Properties

Label 475.2.bb.b.143.8
Level $475$
Weight $2$
Character 475.143
Analytic conductor $3.793$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(32,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bb (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 143.8
Character \(\chi\) \(=\) 475.143
Dual form 475.2.bb.b.382.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34445 - 1.92007i) q^{2} +(-0.165797 + 1.89507i) q^{3} +(-1.19510 - 3.28350i) q^{4} +(3.41577 + 2.86617i) q^{6} +(0.719307 + 2.68449i) q^{7} +(-3.38309 - 0.906496i) q^{8} +(-0.609382 - 0.107451i) q^{9} +(1.57593 + 2.72958i) q^{11} +(6.42061 - 1.72040i) q^{12} +(3.82311 - 0.334479i) q^{13} +(6.12149 + 2.22804i) q^{14} +(-0.935465 + 0.784949i) q^{16} +(-4.24326 - 2.97116i) q^{17} +(-1.02560 + 1.02560i) q^{18} +(1.72391 - 4.00352i) q^{19} +(-5.20656 + 0.918057i) q^{21} +(7.35975 + 0.643895i) q^{22} +(0.380240 + 0.177309i) q^{23} +(2.27878 - 6.26090i) q^{24} +(4.49776 - 7.79034i) q^{26} +(-1.17240 + 4.37546i) q^{27} +(7.95488 - 5.57007i) q^{28} +(-1.19676 + 6.78718i) q^{29} +(0.180067 + 0.103962i) q^{31} +(-0.361041 - 4.12672i) q^{32} +(-5.43404 + 2.53393i) q^{33} +(-11.4097 + 4.15279i) q^{34} +(0.375456 + 2.12932i) q^{36} +(-7.00958 - 7.00958i) q^{37} +(-5.36933 - 8.69256i) q^{38} +7.30052i q^{39} +(1.39301 + 1.66012i) q^{41} +(-5.23722 + 11.2313i) q^{42} +(-3.30995 - 7.09822i) q^{43} +(7.07920 - 8.43666i) q^{44} +(0.851660 - 0.491706i) q^{46} +(4.91842 + 7.02423i) q^{47} +(-1.33244 - 1.90292i) q^{48} +(-0.626908 + 0.361945i) q^{49} +(6.33409 - 7.54867i) q^{51} +(-5.66724 - 12.1534i) q^{52} +(1.58924 - 3.40813i) q^{53} +(6.82497 + 8.13369i) q^{54} -9.73392i q^{56} +(7.30113 + 3.93070i) q^{57} +(11.4229 + 11.4229i) q^{58} +(-0.351612 - 1.99409i) q^{59} +(-9.55401 + 3.47738i) q^{61} +(0.441706 - 0.205971i) q^{62} +(-0.149883 - 1.71317i) q^{63} +(-10.5241 - 6.07611i) q^{64} +(-2.44045 + 13.8405i) q^{66} +(-1.34021 + 0.938425i) q^{67} +(-4.68471 + 17.4836i) q^{68} +(-0.399056 + 0.691185i) q^{69} +(1.12813 - 3.09950i) q^{71} +(1.96419 + 0.915917i) q^{72} +(-12.4408 - 1.08843i) q^{73} +(-22.8829 + 4.03488i) q^{74} +(-15.2058 - 0.875867i) q^{76} +(-6.19397 + 6.19397i) q^{77} +(14.0175 + 9.81518i) q^{78} +(3.75275 - 3.14893i) q^{79} +(-9.84183 - 3.58213i) q^{81} +(5.06038 - 0.442726i) q^{82} +(-1.17716 + 0.315418i) q^{83} +(9.23677 + 15.9986i) q^{84} +(-18.0792 - 3.18784i) q^{86} +(-12.6638 - 3.39324i) q^{87} +(-2.85714 - 10.6630i) q^{88} +(-2.74193 - 2.30075i) q^{89} +(3.64790 + 10.0225i) q^{91} +(0.127770 - 1.46042i) q^{92} +(-0.226870 + 0.324004i) q^{93} +20.0996 q^{94} +7.88029 q^{96} +(-4.27760 + 6.10904i) q^{97} +(-0.147884 + 1.69033i) q^{98} +(-0.667046 - 1.83269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{3} - 12 q^{6} + 18 q^{8} - 12 q^{11} + 18 q^{12} + 12 q^{13} + 12 q^{16} + 30 q^{17} + 24 q^{21} + 24 q^{22} - 48 q^{26} + 18 q^{27} - 36 q^{31} - 18 q^{32} - 90 q^{33} + 24 q^{36}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34445 1.92007i 0.950670 1.35770i 0.0168863 0.999857i \(-0.494625\pi\)
0.933783 0.357839i \(-0.116486\pi\)
\(3\) −0.165797 + 1.89507i −0.0957231 + 1.09412i 0.784682 + 0.619898i \(0.212826\pi\)
−0.880405 + 0.474222i \(0.842730\pi\)
\(4\) −1.19510 3.28350i −0.597548 1.64175i
\(5\) 0 0
\(6\) 3.41577 + 2.86617i 1.39448 + 1.17011i
\(7\) 0.719307 + 2.68449i 0.271872 + 1.01464i 0.957908 + 0.287074i \(0.0926826\pi\)
−0.686036 + 0.727568i \(0.740651\pi\)
\(8\) −3.38309 0.906496i −1.19610 0.320495i
\(9\) −0.609382 0.107451i −0.203127 0.0358168i
\(10\) 0 0
\(11\) 1.57593 + 2.72958i 0.475159 + 0.823000i 0.999595 0.0284497i \(-0.00905704\pi\)
−0.524436 + 0.851450i \(0.675724\pi\)
\(12\) 6.42061 1.72040i 1.85347 0.496636i
\(13\) 3.82311 0.334479i 1.06034 0.0927677i 0.456382 0.889784i \(-0.349145\pi\)
0.603958 + 0.797016i \(0.293589\pi\)
\(14\) 6.12149 + 2.22804i 1.63604 + 0.595469i
\(15\) 0 0
\(16\) −0.935465 + 0.784949i −0.233866 + 0.196237i
\(17\) −4.24326 2.97116i −1.02914 0.720613i −0.0682872 0.997666i \(-0.521753\pi\)
−0.960855 + 0.277053i \(0.910642\pi\)
\(18\) −1.02560 + 1.02560i −0.241735 + 0.241735i
\(19\) 1.72391 4.00352i 0.395492 0.918470i
\(20\) 0 0
\(21\) −5.20656 + 0.918057i −1.13616 + 0.200336i
\(22\) 7.35975 + 0.643895i 1.56910 + 0.137279i
\(23\) 0.380240 + 0.177309i 0.0792855 + 0.0369715i 0.461857 0.886955i \(-0.347183\pi\)
−0.382571 + 0.923926i \(0.624961\pi\)
\(24\) 2.27878 6.26090i 0.465154 1.27800i
\(25\) 0 0
\(26\) 4.49776 7.79034i 0.882083 1.52781i
\(27\) −1.17240 + 4.37546i −0.225629 + 0.842058i
\(28\) 7.95488 5.57007i 1.50333 1.05264i
\(29\) −1.19676 + 6.78718i −0.222233 + 1.26035i 0.645671 + 0.763616i \(0.276578\pi\)
−0.867904 + 0.496731i \(0.834533\pi\)
\(30\) 0 0
\(31\) 0.180067 + 0.103962i 0.0323411 + 0.0186721i 0.516083 0.856538i \(-0.327389\pi\)
−0.483742 + 0.875210i \(0.660723\pi\)
\(32\) −0.361041 4.12672i −0.0638237 0.729508i
\(33\) −5.43404 + 2.53393i −0.945945 + 0.441101i
\(34\) −11.4097 + 4.15279i −1.95675 + 0.712198i
\(35\) 0 0
\(36\) 0.375456 + 2.12932i 0.0625761 + 0.354887i
\(37\) −7.00958 7.00958i −1.15237 1.15237i −0.986077 0.166291i \(-0.946821\pi\)
−0.166291 0.986077i \(-0.553179\pi\)
\(38\) −5.36933 8.69256i −0.871021 1.41012i
\(39\) 7.30052i 1.16902i
\(40\) 0 0
\(41\) 1.39301 + 1.66012i 0.217551 + 0.259267i 0.863772 0.503883i \(-0.168096\pi\)
−0.646221 + 0.763151i \(0.723651\pi\)
\(42\) −5.23722 + 11.2313i −0.808121 + 1.73302i
\(43\) −3.30995 7.09822i −0.504763 1.08247i −0.979334 0.202251i \(-0.935174\pi\)
0.474571 0.880217i \(-0.342603\pi\)
\(44\) 7.07920 8.43666i 1.06723 1.27187i
\(45\) 0 0
\(46\) 0.851660 0.491706i 0.125570 0.0724981i
\(47\) 4.91842 + 7.02423i 0.717425 + 1.02459i 0.997903 + 0.0647288i \(0.0206182\pi\)
−0.280478 + 0.959861i \(0.590493\pi\)
\(48\) −1.33244 1.90292i −0.192321 0.274662i
\(49\) −0.626908 + 0.361945i −0.0895582 + 0.0517065i
\(50\) 0 0
\(51\) 6.33409 7.54867i 0.886949 1.05703i
\(52\) −5.66724 12.1534i −0.785905 1.68538i
\(53\) 1.58924 3.40813i 0.218298 0.468142i −0.766410 0.642351i \(-0.777959\pi\)
0.984709 + 0.174209i \(0.0557368\pi\)
\(54\) 6.82497 + 8.13369i 0.928761 + 1.10685i
\(55\) 0 0
\(56\) 9.73392i 1.30075i
\(57\) 7.30113 + 3.93070i 0.967058 + 0.520634i
\(58\) 11.4229 + 11.4229i 1.49990 + 1.49990i
\(59\) −0.351612 1.99409i −0.0457760 0.259609i 0.953328 0.301938i \(-0.0976334\pi\)
−0.999104 + 0.0423288i \(0.986522\pi\)
\(60\) 0 0
\(61\) −9.55401 + 3.47738i −1.22327 + 0.445232i −0.871286 0.490775i \(-0.836714\pi\)
−0.351980 + 0.936008i \(0.614491\pi\)
\(62\) 0.441706 0.205971i 0.0560967 0.0261583i
\(63\) −0.149883 1.71317i −0.0188835 0.215839i
\(64\) −10.5241 6.07611i −1.31552 0.759513i
\(65\) 0 0
\(66\) −2.44045 + 13.8405i −0.300399 + 1.70365i
\(67\) −1.34021 + 0.938425i −0.163733 + 0.114647i −0.652571 0.757727i \(-0.726310\pi\)
0.488838 + 0.872374i \(0.337421\pi\)
\(68\) −4.68471 + 17.4836i −0.568104 + 2.12019i
\(69\) −0.399056 + 0.691185i −0.0480407 + 0.0832088i
\(70\) 0 0
\(71\) 1.12813 3.09950i 0.133884 0.367843i −0.854576 0.519327i \(-0.826183\pi\)
0.988460 + 0.151483i \(0.0484050\pi\)
\(72\) 1.96419 + 0.915917i 0.231482 + 0.107942i
\(73\) −12.4408 1.08843i −1.45608 0.127391i −0.668552 0.743666i \(-0.733085\pi\)
−0.787531 + 0.616275i \(0.788641\pi\)
\(74\) −22.8829 + 4.03488i −2.66009 + 0.469045i
\(75\) 0 0
\(76\) −15.2058 0.875867i −1.74422 0.100469i
\(77\) −6.19397 + 6.19397i −0.705868 + 0.705868i
\(78\) 14.0175 + 9.81518i 1.58717 + 1.11135i
\(79\) 3.75275 3.14893i 0.422217 0.354282i −0.406788 0.913522i \(-0.633351\pi\)
0.829006 + 0.559240i \(0.188907\pi\)
\(80\) 0 0
\(81\) −9.84183 3.58213i −1.09354 0.398015i
\(82\) 5.06038 0.442726i 0.558826 0.0488909i
\(83\) −1.17716 + 0.315418i −0.129210 + 0.0346216i −0.322844 0.946452i \(-0.604639\pi\)
0.193635 + 0.981074i \(0.437972\pi\)
\(84\) 9.23677 + 15.9986i 1.00781 + 1.74559i
\(85\) 0 0
\(86\) −18.0792 3.18784i −1.94953 0.343754i
\(87\) −12.6638 3.39324i −1.35770 0.363794i
\(88\) −2.85714 10.6630i −0.304572 1.13668i
\(89\) −2.74193 2.30075i −0.290644 0.243879i 0.485794 0.874074i \(-0.338531\pi\)
−0.776437 + 0.630195i \(0.782975\pi\)
\(90\) 0 0
\(91\) 3.64790 + 10.0225i 0.382403 + 1.05064i
\(92\) 0.127770 1.46042i 0.0133210 0.152259i
\(93\) −0.226870 + 0.324004i −0.0235253 + 0.0335976i
\(94\) 20.0996 2.07312
\(95\) 0 0
\(96\) 7.88029 0.804278
\(97\) −4.27760 + 6.10904i −0.434324 + 0.620279i −0.975333 0.220737i \(-0.929154\pi\)
0.541009 + 0.841017i \(0.318043\pi\)
\(98\) −0.147884 + 1.69033i −0.0149386 + 0.170749i
\(99\) −0.667046 1.83269i −0.0670406 0.184193i
\(100\) 0 0
\(101\) 6.90331 + 5.79257i 0.686905 + 0.576382i 0.918015 0.396546i \(-0.129791\pi\)
−0.231110 + 0.972928i \(0.574236\pi\)
\(102\) −5.97814 22.3107i −0.591924 2.20909i
\(103\) −5.35479 1.43481i −0.527623 0.141376i −0.0148324 0.999890i \(-0.504721\pi\)
−0.512790 + 0.858514i \(0.671388\pi\)
\(104\) −13.2371 2.33406i −1.29801 0.228874i
\(105\) 0 0
\(106\) −4.40721 7.63350i −0.428066 0.741431i
\(107\) 8.55488 2.29227i 0.827031 0.221602i 0.179613 0.983737i \(-0.442515\pi\)
0.647418 + 0.762135i \(0.275849\pi\)
\(108\) 15.7680 1.37952i 1.51727 0.132744i
\(109\) −12.5747 4.57682i −1.20444 0.438380i −0.339667 0.940546i \(-0.610314\pi\)
−0.864771 + 0.502166i \(0.832537\pi\)
\(110\) 0 0
\(111\) 14.4458 12.1215i 1.37114 1.15052i
\(112\) −2.78007 1.94663i −0.262692 0.183939i
\(113\) 7.92213 7.92213i 0.745252 0.745252i −0.228332 0.973583i \(-0.573327\pi\)
0.973583 + 0.228332i \(0.0733271\pi\)
\(114\) 17.3632 8.73407i 1.62622 0.818021i
\(115\) 0 0
\(116\) 23.7159 4.18176i 2.20197 0.388266i
\(117\) −2.36568 0.206970i −0.218707 0.0191344i
\(118\) −4.30153 2.00584i −0.395988 0.184652i
\(119\) 4.92385 13.5282i 0.451369 1.24013i
\(120\) 0 0
\(121\) 0.532917 0.923039i 0.0484470 0.0839126i
\(122\) −6.16807 + 23.0196i −0.558431 + 2.08409i
\(123\) −3.37700 + 2.36460i −0.304494 + 0.213209i
\(124\) 0.126161 0.715496i 0.0113296 0.0642534i
\(125\) 0 0
\(126\) −3.49092 2.01549i −0.310996 0.179554i
\(127\) −0.537991 6.14927i −0.0477390 0.545659i −0.981976 0.189006i \(-0.939473\pi\)
0.934237 0.356653i \(-0.116082\pi\)
\(128\) −18.3070 + 8.53669i −1.61812 + 0.754544i
\(129\) 14.0004 5.09573i 1.23267 0.448654i
\(130\) 0 0
\(131\) 0.921493 + 5.22605i 0.0805113 + 0.456602i 0.998235 + 0.0593834i \(0.0189134\pi\)
−0.917724 + 0.397219i \(0.869975\pi\)
\(132\) 14.8144 + 14.8144i 1.28942 + 1.28942i
\(133\) 11.9874 + 1.74806i 1.03944 + 0.151576i
\(134\) 3.83497i 0.331291i
\(135\) 0 0
\(136\) 11.6620 + 13.8982i 1.00001 + 1.19176i
\(137\) 3.69172 7.91691i 0.315405 0.676387i −0.683142 0.730286i \(-0.739387\pi\)
0.998546 + 0.0538984i \(0.0171647\pi\)
\(138\) 0.790615 + 1.69548i 0.0673016 + 0.144329i
\(139\) −4.01532 + 4.78527i −0.340575 + 0.405882i −0.908961 0.416880i \(-0.863123\pi\)
0.568386 + 0.822762i \(0.307568\pi\)
\(140\) 0 0
\(141\) −14.1269 + 8.15616i −1.18970 + 0.686872i
\(142\) −4.43456 6.33321i −0.372140 0.531471i
\(143\) 6.93793 + 9.90839i 0.580179 + 0.828581i
\(144\) 0.654399 0.377817i 0.0545332 0.0314848i
\(145\) 0 0
\(146\) −18.8159 + 22.4239i −1.55721 + 1.85581i
\(147\) −0.581973 1.24804i −0.0480003 0.102937i
\(148\) −14.6388 + 31.3931i −1.20330 + 2.58049i
\(149\) −3.35260 3.99547i −0.274656 0.327322i 0.611030 0.791608i \(-0.290756\pi\)
−0.885686 + 0.464286i \(0.846311\pi\)
\(150\) 0 0
\(151\) 20.4770i 1.66639i −0.552976 0.833197i \(-0.686508\pi\)
0.552976 0.833197i \(-0.313492\pi\)
\(152\) −9.46130 + 11.9815i −0.767413 + 0.971831i
\(153\) 2.26651 + 2.26651i 0.183237 + 0.183237i
\(154\) 3.56539 + 20.2203i 0.287307 + 1.62940i
\(155\) 0 0
\(156\) 23.9713 8.72482i 1.91924 0.698545i
\(157\) 10.5695 4.92866i 0.843542 0.393350i 0.0477051 0.998861i \(-0.484809\pi\)
0.795837 + 0.605512i \(0.207031\pi\)
\(158\) −1.00079 11.4391i −0.0796189 0.910049i
\(159\) 6.19515 + 3.57677i 0.491307 + 0.283656i
\(160\) 0 0
\(161\) −0.202475 + 1.14829i −0.0159572 + 0.0904979i
\(162\) −20.1098 + 14.0810i −1.57998 + 1.10631i
\(163\) 1.22020 4.55384i 0.0955732 0.356684i −0.901533 0.432711i \(-0.857557\pi\)
0.997106 + 0.0760273i \(0.0242236\pi\)
\(164\) 3.78623 6.55794i 0.295655 0.512089i
\(165\) 0 0
\(166\) −0.977002 + 2.68429i −0.0758300 + 0.208341i
\(167\) −0.290604 0.135511i −0.0224876 0.0104862i 0.411342 0.911481i \(-0.365060\pi\)
−0.433830 + 0.900995i \(0.642838\pi\)
\(168\) 18.4465 + 1.61386i 1.42318 + 0.124512i
\(169\) 1.70180 0.300073i 0.130908 0.0230825i
\(170\) 0 0
\(171\) −1.48070 + 2.25444i −0.113232 + 0.172401i
\(172\) −19.3513 + 19.3513i −1.47552 + 1.47552i
\(173\) 6.22183 + 4.35657i 0.473037 + 0.331224i 0.785666 0.618651i \(-0.212321\pi\)
−0.312628 + 0.949875i \(0.601209\pi\)
\(174\) −23.5411 + 19.7533i −1.78464 + 1.49749i
\(175\) 0 0
\(176\) −3.61681 1.31641i −0.272627 0.0992281i
\(177\) 3.83724 0.335715i 0.288425 0.0252339i
\(178\) −8.10399 + 2.17146i −0.607420 + 0.162758i
\(179\) 7.76584 + 13.4508i 0.580446 + 1.00536i 0.995426 + 0.0955314i \(0.0304550\pi\)
−0.414981 + 0.909830i \(0.636212\pi\)
\(180\) 0 0
\(181\) 10.1081 + 1.78233i 0.751330 + 0.132480i 0.536183 0.844102i \(-0.319866\pi\)
0.215147 + 0.976582i \(0.430977\pi\)
\(182\) 24.1484 + 6.47053i 1.79000 + 0.479628i
\(183\) −5.00585 18.6821i −0.370043 1.38102i
\(184\) −1.12566 0.944537i −0.0829845 0.0696322i
\(185\) 0 0
\(186\) 0.317096 + 0.871214i 0.0232506 + 0.0638805i
\(187\) 1.42297 16.2647i 0.104058 1.18939i
\(188\) 17.1861 24.5442i 1.25342 1.79007i
\(189\) −12.5892 −0.915730
\(190\) 0 0
\(191\) −0.338908 −0.0245225 −0.0122613 0.999925i \(-0.503903\pi\)
−0.0122613 + 0.999925i \(0.503903\pi\)
\(192\) 13.2595 18.9366i 0.956924 1.36663i
\(193\) −1.29709 + 14.8258i −0.0933662 + 1.06718i 0.794557 + 0.607190i \(0.207703\pi\)
−0.887923 + 0.459992i \(0.847852\pi\)
\(194\) 5.97880 + 16.4266i 0.429252 + 1.17936i
\(195\) 0 0
\(196\) 1.93766 + 1.62589i 0.138404 + 0.116135i
\(197\) 1.93347 + 7.21580i 0.137754 + 0.514105i 0.999971 + 0.00756626i \(0.00240844\pi\)
−0.862217 + 0.506538i \(0.830925\pi\)
\(198\) −4.41572 1.18319i −0.313811 0.0840855i
\(199\) −13.1293 2.31506i −0.930714 0.164110i −0.312319 0.949977i \(-0.601106\pi\)
−0.618395 + 0.785867i \(0.712217\pi\)
\(200\) 0 0
\(201\) −1.55618 2.69538i −0.109764 0.190118i
\(202\) 20.4033 5.46705i 1.43557 0.384660i
\(203\) −19.0809 + 1.66937i −1.33922 + 0.117167i
\(204\) −32.3559 11.7766i −2.26536 0.824525i
\(205\) 0 0
\(206\) −9.95418 + 8.35255i −0.693541 + 0.581950i
\(207\) −0.212660 0.148906i −0.0147809 0.0103497i
\(208\) −3.31384 + 3.31384i −0.229773 + 0.229773i
\(209\) 13.6447 1.60369i 0.943822 0.110930i
\(210\) 0 0
\(211\) −10.4614 + 1.84463i −0.720195 + 0.126990i −0.521721 0.853116i \(-0.674710\pi\)
−0.198474 + 0.980106i \(0.563599\pi\)
\(212\) −13.0899 1.14521i −0.899016 0.0786537i
\(213\) 5.68674 + 2.65177i 0.389649 + 0.181696i
\(214\) 7.10027 19.5078i 0.485365 1.33353i
\(215\) 0 0
\(216\) 7.93268 13.7398i 0.539750 0.934875i
\(217\) −0.149561 + 0.558170i −0.0101529 + 0.0378910i
\(218\) −25.6939 + 17.9910i −1.74021 + 1.21851i
\(219\) 4.12529 23.3957i 0.278761 1.58093i
\(220\) 0 0
\(221\) −17.2162 9.93980i −1.15809 0.668624i
\(222\) −3.85245 44.0338i −0.258560 2.95535i
\(223\) 23.9770 11.1806i 1.60562 0.748712i 0.606687 0.794941i \(-0.292498\pi\)
0.998931 + 0.0462295i \(0.0147206\pi\)
\(224\) 10.8184 3.93759i 0.722837 0.263091i
\(225\) 0 0
\(226\) −4.56017 25.8620i −0.303338 1.72031i
\(227\) 16.0488 + 16.0488i 1.06520 + 1.06520i 0.997721 + 0.0674780i \(0.0214953\pi\)
0.0674780 + 0.997721i \(0.478505\pi\)
\(228\) 4.18090 28.6708i 0.276887 1.89877i
\(229\) 4.46621i 0.295135i −0.989052 0.147568i \(-0.952856\pi\)
0.989052 0.147568i \(-0.0471444\pi\)
\(230\) 0 0
\(231\) −10.7111 12.7649i −0.704736 0.839872i
\(232\) 10.2013 21.8768i 0.669748 1.43628i
\(233\) −7.77862 16.6813i −0.509594 1.09283i −0.977864 0.209243i \(-0.932900\pi\)
0.468270 0.883586i \(-0.344878\pi\)
\(234\) −3.57793 + 4.26401i −0.233897 + 0.278747i
\(235\) 0 0
\(236\) −6.12739 + 3.53765i −0.398859 + 0.230281i
\(237\) 5.34525 + 7.63381i 0.347211 + 0.495869i
\(238\) −19.3552 27.6421i −1.25461 1.79177i
\(239\) −11.9733 + 6.91280i −0.774490 + 0.447152i −0.834474 0.551047i \(-0.814228\pi\)
0.0599839 + 0.998199i \(0.480895\pi\)
\(240\) 0 0
\(241\) −1.42682 + 1.70042i −0.0919095 + 0.109534i −0.810039 0.586376i \(-0.800554\pi\)
0.718129 + 0.695910i \(0.244999\pi\)
\(242\) −1.05582 2.26422i −0.0678708 0.145549i
\(243\) 2.67700 5.74084i 0.171730 0.368275i
\(244\) 22.8359 + 27.2148i 1.46192 + 1.74225i
\(245\) 0 0
\(246\) 9.66318i 0.616102i
\(247\) 5.25160 15.8825i 0.334151 1.01058i
\(248\) −0.514943 0.514943i −0.0326989 0.0326989i
\(249\) −0.402570 2.28309i −0.0255119 0.144685i
\(250\) 0 0
\(251\) −21.5140 + 7.83045i −1.35795 + 0.494254i −0.915420 0.402499i \(-0.868142\pi\)
−0.442531 + 0.896753i \(0.645919\pi\)
\(252\) −5.44607 + 2.53954i −0.343070 + 0.159976i
\(253\) 0.115251 + 1.31732i 0.00724575 + 0.0828194i
\(254\) −12.5303 7.23440i −0.786224 0.453926i
\(255\) 0 0
\(256\) −4.00134 + 22.6927i −0.250084 + 1.41830i
\(257\) −14.0349 + 9.82734i −0.875473 + 0.613013i −0.922550 0.385879i \(-0.873898\pi\)
0.0470768 + 0.998891i \(0.485009\pi\)
\(258\) 9.03867 33.7328i 0.562723 2.10011i
\(259\) 13.7751 23.8592i 0.855944 1.48254i
\(260\) 0 0
\(261\) 1.45857 4.00739i 0.0902833 0.248051i
\(262\) 11.2733 + 5.25683i 0.696467 + 0.324768i
\(263\) −5.42848 0.474931i −0.334735 0.0292855i −0.0814505 0.996677i \(-0.525955\pi\)
−0.253284 + 0.967392i \(0.581511\pi\)
\(264\) 20.6808 3.64659i 1.27282 0.224432i
\(265\) 0 0
\(266\) 19.4729 20.6665i 1.19396 1.26715i
\(267\) 4.81469 4.81469i 0.294654 0.294654i
\(268\) 4.68300 + 3.27907i 0.286060 + 0.200301i
\(269\) 5.61407 4.71077i 0.342296 0.287220i −0.455392 0.890291i \(-0.650501\pi\)
0.797688 + 0.603071i \(0.206056\pi\)
\(270\) 0 0
\(271\) 28.3871 + 10.3321i 1.72439 + 0.627628i 0.998206 0.0598702i \(-0.0190687\pi\)
0.726186 + 0.687498i \(0.241291\pi\)
\(272\) 6.30163 0.551321i 0.382093 0.0334288i
\(273\) −19.5982 + 5.25132i −1.18614 + 0.317824i
\(274\) −10.2377 17.7323i −0.618483 1.07124i
\(275\) 0 0
\(276\) 2.74641 + 0.484267i 0.165315 + 0.0291494i
\(277\) −25.9124 6.94321i −1.55693 0.417177i −0.625238 0.780434i \(-0.714998\pi\)
−0.931689 + 0.363257i \(0.881665\pi\)
\(278\) 3.78968 + 14.1433i 0.227290 + 0.848257i
\(279\) −0.0985591 0.0827009i −0.00590058 0.00495117i
\(280\) 0 0
\(281\) 5.24613 + 14.4136i 0.312958 + 0.859845i 0.992056 + 0.125797i \(0.0401489\pi\)
−0.679098 + 0.734048i \(0.737629\pi\)
\(282\) −3.33246 + 38.0902i −0.198445 + 2.26824i
\(283\) 6.11947 8.73951i 0.363765 0.519510i −0.594994 0.803730i \(-0.702846\pi\)
0.958759 + 0.284220i \(0.0917346\pi\)
\(284\) −11.5254 −0.683908
\(285\) 0 0
\(286\) 28.3525 1.67652
\(287\) −3.45458 + 4.93365i −0.203917 + 0.291224i
\(288\) −0.223406 + 2.55354i −0.0131643 + 0.150469i
\(289\) 3.36311 + 9.24007i 0.197830 + 0.543533i
\(290\) 0 0
\(291\) −10.8679 9.11922i −0.637085 0.534578i
\(292\) 11.2941 + 42.1500i 0.660935 + 2.46664i
\(293\) 10.8601 + 2.90994i 0.634451 + 0.170001i 0.561689 0.827349i \(-0.310152\pi\)
0.0727625 + 0.997349i \(0.476819\pi\)
\(294\) −3.17877 0.560503i −0.185390 0.0326892i
\(295\) 0 0
\(296\) 17.3599 + 30.0682i 1.00902 + 1.74768i
\(297\) −13.7908 + 3.69524i −0.800224 + 0.214419i
\(298\) −12.1790 + 1.06553i −0.705511 + 0.0617242i
\(299\) 1.51301 + 0.550689i 0.0874994 + 0.0318472i
\(300\) 0 0
\(301\) 16.6742 13.9913i 0.961086 0.806447i
\(302\) −39.3173 27.5303i −2.26246 1.58419i
\(303\) −12.1219 + 12.1219i −0.696384 + 0.696384i
\(304\) 1.52990 + 5.09833i 0.0877456 + 0.292409i
\(305\) 0 0
\(306\) 7.39909 1.30466i 0.422978 0.0745824i
\(307\) 16.7187 + 1.46270i 0.954188 + 0.0834807i 0.553605 0.832780i \(-0.313252\pi\)
0.400584 + 0.916260i \(0.368807\pi\)
\(308\) 27.7403 + 12.9355i 1.58065 + 0.737068i
\(309\) 3.60688 9.90981i 0.205188 0.563749i
\(310\) 0 0
\(311\) −11.7668 + 20.3806i −0.667231 + 1.15568i 0.311444 + 0.950265i \(0.399187\pi\)
−0.978675 + 0.205414i \(0.934146\pi\)
\(312\) 6.61789 24.6983i 0.374664 1.39827i
\(313\) −4.57185 + 3.20124i −0.258416 + 0.180945i −0.695604 0.718425i \(-0.744863\pi\)
0.437188 + 0.899370i \(0.355974\pi\)
\(314\) 4.74684 26.9206i 0.267879 1.51922i
\(315\) 0 0
\(316\) −14.8244 8.55887i −0.833938 0.481474i
\(317\) 2.04113 + 23.3302i 0.114641 + 1.31035i 0.807751 + 0.589523i \(0.200684\pi\)
−0.693110 + 0.720832i \(0.743760\pi\)
\(318\) 15.1967 7.08635i 0.852190 0.397383i
\(319\) −20.4122 + 7.42942i −1.14286 + 0.415968i
\(320\) 0 0
\(321\) 2.92564 + 16.5922i 0.163294 + 0.926084i
\(322\) 1.93258 + 1.93258i 0.107699 + 0.107699i
\(323\) −19.2101 + 11.8659i −1.06888 + 0.660239i
\(324\) 36.5966i 2.03315i
\(325\) 0 0
\(326\) −7.10320 8.46527i −0.393410 0.468848i
\(327\) 10.7582 23.0711i 0.594932 1.27584i
\(328\) −3.20777 6.87909i −0.177120 0.379834i
\(329\) −15.3186 + 18.2560i −0.844543 + 1.00649i
\(330\) 0 0
\(331\) 13.3073 7.68298i 0.731436 0.422295i −0.0875111 0.996164i \(-0.527891\pi\)
0.818947 + 0.573869i \(0.194558\pi\)
\(332\) 2.44249 + 3.48824i 0.134049 + 0.191442i
\(333\) 3.51833 + 5.02470i 0.192803 + 0.275352i
\(334\) −0.650894 + 0.375794i −0.0356153 + 0.0205625i
\(335\) 0 0
\(336\) 4.14993 4.94569i 0.226397 0.269810i
\(337\) −0.842678 1.80713i −0.0459036 0.0984406i 0.882018 0.471215i \(-0.156184\pi\)
−0.927922 + 0.372774i \(0.878407\pi\)
\(338\) 1.71182 3.67101i 0.0931107 0.199677i
\(339\) 13.6995 + 16.3265i 0.744057 + 0.886732i
\(340\) 0 0
\(341\) 0.655345i 0.0354889i
\(342\) 2.33796 + 5.87403i 0.126422 + 0.317631i
\(343\) 12.3337 + 12.3337i 0.665957 + 0.665957i
\(344\) 4.76336 + 27.0144i 0.256823 + 1.45652i
\(345\) 0 0
\(346\) 16.7299 6.08918i 0.899404 0.327356i
\(347\) 23.7149 11.0584i 1.27308 0.593647i 0.335705 0.941967i \(-0.391025\pi\)
0.937376 + 0.348320i \(0.113248\pi\)
\(348\) 3.99269 + 45.6367i 0.214031 + 2.44638i
\(349\) 18.8907 + 10.9065i 1.01119 + 0.583813i 0.911541 0.411209i \(-0.134893\pi\)
0.0996533 + 0.995022i \(0.468227\pi\)
\(350\) 0 0
\(351\) −3.01872 + 17.1200i −0.161127 + 0.913799i
\(352\) 10.6953 7.48890i 0.570059 0.399159i
\(353\) −4.46820 + 16.6755i −0.237818 + 0.887549i 0.739040 + 0.673661i \(0.235279\pi\)
−0.976858 + 0.213888i \(0.931387\pi\)
\(354\) 4.51438 7.81914i 0.239937 0.415583i
\(355\) 0 0
\(356\) −4.27764 + 11.7527i −0.226715 + 0.622893i
\(357\) 24.8205 + 11.5740i 1.31364 + 0.612560i
\(358\) 36.2673 + 3.17298i 1.91679 + 0.167697i
\(359\) 2.68655 0.473710i 0.141790 0.0250015i −0.102302 0.994753i \(-0.532621\pi\)
0.244093 + 0.969752i \(0.421510\pi\)
\(360\) 0 0
\(361\) −13.0563 13.8034i −0.687173 0.726494i
\(362\) 17.0121 17.0121i 0.894134 0.894134i
\(363\) 1.66087 + 1.16295i 0.0871730 + 0.0610392i
\(364\) 28.5493 23.9557i 1.49639 1.25562i
\(365\) 0 0
\(366\) −42.6011 15.5055i −2.22679 0.810486i
\(367\) −16.4071 + 1.43543i −0.856443 + 0.0749290i −0.506914 0.861997i \(-0.669214\pi\)
−0.349529 + 0.936926i \(0.613658\pi\)
\(368\) −0.494880 + 0.132603i −0.0257974 + 0.00691239i
\(369\) −0.670493 1.16133i −0.0349045 0.0604563i
\(370\) 0 0
\(371\) 10.2922 + 1.81480i 0.534346 + 0.0942196i
\(372\) 1.33500 + 0.357712i 0.0692164 + 0.0185465i
\(373\) 1.13949 + 4.25262i 0.0590003 + 0.220192i 0.989131 0.147036i \(-0.0469734\pi\)
−0.930131 + 0.367228i \(0.880307\pi\)
\(374\) −29.3162 24.5992i −1.51591 1.27200i
\(375\) 0 0
\(376\) −10.2720 28.2221i −0.529739 1.45544i
\(377\) −2.30519 + 26.3484i −0.118723 + 1.35701i
\(378\) −16.9256 + 24.1722i −0.870557 + 1.24328i
\(379\) −6.71745 −0.345052 −0.172526 0.985005i \(-0.555193\pi\)
−0.172526 + 0.985005i \(0.555193\pi\)
\(380\) 0 0
\(381\) 11.7425 0.601586
\(382\) −0.455644 + 0.650728i −0.0233128 + 0.0332941i
\(383\) 2.20643 25.2196i 0.112743 1.28866i −0.703394 0.710800i \(-0.748333\pi\)
0.816137 0.577859i \(-0.196112\pi\)
\(384\) −13.1424 36.1084i −0.670670 1.84265i
\(385\) 0 0
\(386\) 26.7227 + 22.4230i 1.36015 + 1.14130i
\(387\) 1.25432 + 4.68118i 0.0637606 + 0.237958i
\(388\) 25.1712 + 6.74460i 1.27787 + 0.342405i
\(389\) 10.5707 + 1.86390i 0.535957 + 0.0945036i 0.435074 0.900395i \(-0.356722\pi\)
0.100883 + 0.994898i \(0.467833\pi\)
\(390\) 0 0
\(391\) −1.08664 1.88212i −0.0549540 0.0951830i
\(392\) 2.44899 0.656204i 0.123692 0.0331433i
\(393\) −10.0565 + 0.879831i −0.507284 + 0.0443816i
\(394\) 16.4543 + 5.98888i 0.828956 + 0.301715i
\(395\) 0 0
\(396\) −5.22046 + 4.38049i −0.262338 + 0.220128i
\(397\) −1.15577 0.809277i −0.0580063 0.0406164i 0.544214 0.838947i \(-0.316828\pi\)
−0.602220 + 0.798330i \(0.705717\pi\)
\(398\) −22.0968 + 22.0968i −1.10761 + 1.10761i
\(399\) −5.30018 + 22.4272i −0.265341 + 1.12276i
\(400\) 0 0
\(401\) 15.3650 2.70927i 0.767292 0.135294i 0.223716 0.974654i \(-0.428181\pi\)
0.543576 + 0.839360i \(0.317070\pi\)
\(402\) −7.26754 0.635827i −0.362472 0.0317122i
\(403\) 0.723191 + 0.337229i 0.0360247 + 0.0167986i
\(404\) 10.7698 29.5897i 0.535816 1.47214i
\(405\) 0 0
\(406\) −22.4481 + 38.8812i −1.11408 + 1.92964i
\(407\) 8.08666 30.1798i 0.400841 1.49596i
\(408\) −28.2716 + 19.7960i −1.39965 + 0.980048i
\(409\) −6.55532 + 37.1771i −0.324140 + 1.83829i 0.191514 + 0.981490i \(0.438660\pi\)
−0.515653 + 0.856797i \(0.672451\pi\)
\(410\) 0 0
\(411\) 14.3910 + 8.30867i 0.709857 + 0.409836i
\(412\) 1.68828 + 19.2972i 0.0831757 + 0.950703i
\(413\) 5.10021 2.37827i 0.250965 0.117027i
\(414\) −0.571820 + 0.208126i −0.0281034 + 0.0102288i
\(415\) 0 0
\(416\) −2.76060 15.6561i −0.135350 0.767606i
\(417\) −8.40270 8.40270i −0.411482 0.411482i
\(418\) 15.2654 28.3549i 0.746654 1.38688i
\(419\) 5.57741i 0.272474i 0.990676 + 0.136237i \(0.0435009\pi\)
−0.990676 + 0.136237i \(0.956499\pi\)
\(420\) 0 0
\(421\) 18.7653 + 22.3636i 0.914565 + 1.08994i 0.995645 + 0.0932288i \(0.0297188\pi\)
−0.0810795 + 0.996708i \(0.525837\pi\)
\(422\) −10.5230 + 22.5667i −0.512254 + 1.09853i
\(423\) −2.24244 4.80893i −0.109031 0.233818i
\(424\) −8.46598 + 10.0894i −0.411144 + 0.489983i
\(425\) 0 0
\(426\) 12.7371 7.35378i 0.617115 0.356292i
\(427\) −16.2073 23.1464i −0.784324 1.12013i
\(428\) −17.7506 25.3504i −0.858006 1.22536i
\(429\) −19.9274 + 11.5051i −0.962103 + 0.555470i
\(430\) 0 0
\(431\) 16.0481 19.1254i 0.773012 0.921240i −0.225583 0.974224i \(-0.572429\pi\)
0.998595 + 0.0529840i \(0.0168732\pi\)
\(432\) −2.33777 5.01337i −0.112476 0.241206i
\(433\) −8.63426 + 18.5162i −0.414936 + 0.889833i 0.582116 + 0.813106i \(0.302225\pi\)
−0.997052 + 0.0767272i \(0.975553\pi\)
\(434\) 0.870649 + 1.03760i 0.0417925 + 0.0498064i
\(435\) 0 0
\(436\) 46.7587i 2.23934i
\(437\) 1.36536 1.21663i 0.0653139 0.0581994i
\(438\) −39.3752 39.3752i −1.88142 1.88142i
\(439\) 2.43092 + 13.7864i 0.116022 + 0.657991i 0.986239 + 0.165324i \(0.0528668\pi\)
−0.870218 + 0.492667i \(0.836022\pi\)
\(440\) 0 0
\(441\) 0.420918 0.153201i 0.0200437 0.00729531i
\(442\) −42.2315 + 19.6929i −2.00875 + 0.936695i
\(443\) 2.03038 + 23.2073i 0.0964662 + 1.10261i 0.877971 + 0.478715i \(0.158897\pi\)
−0.781504 + 0.623900i \(0.785547\pi\)
\(444\) −57.0650 32.9465i −2.70819 1.56357i
\(445\) 0 0
\(446\) 10.7682 61.0694i 0.509888 2.89172i
\(447\) 8.12756 5.69098i 0.384420 0.269174i
\(448\) 8.74117 32.6225i 0.412981 1.54127i
\(449\) −7.01160 + 12.1444i −0.330898 + 0.573132i −0.982688 0.185267i \(-0.940685\pi\)
0.651790 + 0.758399i \(0.274018\pi\)
\(450\) 0 0
\(451\) −2.33616 + 6.41856i −0.110006 + 0.302238i
\(452\) −35.4800 16.5446i −1.66884 0.778193i
\(453\) 38.8054 + 3.39503i 1.82324 + 0.159512i
\(454\) 52.3918 9.23809i 2.45887 0.433565i
\(455\) 0 0
\(456\) −21.1372 19.9163i −0.989840 0.932669i
\(457\) 1.92188 1.92188i 0.0899016 0.0899016i −0.660726 0.750627i \(-0.729751\pi\)
0.750627 + 0.660726i \(0.229751\pi\)
\(458\) −8.57545 6.00459i −0.400704 0.280576i
\(459\) 17.9750 15.0828i 0.839002 0.704006i
\(460\) 0 0
\(461\) −33.1987 12.0833i −1.54622 0.562777i −0.578690 0.815547i \(-0.696436\pi\)
−0.967526 + 0.252771i \(0.918658\pi\)
\(462\) −38.9101 + 3.40419i −1.81026 + 0.158377i
\(463\) 4.92635 1.32001i 0.228947 0.0613462i −0.142522 0.989792i \(-0.545521\pi\)
0.371469 + 0.928446i \(0.378854\pi\)
\(464\) −4.20805 7.28856i −0.195354 0.338363i
\(465\) 0 0
\(466\) −42.4873 7.49165i −1.96818 0.347044i
\(467\) −26.1210 6.99909i −1.20873 0.323879i −0.402469 0.915434i \(-0.631848\pi\)
−0.806265 + 0.591554i \(0.798515\pi\)
\(468\) 2.14762 + 8.01504i 0.0992739 + 0.370495i
\(469\) −3.48322 2.92277i −0.160840 0.134961i
\(470\) 0 0
\(471\) 7.58776 + 20.8472i 0.349626 + 0.960588i
\(472\) −0.618101 + 7.06493i −0.0284504 + 0.325190i
\(473\) 14.1589 20.2211i 0.651029 0.929765i
\(474\) 21.8439 1.00332
\(475\) 0 0
\(476\) −50.3042 −2.30569
\(477\) −1.33466 + 1.90609i −0.0611097 + 0.0872737i
\(478\) −2.82445 + 32.2836i −0.129187 + 1.47662i
\(479\) −4.36649 11.9968i −0.199510 0.548149i 0.799081 0.601224i \(-0.205320\pi\)
−0.998591 + 0.0530748i \(0.983098\pi\)
\(480\) 0 0
\(481\) −29.1430 24.4538i −1.32880 1.11500i
\(482\) 1.34664 + 5.02572i 0.0613377 + 0.228915i
\(483\) −2.14252 0.574087i −0.0974881 0.0261219i
\(484\) −3.66768 0.646711i −0.166713 0.0293960i
\(485\) 0 0
\(486\) −7.42375 12.8583i −0.336748 0.583265i
\(487\) −20.1547 + 5.40044i −0.913298 + 0.244717i −0.684718 0.728808i \(-0.740075\pi\)
−0.228580 + 0.973525i \(0.573408\pi\)
\(488\) 35.4743 3.10360i 1.60585 0.140493i
\(489\) 8.42754 + 3.06737i 0.381106 + 0.138711i
\(490\) 0 0
\(491\) −13.9474 + 11.7033i −0.629438 + 0.528161i −0.900754 0.434329i \(-0.856985\pi\)
0.271316 + 0.962490i \(0.412541\pi\)
\(492\) 11.8000 + 8.26246i 0.531986 + 0.372500i
\(493\) 25.2440 25.2440i 1.13693 1.13693i
\(494\) −23.4350 31.4367i −1.05439 1.41440i
\(495\) 0 0
\(496\) −0.250052 + 0.0440908i −0.0112276 + 0.00197974i
\(497\) 9.13205 + 0.798951i 0.409628 + 0.0358378i
\(498\) −4.92494 2.29654i −0.220692 0.102910i
\(499\) −10.1881 + 27.9915i −0.456081 + 1.25307i 0.472299 + 0.881438i \(0.343424\pi\)
−0.928380 + 0.371633i \(0.878798\pi\)
\(500\) 0 0
\(501\) 0.304985 0.528249i 0.0136257 0.0236004i
\(502\) −13.8894 + 51.8361i −0.619916 + 2.31356i
\(503\) −12.5766 + 8.80620i −0.560761 + 0.392649i −0.819311 0.573349i \(-0.805644\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(504\) −1.04591 + 5.93168i −0.0465887 + 0.264218i
\(505\) 0 0
\(506\) 2.68430 + 1.54978i 0.119332 + 0.0688963i
\(507\) 0.286506 + 3.27478i 0.0127242 + 0.145438i
\(508\) −19.5482 + 9.11546i −0.867309 + 0.404433i
\(509\) 2.72263 0.990955i 0.120678 0.0439233i −0.280975 0.959715i \(-0.590658\pi\)
0.401653 + 0.915792i \(0.368436\pi\)
\(510\) 0 0
\(511\) −6.02687 34.1801i −0.266613 1.51204i
\(512\) 9.62565 + 9.62565i 0.425398 + 0.425398i
\(513\) 15.4961 + 12.2366i 0.684171 + 0.540260i
\(514\) 40.1604i 1.77140i
\(515\) 0 0
\(516\) −33.4637 39.8804i −1.47316 1.75564i
\(517\) −11.4222 + 24.4949i −0.502346 + 1.07728i
\(518\) −27.2914 58.5267i −1.19912 2.57152i
\(519\) −9.28758 + 11.0685i −0.407680 + 0.485854i
\(520\) 0 0
\(521\) 9.37387 5.41201i 0.410677 0.237104i −0.280404 0.959882i \(-0.590468\pi\)
0.691080 + 0.722778i \(0.257135\pi\)
\(522\) −5.73351 8.18830i −0.250949 0.358392i
\(523\) −1.55246 2.21715i −0.0678845 0.0969491i 0.783774 0.621046i \(-0.213292\pi\)
−0.851659 + 0.524097i \(0.824403\pi\)
\(524\) 16.0585 9.27135i 0.701517 0.405021i
\(525\) 0 0
\(526\) −8.21023 + 9.78457i −0.357983 + 0.426627i
\(527\) −0.455185 0.976147i −0.0198282 0.0425217i
\(528\) 3.09435 6.63585i 0.134664 0.288788i
\(529\) −14.6710 17.4842i −0.637868 0.760182i
\(530\) 0 0
\(531\) 1.25295i 0.0543732i
\(532\) −8.58636 41.4498i −0.372266 1.79708i
\(533\) 5.88089 + 5.88089i 0.254730 + 0.254730i
\(534\) −2.77145 15.7177i −0.119932 0.680170i
\(535\) 0 0
\(536\) 5.38473 1.95988i 0.232585 0.0846540i
\(537\) −26.7778 + 12.4867i −1.15555 + 0.538841i
\(538\) −1.49718 17.1128i −0.0645479 0.737786i
\(539\) −1.97592 1.14080i −0.0851089 0.0491376i
\(540\) 0 0
\(541\) 2.66157 15.0945i 0.114430 0.648964i −0.872601 0.488434i \(-0.837568\pi\)
0.987031 0.160530i \(-0.0513205\pi\)
\(542\) 58.0033 40.6144i 2.49146 1.74454i
\(543\) −5.05354 + 18.8601i −0.216868 + 0.809363i
\(544\) −10.7292 + 18.5835i −0.460009 + 0.796759i
\(545\) 0 0
\(546\) −16.2659 + 44.6901i −0.696114 + 1.91256i
\(547\) 18.9948 + 8.85743i 0.812160 + 0.378717i 0.783902 0.620884i \(-0.213226\pi\)
0.0282579 + 0.999601i \(0.491004\pi\)
\(548\) −30.4071 2.66028i −1.29893 0.113641i
\(549\) 6.19569 1.09247i 0.264426 0.0466254i
\(550\) 0 0
\(551\) 25.1095 + 16.4917i 1.06970 + 0.702571i
\(552\) 1.97660 1.97660i 0.0841295 0.0841295i
\(553\) 11.1527 + 7.80917i 0.474259 + 0.332080i
\(554\) −48.1694 + 40.4189i −2.04652 + 1.71724i
\(555\) 0 0
\(556\) 20.5111 + 7.46544i 0.869866 + 0.316605i
\(557\) 3.18999 0.279088i 0.135164 0.0118253i −0.0193729 0.999812i \(-0.506167\pi\)
0.154537 + 0.987987i \(0.450611\pi\)
\(558\) −0.291300 + 0.0780535i −0.0123317 + 0.00330427i
\(559\) −15.0285 26.0302i −0.635639 1.10096i
\(560\) 0 0
\(561\) 30.5868 + 5.39327i 1.29137 + 0.227704i
\(562\) 34.7284 + 9.30544i 1.46493 + 0.392526i
\(563\) 11.3121 + 42.2175i 0.476750 + 1.77925i 0.614641 + 0.788807i \(0.289301\pi\)
−0.137891 + 0.990447i \(0.544033\pi\)
\(564\) 43.6637 + 36.6382i 1.83857 + 1.54275i
\(565\) 0 0
\(566\) −8.55318 23.4997i −0.359517 0.987765i
\(567\) 2.53690 28.9969i 0.106540 1.21776i
\(568\) −6.62624 + 9.46325i −0.278031 + 0.397069i
\(569\) 13.7435 0.576156 0.288078 0.957607i \(-0.406984\pi\)
0.288078 + 0.957607i \(0.406984\pi\)
\(570\) 0 0
\(571\) 30.4258 1.27328 0.636640 0.771161i \(-0.280324\pi\)
0.636640 + 0.771161i \(0.280324\pi\)
\(572\) 24.2427 34.6221i 1.01364 1.44762i
\(573\) 0.0561900 0.642254i 0.00234737 0.0268306i
\(574\) 4.82846 + 13.2661i 0.201536 + 0.553716i
\(575\) 0 0
\(576\) 5.76033 + 4.83349i 0.240014 + 0.201396i
\(577\) 7.35372 + 27.4445i 0.306140 + 1.14253i 0.931960 + 0.362561i \(0.118098\pi\)
−0.625820 + 0.779967i \(0.715236\pi\)
\(578\) 22.2631 + 5.96539i 0.926024 + 0.248127i
\(579\) −27.8808 4.91614i −1.15869 0.204308i
\(580\) 0 0
\(581\) −1.69347 2.93318i −0.0702571 0.121689i
\(582\) −32.1209 + 8.60676i −1.33145 + 0.356762i
\(583\) 11.8073 1.03300i 0.489008 0.0427826i
\(584\) 41.1016 + 14.9598i 1.70080 + 0.619039i
\(585\) 0 0
\(586\) 20.1881 16.9398i 0.833963 0.699778i
\(587\) −20.2475 14.1774i −0.835702 0.585165i 0.0754898 0.997147i \(-0.475948\pi\)
−0.911192 + 0.411981i \(0.864837\pi\)
\(588\) −3.40244 + 3.40244i −0.140314 + 0.140314i
\(589\) 0.726633 0.541682i 0.0299404 0.0223196i
\(590\) 0 0
\(591\) −13.9950 + 2.46770i −0.575678 + 0.101508i
\(592\) 12.0594 + 1.05506i 0.495637 + 0.0433627i
\(593\) −36.1551 16.8594i −1.48471 0.692332i −0.499919 0.866072i \(-0.666637\pi\)
−0.984791 + 0.173741i \(0.944415\pi\)
\(594\) −11.4459 + 31.4474i −0.469632 + 1.29030i
\(595\) 0 0
\(596\) −9.11245 + 15.7832i −0.373261 + 0.646506i
\(597\) 6.56400 24.4972i 0.268647 1.00260i
\(598\) 3.09152 2.16471i 0.126422 0.0885215i
\(599\) 6.31827 35.8327i 0.258158 1.46408i −0.529678 0.848199i \(-0.677687\pi\)
0.787835 0.615886i \(-0.211202\pi\)
\(600\) 0 0
\(601\) −12.9169 7.45756i −0.526890 0.304200i 0.212859 0.977083i \(-0.431723\pi\)
−0.739749 + 0.672883i \(0.765056\pi\)
\(602\) −4.44673 50.8264i −0.181235 2.07153i
\(603\) 0.917535 0.427853i 0.0373649 0.0174235i
\(604\) −67.2362 + 24.4720i −2.73580 + 0.995750i
\(605\) 0 0
\(606\) 6.97764 + 39.5721i 0.283447 + 1.60751i
\(607\) 22.5020 + 22.5020i 0.913328 + 0.913328i 0.996532 0.0832045i \(-0.0265155\pi\)
−0.0832045 + 0.996532i \(0.526515\pi\)
\(608\) −17.1438 5.66865i −0.695273 0.229894i
\(609\) 36.4365i 1.47648i
\(610\) 0 0
\(611\) 21.1531 + 25.2093i 0.855764 + 1.01986i
\(612\) 4.73339 10.1508i 0.191336 0.410322i
\(613\) 18.1486 + 38.9199i 0.733016 + 1.57196i 0.817763 + 0.575556i \(0.195214\pi\)
−0.0847463 + 0.996403i \(0.527008\pi\)
\(614\) 25.2860 30.1347i 1.02046 1.21614i
\(615\) 0 0
\(616\) 26.5695 15.3399i 1.07052 0.618063i
\(617\) 0.699375 + 0.998810i 0.0281558 + 0.0402106i 0.832983 0.553298i \(-0.186631\pi\)
−0.804827 + 0.593509i \(0.797742\pi\)
\(618\) −14.1783 20.2487i −0.570335 0.814522i
\(619\) 3.27678 1.89185i 0.131705 0.0760398i −0.432700 0.901538i \(-0.642439\pi\)
0.564405 + 0.825498i \(0.309106\pi\)
\(620\) 0 0
\(621\) −1.22160 + 1.45585i −0.0490212 + 0.0584212i
\(622\) 23.3125 + 49.9937i 0.934745 + 2.00457i
\(623\) 4.20405 9.01562i 0.168432 0.361203i
\(624\) −5.73053 6.82938i −0.229405 0.273394i
\(625\) 0 0
\(626\) 13.0822i 0.522869i
\(627\) 0.776858 + 26.1235i 0.0310247 + 1.04327i
\(628\) −28.8149 28.8149i −1.14984 1.14984i
\(629\) 8.91687 + 50.5701i 0.355539 + 2.01636i
\(630\) 0 0
\(631\) −3.78252 + 1.37673i −0.150580 + 0.0548066i −0.416210 0.909268i \(-0.636642\pi\)
0.265631 + 0.964075i \(0.414420\pi\)
\(632\) −15.5504 + 7.25126i −0.618561 + 0.288440i
\(633\) −1.76123 20.1310i −0.0700028 0.800136i
\(634\) 47.5399 + 27.4472i 1.88805 + 1.09007i
\(635\) 0 0
\(636\) 4.34053 24.6164i 0.172113 0.976102i
\(637\) −2.27567 + 1.59344i −0.0901655 + 0.0631346i
\(638\) −13.1781 + 49.1813i −0.521726 + 1.94711i
\(639\) −1.02050 + 1.76756i −0.0403705 + 0.0699237i
\(640\) 0 0
\(641\) 6.61703 18.1801i 0.261357 0.718072i −0.737720 0.675107i \(-0.764097\pi\)
0.999077 0.0429652i \(-0.0136805\pi\)
\(642\) 35.7915 + 16.6899i 1.41258 + 0.658696i
\(643\) −10.6357 0.930507i −0.419433 0.0366956i −0.124514 0.992218i \(-0.539737\pi\)
−0.294919 + 0.955522i \(0.595293\pi\)
\(644\) 4.01239 0.707492i 0.158110 0.0278791i
\(645\) 0 0
\(646\) −3.04352 + 52.8380i −0.119746 + 2.07888i
\(647\) −2.55151 + 2.55151i −0.100310 + 0.100310i −0.755481 0.655171i \(-0.772597\pi\)
0.655171 + 0.755481i \(0.272597\pi\)
\(648\) 30.0486 + 21.0402i 1.18042 + 0.826539i
\(649\) 4.88893 4.10230i 0.191907 0.161029i
\(650\) 0 0
\(651\) −1.03297 0.375972i −0.0404855 0.0147355i
\(652\) −16.4108 + 1.43576i −0.642695 + 0.0562285i
\(653\) 18.8262 5.04447i 0.736727 0.197405i 0.129104 0.991631i \(-0.458790\pi\)
0.607623 + 0.794226i \(0.292123\pi\)
\(654\) −29.8343 51.6746i −1.16661 2.02064i
\(655\) 0 0
\(656\) −2.60622 0.459547i −0.101756 0.0179423i
\(657\) 7.46424 + 2.00004i 0.291208 + 0.0780288i
\(658\) 14.4578 + 53.9572i 0.563623 + 2.10347i
\(659\) 11.3356 + 9.51168i 0.441571 + 0.370522i 0.836297 0.548277i \(-0.184716\pi\)
−0.394726 + 0.918799i \(0.629160\pi\)
\(660\) 0 0
\(661\) −1.66485 4.57414i −0.0647551 0.177913i 0.903095 0.429441i \(-0.141289\pi\)
−0.967850 + 0.251528i \(0.919067\pi\)
\(662\) 3.13913 35.8804i 0.122006 1.39453i
\(663\) 21.6910 30.9780i 0.842410 1.20309i
\(664\) 4.26835 0.165644
\(665\) 0 0
\(666\) 14.3780 0.557136
\(667\) −1.65848 + 2.36856i −0.0642167 + 0.0917110i
\(668\) −0.0976503 + 1.11615i −0.00377820 + 0.0431851i
\(669\) 17.2128 + 47.2918i 0.665486 + 1.82841i
\(670\) 0 0
\(671\) −24.5482 20.5984i −0.947673 0.795192i
\(672\) 5.66835 + 21.1546i 0.218661 + 0.816055i
\(673\) −17.5750 4.70920i −0.677465 0.181526i −0.0963501 0.995348i \(-0.530717\pi\)
−0.581115 + 0.813821i \(0.697384\pi\)
\(674\) −4.60276 0.811590i −0.177292 0.0312613i
\(675\) 0 0
\(676\) −3.01910 5.22923i −0.116119 0.201124i
\(677\) 21.5062 5.76257i 0.826551 0.221474i 0.179342 0.983787i \(-0.442603\pi\)
0.647208 + 0.762313i \(0.275936\pi\)
\(678\) 49.7664 4.35399i 1.91127 0.167214i
\(679\) −19.4766 7.08889i −0.747442 0.272047i
\(680\) 0 0
\(681\) −33.0745 + 27.7528i −1.26742 + 1.06349i
\(682\) 1.25831 + 0.881079i 0.0481832 + 0.0337383i
\(683\) −19.0369 + 19.0369i −0.728429 + 0.728429i −0.970307 0.241878i \(-0.922237\pi\)
0.241878 + 0.970307i \(0.422237\pi\)
\(684\) 9.17202 + 2.16761i 0.350701 + 0.0828805i
\(685\) 0 0
\(686\) 40.2637 7.09957i 1.53727 0.271063i
\(687\) 8.46379 + 0.740485i 0.322914 + 0.0282513i
\(688\) 8.66808 + 4.04199i 0.330468 + 0.154100i
\(689\) 4.93588 13.5612i 0.188042 0.516641i
\(690\) 0 0
\(691\) 17.0521 29.5351i 0.648693 1.12357i −0.334742 0.942310i \(-0.608649\pi\)
0.983435 0.181260i \(-0.0580174\pi\)
\(692\) 6.86912 25.6359i 0.261125 0.974531i
\(693\) 4.44004 3.10895i 0.168663 0.118099i
\(694\) 10.6505 60.4018i 0.404286 2.29282i
\(695\) 0 0
\(696\) 39.7667 + 22.9593i 1.50735 + 0.870270i
\(697\) −0.978401 11.1832i −0.0370596 0.423593i
\(698\) 46.3389 21.6082i 1.75395 0.817882i
\(699\) 32.9019 11.9753i 1.24446 0.452948i
\(700\) 0 0
\(701\) 4.51519 + 25.6069i 0.170536 + 0.967160i 0.943171 + 0.332309i \(0.107828\pi\)
−0.772634 + 0.634851i \(0.781061\pi\)
\(702\) 28.8132 + 28.8132i 1.08748 + 1.08748i
\(703\) −40.1468 + 15.9791i −1.51417 + 0.602663i
\(704\) 38.3020i 1.44356i
\(705\) 0 0
\(706\) 26.0110 + 30.9987i 0.978936 + 1.16665i
\(707\) −10.5845 + 22.6985i −0.398071 + 0.853665i
\(708\) −5.68819 12.1984i −0.213775 0.458443i
\(709\) 26.4386 31.5083i 0.992922 1.18332i 0.00987689 0.999951i \(-0.496856\pi\)
0.983045 0.183367i \(-0.0586995\pi\)
\(710\) 0 0
\(711\) −2.62521 + 1.51567i −0.0984532 + 0.0568420i
\(712\) 7.19056 + 10.2692i 0.269478 + 0.384854i
\(713\) 0.0500355 + 0.0714581i 0.00187384 + 0.00267613i
\(714\) 55.5928 32.0965i 2.08051 1.20118i
\(715\) 0 0
\(716\) 34.8848 41.5741i 1.30371 1.55370i
\(717\) −11.1151 23.8364i −0.415101 0.890188i
\(718\) 2.70237 5.79524i 0.100851 0.216277i
\(719\) −22.6318 26.9715i −0.844022 1.00587i −0.999837 0.0180804i \(-0.994245\pi\)
0.155814 0.987786i \(-0.450200\pi\)
\(720\) 0 0
\(721\) 15.4069i 0.573784i
\(722\) −44.0570 + 6.51104i −1.63963 + 0.242316i
\(723\) −2.98585 2.98585i −0.111045 0.111045i
\(724\) −6.22787 35.3200i −0.231457 1.31266i
\(725\) 0 0
\(726\) 4.46591 1.62546i 0.165745 0.0603264i
\(727\) −5.02377 + 2.34262i −0.186321 + 0.0868831i −0.513540 0.858065i \(-0.671666\pi\)
0.327219 + 0.944949i \(0.393889\pi\)
\(728\) −3.25579 37.2138i −0.120668 1.37924i
\(729\) −16.7754 9.68526i −0.621310 0.358713i
\(730\) 0 0
\(731\) −7.04497 + 39.9540i −0.260568 + 1.47775i
\(732\) −55.3601 + 38.7636i −2.04617 + 1.43274i
\(733\) 7.22490 26.9637i 0.266858 0.995927i −0.694246 0.719738i \(-0.744262\pi\)
0.961103 0.276189i \(-0.0890715\pi\)
\(734\) −19.3024 + 33.4327i −0.712463 + 1.23402i
\(735\) 0 0
\(736\) 0.594422 1.63316i 0.0219107 0.0601991i
\(737\) −4.67358 2.17933i −0.172154 0.0802766i
\(738\) −3.13128 0.273951i −0.115264 0.0100843i
\(739\) −40.2963 + 7.10532i −1.48232 + 0.261373i −0.855506 0.517794i \(-0.826753\pi\)
−0.626816 + 0.779167i \(0.715642\pi\)
\(740\) 0 0
\(741\) 29.2278 + 12.5854i 1.07371 + 0.462337i
\(742\) 17.3219 17.3219i 0.635908 0.635908i
\(743\) 8.82484 + 6.17922i 0.323752 + 0.226694i 0.724141 0.689651i \(-0.242236\pi\)
−0.400389 + 0.916345i \(0.631125\pi\)
\(744\) 1.06123 0.890477i 0.0389066 0.0326465i
\(745\) 0 0
\(746\) 9.69732 + 3.52954i 0.355044 + 0.129225i
\(747\) 0.751230 0.0657241i 0.0274861 0.00240472i
\(748\) −55.1056 + 14.7655i −2.01486 + 0.539880i
\(749\) 12.3072 + 21.3166i 0.449694 + 0.778893i
\(750\) 0 0
\(751\) 17.7962 + 3.13795i 0.649392 + 0.114505i 0.488634 0.872489i \(-0.337495\pi\)
0.160757 + 0.986994i \(0.448606\pi\)
\(752\) −10.1147 2.71022i −0.368844 0.0988315i
\(753\) −11.2723 42.0688i −0.410786 1.53307i
\(754\) 47.4917 + 39.8502i 1.72954 + 1.45126i
\(755\) 0 0
\(756\) 15.0453 + 41.3366i 0.547192 + 1.50340i
\(757\) 4.14061 47.3274i 0.150493 1.72014i −0.427427 0.904050i \(-0.640580\pi\)
0.577920 0.816093i \(-0.303865\pi\)
\(758\) −9.03128 + 12.8980i −0.328031 + 0.468476i
\(759\) −2.51553 −0.0913079
\(760\) 0 0
\(761\) −45.4640 −1.64807 −0.824034 0.566540i \(-0.808282\pi\)
−0.824034 + 0.566540i \(0.808282\pi\)
\(762\) 15.7872 22.5464i 0.571910 0.816772i
\(763\) 3.24135 37.0488i 0.117345 1.34126i
\(764\) 0.405027 + 1.11280i 0.0146534 + 0.0402598i
\(765\) 0 0
\(766\) −45.4570 38.1429i −1.64243 1.37816i
\(767\) −2.01124 7.50603i −0.0726215 0.271027i
\(768\) −42.3409 11.3452i −1.52785 0.409385i
\(769\) 2.43552 + 0.429448i 0.0878271 + 0.0154863i 0.217389 0.976085i \(-0.430246\pi\)
−0.129562 + 0.991571i \(0.541357\pi\)
\(770\) 0 0
\(771\) −16.2966 28.2265i −0.586906 1.01655i
\(772\) 50.2305 13.4592i 1.80783 0.484408i
\(773\) 30.2133 2.64332i 1.08670 0.0950737i 0.470298 0.882508i \(-0.344146\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(774\) 10.6746 + 3.88523i 0.383690 + 0.139652i
\(775\) 0 0
\(776\) 20.0093 16.7898i 0.718293 0.602719i
\(777\) 42.9310 + 30.0606i 1.54014 + 1.07842i
\(778\) 17.7906 17.7906i 0.637825 0.637825i
\(779\) 9.04774 2.71503i 0.324169 0.0972760i
\(780\) 0 0
\(781\) 10.2382 1.80527i 0.366351 0.0645976i
\(782\) −5.07475 0.443983i −0.181473 0.0158768i
\(783\) −28.2940 13.1937i −1.01114 0.471504i
\(784\) 0.302342 0.830678i 0.0107979 0.0296671i
\(785\) 0 0
\(786\) −11.8311 + 20.4921i −0.422003 + 0.730930i
\(787\) 4.39533 16.4036i 0.156677 0.584725i −0.842279 0.539041i \(-0.818787\pi\)
0.998956 0.0456838i \(-0.0145467\pi\)
\(788\) 21.3824 14.9721i 0.761716 0.533359i
\(789\) 1.80006 10.2086i 0.0640837 0.363437i
\(790\) 0 0
\(791\) 26.9653 + 15.5684i 0.958777 + 0.553550i
\(792\) 0.595346 + 6.80484i 0.0211547 + 0.241799i
\(793\) −35.3629 + 16.4900i −1.25577 + 0.585577i
\(794\) −3.10774 + 1.13113i −0.110290 + 0.0401421i
\(795\) 0 0
\(796\) 8.08933 + 45.8769i 0.286719 + 1.62606i
\(797\) −24.9487 24.9487i −0.883730 0.883730i 0.110182 0.993911i \(-0.464857\pi\)
−0.993911 + 0.110182i \(0.964857\pi\)
\(798\) 35.9360 + 40.3290i 1.27212 + 1.42763i
\(799\) 44.4191i 1.57143i
\(800\) 0 0
\(801\) 1.42366 + 1.69666i 0.0503027 + 0.0599484i
\(802\) 15.4555 33.1444i 0.545753 1.17037i
\(803\) −16.6348 35.6734i −0.587029 1.25889i
\(804\) −6.99050 + 8.33095i −0.246536 + 0.293810i
\(805\) 0 0
\(806\) 1.61980 0.935191i 0.0570550 0.0329407i
\(807\) 7.99644 + 11.4201i 0.281488 + 0.402006i
\(808\) −18.1036 25.8546i −0.636882 0.909561i
\(809\) −36.4322 + 21.0341i −1.28089 + 0.739521i −0.977011 0.213190i \(-0.931615\pi\)
−0.303877 + 0.952711i \(0.598281\pi\)
\(810\) 0 0
\(811\) −15.4261 + 18.3841i −0.541682 + 0.645551i −0.965564 0.260166i \(-0.916223\pi\)
0.423882 + 0.905717i \(0.360667\pi\)
\(812\) 28.2849 + 60.6572i 0.992606 + 2.12865i
\(813\) −24.2865 + 52.0825i −0.851764 + 1.82661i
\(814\) −47.0753 56.1022i −1.64999 1.96638i
\(815\) 0 0
\(816\) 12.0335i 0.421255i
\(817\) −34.1239 + 1.01477i −1.19384 + 0.0355024i
\(818\) 62.5694 + 62.5694i 2.18769 + 2.18769i
\(819\) −1.14604 6.49951i −0.0400458 0.227111i
\(820\) 0 0
\(821\) −27.5761 + 10.0369i −0.962411 + 0.350289i −0.774978 0.631988i \(-0.782239\pi\)
−0.187433 + 0.982277i \(0.560017\pi\)
\(822\) 35.3013 16.4612i 1.23127 0.574152i
\(823\) −2.19630 25.1038i −0.0765582 0.875064i −0.933248 0.359233i \(-0.883038\pi\)
0.856690 0.515832i \(-0.172517\pi\)
\(824\) 16.8151 + 9.70818i 0.585780 + 0.338200i
\(825\) 0 0
\(826\) 2.29053 12.9902i 0.0796976 0.451988i
\(827\) 30.9809 21.6931i 1.07731 0.754342i 0.106532 0.994309i \(-0.466025\pi\)
0.970781 + 0.239967i \(0.0771366\pi\)
\(828\) −0.234784 + 0.876224i −0.00815929 + 0.0304509i
\(829\) 2.51575 4.35740i 0.0873755 0.151339i −0.819025 0.573757i \(-0.805485\pi\)
0.906401 + 0.422418i \(0.138819\pi\)
\(830\) 0 0
\(831\) 17.4541 47.9547i 0.605476 1.66353i
\(832\) −42.2672 19.7095i −1.46535 0.683305i
\(833\) 3.73553 + 0.326817i 0.129428 + 0.0113235i
\(834\) −27.4308 + 4.83679i −0.949851 + 0.167484i
\(835\) 0 0
\(836\) −21.5724 42.8857i −0.746098 1.48323i
\(837\) −0.665993 + 0.665993i −0.0230201 + 0.0230201i
\(838\) 10.7090 + 7.49854i 0.369937 + 0.259033i
\(839\) 2.80005 2.34952i 0.0966686 0.0811146i −0.593173 0.805075i \(-0.702125\pi\)
0.689841 + 0.723961i \(0.257680\pi\)
\(840\) 0 0
\(841\) −17.3824 6.32669i −0.599394 0.218162i
\(842\) 68.1688 5.96400i 2.34925 0.205533i
\(843\) −28.1846 + 7.55205i −0.970731 + 0.260107i
\(844\) 18.5593 + 32.1456i 0.638836 + 1.10650i
\(845\) 0 0
\(846\) −12.2483 2.15971i −0.421107 0.0742525i
\(847\) 2.86122 + 0.766661i 0.0983127 + 0.0263428i
\(848\) 1.18853 + 4.43565i 0.0408143 + 0.152321i
\(849\) 15.5474 + 13.0458i 0.533585 + 0.447731i
\(850\) 0 0
\(851\) −1.42246 3.90818i −0.0487614 0.133971i
\(852\) 1.91088 21.8415i 0.0654658 0.748278i
\(853\) −29.2009 + 41.7032i −0.999820 + 1.42789i −0.0982982 + 0.995157i \(0.531340\pi\)
−0.901522 + 0.432734i \(0.857549\pi\)
\(854\) −66.2325 −2.26643
\(855\) 0 0
\(856\) −31.0198 −1.06024
\(857\) −9.40002 + 13.4246i −0.321099 + 0.458576i −0.946957 0.321360i \(-0.895860\pi\)
0.625858 + 0.779937i \(0.284749\pi\)
\(858\) −4.70077 + 53.7300i −0.160482 + 1.83431i
\(859\) 6.29056 + 17.2832i 0.214631 + 0.589694i 0.999553 0.0299006i \(-0.00951909\pi\)
−0.784922 + 0.619595i \(0.787297\pi\)
\(860\) 0 0
\(861\) −8.77686 7.36466i −0.299114 0.250987i
\(862\) −15.1463 56.5268i −0.515885 1.92531i
\(863\) −17.8481 4.78239i −0.607558 0.162795i −0.0580925 0.998311i \(-0.518502\pi\)
−0.549465 + 0.835517i \(0.685169\pi\)
\(864\) 18.4796 + 3.25845i 0.628689 + 0.110855i
\(865\) 0 0
\(866\) 23.9442 + 41.4725i 0.813656 + 1.40929i
\(867\) −18.0682 + 4.84135i −0.613627 + 0.164421i
\(868\) 2.01149 0.175983i 0.0682744 0.00597324i
\(869\) 14.5093 + 5.28096i 0.492195 + 0.179144i
\(870\) 0 0
\(871\) −4.80989 + 4.03598i −0.162977 + 0.136754i
\(872\) 38.3925 + 26.8827i 1.30013 + 0.910363i
\(873\) 3.26311 3.26311i 0.110440 0.110440i
\(874\) −0.500369 4.25729i −0.0169252 0.144005i
\(875\) 0 0
\(876\) −81.7499 + 14.4147i −2.76207 + 0.487028i
\(877\) 23.6389 + 2.06814i 0.798230 + 0.0698361i 0.478970 0.877831i \(-0.341010\pi\)
0.319260 + 0.947667i \(0.396566\pi\)
\(878\) 29.7392 + 13.8676i 1.00365 + 0.468010i
\(879\) −7.31512 + 20.0981i −0.246733 + 0.677893i
\(880\) 0 0
\(881\) −10.5557 + 18.2830i −0.355630 + 0.615969i −0.987226 0.159329i \(-0.949067\pi\)
0.631595 + 0.775298i \(0.282400\pi\)
\(882\) 0.271745 1.01416i 0.00915011 0.0341487i
\(883\) 29.7779 20.8507i 1.00211 0.701682i 0.0472899 0.998881i \(-0.484942\pi\)
0.954815 + 0.297200i \(0.0960527\pi\)
\(884\) −12.0623 + 68.4085i −0.405698 + 2.30083i
\(885\) 0 0
\(886\) 47.2895 + 27.3026i 1.58872 + 0.917250i
\(887\) 3.77343 + 43.1305i 0.126699 + 1.44818i 0.747527 + 0.664232i \(0.231241\pi\)
−0.620827 + 0.783947i \(0.713203\pi\)
\(888\) −59.8596 + 27.9130i −2.00876 + 0.936698i
\(889\) 16.1207 5.86744i 0.540670 0.196788i
\(890\) 0 0
\(891\) −5.73226 32.5093i −0.192038 1.08910i
\(892\) −65.3664 65.3664i −2.18863 2.18863i
\(893\) 36.6005 7.58184i 1.22479 0.253717i
\(894\) 23.2567i 0.777822i
\(895\) 0 0
\(896\) −36.0850 43.0044i −1.20552 1.43668i
\(897\) −1.29445 + 2.77595i −0.0432203 + 0.0926863i
\(898\) 13.8915 + 29.7904i 0.463565 + 0.994118i
\(899\) −0.921106 + 1.09773i −0.0307206 + 0.0366114i
\(900\) 0 0
\(901\) −16.8696 + 9.73969i −0.562009 + 0.324476i
\(902\) 9.18324 + 13.1150i 0.305769 + 0.436683i
\(903\) 23.7500 + 33.9186i 0.790352 + 1.12874i
\(904\) −33.9827 + 19.6199i −1.13025 + 0.652548i
\(905\) 0 0
\(906\) 58.6906 69.9447i 1.94986 2.32376i
\(907\) −5.33479 11.4405i −0.177139 0.379875i 0.797612 0.603171i \(-0.206096\pi\)
−0.974751 + 0.223295i \(0.928319\pi\)
\(908\) 33.5164 71.8762i 1.11228 2.38530i
\(909\) −3.58434 4.27165i −0.118885 0.141682i
\(910\) 0 0
\(911\) 14.5784i 0.483003i −0.970400 0.241502i \(-0.922360\pi\)
0.970400 0.241502i \(-0.0776399\pi\)
\(912\) −9.91535 + 2.05398i −0.328330 + 0.0680139i
\(913\) −2.71607 2.71607i −0.0898888 0.0898888i
\(914\) −1.10628 6.27401i −0.0365924 0.207526i
\(915\) 0 0
\(916\) −14.6648 + 5.33755i −0.484538 + 0.176358i
\(917\) −13.3664 + 6.23287i −0.441399 + 0.205828i
\(918\) −4.79363 54.7915i −0.158213 1.80839i
\(919\) 33.2115 + 19.1746i 1.09554 + 0.632513i 0.935047 0.354523i \(-0.115357\pi\)
0.160497 + 0.987036i \(0.448690\pi\)
\(920\) 0 0
\(921\) −5.54384 + 31.4407i −0.182676 + 1.03601i
\(922\) −67.8348 + 47.4985i −2.23402 + 1.56428i
\(923\) 3.27623 12.2271i 0.107839 0.402459i
\(924\) −29.1129 + 50.4251i −0.957745 + 1.65886i
\(925\) 0 0
\(926\) 4.08871 11.2336i 0.134363 0.369161i
\(927\) 3.10894 + 1.44972i 0.102111 + 0.0476151i
\(928\) 28.4409 + 2.48825i 0.933617 + 0.0816809i
\(929\) 41.0625 7.24042i 1.34722 0.237550i 0.546934 0.837175i \(-0.315795\pi\)
0.800281 + 0.599625i \(0.204684\pi\)
\(930\) 0 0
\(931\) 0.368322 + 3.13380i 0.0120713 + 0.102706i
\(932\) −45.4768 + 45.4768i −1.48964 + 1.48964i
\(933\) −36.6718 25.6779i −1.20058 0.840656i
\(934\) −48.5571 + 40.7442i −1.58884 + 1.33319i
\(935\) 0 0
\(936\) 7.81567 + 2.84467i 0.255463 + 0.0929810i
\(937\) 14.5913 1.27657i 0.476676 0.0417037i 0.153713 0.988116i \(-0.450877\pi\)
0.322962 + 0.946412i \(0.395321\pi\)
\(938\) −10.2949 + 2.75852i −0.336142 + 0.0900689i
\(939\) −5.30858 9.19473i −0.173239 0.300059i
\(940\) 0 0
\(941\) 53.1484 + 9.37150i 1.73259 + 0.305502i 0.948883 0.315629i \(-0.102215\pi\)
0.783707 + 0.621131i \(0.213326\pi\)
\(942\) 50.2295 + 13.4590i 1.63657 + 0.438517i
\(943\) 0.235323 + 0.878237i 0.00766317 + 0.0285993i
\(944\) 1.89418 + 1.58941i 0.0616504 + 0.0517308i
\(945\) 0 0
\(946\) −19.7899 54.3724i −0.643426 1.76780i
\(947\) −4.83820 + 55.3009i −0.157220 + 1.79704i 0.351585 + 0.936156i \(0.385643\pi\)
−0.508805 + 0.860882i \(0.669913\pi\)
\(948\) 18.6775 26.6743i 0.606618 0.866340i
\(949\) −47.9265 −1.55576
\(950\) 0 0
\(951\) −44.5508 −1.44466
\(952\) −28.9211 + 41.3035i −0.937337 + 1.33866i
\(953\) 2.37795 27.1801i 0.0770295 0.880451i −0.855132 0.518410i \(-0.826524\pi\)
0.932162 0.362042i \(-0.117920\pi\)
\(954\) 1.86545 + 5.12528i 0.0603961 + 0.165937i
\(955\) 0 0
\(956\) 37.0075 + 31.0529i 1.19691 + 1.00432i
\(957\) −10.6950 39.9143i −0.345720 1.29025i
\(958\) −28.9053 7.74516i −0.933888 0.250235i
\(959\) 23.9083 + 4.21569i 0.772041 + 0.136132i
\(960\) 0 0
\(961\) −15.4784 26.8093i −0.499303 0.864818i
\(962\) −86.1344 + 23.0796i −2.77708 + 0.744118i
\(963\) −5.45950 + 0.477644i −0.175930 + 0.0153919i
\(964\) 7.28850 + 2.65280i 0.234747 + 0.0854409i
\(965\) 0 0
\(966\) −3.98280 + 3.34197i −0.128145 + 0.107526i
\(967\) 14.8205 + 10.3774i 0.476596 + 0.333716i 0.787068 0.616866i \(-0.211598\pi\)
−0.310472 + 0.950583i \(0.600487\pi\)
\(968\) −2.63963 + 2.63963i −0.0848411 + 0.0848411i
\(969\) −19.3018 38.3718i −0.620064 1.23268i
\(970\) 0 0
\(971\) −1.40453 + 0.247657i −0.0450736 + 0.00794770i −0.196140 0.980576i \(-0.562841\pi\)
0.151066 + 0.988524i \(0.451729\pi\)
\(972\) −22.0493 1.92907i −0.707232 0.0618748i
\(973\) −15.7343 7.33701i −0.504417 0.235214i
\(974\) −16.7278 + 45.9592i −0.535992 + 1.47263i
\(975\) 0 0
\(976\) 6.20789 10.7524i 0.198710 0.344175i
\(977\) −9.25123 + 34.5261i −0.295973 + 1.10459i 0.644468 + 0.764631i \(0.277079\pi\)
−0.940441 + 0.339956i \(0.889588\pi\)
\(978\) 17.2200 12.0576i 0.550634 0.385558i
\(979\) 1.95902 11.1101i 0.0626104 0.355081i
\(980\) 0 0
\(981\) 7.17102 + 4.14019i 0.228953 + 0.132186i
\(982\) 3.71954 + 42.5145i 0.118695 + 1.35669i
\(983\) 43.7984 20.4235i 1.39695 0.651410i 0.429176 0.903221i \(-0.358804\pi\)
0.967776 + 0.251811i \(0.0810261\pi\)
\(984\) 13.5682 4.93842i 0.432539 0.157431i
\(985\) 0 0
\(986\) −14.5310 82.4095i −0.462762 2.62445i
\(987\) −32.0567 32.0567i −1.02038 1.02038i
\(988\) −58.4263 + 1.73747i −1.85879 + 0.0552764i
\(989\) 3.28591i 0.104486i
\(990\) 0 0
\(991\) −19.0947 22.7562i −0.606564 0.722875i 0.372134 0.928179i \(-0.378626\pi\)
−0.978698 + 0.205304i \(0.934182\pi\)
\(992\) 0.364010 0.780622i 0.0115573 0.0247848i
\(993\) 12.3535 + 26.4921i 0.392026 + 0.840702i
\(994\) 13.8116 16.4601i 0.438078 0.522081i
\(995\) 0 0
\(996\) −7.01541 + 4.05035i −0.222292 + 0.128340i
\(997\) −6.96664 9.94939i −0.220636 0.315100i 0.693540 0.720418i \(-0.256050\pi\)
−0.914176 + 0.405317i \(0.867161\pi\)
\(998\) 40.0484 + 57.1950i 1.26771 + 1.81048i
\(999\) 38.8882 22.4521i 1.23037 0.710353i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.bb.b.143.8 96
5.2 odd 4 inner 475.2.bb.b.257.8 96
5.3 odd 4 95.2.r.a.67.1 yes 96
5.4 even 2 95.2.r.a.48.1 yes 96
15.8 even 4 855.2.dl.a.352.8 96
15.14 odd 2 855.2.dl.a.523.8 96
19.2 odd 18 inner 475.2.bb.b.268.8 96
95.2 even 36 inner 475.2.bb.b.382.8 96
95.59 odd 18 95.2.r.a.78.1 yes 96
95.78 even 36 95.2.r.a.2.1 96
285.59 even 18 855.2.dl.a.838.8 96
285.173 odd 36 855.2.dl.a.667.8 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.1 96 95.78 even 36
95.2.r.a.48.1 yes 96 5.4 even 2
95.2.r.a.67.1 yes 96 5.3 odd 4
95.2.r.a.78.1 yes 96 95.59 odd 18
475.2.bb.b.143.8 96 1.1 even 1 trivial
475.2.bb.b.257.8 96 5.2 odd 4 inner
475.2.bb.b.268.8 96 19.2 odd 18 inner
475.2.bb.b.382.8 96 95.2 even 36 inner
855.2.dl.a.352.8 96 15.8 even 4
855.2.dl.a.523.8 96 15.14 odd 2
855.2.dl.a.667.8 96 285.173 odd 36
855.2.dl.a.838.8 96 285.59 even 18