
\(583\) −41.2936 19.2555i −1.71020 0.797481i
\(584\) −0.0743703 0.421775i −0.00307746 0.0174532i
\(585\) 0 0
\(586\) −6.09108 2.21697i −0.251620 0.0915822i
\(587\) 36.8062 + 3.22012i 1.51915 + 0.132909i 0.815968 0.578097i \(-0.196204\pi\)
0.703186 + 0.711006i \(0.251760\pi\)
\(588\) 0 0
\(589\) −38.8465 10.8879i −1.60064 0.448628i
\(590\) 14.4538 18.5159i 0.595054 0.762288i
\(591\) 0 0
\(592\) −1.59551 + 0.743997i −0.0655750 + 0.0305781i
\(593\) 1.82350 + 2.60423i 0.0748823 + 0.106943i 0.854846 0.518882i \(-0.173651\pi\)
−0.779964 + 0.625825i \(0.784763\pi\)
\(594\) 0 0
\(595\) 5.68593 + 11.1478i 0.233100 + 0.457015i
\(596\) −2.69459 + 4.66716i −0.110375 + 0.191174i
\(597\) 0 0
\(598\) −1.56257 + 0.136707i −0.0638981 + 0.00559036i
\(599\) 5.95719 + 4.99867i 0.243404 + 0.204240i 0.756326 0.654195i \(-0.226992\pi\)
−0.512922 + 0.858435i \(0.671437\pi\)
\(600\) 0 0
\(601\) 16.9764 + 9.80133i 0.692482 + 0.399805i 0.804541 0.593897i \(-0.202411\pi\)
−0.112059 + 0.993702i \(0.535745\pi\)
\(602\) −1.91513 + 4.10701i −0.0780549 + 0.167389i
\(603\) 0 0
\(604\) 3.54907 20.1278i 0.144410 0.818988i
\(605\) 28.6172 + 6.59427i 1.16346 + 0.268095i
\(606\) 0 0
\(607\) −16.2338 + 16.2338i −0.658910 + 0.658910i −0.955122 0.296212i \(-0.904276\pi\)
0.296212 + 0.955122i \(0.404276\pi\)
\(608\) 4.61879 24.5449i 0.187317 0.995427i
\(609\) 0 0
\(610\) 0.422973 + 11.9696i 0.0171257 + 0.484635i
\(611\) −2.08107 + 5.71770i −0.0841912 + 0.231314i
\(612\) 0 0
\(613\) 30.4501 + 21.3214i 1.22987 + 0.861162i 0.993866 0.110590i \(-0.0352742\pi\)
0.236001 + 0.971753i \(0.424163\pi\)
\(614\) 8.00766 + 22.0009i 0.323163 + 0.887882i
\(615\) 0 0
\(616\) 47.1147 27.2017i 1.89830 1.09599i
\(617\) −0.00700337 0.0800488i −0.000281945 0.00322264i 0.996052 0.0887670i \(-0.0282926\pi\)
−0.996334 + 0.0855443i \(0.972737\pi\)
\(618\) 0 0
\(619\) −24.9397 + 14.3989i −1.00241 + 0.578741i −0.908960 0.416883i \(-0.863123\pi\)
−0.0934491 + 0.995624i \(0.529789\pi\)
\(620\) 10.3159 24.3308i 0.414296 0.977150i
\(621\) 0 0
\(622\) −5.04072 3.52955i −0.202115 0.141522i
\(623\) −13.3769 + 9.36663i −0.535935 + 0.375266i
\(624\) 0 0
\(625\) 9.32658 23.1951i 0.373063 0.927806i
\(626\) 4.95896i 0.198200i
\(627\) 0 0
\(628\) 11.3889 11.3889i 0.454468 0.454468i
\(629\) −10.2934 + 8.63721i −0.410426 + 0.344388i
\(630\) 0 0
\(631\) −1.03534 + 5.87173i −0.0412164 + 0.233750i −0.998456 0.0555461i \(-0.982310\pi\)
0.957240 + 0.289296i \(0.0934211\pi\)
\(632\) −2.68485 + 3.83436i −0.106798 + 0.152523i
\(633\) 0 0
\(634\) 2.15870 + 1.24633i 0.0857331 + 0.0494980i
\(635\) −8.32333 1.16624i −0.330301 0.0462807i
\(636\) 0 0
\(637\) 10.6911 0.935350i 0.423597 0.0370599i
\(638\) 8.61862 + 2.30935i 0.341214 + 0.0914281i
\(639\) 0 0
\(640\) 16.2293 + 5.26574i 0.641518 + 0.208147i
\(641\) 23.2634 4.10197i 0.918850 0.162018i 0.305831 0.952086i \(-0.401066\pi\)
0.613019 + 0.790068i \(0.289955\pi\)
\(642\) 0 0
\(643\) −16.0066 + 7.46400i −0.631239 + 0.294351i −0.711783 0.702400i \(-0.752112\pi\)
0.0805441 + 0.996751i \(0.474334\pi\)
\(644\) −4.93146 5.87709i −0.194327 0.231590i
\(645\) 0 0
\(646\) −0.395233 5.20435i −0.0155502 0.204762i
\(647\) −5.50558 5.50558i −0.216447 0.216447i 0.590553 0.806999i \(-0.298910\pi\)
−0.806999 + 0.590553i \(0.798910\pi\)
\(648\) 0 0
\(649\) 57.0292 + 20.7569i 2.23859 + 0.814780i
\(650\) −0.366195 5.17495i −0.0143633 0.202978i
\(651\) 0 0
\(652\) 12.3419 + 5.75512i 0.483346 + 0.225388i
\(653\) −0.674379 2.51682i −0.0263905 0.0984907i 0.951474 0.307728i \(-0.0995686\pi\)
−0.977865 + 0.209237i \(0.932902\pi\)
\(654\) 0 0
\(655\) −16.7818 10.8883i −0.655720 0.425442i
\(656\) −0.271594 + 0.323674i −0.0106040 + 0.0126373i
\(657\) 0 0
\(658\) 16.2776 4.36157i 0.634567 0.170032i
\(659\) −25.1582 + 9.15684i −0.980025 + 0.356700i −0.781850 0.623467i \(-0.785724\pi\)
−0.198175 + 0.980167i \(0.563501\pi\)
\(660\) 0 0
\(661\) −36.0063 6.34888i −1.40048 0.246943i −0.578140 0.815937i \(-0.696221\pi\)
−0.822341 + 0.568995i \(0.807333\pi\)
\(662\) 2.97629 + 6.38267i 0.115677 + 0.248070i
\(663\) 0 0
\(664\) 2.15641 0.0836849
\(665\) −28.0366 26.7299i −1.08721 1.03654i
\(666\) 0 0
\(667\) 0.281429 3.21675i 0.0108970 0.124553i
\(668\) 1.26466 + 2.71206i 0.0489310 + 0.104933i
\(669\) 0 0
\(670\) 15.9876 4.89517i 0.617655 0.189117i
\(671\) −29.0787 + 10.5838i −1.12257 + 0.408583i
\(672\) 0 0
\(673\) −4.66494 + 17.4098i −0.179820 + 0.671098i 0.815860 + 0.578249i \(0.196264\pi\)
−0.995680 + 0.0928486i \(0.970403\pi\)
\(674\) −8.14350 + 9.70505i −0.313676 + 0.373825i
\(675\) 0 0
\(676\) −7.34952 12.7297i −0.282674 0.489606i
\(677\) −11.0963 41.4118i −0.426464 1.59158i −0.760706 0.649097i \(-0.775147\pi\)
0.334242 0.942487i \(-0.391520\pi\)
\(678\) 0 0
\(679\) 6.81750 + 38.6640i 0.261632 + 1.48379i
\(680\) 8.76207 + 0.455546i 0.336010 + 0.0174694i
\(681\) 0 0
\(682\) −38.5154 3.36966i −1.47483 0.129031i
\(683\) 17.1640 + 17.1640i 0.656763 + 0.656763i 0.954613 0.297850i \(-0.0962696\pi\)
−0.297850 + 0.954613i \(0.596270\pi\)
\(684\) 0 0
\(685\) −10.0658 7.85756i −0.384596 0.300222i
\(686\) −3.89953 4.64727i −0.148885 0.177434i
\(687\) 0 0
\(688\) −0.141895 0.202647i −0.00540968 0.00772583i
\(689\) −11.1451 + 1.96518i −0.424595 + 0.0748675i
\(690\) 0 0
\(691\) 6.09079 10.5496i 0.231705 0.401324i −0.726605 0.687055i \(-0.758903\pi\)
0.958310 + 0.285731i \(0.0922363\pi\)
\(692\) 15.5865 + 4.17639i 0.592510 + 0.158762i
\(693\) 0 0
\(694\) −4.24046 3.55817i −0.160966 0.135066i
\(695\) −17.8522 + 13.4642i −0.677172 + 0.510727i
\(696\) 0 0
\(697\) −1.36296 + 2.92289i −0.0516259 + 0.110712i
\(698\) −11.9575 + 17.0770i −0.452597 + 0.646375i
\(699\) 0 0
\(700\) 19.7067 15.9854i 0.744844 0.604190i
\(701\) −23.1767 + 19.4476i −0.875372 + 0.734524i −0.965222 0.261431i \(-0.915806\pi\)
0.0898504 + 0.995955i \(0.471361\pi\)
\(702\) 0 0
\(703\) 21.2087 35.7804i 0.799900 1.34948i
\(704\) 22.1224i 0.833771i
\(705\) 0 0
\(706\) −5.57598 + 15.3199i −0.209855 + 0.576571i
\(707\) 28.3781 19.8706i 1.06727 0.747310i
\(708\) 0 0
\(709\) 0.671174 + 1.84404i 0.0252065 + 0.0692542i 0.951658 0.307161i \(-0.0993789\pi\)
−0.926451 + 0.376415i \(0.877157\pi\)
\(710\) 4.78731 1.93651i 0.179664 0.0726761i
\(711\) 0 0
\(712\) 0.997885 + 11.4059i 0.0373973 + 0.427453i
\(713\) 1.21946 + 13.9384i 0.0456690 + 0.521999i
\(714\) 0 0
\(715\) 12.4258 5.02634i 0.464697 0.187975i
\(716\) −2.97021 8.16057i −0.111002 0.304975i
\(717\) 0 0
\(718\) −13.6596 + 9.56458i −0.509773 + 0.356947i
\(719\) 4.78058 13.1345i 0.178285 0.489835i −0.818072 0.575117i \(-0.804957\pi\)
0.996357 + 0.0852814i \(0.0271789\pi\)
\(720\) 0 0
\(721\) 1.52677i 0.0568599i
\(722\) 6.49025 + 14.7952i 0.241542 + 0.550621i
\(723\) 0 0
\(724\) 19.0633 15.9960i 0.708481 0.594486i
\(725\) 10.6224 + 1.10752i 0.394505 + 0.0411323i
\(726\) 0 0
\(727\) 13.9674 19.9475i 0.518022 0.739813i −0.471865 0.881671i \(-0.656419\pi\)
0.989887 + 0.141858i \(0.0453078\pi\)
\(728\) 5.71084 12.2469i 0.211658 0.453902i
\(729\) 0 0
\(730\) −0.233323 + 0.175974i −0.00863566 + 0.00651307i
\(731\) −1.44648 1.21374i −0.0534999 0.0448917i
\(732\) 0 0
\(733\) 17.2215 + 4.61450i 0.636092 + 0.170440i 0.562433 0.826843i \(-0.309866\pi\)
0.0736595 + 0.997283i \(0.476532\pi\)
\(734\) −5.90821 + 10.2333i −0.218076 + 0.377719i
\(735\) 0 0
\(736\) −8.53033 + 1.50413i −0.314432 + 0.0554429i
\(737\) 24.7784 + 35.3872i 0.912723 + 1.30350i
\(738\) 0 0
\(739\) 18.5274 + 22.0801i 0.681543 + 0.812231i 0.990305 0.138908i \(-0.0443593\pi\)
−0.308763 + 0.951139i \(0.599915\pi\)
\(740\) 21.4775 + 16.7657i 0.789528 + 0.616318i
\(741\) 0 0
\(742\) 22.1630 + 22.1630i 0.813630 + 0.813630i
\(743\) 6.33768 + 0.554475i 0.232507 + 0.0203417i 0.202814 0.979217i \(-0.434991\pi\)
0.0296933 + 0.999559i \(0.490547\pi\)
\(744\) 0 0
\(745\) 9.42428 + 0.489974i 0.345279 + 0.0179513i
\(746\) −5.44908 30.9033i −0.199505 1.13145i
\(747\) 0 0
\(748\) 2.28629 + 8.53257i 0.0835952 + 0.311982i
\(749\) 17.0485 + 29.5289i 0.622939 + 1.07896i
\(750\) 0 0
\(751\) 33.4145 39.8218i 1.21931 1.45312i 0.366891 0.930264i \(-0.380422\pi\)
0.852421 0.522856i \(-0.175133\pi\)
\(752\) −0.238104 + 0.888618i −0.00868277 + 0.0324046i
\(753\) 0 0
\(754\) 2.08260 0.758005i 0.0758439 0.0276049i
\(755\) −34.2214 + 10.4781i −1.24544 + 0.381337i
\(756\) 0 0
\(757\) −22.6581 48.5905i −0.823523 1.76605i −0.615871 0.787847i \(-0.711196\pi\)
−0.207652 0.978203i \(-0.566582\pi\)
\(758\) 0.159485 1.82292i 0.00579275 0.0662115i
\(759\) 0 0
\(760\) −26.0586 + 7.65301i −0.945245 + 0.277604i
\(761\) −28.6371 −1.03809 −0.519046 0.854746i \(-0.673713\pi\)
−0.519046 + 0.854746i \(0.673713\pi\)
\(762\) 0 0
\(763\) −10.7997 23.1599i −0.390974 0.838446i
\(764\) 23.3800 + 4.12253i 0.845860 + 0.149148i
\(765\) 0 0
\(766\) 9.38426 3.41559i 0.339067 0.123410i
\(767\) 14.5607 3.90152i 0.525755 0.140876i
\(768\) 0 0
\(769\) −3.77330 + 4.49684i −0.136069 + 0.162160i −0.829776 0.558097i \(-0.811532\pi\)
0.693707 + 0.720257i \(0.255976\pi\)
\(770\) −31.1422 20.2056i −1.12229 0.728159i
\(771\) 0 0
\(772\) −6.06387 22.6307i −0.218244 0.814496i
\(773\) −41.1245 19.1767i −1.47915 0.689738i −0.495295 0.868725i \(-0.664940\pi\)
−0.983851 + 0.178987i \(0.942718\pi\)
\(774\) 0 0
\(775\) −46.1617 + 3.26654i −1.65818 + 0.117337i
\(776\) 25.8663 + 9.41455i 0.928544 + 0.337963i
\(777\) 0 0
\(778\) −2.06138 2.06138i −0.0739040 0.0739040i
\(779\) 0.984074 9.93434i 0.0352581 0.355935i
\(780\) 0 0
\(781\) 8.57640 + 10.2210i 0.306888 + 0.365735i
\(782\) −1.64054 + 0.764998i −0.0586658 + 0.0273563i
\(783\) 0 0
\(784\) 1.59796 0.281763i 0.0570699 0.0100630i
\(785\) −26.8272 8.70434i −0.957502 0.310671i
\(786\) 0 0
\(787\) 24.6233 + 6.59781i 0.877728 + 0.235186i 0.669426 0.742878i \(-0.266540\pi\)
0.208301 + 0.978065i \(0.433207\pi\)
\(788\) 14.3919 1.25913i 0.512692 0.0448547i
\(789\) 0 0
\(790\) 3.16317 + 0.443213i 0.112541 + 0.0157688i
\(791\) 55.7851 + 32.2076i 1.98349 + 1.14517i
\(792\) 0 0
\(793\) −4.40867 + 6.29623i −0.156556 + 0.223586i
\(794\) −1.27050 + 7.20536i −0.0450884 + 0.255709i
\(795\) 0 0
\(796\) −11.8259 + 9.92314i −0.419159 + 0.351716i
\(797\) 37.6403 37.6403i 1.33329 1.33329i 0.430880 0.902409i \(-0.358203\pi\)
0.902409 0.430880i \(-0.141797\pi\)
\(798\) 0 0
\(799\) 7.02189i 0.248417i
\(800\) −4.50525 28.2926i −0.159284 1.00030i
\(801\) 0 0
\(802\) −10.2666 + 7.18875i −0.362526 + 0.253844i
\(803\) −0.618513 0.433087i −0.0218268 0.0152833i
\(804\) 0 0
\(805\) −5.24412 + 12.3687i −0.184831 + 0.435938i
\(806\) −8.31663 + 4.80161i −0.292941 + 0.169129i
\(807\) 0 0
\(808\) −2.11694 24.1967i −0.0744736 0.851237i
\(809\) 22.8364 13.1846i 0.802885 0.463546i −0.0415941 0.999135i \(-0.513244\pi\)
0.844479 + 0.535589i \(0.179910\pi\)
\(810\) 0 0
\(811\) 3.15115 + 8.65771i 0.110652 + 0.304013i 0.982643 0.185509i \(-0.0593934\pi\)
−0.871991 + 0.489522i \(0.837171\pi\)
\(812\) 8.87971 + 6.21764i 0.311617 + 0.218196i
\(813\) 0 0
\(814\) 13.6332 37.4569i 0.477844 1.31286i
\(815\) −0.842133 23.8313i −0.0294986 0.834774i
\(816\) 0 0
\(817\) 5.46916 + 2.06195i 0.191342 + 0.0721385i
\(818\) 22.2451 22.2451i 0.777783 0.777783i
\(819\) 0 0
\(820\) 6.37244 + 1.46840i 0.222535 + 0.0512788i
\(821\) −2.89232 + 16.4031i −0.100943 + 0.572473i 0.891821 + 0.452388i \(0.149428\pi\)
−0.992764 + 0.120085i \(0.961683\pi\)
\(822\) 0 0
\(823\) 11.5057 24.6740i 0.401063 0.860082i −0.597252 0.802054i \(-0.703741\pi\)
0.998315 0.0580287i \(-0.0184815\pi\)
\(824\) 0.927036 + 0.535225i 0.0322948 + 0.0186454i
\(825\) 0 0
\(826\) −31.9818 26.8359i −1.11279 0.933740i
\(827\) −19.3437 + 1.69235i −0.672646 + 0.0588489i −0.418361 0.908281i \(-0.637395\pi\)
−0.254284 + 0.967130i \(0.581840\pi\)
\(828\) 0 0
\(829\) −23.2647 + 40.2956i −0.808016 + 1.39953i 0.106219 + 0.994343i \(0.466125\pi\)
−0.914236 + 0.405183i \(0.867208\pi\)
\(830\) −0.668572 1.31080i −0.0232065 0.0454984i
\(831\) 0 0
\(832\) −3.15174 4.50116i −0.109267 0.156050i
\(833\) 11.2246 5.23413i 0.388910 0.181352i
\(834\) 0 0
\(835\) 3.22438 4.13057i 0.111584 0.142944i
\(836\) −15.4258 22.5771i −0.533514 0.780847i
\(837\) 0 0
\(838\) −7.80332 0.682702i −0.269561 0.0235835i
\(839\) 52.2864 + 19.0307i 1.80513 + 0.657013i 0.997755 + 0.0669723i \(0.0213339\pi\)
0.807374 + 0.590041i \(0.200888\pi\)
\(840\) 0 0
\(841\) −4.24353 24.0663i −0.146329 0.829872i
\(842\) −1.77948 0.829783i −0.0613248 0.0285962i
\(843\) 0 0
\(844\) 4.73985 + 8.20966i 0.163152 + 0.282588i
\(845\) −14.0098 + 21.5928i −0.481951 + 0.742816i
\(846\) 0 0
\(847\) 13.5094 50.4176i 0.464187 1.73237i
\(848\) −1.65277 + 0.442858i −0.0567563 + 0.0152078i
\(849\) 0 0
\(850\) −2.43968 5.46736i −0.0836803 0.187529i
\(851\) −14.2062 2.50493i −0.486982 0.0858680i
\(852\) 0 0
\(853\) 0.873658 9.98595i 0.0299135 0.341913i −0.966460 0.256819i \(-0.917326\pi\)
0.996373 0.0850935i \(-0.0271189\pi\)
\(854\) 21.2876 0.728447
\(855\) 0 0
\(856\) 23.9061 0.817094
\(857\) 1.25616 14.3580i 0.0429096 0.490459i −0.944085 0.329703i \(-0.893051\pi\)
0.986994 0.160756i \(-0.0513932\pi\)
\(858\) 0 0
\(859\) 29.4418 + 5.19139i 1.00454 + 0.177128i 0.651637 0.758531i \(-0.274083\pi\)
0.352906 + 0.935659i \(0.385194\pi\)
\(860\) −1.79610 + 3.38137i −0.0612466 + 0.115304i
\(861\) 0 0
\(862\) 14.9816 4.01430i 0.510275 0.136728i
\(863\) 10.4833 39.1242i 0.356856 1.33180i −0.521278 0.853387i \(-0.674544\pi\)
0.878133 0.478416i \(-0.158789\pi\)
\(864\) 0 0
\(865\) −5.88633 27.6365i −0.200141 0.939668i
\(866\) 9.23970 + 16.0036i 0.313978 + 0.543825i
\(867\) 0 0
\(868\) −42.5703 19.8509i −1.44493 0.673782i
\(869\) 1.43303 + 8.12709i 0.0486121 + 0.275693i
\(870\) 0 0
\(871\) 10.0831 + 3.66994i 0.341652 + 0.124351i
\(872\) −17.8484 1.56153i −0.604422 0.0528801i
\(873\) 0 0
\(874\) 4.00723 3.91635i 0.135547 0.132473i
\(875\) −40.6151 18.0223i −1.37304 0.609265i
\(876\) 0 0
\(877\) −19.2255 + 8.96500i −0.649199 + 0.302727i −0.719182 0.694822i \(-0.755483\pi\)
0.0699829 + 0.997548i \(0.477706\pi\)
\(878\) −4.60710 6.57962i −0.155482 0.222051i
\(879\) 0 0
\(880\) 1.80532 0.920802i 0.0608573 0.0310402i
\(881\) −6.83139 + 11.8323i −0.230155 + 0.398641i −0.957854 0.287256i \(-0.907257\pi\)
0.727698 + 0.685897i \(0.240590\pi\)
\(882\) 0 0
\(883\) −14.5546 + 1.27336i −0.489800 + 0.0428520i −0.329381 0.944197i \(-0.606840\pi\)
−0.160419 + 0.987049i \(0.551285\pi\)
\(884\) 1.68080 + 1.41036i 0.0565315 + 0.0474355i
\(885\) 0 0
\(886\) 25.1300 + 14.5088i 0.844257 + 0.487432i
\(887\) −2.51587 + 5.39531i −0.0844747 + 0.181157i −0.944008 0.329924i \(-0.892977\pi\)
0.859533 + 0.511081i \(0.170755\pi\)
\(888\) 0 0
\(889\) −2.59398 + 14.7112i −0.0869992 + 0.493397i
\(890\) 6.62381 4.14285i 0.222031 0.138869i
\(891\) 0 0
\(892\) −13.1143 + 13.1143i −0.439099 + 0.439099i
\(893\) −7.19936 20.5090i −0.240917 0.686306i
\(894\) 0 0
\(895\) −10.3666 + 11.1261i −0.346517 + 0.371904i
\(896\) 10.3720 28.4968i 0.346504 0.952012i
\(897\) 0 0
\(898\) −28.7314 20.1179i −0.958778 0.671344i
\(899\) −6.76157 18.5773i −0.225511 0.619586i
\(900\) 0 0
\(901\) −11.3105 + 6.53012i −0.376807 + 0.217550i
\(902\) −0.833821 9.53061i −0.0277632 0.317335i
\(903\) 0 0
\(904\) 39.1121 22.5814i 1.30085 0.751045i
\(905\) −40.1198 17.0101i −1.33363 0.565436i
\(906\) 0 0
\(907\) 33.1934 + 23.2423i 1.10217 + 0.771747i 0.975456 0.220192i \(-0.0706685\pi\)
0.126713 + 0.991939i \(0.459557\pi\)
\(908\) −4.54780 + 3.18440i −0.150924 + 0.105678i
\(909\) 0 0
\(910\) −9.21502 + 0.325634i −0.305475 + 0.0107947i
\(911\) 24.1659i 0.800652i −0.916373 0.400326i \(-0.868897\pi\)
0.916373 0.400326i \(-0.131103\pi\)
\(912\) 0 0
\(913\) 2.68826 2.68826i 0.0889684 0.0889684i
\(914\) 11.9202 10.0022i 0.394284 0.330844i
\(915\) 0 0
\(916\) −4.12139 + 23.3735i −0.136174 + 0.772283i
\(917\) −20.3938 + 29.1254i −0.673463 + 0.961805i
\(918\) 0 0
\(919\) −10.9705 6.33379i −0.361882 0.208933i 0.308024 0.951379i \(-0.400332\pi\)
−0.669906 + 0.742446i \(0.733666\pi\)
\(920\) 5.67173 + 7.52013i 0.186991 + 0.247931i
\(921\) 0 0
\(922\) 27.1501 2.37533i 0.894141 0.0782272i
\(923\) 3.20116 + 0.857749i 0.105368 + 0.0282332i
\(924\) 0 0
\(925\) 9.06479 46.8424i 0.298049 1.54017i
\(926\) −32.2720 + 5.69043i −1.06052 + 0.186999i
\(927\) 0 0
\(928\) 11.0922 5.17236i 0.364118 0.169791i
\(929\) 7.06706 + 8.42219i 0.231863 + 0.276323i 0.869414 0.494085i \(-0.164497\pi\)
−0.637551 + 0.770408i \(0.720052\pi\)
\(930\) 0 0
\(931\) −27.4176 + 26.7957i −0.898574 + 0.878195i
\(932\) 19.8818 + 19.8818i 0.651249 + 0.651249i
\(933\) 0 0
\(934\) −7.82341 2.84749i −0.255990 0.0931726i
\(935\) 11.4910 10.3552i 0.375797 0.338652i
\(936\) 0 0
\(937\) −45.8065 21.3599i −1.49643 0.697798i −0.509730 0.860334i \(-0.670255\pi\)
−0.986703 + 0.162536i \(0.948033\pi\)
\(938\) −7.69157 28.7053i −0.251139 0.937262i
\(939\) 0 0
\(940\) 13.9259 2.96610i 0.454214 0.0967436i
\(941\) −8.30693 + 9.89982i −0.270798 + 0.322725i −0.884256 0.467003i \(-0.845334\pi\)
0.613457 + 0.789728i \(0.289778\pi\)
\(942\) 0 0
\(943\) −3.34426 + 0.896091i −0.108904 + 0.0291808i
\(944\) 2.14170 0.779515i 0.0697064 0.0253711i
\(945\) 0 0
\(946\) 5.51632 + 0.972676i 0.179351 + 0.0316244i
\(947\) 9.38977 + 20.1364i 0.305126 + 0.654346i 0.997757 0.0669472i \(-0.0213259\pi\)
−0.692630 + 0.721293i \(0.743548\pi\)
\(948\) 0 0
\(949\) −0.187547 −0.00608804
\(950\) 12.7312 + 13.4673i 0.413053 + 0.436936i
\(951\) 0 0
\(952\) 1.35915 15.5351i 0.0440501 0.503495i
\(953\) −0.0877126 0.188100i −0.00284129 0.00609316i 0.904882 0.425662i \(-0.139959\pi\)
−0.907723 + 0.419569i \(0.862181\pi\)
\(954\) 0 0
\(955\) −12.1712 39.7509i −0.393849 1.28631i
\(956\) 4.06479 1.47946i 0.131465 0.0478493i
\(957\) 0 0
\(958\) 2.68436 10.0182i 0.0867277 0.323672i
\(959\) −14.5888 + 17.3863i −0.471099 + 0.561433i
\(960\) 0 0
\(961\) 27.3314 + 47.3394i 0.881659 + 1.52708i
\(962\) −2.56253 9.56349i −0.0826193 0.308339i
\(963\) 0 0
\(964\) −0.0238770 0.135413i −0.000769025 0.00436136i
\(965\) −30.4773 + 27.4649i −0.981099 + 0.884125i
\(966\) 0 0
\(967\) 31.7239 + 2.77548i 1.02017 + 0.0892534i 0.584949 0.811070i \(-0.301114\pi\)
0.435222 + 0.900323i \(0.356670\pi\)
\(968\) −25.8772 25.8772i −0.831723 0.831723i
\(969\) 0 0
\(970\) −2.29682 18.6420i −0.0737464 0.598558i
\(971\) −8.61657 10.2688i −0.276519 0.329542i 0.609855 0.792513i \(-0.291228\pi\)
−0.886373 + 0.462971i \(0.846783\pi\)
\(972\) 0 0
\(973\) 22.7954 + 32.5552i 0.730786 + 1.04367i
\(974\) 8.91077 1.57121i 0.285520 0.0503448i
\(975\) 0 0
\(976\) −0.581061 + 1.00643i −0.0185993 + 0.0322149i
\(977\) −12.4193 3.32775i −0.397330 0.106464i 0.0546207 0.998507i \(-0.482605\pi\)
−0.451951 + 0.892043i \(0.649272\pi\)
\(978\) 0 0
\(979\) 15.4630 + 12.9750i 0.494199 + 0.414682i
\(980\) −15.1218 20.0499i −0.483048 0.640472i
\(981\) 0 0
\(982\) 13.9732 29.9657i 0.445904 0.956244i
\(983\) 7.59418 10.8456i 0.242217 0.345921i −0.679576 0.733606i \(-0.737836\pi\)
0.921792 + 0.387684i \(0.126725\pi\)
\(984\) 0 0
\(985\) −13.4149 21.4484i −0.427433 0.683403i
\(986\) 1.95926 1.64402i 0.0623956 0.0523561i
\(987\) 0 0
\(988\) −6.35515 2.39598i −0.202184 0.0762263i
\(989\) 2.02711i 0.0644583i
\(990\) 0 0
\(991\) −0.111950 + 0.307581i −0.00355622 + 0.00977062i −0.941458 0.337130i \(-0.890544\pi\)
0.937902 + 0.346901i \(0.112766\pi\)
\(992\) −43.4412 + 30.4178i −1.37926 + 0.965767i
\(993\) 0 0
\(994\) −3.13926 8.62504i −0.0995712 0.273570i
\(995\) 24.8884 + 10.5523i 0.789014 + 0.334529i
\(996\) 0 0
\(997\) 2.69227 + 30.7728i 0.0852650 + 0.974584i 0.911511 + 0.411275i \(0.134916\pi\)
−0.826246 + 0.563309i \(0.809528\pi\)
\(998\) 1.20487 + 13.7718i 0.0381396 + 0.435938i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.127.4 96
3.2 odd 2 95.2.r.a.32.5 yes 96
5.3 odd 4 inner 855.2.dl.a.298.5 96
15.2 even 4 475.2.bb.b.393.5 96
15.8 even 4 95.2.r.a.13.4 yes 96
15.14 odd 2 475.2.bb.b.32.4 96
19.3 odd 18 inner 855.2.dl.a.307.5 96
57.41 even 18 95.2.r.a.22.4 yes 96
95.3 even 36 inner 855.2.dl.a.478.4 96
285.98 odd 36 95.2.r.a.3.5 96
285.212 odd 36 475.2.bb.b.193.4 96
285.269 even 18 475.2.bb.b.307.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.3.5 96 285.98 odd 36
95.2.r.a.13.4 yes 96 15.8 even 4
95.2.r.a.22.4 yes 96 57.41 even 18
95.2.r.a.32.5 yes 96 3.2 odd 2
475.2.bb.b.32.4 96 15.14 odd 2
475.2.bb.b.193.4 96 285.212 odd 36
475.2.bb.b.307.5 96 285.269 even 18
475.2.bb.b.393.5 96 15.2 even 4
855.2.dl.a.127.4 96 1.1 even 1 trivial
855.2.dl.a.298.5 96 5.3 odd 4 inner
855.2.dl.a.307.5 96 19.3 odd 18 inner
855.2.dl.a.478.4 96 95.3 even 36 inner