L(s) = 1 | + (1.34 − 1.92i)2-s + (−0.165 + 1.89i)3-s + (−1.19 − 3.28i)4-s + (3.41 + 2.86i)6-s + (0.719 + 2.68i)7-s + (−3.38 − 0.906i)8-s + (−0.609 − 0.107i)9-s + (1.57 + 2.72i)11-s + (6.42 − 1.72i)12-s + (3.82 − 0.334i)13-s + (6.12 + 2.22i)14-s + (−0.935 + 0.784i)16-s + (−4.24 − 2.97i)17-s + (−1.02 + 1.02i)18-s + (1.72 − 4.00i)19-s + ⋯ |
L(s) = 1 | + (0.950 − 1.35i)2-s + (−0.0957 + 1.09i)3-s + (−0.597 − 1.64i)4-s + (1.39 + 1.17i)6-s + (0.271 + 1.01i)7-s + (−1.19 − 0.320i)8-s + (−0.203 − 0.0358i)9-s + (0.475 + 0.823i)11-s + (1.85 − 0.496i)12-s + (1.06 − 0.0927i)13-s + (1.63 + 0.595i)14-s + (−0.233 + 0.196i)16-s + (−1.02 − 0.720i)17-s + (−0.241 + 0.241i)18-s + (0.395 − 0.918i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.863 + 0.503i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.863 + 0.503i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27607 - 0.615236i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27607 - 0.615236i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-1.72 + 4.00i)T \) |
good | 2 | \( 1 + (-1.34 + 1.92i)T + (-0.684 - 1.87i)T^{2} \) |
| 3 | \( 1 + (0.165 - 1.89i)T + (-2.95 - 0.520i)T^{2} \) |
| 7 | \( 1 + (-0.719 - 2.68i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.57 - 2.72i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.82 + 0.334i)T + (12.8 - 2.25i)T^{2} \) |
| 17 | \( 1 + (4.24 + 2.97i)T + (5.81 + 15.9i)T^{2} \) |
| 23 | \( 1 + (-0.380 - 0.177i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (1.19 - 6.78i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.180 - 0.103i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.00 + 7.00i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.39 - 1.66i)T + (-7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (3.30 + 7.09i)T + (-27.6 + 32.9i)T^{2} \) |
| 47 | \( 1 + (-4.91 - 7.02i)T + (-16.0 + 44.1i)T^{2} \) |
| 53 | \( 1 + (-1.58 + 3.40i)T + (-34.0 - 40.6i)T^{2} \) |
| 59 | \( 1 + (0.351 + 1.99i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (9.55 - 3.47i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (1.34 - 0.938i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-1.12 + 3.09i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (12.4 + 1.08i)T + (71.8 + 12.6i)T^{2} \) |
| 79 | \( 1 + (-3.75 + 3.14i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (1.17 - 0.315i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (2.74 + 2.30i)T + (15.4 + 87.6i)T^{2} \) |
| 97 | \( 1 + (4.27 - 6.10i)T + (-33.1 - 91.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99582429769210975528373633366, −10.43321884409315438486405400961, −9.234094784467108364541788525067, −8.986754998742556729670178946356, −7.06190035735594986558165274843, −5.58847144675094911146594554463, −4.86638254278068684303149135330, −4.09152891564799032414534277200, −3.03850619475135796736763278207, −1.79450288429365448228111981262,
1.38207651260947193958198558171, 3.63946925708570428822745520844, 4.38559996676200515818593063806, 5.89426450600684017336244183939, 6.38778566083514419902191951880, 7.18521198891758699981612542832, 7.995731828328976931918997088757, 8.652372993366461217745889789625, 10.32176565019961809730215523408, 11.36365876577542226140858640522