Properties

Label 468.2.k.a.61.11
Level $468$
Weight $2$
Character 468.61
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(61,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.11
Character \(\chi\) \(=\) 468.61
Dual form 468.2.k.a.445.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20815 - 1.24112i) q^{3} +(1.66845 + 2.88984i) q^{5} -0.0102323 q^{7} +(-0.0807596 - 2.99891i) q^{9} +(-0.798063 - 1.38229i) q^{11} +(3.42617 - 1.12309i) q^{13} +(5.60238 + 1.42061i) q^{15} +(2.62956 + 4.55453i) q^{17} +(0.538519 + 0.932743i) q^{19} +(-0.0123622 + 0.0126995i) q^{21} -2.42269 q^{23} +(-3.06747 + 5.31301i) q^{25} +(-3.81958 - 3.52290i) q^{27} +(2.23251 + 3.86681i) q^{29} +(-1.47581 - 2.55618i) q^{31} +(-2.67976 - 0.679513i) q^{33} +(-0.0170722 - 0.0295698i) q^{35} +(4.21638 - 7.30299i) q^{37} +(2.74544 - 5.60915i) q^{39} +6.41407 q^{41} -10.4798 q^{43} +(8.53165 - 5.23693i) q^{45} +(4.91647 - 8.51558i) q^{47} -6.99990 q^{49} +(8.82961 + 2.23894i) q^{51} -5.27921 q^{53} +(2.66306 - 4.61256i) q^{55} +(1.80826 + 0.458524i) q^{57} +(-5.53108 + 9.58012i) q^{59} -10.8830 q^{61} +(0.000826358 + 0.0306858i) q^{63} +(8.96196 + 8.02729i) q^{65} -3.39007 q^{67} +(-2.92697 + 3.00685i) q^{69} +(1.93480 + 3.35118i) q^{71} -11.6238 q^{73} +(2.88813 + 10.2260i) q^{75} +(0.00816604 + 0.0141440i) q^{77} +(0.0422648 - 0.0732048i) q^{79} +(-8.98696 + 0.484382i) q^{81} +(7.14463 - 12.3749i) q^{83} +(-8.77459 + 15.1980i) q^{85} +(7.49638 + 1.90087i) q^{87} +(-1.47575 + 2.55607i) q^{89} +(-0.0350577 + 0.0114918i) q^{91} +(-4.95552 - 1.25658i) q^{93} +(-1.79699 + 3.11247i) q^{95} +7.56780 q^{97} +(-4.08090 + 2.50495i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - 4 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} + 8 q^{23} - 14 q^{25} - 13 q^{29} + 2 q^{31} - 25 q^{33} + 3 q^{35} - q^{37} - 3 q^{39} - 8 q^{41} - 4 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20815 1.24112i 0.697524 0.716561i
\(4\) 0 0
\(5\) 1.66845 + 2.88984i 0.746155 + 1.29238i 0.949653 + 0.313303i \(0.101435\pi\)
−0.203499 + 0.979075i \(0.565231\pi\)
\(6\) 0 0
\(7\) −0.0102323 −0.00386746 −0.00193373 0.999998i \(-0.500616\pi\)
−0.00193373 + 0.999998i \(0.500616\pi\)
\(8\) 0 0
\(9\) −0.0807596 2.99891i −0.0269199 0.999638i
\(10\) 0 0
\(11\) −0.798063 1.38229i −0.240625 0.416775i 0.720267 0.693696i \(-0.244019\pi\)
−0.960892 + 0.276922i \(0.910686\pi\)
\(12\) 0 0
\(13\) 3.42617 1.12309i 0.950250 0.311489i
\(14\) 0 0
\(15\) 5.60238 + 1.42061i 1.44653 + 0.366799i
\(16\) 0 0
\(17\) 2.62956 + 4.55453i 0.637761 + 1.10464i 0.985923 + 0.167201i \(0.0534728\pi\)
−0.348161 + 0.937435i \(0.613194\pi\)
\(18\) 0 0
\(19\) 0.538519 + 0.932743i 0.123545 + 0.213986i 0.921163 0.389177i \(-0.127240\pi\)
−0.797618 + 0.603162i \(0.793907\pi\)
\(20\) 0 0
\(21\) −0.0123622 + 0.0126995i −0.00269764 + 0.00277127i
\(22\) 0 0
\(23\) −2.42269 −0.505166 −0.252583 0.967575i \(-0.581280\pi\)
−0.252583 + 0.967575i \(0.581280\pi\)
\(24\) 0 0
\(25\) −3.06747 + 5.31301i −0.613494 + 1.06260i
\(26\) 0 0
\(27\) −3.81958 3.52290i −0.735079 0.677982i
\(28\) 0 0
\(29\) 2.23251 + 3.86681i 0.414566 + 0.718049i 0.995383 0.0959849i \(-0.0306001\pi\)
−0.580817 + 0.814034i \(0.697267\pi\)
\(30\) 0 0
\(31\) −1.47581 2.55618i −0.265063 0.459103i 0.702517 0.711667i \(-0.252060\pi\)
−0.967580 + 0.252564i \(0.918726\pi\)
\(32\) 0 0
\(33\) −2.67976 0.679513i −0.466486 0.118288i
\(34\) 0 0
\(35\) −0.0170722 0.0295698i −0.00288572 0.00499821i
\(36\) 0 0
\(37\) 4.21638 7.30299i 0.693169 1.20060i −0.277625 0.960689i \(-0.589547\pi\)
0.970794 0.239914i \(-0.0771193\pi\)
\(38\) 0 0
\(39\) 2.74544 5.60915i 0.439622 0.898183i
\(40\) 0 0
\(41\) 6.41407 1.00171 0.500855 0.865531i \(-0.333019\pi\)
0.500855 + 0.865531i \(0.333019\pi\)
\(42\) 0 0
\(43\) −10.4798 −1.59816 −0.799080 0.601224i \(-0.794680\pi\)
−0.799080 + 0.601224i \(0.794680\pi\)
\(44\) 0 0
\(45\) 8.53165 5.23693i 1.27182 0.780675i
\(46\) 0 0
\(47\) 4.91647 8.51558i 0.717141 1.24213i −0.244987 0.969526i \(-0.578784\pi\)
0.962128 0.272599i \(-0.0878831\pi\)
\(48\) 0 0
\(49\) −6.99990 −0.999985
\(50\) 0 0
\(51\) 8.82961 + 2.23894i 1.23639 + 0.313515i
\(52\) 0 0
\(53\) −5.27921 −0.725156 −0.362578 0.931953i \(-0.618103\pi\)
−0.362578 + 0.931953i \(0.618103\pi\)
\(54\) 0 0
\(55\) 2.66306 4.61256i 0.359087 0.621957i
\(56\) 0 0
\(57\) 1.80826 + 0.458524i 0.239509 + 0.0607329i
\(58\) 0 0
\(59\) −5.53108 + 9.58012i −0.720086 + 1.24723i 0.240879 + 0.970555i \(0.422564\pi\)
−0.960965 + 0.276670i \(0.910769\pi\)
\(60\) 0 0
\(61\) −10.8830 −1.39343 −0.696715 0.717348i \(-0.745356\pi\)
−0.696715 + 0.717348i \(0.745356\pi\)
\(62\) 0 0
\(63\) 0.000826358 0.0306858i 0.000104111 0.00386605i
\(64\) 0 0
\(65\) 8.96196 + 8.02729i 1.11159 + 0.995663i
\(66\) 0 0
\(67\) −3.39007 −0.414163 −0.207081 0.978324i \(-0.566396\pi\)
−0.207081 + 0.978324i \(0.566396\pi\)
\(68\) 0 0
\(69\) −2.92697 + 3.00685i −0.352366 + 0.361983i
\(70\) 0 0
\(71\) 1.93480 + 3.35118i 0.229619 + 0.397712i 0.957695 0.287784i \(-0.0929187\pi\)
−0.728076 + 0.685496i \(0.759585\pi\)
\(72\) 0 0
\(73\) −11.6238 −1.36046 −0.680232 0.732997i \(-0.738121\pi\)
−0.680232 + 0.732997i \(0.738121\pi\)
\(74\) 0 0
\(75\) 2.88813 + 10.2260i 0.333493 + 1.18080i
\(76\) 0 0
\(77\) 0.00816604 + 0.0141440i 0.000930607 + 0.00161186i
\(78\) 0 0
\(79\) 0.0422648 0.0732048i 0.00475516 0.00823619i −0.863638 0.504112i \(-0.831820\pi\)
0.868393 + 0.495876i \(0.165153\pi\)
\(80\) 0 0
\(81\) −8.98696 + 0.484382i −0.998551 + 0.0538202i
\(82\) 0 0
\(83\) 7.14463 12.3749i 0.784225 1.35832i −0.145235 0.989397i \(-0.546394\pi\)
0.929461 0.368921i \(-0.120273\pi\)
\(84\) 0 0
\(85\) −8.77459 + 15.1980i −0.951737 + 1.64846i
\(86\) 0 0
\(87\) 7.49638 + 1.90087i 0.803696 + 0.203795i
\(88\) 0 0
\(89\) −1.47575 + 2.55607i −0.156429 + 0.270942i −0.933578 0.358373i \(-0.883331\pi\)
0.777150 + 0.629316i \(0.216665\pi\)
\(90\) 0 0
\(91\) −0.0350577 + 0.0114918i −0.00367505 + 0.00120467i
\(92\) 0 0
\(93\) −4.95552 1.25658i −0.513864 0.130301i
\(94\) 0 0
\(95\) −1.79699 + 3.11247i −0.184367 + 0.319333i
\(96\) 0 0
\(97\) 7.56780 0.768394 0.384197 0.923251i \(-0.374478\pi\)
0.384197 + 0.923251i \(0.374478\pi\)
\(98\) 0 0
\(99\) −4.08090 + 2.50495i −0.410146 + 0.251757i
\(100\) 0 0
\(101\) −3.70513 6.41747i −0.368674 0.638562i 0.620685 0.784060i \(-0.286855\pi\)
−0.989358 + 0.145498i \(0.953521\pi\)
\(102\) 0 0
\(103\) 1.73997 + 3.01372i 0.171445 + 0.296951i 0.938925 0.344122i \(-0.111823\pi\)
−0.767481 + 0.641072i \(0.778490\pi\)
\(104\) 0 0
\(105\) −0.0573254 0.0145361i −0.00559439 0.00141858i
\(106\) 0 0
\(107\) −7.67101 + 13.2866i −0.741584 + 1.28446i 0.210190 + 0.977661i \(0.432592\pi\)
−0.951774 + 0.306801i \(0.900742\pi\)
\(108\) 0 0
\(109\) −1.79923 −0.172335 −0.0861674 0.996281i \(-0.527462\pi\)
−0.0861674 + 0.996281i \(0.527462\pi\)
\(110\) 0 0
\(111\) −3.96988 14.0561i −0.376804 1.33415i
\(112\) 0 0
\(113\) −8.12251 + 14.0686i −0.764102 + 1.32346i 0.176619 + 0.984279i \(0.443484\pi\)
−0.940720 + 0.339184i \(0.889849\pi\)
\(114\) 0 0
\(115\) −4.04215 7.00120i −0.376932 0.652866i
\(116\) 0 0
\(117\) −3.64474 10.1841i −0.336956 0.941520i
\(118\) 0 0
\(119\) −0.0269065 0.0466034i −0.00246651 0.00427213i
\(120\) 0 0
\(121\) 4.22619 7.31998i 0.384199 0.665452i
\(122\) 0 0
\(123\) 7.74914 7.96063i 0.698716 0.717786i
\(124\) 0 0
\(125\) −3.78718 −0.338736
\(126\) 0 0
\(127\) 0.649469 1.12491i 0.0576311 0.0998200i −0.835770 0.549079i \(-0.814979\pi\)
0.893402 + 0.449259i \(0.148312\pi\)
\(128\) 0 0
\(129\) −12.6612 + 13.0067i −1.11476 + 1.14518i
\(130\) 0 0
\(131\) 1.60383 + 2.77792i 0.140127 + 0.242708i 0.927544 0.373713i \(-0.121915\pi\)
−0.787417 + 0.616421i \(0.788582\pi\)
\(132\) 0 0
\(133\) −0.00551030 0.00954413i −0.000477804 0.000827581i
\(134\) 0 0
\(135\) 3.80783 16.9158i 0.327726 1.45588i
\(136\) 0 0
\(137\) −14.7995 −1.26440 −0.632201 0.774804i \(-0.717848\pi\)
−0.632201 + 0.774804i \(0.717848\pi\)
\(138\) 0 0
\(139\) 7.40470 12.8253i 0.628058 1.08783i −0.359883 0.932998i \(-0.617183\pi\)
0.987941 0.154831i \(-0.0494834\pi\)
\(140\) 0 0
\(141\) −4.62904 16.3900i −0.389835 1.38029i
\(142\) 0 0
\(143\) −4.28673 3.83966i −0.358475 0.321088i
\(144\) 0 0
\(145\) −7.44966 + 12.9032i −0.618661 + 1.07155i
\(146\) 0 0
\(147\) −8.45691 + 8.68771i −0.697514 + 0.716550i
\(148\) 0 0
\(149\) 0.731623 1.26721i 0.0599369 0.103814i −0.834500 0.551008i \(-0.814243\pi\)
0.894437 + 0.447194i \(0.147577\pi\)
\(150\) 0 0
\(151\) 5.34215 9.25288i 0.434738 0.752989i −0.562536 0.826773i \(-0.690174\pi\)
0.997274 + 0.0737841i \(0.0235076\pi\)
\(152\) 0 0
\(153\) 13.4463 8.25364i 1.08707 0.667267i
\(154\) 0 0
\(155\) 4.92464 8.52972i 0.395556 0.685124i
\(156\) 0 0
\(157\) 5.41225 + 9.37430i 0.431945 + 0.748150i 0.997041 0.0768749i \(-0.0244942\pi\)
−0.565096 + 0.825025i \(0.691161\pi\)
\(158\) 0 0
\(159\) −6.37807 + 6.55214i −0.505814 + 0.519619i
\(160\) 0 0
\(161\) 0.0247898 0.00195371
\(162\) 0 0
\(163\) 8.68816 + 15.0483i 0.680509 + 1.17868i 0.974826 + 0.222968i \(0.0715746\pi\)
−0.294317 + 0.955708i \(0.595092\pi\)
\(164\) 0 0
\(165\) −2.50737 8.87783i −0.195198 0.691138i
\(166\) 0 0
\(167\) −8.34269 −0.645577 −0.322788 0.946471i \(-0.604620\pi\)
−0.322788 + 0.946471i \(0.604620\pi\)
\(168\) 0 0
\(169\) 10.4773 7.69579i 0.805950 0.591984i
\(170\) 0 0
\(171\) 2.75372 1.69030i 0.210583 0.129260i
\(172\) 0 0
\(173\) 11.6480 0.885581 0.442790 0.896625i \(-0.353989\pi\)
0.442790 + 0.896625i \(0.353989\pi\)
\(174\) 0 0
\(175\) 0.0313873 0.0543645i 0.00237266 0.00410957i
\(176\) 0 0
\(177\) 5.20772 + 18.4389i 0.391436 + 1.38596i
\(178\) 0 0
\(179\) −4.03526 + 6.98927i −0.301609 + 0.522403i −0.976501 0.215514i \(-0.930857\pi\)
0.674891 + 0.737917i \(0.264191\pi\)
\(180\) 0 0
\(181\) −14.6028 −1.08542 −0.542710 0.839920i \(-0.682602\pi\)
−0.542710 + 0.839920i \(0.682602\pi\)
\(182\) 0 0
\(183\) −13.1483 + 13.5072i −0.971951 + 0.998478i
\(184\) 0 0
\(185\) 28.1393 2.06884
\(186\) 0 0
\(187\) 4.19711 7.26960i 0.306923 0.531606i
\(188\) 0 0
\(189\) 0.0390832 + 0.0360474i 0.00284288 + 0.00262206i
\(190\) 0 0
\(191\) −12.3672 −0.894857 −0.447429 0.894320i \(-0.647660\pi\)
−0.447429 + 0.894320i \(0.647660\pi\)
\(192\) 0 0
\(193\) −17.9223 −1.29007 −0.645037 0.764151i \(-0.723158\pi\)
−0.645037 + 0.764151i \(0.723158\pi\)
\(194\) 0 0
\(195\) 20.7902 1.42472i 1.48882 0.102026i
\(196\) 0 0
\(197\) 1.59771 2.76731i 0.113832 0.197163i −0.803480 0.595331i \(-0.797021\pi\)
0.917312 + 0.398169i \(0.130354\pi\)
\(198\) 0 0
\(199\) −12.4051 21.4862i −0.879371 1.52312i −0.852032 0.523490i \(-0.824630\pi\)
−0.0273392 0.999626i \(-0.508703\pi\)
\(200\) 0 0
\(201\) −4.09570 + 4.20748i −0.288888 + 0.296773i
\(202\) 0 0
\(203\) −0.0228437 0.0395665i −0.00160332 0.00277702i
\(204\) 0 0
\(205\) 10.7016 + 18.5357i 0.747430 + 1.29459i
\(206\) 0 0
\(207\) 0.195656 + 7.26544i 0.0135990 + 0.504983i
\(208\) 0 0
\(209\) 0.859545 1.48877i 0.0594559 0.102981i
\(210\) 0 0
\(211\) 24.1866 1.66507 0.832537 0.553969i \(-0.186887\pi\)
0.832537 + 0.553969i \(0.186887\pi\)
\(212\) 0 0
\(213\) 6.49674 + 1.64739i 0.445149 + 0.112877i
\(214\) 0 0
\(215\) −17.4851 30.2851i −1.19248 2.06543i
\(216\) 0 0
\(217\) 0.0151010 + 0.0261556i 0.00102512 + 0.00177556i
\(218\) 0 0
\(219\) −14.0433 + 14.4266i −0.948957 + 0.974856i
\(220\) 0 0
\(221\) 14.1245 + 12.6514i 0.950114 + 0.851024i
\(222\) 0 0
\(223\) 4.03403 + 6.98714i 0.270138 + 0.467893i 0.968897 0.247464i \(-0.0795972\pi\)
−0.698759 + 0.715357i \(0.746264\pi\)
\(224\) 0 0
\(225\) 16.1810 + 8.76999i 1.07873 + 0.584666i
\(226\) 0 0
\(227\) 17.3794 1.15351 0.576757 0.816916i \(-0.304318\pi\)
0.576757 + 0.816916i \(0.304318\pi\)
\(228\) 0 0
\(229\) 13.3449 + 23.1141i 0.881857 + 1.52742i 0.849274 + 0.527952i \(0.177040\pi\)
0.0325830 + 0.999469i \(0.489627\pi\)
\(230\) 0 0
\(231\) 0.0274202 + 0.00695299i 0.00180412 + 0.000457473i
\(232\) 0 0
\(233\) 4.21829 0.276349 0.138175 0.990408i \(-0.455876\pi\)
0.138175 + 0.990408i \(0.455876\pi\)
\(234\) 0 0
\(235\) 32.8116 2.14039
\(236\) 0 0
\(237\) −0.0397939 0.140898i −0.00258489 0.00915231i
\(238\) 0 0
\(239\) −3.80822 6.59604i −0.246333 0.426662i 0.716172 0.697924i \(-0.245893\pi\)
−0.962506 + 0.271262i \(0.912559\pi\)
\(240\) 0 0
\(241\) 2.42805 0.156404 0.0782021 0.996938i \(-0.475082\pi\)
0.0782021 + 0.996938i \(0.475082\pi\)
\(242\) 0 0
\(243\) −10.2564 + 11.7391i −0.657948 + 0.753064i
\(244\) 0 0
\(245\) −11.6790 20.2286i −0.746144 1.29236i
\(246\) 0 0
\(247\) 2.89261 + 2.59094i 0.184053 + 0.164857i
\(248\) 0 0
\(249\) −6.72693 23.8180i −0.426302 1.50941i
\(250\) 0 0
\(251\) −6.94330 12.0262i −0.438257 0.759084i 0.559298 0.828967i \(-0.311071\pi\)
−0.997555 + 0.0698827i \(0.977738\pi\)
\(252\) 0 0
\(253\) 1.93346 + 3.34885i 0.121556 + 0.210541i
\(254\) 0 0
\(255\) 8.26159 + 29.2518i 0.517361 + 1.83182i
\(256\) 0 0
\(257\) 16.3511 1.01995 0.509977 0.860188i \(-0.329654\pi\)
0.509977 + 0.860188i \(0.329654\pi\)
\(258\) 0 0
\(259\) −0.0431434 + 0.0747265i −0.00268080 + 0.00464328i
\(260\) 0 0
\(261\) 11.4159 7.00737i 0.706629 0.433746i
\(262\) 0 0
\(263\) 13.0566 + 22.6146i 0.805102 + 1.39448i 0.916222 + 0.400671i \(0.131223\pi\)
−0.111119 + 0.993807i \(0.535444\pi\)
\(264\) 0 0
\(265\) −8.80812 15.2561i −0.541078 0.937175i
\(266\) 0 0
\(267\) 1.38947 + 4.91968i 0.0850340 + 0.301080i
\(268\) 0 0
\(269\) −5.60821 9.71370i −0.341938 0.592255i 0.642854 0.765988i \(-0.277750\pi\)
−0.984793 + 0.173734i \(0.944417\pi\)
\(270\) 0 0
\(271\) 10.8606 18.8111i 0.659735 1.14269i −0.320949 0.947096i \(-0.604002\pi\)
0.980684 0.195598i \(-0.0626648\pi\)
\(272\) 0 0
\(273\) −0.0280922 + 0.0573947i −0.00170022 + 0.00347368i
\(274\) 0 0
\(275\) 9.79213 0.590488
\(276\) 0 0
\(277\) 18.8036 1.12980 0.564899 0.825160i \(-0.308915\pi\)
0.564899 + 0.825160i \(0.308915\pi\)
\(278\) 0 0
\(279\) −7.54657 + 4.63226i −0.451801 + 0.277326i
\(280\) 0 0
\(281\) 7.54698 13.0718i 0.450215 0.779796i −0.548184 0.836358i \(-0.684681\pi\)
0.998399 + 0.0565622i \(0.0180139\pi\)
\(282\) 0 0
\(283\) 12.4437 0.739702 0.369851 0.929091i \(-0.379409\pi\)
0.369851 + 0.929091i \(0.379409\pi\)
\(284\) 0 0
\(285\) 1.69193 + 5.99061i 0.100221 + 0.354853i
\(286\) 0 0
\(287\) −0.0656308 −0.00387406
\(288\) 0 0
\(289\) −5.32915 + 9.23036i −0.313479 + 0.542962i
\(290\) 0 0
\(291\) 9.14302 9.39256i 0.535974 0.550601i
\(292\) 0 0
\(293\) 16.0902 27.8691i 0.940001 1.62813i 0.174537 0.984651i \(-0.444157\pi\)
0.765464 0.643479i \(-0.222509\pi\)
\(294\) 0 0
\(295\) −36.9134 −2.14918
\(296\) 0 0
\(297\) −1.82138 + 8.09125i −0.105687 + 0.469502i
\(298\) 0 0
\(299\) −8.30057 + 2.72090i −0.480034 + 0.157354i
\(300\) 0 0
\(301\) 0.107233 0.00618081
\(302\) 0 0
\(303\) −12.4412 3.15474i −0.714728 0.181235i
\(304\) 0 0
\(305\) −18.1578 31.4503i −1.03971 1.80084i
\(306\) 0 0
\(307\) −16.1883 −0.923916 −0.461958 0.886902i \(-0.652853\pi\)
−0.461958 + 0.886902i \(0.652853\pi\)
\(308\) 0 0
\(309\) 5.84253 + 1.48150i 0.332370 + 0.0842798i
\(310\) 0 0
\(311\) 0.376469 + 0.652063i 0.0213476 + 0.0369751i 0.876502 0.481398i \(-0.159871\pi\)
−0.855154 + 0.518374i \(0.826538\pi\)
\(312\) 0 0
\(313\) 9.45372 16.3743i 0.534356 0.925532i −0.464838 0.885396i \(-0.653888\pi\)
0.999194 0.0401361i \(-0.0127792\pi\)
\(314\) 0 0
\(315\) −0.0872986 + 0.0535859i −0.00491872 + 0.00301923i
\(316\) 0 0
\(317\) 1.61800 2.80247i 0.0908762 0.157402i −0.817004 0.576632i \(-0.804367\pi\)
0.907880 + 0.419230i \(0.137700\pi\)
\(318\) 0 0
\(319\) 3.56336 6.17192i 0.199510 0.345561i
\(320\) 0 0
\(321\) 7.22253 + 25.5728i 0.403122 + 1.42733i
\(322\) 0 0
\(323\) −2.83214 + 4.90540i −0.157584 + 0.272944i
\(324\) 0 0
\(325\) −4.54270 + 21.6483i −0.251984 + 1.20083i
\(326\) 0 0
\(327\) −2.17373 + 2.23306i −0.120208 + 0.123488i
\(328\) 0 0
\(329\) −0.0503069 + 0.0871342i −0.00277351 + 0.00480386i
\(330\) 0 0
\(331\) 25.1091 1.38012 0.690060 0.723752i \(-0.257584\pi\)
0.690060 + 0.723752i \(0.257584\pi\)
\(332\) 0 0
\(333\) −22.2415 12.0548i −1.21883 0.660598i
\(334\) 0 0
\(335\) −5.65617 9.79677i −0.309029 0.535255i
\(336\) 0 0
\(337\) −18.1685 31.4687i −0.989699 1.71421i −0.618835 0.785521i \(-0.712395\pi\)
−0.370863 0.928687i \(-0.620938\pi\)
\(338\) 0 0
\(339\) 7.64764 + 27.0780i 0.415363 + 1.47067i
\(340\) 0 0
\(341\) −2.35558 + 4.07998i −0.127562 + 0.220943i
\(342\) 0 0
\(343\) 0.143251 0.00773485
\(344\) 0 0
\(345\) −13.5728 3.44170i −0.730738 0.185295i
\(346\) 0 0
\(347\) −15.4139 + 26.6977i −0.827464 + 1.43321i 0.0725576 + 0.997364i \(0.476884\pi\)
−0.900022 + 0.435845i \(0.856449\pi\)
\(348\) 0 0
\(349\) 6.13548 + 10.6270i 0.328425 + 0.568848i 0.982199 0.187841i \(-0.0601490\pi\)
−0.653775 + 0.756689i \(0.726816\pi\)
\(350\) 0 0
\(351\) −17.0431 7.78033i −0.909692 0.415283i
\(352\) 0 0
\(353\) 5.56638 + 9.64125i 0.296268 + 0.513152i 0.975279 0.220976i \(-0.0709244\pi\)
−0.679011 + 0.734128i \(0.737591\pi\)
\(354\) 0 0
\(355\) −6.45626 + 11.1826i −0.342662 + 0.593509i
\(356\) 0 0
\(357\) −0.0903474 0.0229096i −0.00478169 0.00121250i
\(358\) 0 0
\(359\) −20.5430 −1.08422 −0.542110 0.840307i \(-0.682374\pi\)
−0.542110 + 0.840307i \(0.682374\pi\)
\(360\) 0 0
\(361\) 8.91999 15.4499i 0.469473 0.813152i
\(362\) 0 0
\(363\) −3.97911 14.0888i −0.208849 0.739471i
\(364\) 0 0
\(365\) −19.3938 33.5910i −1.01512 1.75823i
\(366\) 0 0
\(367\) 13.0356 + 22.5782i 0.680451 + 1.17857i 0.974843 + 0.222891i \(0.0715492\pi\)
−0.294393 + 0.955684i \(0.595117\pi\)
\(368\) 0 0
\(369\) −0.517997 19.2352i −0.0269659 1.00135i
\(370\) 0 0
\(371\) 0.0540186 0.00280451
\(372\) 0 0
\(373\) 4.61039 7.98543i 0.238717 0.413470i −0.721629 0.692280i \(-0.756606\pi\)
0.960346 + 0.278810i \(0.0899398\pi\)
\(374\) 0 0
\(375\) −4.57547 + 4.70035i −0.236276 + 0.242725i
\(376\) 0 0
\(377\) 11.9917 + 10.7411i 0.617605 + 0.553194i
\(378\) 0 0
\(379\) −18.1438 + 31.4259i −0.931982 + 1.61424i −0.152054 + 0.988372i \(0.548589\pi\)
−0.779929 + 0.625869i \(0.784745\pi\)
\(380\) 0 0
\(381\) −0.611499 2.16513i −0.0313280 0.110923i
\(382\) 0 0
\(383\) −15.8019 + 27.3696i −0.807437 + 1.39852i 0.107196 + 0.994238i \(0.465813\pi\)
−0.914633 + 0.404285i \(0.867521\pi\)
\(384\) 0 0
\(385\) −0.0272493 + 0.0471972i −0.00138875 + 0.00240539i
\(386\) 0 0
\(387\) 0.846347 + 31.4281i 0.0430223 + 1.59758i
\(388\) 0 0
\(389\) −4.02494 + 6.97141i −0.204073 + 0.353464i −0.949837 0.312746i \(-0.898751\pi\)
0.745764 + 0.666210i \(0.232085\pi\)
\(390\) 0 0
\(391\) −6.37061 11.0342i −0.322176 0.558024i
\(392\) 0 0
\(393\) 5.38540 + 1.36559i 0.271657 + 0.0688847i
\(394\) 0 0
\(395\) 0.282067 0.0141924
\(396\) 0 0
\(397\) 17.3633 + 30.0740i 0.871437 + 1.50937i 0.860511 + 0.509433i \(0.170145\pi\)
0.0109262 + 0.999940i \(0.496522\pi\)
\(398\) 0 0
\(399\) −0.0185027 0.00469176i −0.000926292 0.000234882i
\(400\) 0 0
\(401\) −6.71575 −0.335369 −0.167684 0.985841i \(-0.553629\pi\)
−0.167684 + 0.985841i \(0.553629\pi\)
\(402\) 0 0
\(403\) −7.92720 7.10045i −0.394882 0.353699i
\(404\) 0 0
\(405\) −16.3941 25.1627i −0.814629 1.25035i
\(406\) 0 0
\(407\) −13.4598 −0.667175
\(408\) 0 0
\(409\) −2.03024 + 3.51648i −0.100389 + 0.173879i −0.911845 0.410535i \(-0.865342\pi\)
0.811456 + 0.584414i \(0.198675\pi\)
\(410\) 0 0
\(411\) −17.8799 + 18.3679i −0.881952 + 0.906022i
\(412\) 0 0
\(413\) 0.0565958 0.0980269i 0.00278490 0.00482359i
\(414\) 0 0
\(415\) 47.6819 2.34061
\(416\) 0 0
\(417\) −6.97179 24.6850i −0.341410 1.20883i
\(418\) 0 0
\(419\) 11.5848 0.565955 0.282978 0.959126i \(-0.408678\pi\)
0.282978 + 0.959126i \(0.408678\pi\)
\(420\) 0 0
\(421\) 10.3527 17.9315i 0.504562 0.873927i −0.495424 0.868651i \(-0.664987\pi\)
0.999986 0.00527578i \(-0.00167934\pi\)
\(422\) 0 0
\(423\) −25.9345 14.0564i −1.26098 0.683443i
\(424\) 0 0
\(425\) −32.2643 −1.56505
\(426\) 0 0
\(427\) 0.111359 0.00538903
\(428\) 0 0
\(429\) −9.94448 + 0.681478i −0.480124 + 0.0329021i
\(430\) 0 0
\(431\) 14.2615 24.7017i 0.686954 1.18984i −0.285864 0.958270i \(-0.592281\pi\)
0.972818 0.231570i \(-0.0743861\pi\)
\(432\) 0 0
\(433\) 0.406291 + 0.703716i 0.0195251 + 0.0338184i 0.875623 0.482995i \(-0.160451\pi\)
−0.856098 + 0.516814i \(0.827118\pi\)
\(434\) 0 0
\(435\) 7.01413 + 24.8349i 0.336302 + 1.19074i
\(436\) 0 0
\(437\) −1.30467 2.25975i −0.0624107 0.108098i
\(438\) 0 0
\(439\) 1.54559 + 2.67704i 0.0737670 + 0.127768i 0.900549 0.434754i \(-0.143165\pi\)
−0.826782 + 0.562522i \(0.809831\pi\)
\(440\) 0 0
\(441\) 0.565309 + 20.9921i 0.0269195 + 0.999623i
\(442\) 0 0
\(443\) 12.8847 22.3169i 0.612170 1.06031i −0.378704 0.925518i \(-0.623630\pi\)
0.990874 0.134791i \(-0.0430364\pi\)
\(444\) 0 0
\(445\) −9.84885 −0.466880
\(446\) 0 0
\(447\) −0.688850 2.43901i −0.0325815 0.115361i
\(448\) 0 0
\(449\) 14.5947 + 25.2788i 0.688767 + 1.19298i 0.972237 + 0.233998i \(0.0751809\pi\)
−0.283470 + 0.958981i \(0.591486\pi\)
\(450\) 0 0
\(451\) −5.11883 8.86607i −0.241036 0.417487i
\(452\) 0 0
\(453\) −5.02983 17.8091i −0.236322 0.836744i
\(454\) 0 0
\(455\) −0.0917017 0.0821379i −0.00429904 0.00385068i
\(456\) 0 0
\(457\) 8.31447 + 14.4011i 0.388935 + 0.673654i 0.992306 0.123806i \(-0.0395099\pi\)
−0.603372 + 0.797460i \(0.706177\pi\)
\(458\) 0 0
\(459\) 6.00132 26.6600i 0.280118 1.24438i
\(460\) 0 0
\(461\) −8.55288 −0.398347 −0.199174 0.979964i \(-0.563826\pi\)
−0.199174 + 0.979964i \(0.563826\pi\)
\(462\) 0 0
\(463\) 7.03741 + 12.1891i 0.327056 + 0.566478i 0.981926 0.189264i \(-0.0606101\pi\)
−0.654870 + 0.755741i \(0.727277\pi\)
\(464\) 0 0
\(465\) −4.63673 16.4172i −0.215023 0.761331i
\(466\) 0 0
\(467\) −28.4099 −1.31466 −0.657328 0.753605i \(-0.728313\pi\)
−0.657328 + 0.753605i \(0.728313\pi\)
\(468\) 0 0
\(469\) 0.0346883 0.00160176
\(470\) 0 0
\(471\) 18.1734 + 4.60827i 0.837387 + 0.212338i
\(472\) 0 0
\(473\) 8.36357 + 14.4861i 0.384557 + 0.666073i
\(474\) 0 0
\(475\) −6.60756 −0.303176
\(476\) 0 0
\(477\) 0.426347 + 15.8319i 0.0195211 + 0.724893i
\(478\) 0 0
\(479\) −7.37328 12.7709i −0.336894 0.583517i 0.646953 0.762530i \(-0.276043\pi\)
−0.983847 + 0.179013i \(0.942710\pi\)
\(480\) 0 0
\(481\) 6.24416 29.7567i 0.284709 1.35679i
\(482\) 0 0
\(483\) 0.0299497 0.0307671i 0.00136276 0.00139995i
\(484\) 0 0
\(485\) 12.6265 + 21.8698i 0.573341 + 0.993056i
\(486\) 0 0
\(487\) −10.8985 18.8767i −0.493856 0.855384i 0.506119 0.862464i \(-0.331080\pi\)
−0.999975 + 0.00707973i \(0.997746\pi\)
\(488\) 0 0
\(489\) 29.1734 + 7.39755i 1.31927 + 0.334529i
\(490\) 0 0
\(491\) −25.9667 −1.17186 −0.585931 0.810361i \(-0.699271\pi\)
−0.585931 + 0.810361i \(0.699271\pi\)
\(492\) 0 0
\(493\) −11.7410 + 20.3360i −0.528788 + 0.915889i
\(494\) 0 0
\(495\) −14.0477 7.61378i −0.631398 0.342214i
\(496\) 0 0
\(497\) −0.0197975 0.0342903i −0.000888041 0.00153813i
\(498\) 0 0
\(499\) −1.53590 2.66026i −0.0687564 0.119090i 0.829598 0.558362i \(-0.188570\pi\)
−0.898354 + 0.439272i \(0.855236\pi\)
\(500\) 0 0
\(501\) −10.0792 + 10.3543i −0.450305 + 0.462595i
\(502\) 0 0
\(503\) 11.2760 + 19.5306i 0.502771 + 0.870824i 0.999995 + 0.00320229i \(0.00101932\pi\)
−0.497224 + 0.867622i \(0.665647\pi\)
\(504\) 0 0
\(505\) 12.3637 21.4145i 0.550175 0.952932i
\(506\) 0 0
\(507\) 3.10678 22.3013i 0.137977 0.990435i
\(508\) 0 0
\(509\) 11.1485 0.494149 0.247075 0.968996i \(-0.420531\pi\)
0.247075 + 0.968996i \(0.420531\pi\)
\(510\) 0 0
\(511\) 0.118939 0.00526154
\(512\) 0 0
\(513\) 1.22904 5.45983i 0.0542634 0.241058i
\(514\) 0 0
\(515\) −5.80612 + 10.0565i −0.255848 + 0.443142i
\(516\) 0 0
\(517\) −15.6946 −0.690249
\(518\) 0 0
\(519\) 14.0725 14.4566i 0.617714 0.634573i
\(520\) 0 0
\(521\) −3.23730 −0.141829 −0.0709144 0.997482i \(-0.522592\pi\)
−0.0709144 + 0.997482i \(0.522592\pi\)
\(522\) 0 0
\(523\) −9.74636 + 16.8812i −0.426178 + 0.738163i −0.996530 0.0832382i \(-0.973474\pi\)
0.570351 + 0.821401i \(0.306807\pi\)
\(524\) 0 0
\(525\) −0.0295523 0.104636i −0.00128977 0.00456668i
\(526\) 0 0
\(527\) 7.76146 13.4432i 0.338094 0.585597i
\(528\) 0 0
\(529\) −17.1306 −0.744807
\(530\) 0 0
\(531\) 29.1766 + 15.8136i 1.26616 + 0.686250i
\(532\) 0 0
\(533\) 21.9757 7.20356i 0.951874 0.312021i
\(534\) 0 0
\(535\) −51.1948 −2.21335
\(536\) 0 0
\(537\) 3.79934 + 13.4523i 0.163954 + 0.580510i
\(538\) 0 0
\(539\) 5.58636 + 9.67585i 0.240621 + 0.416769i
\(540\) 0 0
\(541\) 39.6790 1.70593 0.852966 0.521967i \(-0.174801\pi\)
0.852966 + 0.521967i \(0.174801\pi\)
\(542\) 0 0
\(543\) −17.6424 + 18.1239i −0.757107 + 0.777770i
\(544\) 0 0
\(545\) −3.00193 5.19949i −0.128588 0.222722i
\(546\) 0 0
\(547\) 2.31210 4.00468i 0.0988583 0.171228i −0.812354 0.583165i \(-0.801814\pi\)
0.911212 + 0.411937i \(0.135148\pi\)
\(548\) 0 0
\(549\) 0.878909 + 32.6373i 0.0375109 + 1.39292i
\(550\) 0 0
\(551\) −2.40450 + 4.16471i −0.102435 + 0.177423i
\(552\) 0 0
\(553\) −0.000432467 0 0.000749056i −1.83904e−5 0 3.18531e-5i
\(554\) 0 0
\(555\) 33.9965 34.9243i 1.44307 1.48245i
\(556\) 0 0
\(557\) −6.99536 + 12.1163i −0.296403 + 0.513385i −0.975310 0.220839i \(-0.929120\pi\)
0.678907 + 0.734224i \(0.262454\pi\)
\(558\) 0 0
\(559\) −35.9058 + 11.7698i −1.51865 + 0.497809i
\(560\) 0 0
\(561\) −3.95173 13.9919i −0.166842 0.590737i
\(562\) 0 0
\(563\) −3.11628 + 5.39756i −0.131336 + 0.227480i −0.924192 0.381929i \(-0.875260\pi\)
0.792856 + 0.609409i \(0.208593\pi\)
\(564\) 0 0
\(565\) −54.2081 −2.28055
\(566\) 0 0
\(567\) 0.0919575 0.00495635i 0.00386185 0.000208147i
\(568\) 0 0
\(569\) 14.9219 + 25.8455i 0.625558 + 1.08350i 0.988433 + 0.151660i \(0.0484619\pi\)
−0.362875 + 0.931838i \(0.618205\pi\)
\(570\) 0 0
\(571\) 17.0296 + 29.4962i 0.712668 + 1.23438i 0.963852 + 0.266438i \(0.0858469\pi\)
−0.251184 + 0.967939i \(0.580820\pi\)
\(572\) 0 0
\(573\) −14.9414 + 15.3492i −0.624185 + 0.641220i
\(574\) 0 0
\(575\) 7.43153 12.8718i 0.309916 0.536791i
\(576\) 0 0
\(577\) −27.1865 −1.13179 −0.565895 0.824477i \(-0.691469\pi\)
−0.565895 + 0.824477i \(0.691469\pi\)
\(578\) 0 0
\(579\) −21.6528 + 22.2437i −0.899858 + 0.924417i
\(580\) 0 0
\(581\) −0.0731062 + 0.126624i −0.00303296 + 0.00525324i
\(582\) 0 0
\(583\) 4.21315 + 7.29738i 0.174491 + 0.302227i
\(584\) 0 0
\(585\) 23.3494 27.5244i 0.965379 1.13799i
\(586\) 0 0
\(587\) 19.0165 + 32.9376i 0.784895 + 1.35948i 0.929062 + 0.369925i \(0.120617\pi\)
−0.144166 + 0.989553i \(0.546050\pi\)
\(588\) 0 0
\(589\) 1.58950 2.75310i 0.0654944 0.113440i
\(590\) 0 0
\(591\) −1.50430 5.32626i −0.0618786 0.219093i
\(592\) 0 0
\(593\) −16.5666 −0.680308 −0.340154 0.940370i \(-0.610479\pi\)
−0.340154 + 0.940370i \(0.610479\pi\)
\(594\) 0 0
\(595\) 0.0897844 0.155511i 0.00368080 0.00637534i
\(596\) 0 0
\(597\) −41.6541 10.5623i −1.70479 0.432287i
\(598\) 0 0
\(599\) −24.1602 41.8467i −0.987158 1.70981i −0.631923 0.775031i \(-0.717734\pi\)
−0.355236 0.934777i \(-0.615599\pi\)
\(600\) 0 0
\(601\) −2.54011 4.39959i −0.103613 0.179463i 0.809558 0.587040i \(-0.199707\pi\)
−0.913171 + 0.407577i \(0.866374\pi\)
\(602\) 0 0
\(603\) 0.273780 + 10.1665i 0.0111492 + 0.414013i
\(604\) 0 0
\(605\) 28.2048 1.14669
\(606\) 0 0
\(607\) 15.8874 27.5177i 0.644848 1.11691i −0.339489 0.940610i \(-0.610254\pi\)
0.984337 0.176299i \(-0.0564126\pi\)
\(608\) 0 0
\(609\) −0.0767054 0.0194503i −0.00310826 0.000788168i
\(610\) 0 0
\(611\) 7.28095 34.6975i 0.294556 1.40371i
\(612\) 0 0
\(613\) 10.5861 18.3357i 0.427570 0.740573i −0.569087 0.822278i \(-0.692703\pi\)
0.996657 + 0.0817046i \(0.0260364\pi\)
\(614\) 0 0
\(615\) 35.9341 + 9.11188i 1.44900 + 0.367426i
\(616\) 0 0
\(617\) 6.76704 11.7209i 0.272431 0.471864i −0.697053 0.717020i \(-0.745506\pi\)
0.969484 + 0.245156i \(0.0788391\pi\)
\(618\) 0 0
\(619\) 6.51136 11.2780i 0.261714 0.453301i −0.704984 0.709223i \(-0.749046\pi\)
0.966697 + 0.255922i \(0.0823791\pi\)
\(620\) 0 0
\(621\) 9.25367 + 8.53489i 0.371337 + 0.342494i
\(622\) 0 0
\(623\) 0.0151003 0.0261545i 0.000604981 0.00104786i
\(624\) 0 0
\(625\) 9.01861 + 15.6207i 0.360745 + 0.624828i
\(626\) 0 0
\(627\) −0.809292 2.86546i −0.0323200 0.114435i
\(628\) 0 0
\(629\) 44.3489 1.76831
\(630\) 0 0
\(631\) −19.6481 34.0315i −0.782179 1.35477i −0.930670 0.365860i \(-0.880775\pi\)
0.148491 0.988914i \(-0.452558\pi\)
\(632\) 0 0
\(633\) 29.2210 30.0185i 1.16143 1.19313i
\(634\) 0 0
\(635\) 4.33443 0.172007
\(636\) 0 0
\(637\) −23.9829 + 7.86150i −0.950236 + 0.311484i
\(638\) 0 0
\(639\) 9.89364 6.07295i 0.391386 0.240242i
\(640\) 0 0
\(641\) −49.4497 −1.95314 −0.976572 0.215190i \(-0.930963\pi\)
−0.976572 + 0.215190i \(0.930963\pi\)
\(642\) 0 0
\(643\) −16.6129 + 28.7744i −0.655150 + 1.13475i 0.326706 + 0.945126i \(0.394061\pi\)
−0.981856 + 0.189627i \(0.939272\pi\)
\(644\) 0 0
\(645\) −58.7121 14.8877i −2.31179 0.586204i
\(646\) 0 0
\(647\) 3.14446 5.44637i 0.123622 0.214119i −0.797572 0.603224i \(-0.793882\pi\)
0.921193 + 0.389105i \(0.127216\pi\)
\(648\) 0 0
\(649\) 17.6566 0.693083
\(650\) 0 0
\(651\) 0.0507065 + 0.0128578i 0.00198734 + 0.000503935i
\(652\) 0 0
\(653\) 21.3932 0.837181 0.418591 0.908175i \(-0.362524\pi\)
0.418591 + 0.908175i \(0.362524\pi\)
\(654\) 0 0
\(655\) −5.35184 + 9.26965i −0.209113 + 0.362195i
\(656\) 0 0
\(657\) 0.938734 + 34.8588i 0.0366235 + 1.35997i
\(658\) 0 0
\(659\) 6.23848 0.243017 0.121508 0.992590i \(-0.461227\pi\)
0.121508 + 0.992590i \(0.461227\pi\)
\(660\) 0 0
\(661\) 23.5869 0.917425 0.458712 0.888585i \(-0.348311\pi\)
0.458712 + 0.888585i \(0.348311\pi\)
\(662\) 0 0
\(663\) 32.7663 2.24542i 1.27254 0.0872048i
\(664\) 0 0
\(665\) 0.0183874 0.0318478i 0.000713031 0.00123501i
\(666\) 0 0
\(667\) −5.40868 9.36810i −0.209425 0.362734i
\(668\) 0 0
\(669\) 13.5456 + 3.43478i 0.523702 + 0.132796i
\(670\) 0 0
\(671\) 8.68535 + 15.0435i 0.335294 + 0.580746i
\(672\) 0 0
\(673\) −21.7158 37.6129i −0.837082 1.44987i −0.892324 0.451396i \(-0.850926\pi\)
0.0552411 0.998473i \(-0.482407\pi\)
\(674\) 0 0
\(675\) 30.4336 9.48711i 1.17139 0.365159i
\(676\) 0 0
\(677\) −6.42619 + 11.1305i −0.246979 + 0.427779i −0.962686 0.270621i \(-0.912771\pi\)
0.715707 + 0.698400i \(0.246104\pi\)
\(678\) 0 0
\(679\) −0.0774362 −0.00297173
\(680\) 0 0
\(681\) 20.9969 21.5700i 0.804604 0.826564i
\(682\) 0 0
\(683\) 18.6982 + 32.3862i 0.715467 + 1.23922i 0.962779 + 0.270289i \(0.0871191\pi\)
−0.247313 + 0.968936i \(0.579548\pi\)
\(684\) 0 0
\(685\) −24.6922 42.7681i −0.943440 1.63409i
\(686\) 0 0
\(687\) 44.8100 + 11.3626i 1.70961 + 0.433509i
\(688\) 0 0
\(689\) −18.0875 + 5.92902i −0.689079 + 0.225878i
\(690\) 0 0
\(691\) −4.02691 6.97482i −0.153191 0.265335i 0.779208 0.626766i \(-0.215622\pi\)
−0.932399 + 0.361431i \(0.882288\pi\)
\(692\) 0 0
\(693\) 0.0417571 0.0256315i 0.00158622 0.000973660i
\(694\) 0 0
\(695\) 49.4176 1.87451
\(696\) 0 0
\(697\) 16.8662 + 29.2130i 0.638851 + 1.10652i
\(698\) 0 0
\(699\) 5.09632 5.23541i 0.192760 0.198021i
\(700\) 0 0
\(701\) 25.2004 0.951805 0.475903 0.879498i \(-0.342121\pi\)
0.475903 + 0.879498i \(0.342121\pi\)
\(702\) 0 0
\(703\) 9.08241 0.342550
\(704\) 0 0
\(705\) 39.6413 40.7232i 1.49298 1.53372i
\(706\) 0 0
\(707\) 0.0379121 + 0.0656656i 0.00142583 + 0.00246961i
\(708\) 0 0
\(709\) −3.34357 −0.125570 −0.0627852 0.998027i \(-0.519998\pi\)
−0.0627852 + 0.998027i \(0.519998\pi\)
\(710\) 0 0
\(711\) −0.222948 0.120837i −0.00836121 0.00453172i
\(712\) 0 0
\(713\) 3.57543 + 6.19283i 0.133901 + 0.231923i
\(714\) 0 0
\(715\) 3.94380 18.7943i 0.147490 0.702866i
\(716\) 0 0
\(717\) −12.7874 3.24252i −0.477553 0.121094i
\(718\) 0 0
\(719\) 8.68263 + 15.0388i 0.323807 + 0.560851i 0.981270 0.192636i \(-0.0617037\pi\)
−0.657463 + 0.753487i \(0.728370\pi\)
\(720\) 0 0
\(721\) −0.0178040 0.0308374i −0.000663054 0.00114844i
\(722\) 0 0
\(723\) 2.93344 3.01350i 0.109096 0.112073i
\(724\) 0 0
\(725\) −27.3926 −1.01733
\(726\) 0 0
\(727\) −6.14162 + 10.6376i −0.227780 + 0.394527i −0.957150 0.289593i \(-0.906480\pi\)
0.729370 + 0.684120i \(0.239813\pi\)
\(728\) 0 0
\(729\) 2.17840 + 26.9120i 0.0806815 + 0.996740i
\(730\) 0 0
\(731\) −27.5573 47.7307i −1.01925 1.76538i
\(732\) 0 0
\(733\) 16.5584 + 28.6799i 0.611597 + 1.05932i 0.990971 + 0.134074i \(0.0428061\pi\)
−0.379374 + 0.925243i \(0.623861\pi\)
\(734\) 0 0
\(735\) −39.2161 9.94411i −1.44651 0.366794i
\(736\) 0 0
\(737\) 2.70549 + 4.68604i 0.0996579 + 0.172613i
\(738\) 0 0
\(739\) 4.40386 7.62771i 0.161999 0.280590i −0.773587 0.633690i \(-0.781539\pi\)
0.935585 + 0.353101i \(0.114873\pi\)
\(740\) 0 0
\(741\) 6.71037 0.459850i 0.246511 0.0168930i
\(742\) 0 0
\(743\) 36.6179 1.34338 0.671691 0.740832i \(-0.265568\pi\)
0.671691 + 0.740832i \(0.265568\pi\)
\(744\) 0 0
\(745\) 4.88271 0.178889
\(746\) 0 0
\(747\) −37.6882 20.4267i −1.37894 0.747376i
\(748\) 0 0
\(749\) 0.0784922 0.135953i 0.00286804 0.00496760i
\(750\) 0 0
\(751\) 13.6627 0.498558 0.249279 0.968432i \(-0.419806\pi\)
0.249279 + 0.968432i \(0.419806\pi\)
\(752\) 0 0
\(753\) −23.3144 5.91189i −0.849625 0.215441i
\(754\) 0 0
\(755\) 35.6525 1.29753
\(756\) 0 0
\(757\) −27.4148 + 47.4837i −0.996406 + 1.72583i −0.424848 + 0.905265i \(0.639672\pi\)
−0.571559 + 0.820561i \(0.693661\pi\)
\(758\) 0 0
\(759\) 6.49224 + 1.64625i 0.235653 + 0.0597551i
\(760\) 0 0
\(761\) 7.08893 12.2784i 0.256974 0.445091i −0.708456 0.705755i \(-0.750608\pi\)
0.965430 + 0.260663i \(0.0839413\pi\)
\(762\) 0 0
\(763\) 0.0184103 0.000666497
\(764\) 0 0
\(765\) 46.2862 + 25.0868i 1.67348 + 0.907016i
\(766\) 0 0
\(767\) −8.19114 + 39.0351i −0.295765 + 1.40947i
\(768\) 0 0
\(769\) 20.8197 0.750777 0.375388 0.926868i \(-0.377509\pi\)
0.375388 + 0.926868i \(0.377509\pi\)
\(770\) 0 0
\(771\) 19.7546 20.2937i 0.711443 0.730860i
\(772\) 0 0
\(773\) 12.2988 + 21.3022i 0.442359 + 0.766188i 0.997864 0.0653251i \(-0.0208084\pi\)
−0.555505 + 0.831513i \(0.687475\pi\)
\(774\) 0 0
\(775\) 18.1080 0.650459
\(776\) 0 0
\(777\) 0.0406211 + 0.143827i 0.00145727 + 0.00515976i
\(778\) 0 0
\(779\) 3.45410 + 5.98267i 0.123756 + 0.214352i
\(780\) 0 0
\(781\) 3.08819 5.34890i 0.110504 0.191399i
\(782\) 0 0
\(783\) 5.09515 22.6345i 0.182086 0.808891i
\(784\) 0 0
\(785\) −18.0602 + 31.2811i −0.644595 + 1.11647i
\(786\) 0 0
\(787\) −8.15152 + 14.1189i −0.290570 + 0.503283i −0.973945 0.226785i \(-0.927178\pi\)
0.683374 + 0.730068i \(0.260512\pi\)
\(788\) 0 0
\(789\) 43.8417 + 11.1170i 1.56081 + 0.395777i
\(790\) 0 0
\(791\) 0.0831122 0.143955i 0.00295513 0.00511843i
\(792\) 0 0
\(793\) −37.2872 + 12.2226i −1.32411 + 0.434037i
\(794\) 0 0
\(795\) −29.5762 7.49969i −1.04896 0.265987i
\(796\) 0 0
\(797\) −16.7580 + 29.0256i −0.593597 + 1.02814i 0.400146 + 0.916452i \(0.368959\pi\)
−0.993743 + 0.111689i \(0.964374\pi\)
\(798\) 0 0
\(799\) 51.7126 1.82946
\(800\) 0 0
\(801\) 7.78460 + 4.21920i 0.275055 + 0.149078i
\(802\) 0 0
\(803\) 9.27654 + 16.0674i 0.327362 + 0.567007i
\(804\) 0 0
\(805\) 0.0413606 + 0.0716386i 0.00145777 + 0.00252493i
\(806\) 0 0
\(807\) −18.8314 4.77512i −0.662897 0.168092i
\(808\) 0 0
\(809\) −6.27596 + 10.8703i −0.220651 + 0.382179i −0.955006 0.296587i \(-0.904152\pi\)
0.734355 + 0.678766i \(0.237485\pi\)
\(810\) 0 0
\(811\) −31.5098 −1.10646 −0.553230 0.833029i \(-0.686605\pi\)
−0.553230 + 0.833029i \(0.686605\pi\)
\(812\) 0 0
\(813\) −10.2257 36.2059i −0.358629 1.26980i
\(814\) 0 0
\(815\) −28.9916 + 50.2149i −1.01553 + 1.75895i
\(816\) 0 0
\(817\) −5.64360 9.77500i −0.197444 0.341984i
\(818\) 0 0
\(819\) 0.0372942 + 0.104207i 0.00130316 + 0.00364129i
\(820\) 0 0
\(821\) 3.70635 + 6.41958i 0.129352 + 0.224045i 0.923426 0.383777i \(-0.125377\pi\)
−0.794073 + 0.607822i \(0.792043\pi\)
\(822\) 0 0
\(823\) −22.4892 + 38.9524i −0.783922 + 1.35779i 0.145718 + 0.989326i \(0.453451\pi\)
−0.929641 + 0.368467i \(0.879883\pi\)
\(824\) 0 0
\(825\) 11.8303 12.1532i 0.411880 0.423121i
\(826\) 0 0
\(827\) −17.6384 −0.613346 −0.306673 0.951815i \(-0.599216\pi\)
−0.306673 + 0.951815i \(0.599216\pi\)
\(828\) 0 0
\(829\) 20.2587 35.0891i 0.703613 1.21869i −0.263576 0.964639i \(-0.584902\pi\)
0.967190 0.254056i \(-0.0817646\pi\)
\(830\) 0 0
\(831\) 22.7175 23.3375i 0.788062 0.809570i
\(832\) 0 0
\(833\) −18.4066 31.8812i −0.637752 1.10462i
\(834\) 0 0
\(835\) −13.9194 24.1091i −0.481700 0.834329i
\(836\) 0 0
\(837\) −3.36817 + 14.9627i −0.116421 + 0.517185i
\(838\) 0 0
\(839\) 21.2322 0.733018 0.366509 0.930414i \(-0.380553\pi\)
0.366509 + 0.930414i \(0.380553\pi\)
\(840\) 0 0
\(841\) 4.53183 7.84936i 0.156270 0.270668i
\(842\) 0 0
\(843\) −7.10576 25.1593i −0.244735 0.866533i
\(844\) 0 0
\(845\) 39.7206 + 17.4378i 1.36643 + 0.599880i
\(846\) 0 0
\(847\) −0.0432438 + 0.0749004i −0.00148587 + 0.00257361i
\(848\) 0 0
\(849\) 15.0338 15.4441i 0.515960 0.530042i
\(850\) 0 0
\(851\) −10.2150 + 17.6929i −0.350165 + 0.606504i
\(852\) 0 0
\(853\) 16.8214 29.1355i 0.575954 0.997582i −0.419983 0.907532i \(-0.637964\pi\)
0.995937 0.0900501i \(-0.0287027\pi\)
\(854\) 0 0
\(855\) 9.47916 + 5.13765i 0.324181 + 0.175704i
\(856\) 0 0
\(857\) −20.1528 + 34.9056i −0.688406 + 1.19235i 0.283948 + 0.958840i \(0.408356\pi\)
−0.972354 + 0.233514i \(0.924978\pi\)
\(858\) 0 0
\(859\) 7.34388 + 12.7200i 0.250570 + 0.434000i 0.963683 0.267049i \(-0.0860486\pi\)
−0.713113 + 0.701049i \(0.752715\pi\)
\(860\) 0 0
\(861\) −0.0792917 + 0.0814557i −0.00270225 + 0.00277600i
\(862\) 0 0
\(863\) −14.9208 −0.507909 −0.253954 0.967216i \(-0.581731\pi\)
−0.253954 + 0.967216i \(0.581731\pi\)
\(864\) 0 0
\(865\) 19.4341 + 33.6609i 0.660780 + 1.14450i
\(866\) 0 0
\(867\) 5.01759 + 17.7657i 0.170406 + 0.603356i
\(868\) 0 0
\(869\) −0.134920 −0.00457685
\(870\) 0 0
\(871\) −11.6150 + 3.80734i −0.393558 + 0.129007i
\(872\) 0 0
\(873\) −0.611173 22.6952i −0.0206851 0.768116i
\(874\) 0 0
\(875\) 0.0387517 0.00131004
\(876\) 0 0
\(877\) 23.8711 41.3459i 0.806069 1.39615i −0.109498 0.993987i \(-0.534924\pi\)
0.915567 0.402165i \(-0.131742\pi\)
\(878\) 0 0
\(879\) −15.1495 53.6399i −0.510981 1.80923i
\(880\) 0 0
\(881\) −8.65508 + 14.9910i −0.291597 + 0.505061i −0.974188 0.225740i \(-0.927520\pi\)
0.682590 + 0.730801i \(0.260853\pi\)
\(882\) 0 0
\(883\) 10.2700 0.345614 0.172807 0.984956i \(-0.444716\pi\)
0.172807 + 0.984956i \(0.444716\pi\)
\(884\) 0 0
\(885\) −44.5968 + 45.8140i −1.49911 + 1.54002i
\(886\) 0 0
\(887\) −43.1760 −1.44971 −0.724853 0.688903i \(-0.758092\pi\)
−0.724853 + 0.688903i \(0.758092\pi\)
\(888\) 0 0
\(889\) −0.00664558 + 0.0115105i −0.000222886 + 0.000386049i
\(890\) 0 0
\(891\) 7.84171 + 12.0360i 0.262707 + 0.403220i
\(892\) 0 0
\(893\) 10.5905 0.354396
\(894\) 0 0
\(895\) −26.9306 −0.900189
\(896\) 0 0
\(897\) −6.65135 + 13.5892i −0.222082 + 0.453732i
\(898\) 0 0
\(899\) 6.58951 11.4134i 0.219772 0.380657i
\(900\) 0 0
\(901\) −13.8820 24.0443i −0.462476 0.801033i
\(902\) 0 0
\(903\) 0.129553 0.133089i 0.00431127 0.00442893i
\(904\) 0 0
\(905\) −24.3642 42.2000i −0.809892 1.40277i
\(906\) 0 0
\(907\) 9.76654 + 16.9162i 0.324293 + 0.561692i 0.981369 0.192133i \(-0.0615404\pi\)
−0.657076 + 0.753824i \(0.728207\pi\)
\(908\) 0 0
\(909\) −18.9462 + 11.6296i −0.628406 + 0.385730i
\(910\) 0 0
\(911\) −0.757377 + 1.31182i −0.0250930 + 0.0434624i −0.878299 0.478111i \(-0.841322\pi\)
0.853206 + 0.521574i \(0.174655\pi\)
\(912\) 0 0
\(913\) −22.8075 −0.754817
\(914\) 0 0
\(915\) −60.9709 15.4605i −2.01564 0.511109i
\(916\) 0 0
\(917\) −0.0164109 0.0284246i −0.000541937 0.000938662i
\(918\) 0 0
\(919\) 6.40403 + 11.0921i 0.211249 + 0.365895i 0.952106 0.305769i \(-0.0989134\pi\)
−0.740856 + 0.671663i \(0.765580\pi\)
\(920\) 0 0
\(921\) −19.5579 + 20.0916i −0.644454 + 0.662042i
\(922\) 0 0
\(923\) 10.3926 + 9.30877i 0.342078 + 0.306402i
\(924\) 0 0
\(925\) 25.8672 + 44.8034i 0.850509 + 1.47313i
\(926\) 0 0
\(927\) 8.89737 5.46141i 0.292228 0.179376i
\(928\) 0 0
\(929\) −42.9072 −1.40774 −0.703870 0.710329i \(-0.748546\pi\)
−0.703870 + 0.710329i \(0.748546\pi\)
\(930\) 0 0
\(931\) −3.76958 6.52910i −0.123543 0.213983i
\(932\) 0 0
\(933\) 1.26412 + 0.320545i 0.0413854 + 0.0104942i
\(934\) 0 0
\(935\) 28.0107 0.916047
\(936\) 0 0
\(937\) −19.8226 −0.647576 −0.323788 0.946130i \(-0.604957\pi\)
−0.323788 + 0.946130i \(0.604957\pi\)
\(938\) 0 0
\(939\) −8.90102 31.5158i −0.290474 1.02848i
\(940\) 0 0
\(941\) −0.755494 1.30855i −0.0246284 0.0426576i 0.853449 0.521177i \(-0.174507\pi\)
−0.878077 + 0.478520i \(0.841174\pi\)
\(942\) 0 0
\(943\) −15.5393 −0.506030
\(944\) 0 0
\(945\) −0.0389630 + 0.173088i −0.00126747 + 0.00563055i
\(946\) 0 0
\(947\) −14.4986 25.1123i −0.471141 0.816041i 0.528314 0.849049i \(-0.322824\pi\)
−0.999455 + 0.0330085i \(0.989491\pi\)
\(948\) 0 0
\(949\) −39.8252 + 13.0546i −1.29278 + 0.423769i
\(950\) 0 0
\(951\) −1.52341 5.39393i −0.0493999 0.174910i
\(952\) 0 0
\(953\) −4.62180 8.00519i −0.149715 0.259313i 0.781407 0.624021i \(-0.214502\pi\)
−0.931122 + 0.364708i \(0.881169\pi\)
\(954\) 0 0
\(955\) −20.6340 35.7392i −0.667702 1.15649i
\(956\) 0 0
\(957\) −3.35503 11.8792i −0.108453 0.383998i
\(958\) 0 0
\(959\) 0.151433 0.00489002
\(960\) 0 0
\(961\) 11.1440 19.3019i 0.359483 0.622643i
\(962\) 0 0
\(963\) 40.4648 + 21.9317i 1.30396 + 0.706738i
\(964\) 0 0
\(965\) −29.9025 51.7926i −0.962595 1.66726i
\(966\) 0 0
\(967\) 8.55097 + 14.8107i 0.274981 + 0.476281i 0.970130 0.242585i \(-0.0779952\pi\)
−0.695150 + 0.718865i \(0.744662\pi\)
\(968\) 0 0
\(969\) 2.66656 + 9.44147i 0.0856622 + 0.303304i
\(970\) 0 0
\(971\) 10.4610 + 18.1189i 0.335709 + 0.581465i 0.983621 0.180251i \(-0.0576909\pi\)
−0.647912 + 0.761715i \(0.724358\pi\)
\(972\) 0 0
\(973\) −0.0757673 + 0.131233i −0.00242899 + 0.00420713i
\(974\) 0 0
\(975\) 21.3799 + 31.7924i 0.684706 + 1.01817i
\(976\) 0 0
\(977\) 17.1338 0.548158 0.274079 0.961707i \(-0.411627\pi\)
0.274079 + 0.961707i \(0.411627\pi\)
\(978\) 0 0
\(979\) 4.71095 0.150563
\(980\) 0 0
\(981\) 0.145305 + 5.39573i 0.00463923 + 0.172272i
\(982\) 0 0
\(983\) 12.5557 21.7471i 0.400465 0.693625i −0.593317 0.804969i \(-0.702182\pi\)
0.993782 + 0.111344i \(0.0355154\pi\)
\(984\) 0 0
\(985\) 10.6628 0.339745
\(986\) 0 0
\(987\) 0.0473658 + 0.167708i 0.00150767 + 0.00533820i
\(988\) 0 0
\(989\) 25.3894 0.807337
\(990\) 0 0
\(991\) −10.7270 + 18.5797i −0.340754 + 0.590204i −0.984573 0.174974i \(-0.944016\pi\)
0.643819 + 0.765178i \(0.277349\pi\)
\(992\) 0 0
\(993\) 30.3355 31.1634i 0.962667 0.988940i
\(994\) 0 0
\(995\) 41.3945 71.6974i 1.31229 2.27296i
\(996\) 0 0
\(997\) −34.2908 −1.08600 −0.543000 0.839733i \(-0.682712\pi\)
−0.543000 + 0.839733i \(0.682712\pi\)
\(998\) 0 0
\(999\) −41.8325 + 13.0405i −1.32352 + 0.412582i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.k.a.61.11 yes 28
3.2 odd 2 1404.2.k.a.1153.2 28
9.4 even 3 468.2.j.a.373.8 yes 28
9.5 odd 6 1404.2.j.a.685.2 28
13.3 even 3 468.2.j.a.133.8 28
39.29 odd 6 1404.2.j.a.289.2 28
117.68 odd 6 1404.2.k.a.1225.2 28
117.94 even 3 inner 468.2.k.a.445.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.8 28 13.3 even 3
468.2.j.a.373.8 yes 28 9.4 even 3
468.2.k.a.61.11 yes 28 1.1 even 1 trivial
468.2.k.a.445.11 yes 28 117.94 even 3 inner
1404.2.j.a.289.2 28 39.29 odd 6
1404.2.j.a.685.2 28 9.5 odd 6
1404.2.k.a.1153.2 28 3.2 odd 2
1404.2.k.a.1225.2 28 117.68 odd 6