Properties

Label 468.2.j.a.133.5
Level $468$
Weight $2$
Character 468.133
Analytic conductor $3.737$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(133,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.5
Character \(\chi\) \(=\) 468.133
Dual form 468.2.j.a.373.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.964252 + 1.43883i) q^{3} +(-0.216950 - 0.375768i) q^{5} +(-0.791636 - 1.37115i) q^{7} +(-1.14044 - 2.77478i) q^{9} -3.28568 q^{11} +(-1.50098 - 3.27827i) q^{13} +(0.749859 + 0.0501820i) q^{15} +(0.820732 - 1.42155i) q^{17} +(0.0150406 - 0.0260511i) q^{19} +(2.73619 + 0.183111i) q^{21} +(0.0282011 - 0.0488457i) q^{23} +(2.40587 - 4.16708i) q^{25} +(5.09209 + 1.03469i) q^{27} -3.37346 q^{29} +(-2.73925 - 4.74451i) q^{31} +(3.16823 - 4.72753i) q^{33} +(-0.343491 + 0.594943i) q^{35} +(-1.81655 - 3.14636i) q^{37} +(6.16418 + 1.00143i) q^{39} +(1.81506 - 3.14378i) q^{41} +(-1.33998 - 2.32092i) q^{43} +(-0.795256 + 1.03053i) q^{45} +(-3.78962 + 6.56382i) q^{47} +(2.24662 - 3.89127i) q^{49} +(1.25397 + 2.55162i) q^{51} -4.05057 q^{53} +(0.712828 + 1.23465i) q^{55} +(0.0229801 + 0.0467606i) q^{57} -0.362821 q^{59} +(1.72774 + 2.99253i) q^{61} +(-2.90184 + 3.76033i) q^{63} +(-0.906231 + 1.27524i) q^{65} +(-1.28103 + 2.21882i) q^{67} +(0.0430875 + 0.0876760i) q^{69} +(-7.29808 + 12.6407i) q^{71} -0.162888 q^{73} +(3.67584 + 7.47974i) q^{75} +(2.60107 + 4.50518i) q^{77} +(5.70128 - 9.87490i) q^{79} +(-6.39880 + 6.32893i) q^{81} +(-5.52019 + 9.56125i) q^{83} -0.712231 q^{85} +(3.25286 - 4.85382i) q^{87} +(-6.13248 - 10.6218i) q^{89} +(-3.30678 + 4.65327i) q^{91} +(9.46785 + 0.633607i) q^{93} -0.0130522 q^{95} +(6.46904 + 11.2047i) q^{97} +(3.74712 + 9.11705i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{7} - 2 q^{9} + 8 q^{11} + q^{13} - 10 q^{15} - 8 q^{17} - q^{19} + 14 q^{21} - 4 q^{23} - 14 q^{25} + 26 q^{29} + 2 q^{31} + 8 q^{33} + 3 q^{35} - q^{37} - 12 q^{39} + 4 q^{41} + 2 q^{43}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.964252 + 1.43883i −0.556711 + 0.830706i
\(4\) 0 0
\(5\) −0.216950 0.375768i −0.0970229 0.168049i 0.813428 0.581665i \(-0.197599\pi\)
−0.910451 + 0.413617i \(0.864265\pi\)
\(6\) 0 0
\(7\) −0.791636 1.37115i −0.299210 0.518248i 0.676745 0.736217i \(-0.263390\pi\)
−0.975956 + 0.217970i \(0.930057\pi\)
\(8\) 0 0
\(9\) −1.14044 2.77478i −0.380146 0.924926i
\(10\) 0 0
\(11\) −3.28568 −0.990671 −0.495335 0.868702i \(-0.664955\pi\)
−0.495335 + 0.868702i \(0.664955\pi\)
\(12\) 0 0
\(13\) −1.50098 3.27827i −0.416298 0.909228i
\(14\) 0 0
\(15\) 0.749859 + 0.0501820i 0.193613 + 0.0129569i
\(16\) 0 0
\(17\) 0.820732 1.42155i 0.199057 0.344777i −0.749166 0.662382i \(-0.769545\pi\)
0.948223 + 0.317606i \(0.102879\pi\)
\(18\) 0 0
\(19\) 0.0150406 0.0260511i 0.00345055 0.00597653i −0.864295 0.502985i \(-0.832235\pi\)
0.867746 + 0.497009i \(0.165568\pi\)
\(20\) 0 0
\(21\) 2.73619 + 0.183111i 0.597085 + 0.0399581i
\(22\) 0 0
\(23\) 0.0282011 0.0488457i 0.00588033 0.0101850i −0.863070 0.505084i \(-0.831462\pi\)
0.868951 + 0.494899i \(0.164795\pi\)
\(24\) 0 0
\(25\) 2.40587 4.16708i 0.481173 0.833416i
\(26\) 0 0
\(27\) 5.09209 + 1.03469i 0.979974 + 0.199127i
\(28\) 0 0
\(29\) −3.37346 −0.626436 −0.313218 0.949681i \(-0.601407\pi\)
−0.313218 + 0.949681i \(0.601407\pi\)
\(30\) 0 0
\(31\) −2.73925 4.74451i −0.491983 0.852140i 0.507974 0.861372i \(-0.330394\pi\)
−0.999957 + 0.00923265i \(0.997061\pi\)
\(32\) 0 0
\(33\) 3.16823 4.72753i 0.551517 0.822957i
\(34\) 0 0
\(35\) −0.343491 + 0.594943i −0.0580605 + 0.100564i
\(36\) 0 0
\(37\) −1.81655 3.14636i −0.298639 0.517258i 0.677186 0.735812i \(-0.263199\pi\)
−0.975825 + 0.218554i \(0.929866\pi\)
\(38\) 0 0
\(39\) 6.16418 + 1.00143i 0.987059 + 0.160356i
\(40\) 0 0
\(41\) 1.81506 3.14378i 0.283465 0.490976i −0.688771 0.724979i \(-0.741849\pi\)
0.972236 + 0.234004i \(0.0751827\pi\)
\(42\) 0 0
\(43\) −1.33998 2.32092i −0.204345 0.353937i 0.745579 0.666418i \(-0.232173\pi\)
−0.949924 + 0.312481i \(0.898840\pi\)
\(44\) 0 0
\(45\) −0.795256 + 1.03053i −0.118550 + 0.153622i
\(46\) 0 0
\(47\) −3.78962 + 6.56382i −0.552773 + 0.957432i 0.445300 + 0.895382i \(0.353097\pi\)
−0.998073 + 0.0620500i \(0.980236\pi\)
\(48\) 0 0
\(49\) 2.24662 3.89127i 0.320946 0.555895i
\(50\) 0 0
\(51\) 1.25397 + 2.55162i 0.175591 + 0.357299i
\(52\) 0 0
\(53\) −4.05057 −0.556388 −0.278194 0.960525i \(-0.589736\pi\)
−0.278194 + 0.960525i \(0.589736\pi\)
\(54\) 0 0
\(55\) 0.712828 + 1.23465i 0.0961178 + 0.166481i
\(56\) 0 0
\(57\) 0.0229801 + 0.0467606i 0.00304378 + 0.00619360i
\(58\) 0 0
\(59\) −0.362821 −0.0472353 −0.0236176 0.999721i \(-0.507518\pi\)
−0.0236176 + 0.999721i \(0.507518\pi\)
\(60\) 0 0
\(61\) 1.72774 + 2.99253i 0.221214 + 0.383154i 0.955177 0.296035i \(-0.0956646\pi\)
−0.733963 + 0.679190i \(0.762331\pi\)
\(62\) 0 0
\(63\) −2.90184 + 3.76033i −0.365597 + 0.473757i
\(64\) 0 0
\(65\) −0.906231 + 1.27524i −0.112404 + 0.158174i
\(66\) 0 0
\(67\) −1.28103 + 2.21882i −0.156503 + 0.271071i −0.933605 0.358303i \(-0.883355\pi\)
0.777102 + 0.629374i \(0.216689\pi\)
\(68\) 0 0
\(69\) 0.0430875 + 0.0876760i 0.00518713 + 0.0105549i
\(70\) 0 0
\(71\) −7.29808 + 12.6407i −0.866123 + 1.50017i −0.000195676 1.00000i \(0.500062\pi\)
−0.865928 + 0.500169i \(0.833271\pi\)
\(72\) 0 0
\(73\) −0.162888 −0.0190646 −0.00953230 0.999955i \(-0.503034\pi\)
−0.00953230 + 0.999955i \(0.503034\pi\)
\(74\) 0 0
\(75\) 3.67584 + 7.47974i 0.424450 + 0.863685i
\(76\) 0 0
\(77\) 2.60107 + 4.50518i 0.296419 + 0.513413i
\(78\) 0 0
\(79\) 5.70128 9.87490i 0.641444 1.11101i −0.343667 0.939092i \(-0.611669\pi\)
0.985111 0.171922i \(-0.0549976\pi\)
\(80\) 0 0
\(81\) −6.39880 + 6.32893i −0.710978 + 0.703214i
\(82\) 0 0
\(83\) −5.52019 + 9.56125i −0.605920 + 1.04948i 0.385986 + 0.922505i \(0.373861\pi\)
−0.991905 + 0.126979i \(0.959472\pi\)
\(84\) 0 0
\(85\) −0.712231 −0.0772523
\(86\) 0 0
\(87\) 3.25286 4.85382i 0.348744 0.520384i
\(88\) 0 0
\(89\) −6.13248 10.6218i −0.650042 1.12591i −0.983112 0.183004i \(-0.941418\pi\)
0.333070 0.942902i \(-0.391915\pi\)
\(90\) 0 0
\(91\) −3.30678 + 4.65327i −0.346645 + 0.487796i
\(92\) 0 0
\(93\) 9.46785 + 0.633607i 0.981770 + 0.0657020i
\(94\) 0 0
\(95\) −0.0130522 −0.00133913
\(96\) 0 0
\(97\) 6.46904 + 11.2047i 0.656831 + 1.13767i 0.981431 + 0.191814i \(0.0614371\pi\)
−0.324600 + 0.945851i \(0.605230\pi\)
\(98\) 0 0
\(99\) 3.74712 + 9.11705i 0.376600 + 0.916298i
\(100\) 0 0
\(101\) −7.63565 −0.759775 −0.379888 0.925033i \(-0.624037\pi\)
−0.379888 + 0.925033i \(0.624037\pi\)
\(102\) 0 0
\(103\) −3.58661 6.21219i −0.353399 0.612105i 0.633444 0.773789i \(-0.281641\pi\)
−0.986843 + 0.161684i \(0.948307\pi\)
\(104\) 0 0
\(105\) −0.524808 1.06790i −0.0512160 0.104216i
\(106\) 0 0
\(107\) 7.29326 + 12.6323i 0.705066 + 1.22121i 0.966668 + 0.256035i \(0.0824162\pi\)
−0.261601 + 0.965176i \(0.584250\pi\)
\(108\) 0 0
\(109\) −16.2665 −1.55805 −0.779026 0.626992i \(-0.784286\pi\)
−0.779026 + 0.626992i \(0.784286\pi\)
\(110\) 0 0
\(111\) 6.27867 + 0.420181i 0.595945 + 0.0398818i
\(112\) 0 0
\(113\) 19.2845 1.81413 0.907066 0.420988i \(-0.138317\pi\)
0.907066 + 0.420988i \(0.138317\pi\)
\(114\) 0 0
\(115\) −0.0244729 −0.00228211
\(116\) 0 0
\(117\) −7.38470 + 7.90356i −0.682716 + 0.730684i
\(118\) 0 0
\(119\) −2.59889 −0.238239
\(120\) 0 0
\(121\) −0.204282 −0.0185711
\(122\) 0 0
\(123\) 2.77317 + 5.64295i 0.250049 + 0.508808i
\(124\) 0 0
\(125\) −4.25731 −0.380785
\(126\) 0 0
\(127\) 4.39676 + 7.61542i 0.390150 + 0.675759i 0.992469 0.122496i \(-0.0390899\pi\)
−0.602319 + 0.798255i \(0.705757\pi\)
\(128\) 0 0
\(129\) 4.63148 + 0.309947i 0.407779 + 0.0272893i
\(130\) 0 0
\(131\) −9.05299 15.6802i −0.790964 1.36999i −0.925371 0.379063i \(-0.876246\pi\)
0.134407 0.990926i \(-0.457087\pi\)
\(132\) 0 0
\(133\) −0.0476268 −0.00412976
\(134\) 0 0
\(135\) −0.715924 2.13792i −0.0616169 0.184003i
\(136\) 0 0
\(137\) −2.05714 3.56307i −0.175753 0.304414i 0.764668 0.644424i \(-0.222903\pi\)
−0.940422 + 0.340010i \(0.889569\pi\)
\(138\) 0 0
\(139\) 12.1691 1.03217 0.516084 0.856538i \(-0.327389\pi\)
0.516084 + 0.856538i \(0.327389\pi\)
\(140\) 0 0
\(141\) −5.79004 11.7818i −0.487610 0.992205i
\(142\) 0 0
\(143\) 4.93175 + 10.7714i 0.412414 + 0.900746i
\(144\) 0 0
\(145\) 0.731872 + 1.26764i 0.0607786 + 0.105272i
\(146\) 0 0
\(147\) 3.43254 + 6.98466i 0.283111 + 0.576085i
\(148\) 0 0
\(149\) 9.45044 0.774210 0.387105 0.922036i \(-0.373475\pi\)
0.387105 + 0.922036i \(0.373475\pi\)
\(150\) 0 0
\(151\) 5.31651 9.20847i 0.432651 0.749374i −0.564449 0.825468i \(-0.690911\pi\)
0.997101 + 0.0760934i \(0.0242447\pi\)
\(152\) 0 0
\(153\) −4.88048 0.656161i −0.394564 0.0530475i
\(154\) 0 0
\(155\) −1.18856 + 2.05864i −0.0954672 + 0.165354i
\(156\) 0 0
\(157\) −0.146130 0.253105i −0.0116624 0.0202000i 0.860135 0.510066i \(-0.170379\pi\)
−0.871798 + 0.489866i \(0.837046\pi\)
\(158\) 0 0
\(159\) 3.90576 5.82806i 0.309747 0.462195i
\(160\) 0 0
\(161\) −0.0893000 −0.00703782
\(162\) 0 0
\(163\) 7.12118 12.3342i 0.557774 0.966092i −0.439908 0.898043i \(-0.644989\pi\)
0.997682 0.0680496i \(-0.0216776\pi\)
\(164\) 0 0
\(165\) −2.46380 0.164882i −0.191806 0.0128361i
\(166\) 0 0
\(167\) 7.62713 13.2106i 0.590205 1.02227i −0.403999 0.914759i \(-0.632380\pi\)
0.994204 0.107506i \(-0.0342864\pi\)
\(168\) 0 0
\(169\) −8.49411 + 9.84125i −0.653393 + 0.757019i
\(170\) 0 0
\(171\) −0.0894389 0.0120247i −0.00683957 0.000919552i
\(172\) 0 0
\(173\) −3.88027 6.72083i −0.295012 0.510975i 0.679976 0.733235i \(-0.261990\pi\)
−0.974988 + 0.222259i \(0.928657\pi\)
\(174\) 0 0
\(175\) −7.61828 −0.575888
\(176\) 0 0
\(177\) 0.349851 0.522036i 0.0262964 0.0392386i
\(178\) 0 0
\(179\) 4.40510 + 7.62986i 0.329253 + 0.570282i 0.982364 0.186980i \(-0.0598699\pi\)
−0.653111 + 0.757262i \(0.726537\pi\)
\(180\) 0 0
\(181\) 9.31165 0.692129 0.346065 0.938211i \(-0.387518\pi\)
0.346065 + 0.938211i \(0.387518\pi\)
\(182\) 0 0
\(183\) −5.97171 0.399638i −0.441441 0.0295421i
\(184\) 0 0
\(185\) −0.788200 + 1.36520i −0.0579496 + 0.100372i
\(186\) 0 0
\(187\) −2.69667 + 4.67076i −0.197200 + 0.341560i
\(188\) 0 0
\(189\) −2.61236 7.80114i −0.190021 0.567450i
\(190\) 0 0
\(191\) −9.04730 15.6704i −0.654639 1.13387i −0.981984 0.188964i \(-0.939487\pi\)
0.327345 0.944905i \(-0.393846\pi\)
\(192\) 0 0
\(193\) 2.08885 3.61799i 0.150359 0.260429i −0.781001 0.624530i \(-0.785290\pi\)
0.931359 + 0.364101i \(0.118624\pi\)
\(194\) 0 0
\(195\) −0.961015 2.53356i −0.0688197 0.181432i
\(196\) 0 0
\(197\) 10.8080 + 18.7200i 0.770038 + 1.33374i 0.937542 + 0.347873i \(0.113096\pi\)
−0.167504 + 0.985871i \(0.553571\pi\)
\(198\) 0 0
\(199\) 7.59202 13.1498i 0.538184 0.932162i −0.460818 0.887495i \(-0.652444\pi\)
0.999002 0.0446676i \(-0.0142229\pi\)
\(200\) 0 0
\(201\) −1.95725 3.98268i −0.138054 0.280917i
\(202\) 0 0
\(203\) 2.67055 + 4.62553i 0.187436 + 0.324649i
\(204\) 0 0
\(205\) −1.57511 −0.110010
\(206\) 0 0
\(207\) −0.167698 0.0225463i −0.0116558 0.00156707i
\(208\) 0 0
\(209\) −0.0494187 + 0.0855957i −0.00341836 + 0.00592078i
\(210\) 0 0
\(211\) −9.96737 + 17.2640i −0.686182 + 1.18850i 0.286881 + 0.957966i \(0.407381\pi\)
−0.973064 + 0.230537i \(0.925952\pi\)
\(212\) 0 0
\(213\) −11.1505 22.6894i −0.764020 1.55465i
\(214\) 0 0
\(215\) −0.581418 + 1.00705i −0.0396524 + 0.0686799i
\(216\) 0 0
\(217\) −4.33697 + 7.51185i −0.294413 + 0.509938i
\(218\) 0 0
\(219\) 0.157065 0.234367i 0.0106135 0.0158371i
\(220\) 0 0
\(221\) −5.89213 0.556861i −0.396348 0.0374585i
\(222\) 0 0
\(223\) −19.1053 −1.27938 −0.639692 0.768631i \(-0.720938\pi\)
−0.639692 + 0.768631i \(0.720938\pi\)
\(224\) 0 0
\(225\) −14.3065 1.92345i −0.953765 0.128230i
\(226\) 0 0
\(227\) −6.44350 11.1605i −0.427670 0.740747i 0.568995 0.822341i \(-0.307332\pi\)
−0.996666 + 0.0815941i \(0.973999\pi\)
\(228\) 0 0
\(229\) 5.06389 + 8.77091i 0.334631 + 0.579598i 0.983414 0.181376i \(-0.0580550\pi\)
−0.648783 + 0.760974i \(0.724722\pi\)
\(230\) 0 0
\(231\) −8.99025 0.601645i −0.591515 0.0395853i
\(232\) 0 0
\(233\) 19.4552 1.27455 0.637275 0.770637i \(-0.280062\pi\)
0.637275 + 0.770637i \(0.280062\pi\)
\(234\) 0 0
\(235\) 3.28863 0.214527
\(236\) 0 0
\(237\) 8.71080 + 17.7250i 0.565827 + 1.15136i
\(238\) 0 0
\(239\) −6.33263 10.9684i −0.409623 0.709489i 0.585224 0.810872i \(-0.301007\pi\)
−0.994847 + 0.101383i \(0.967673\pi\)
\(240\) 0 0
\(241\) −7.50431 12.9979i −0.483395 0.837265i 0.516423 0.856334i \(-0.327263\pi\)
−0.999818 + 0.0190684i \(0.993930\pi\)
\(242\) 0 0
\(243\) −2.93617 15.3094i −0.188355 0.982101i
\(244\) 0 0
\(245\) −1.94962 −0.124557
\(246\) 0 0
\(247\) −0.107978 0.0102049i −0.00687049 0.000649325i
\(248\) 0 0
\(249\) −8.43412 17.1620i −0.534491 1.08760i
\(250\) 0 0
\(251\) 3.90158 6.75773i 0.246265 0.426544i −0.716221 0.697873i \(-0.754130\pi\)
0.962487 + 0.271329i \(0.0874632\pi\)
\(252\) 0 0
\(253\) −0.0926598 + 0.160492i −0.00582547 + 0.0100900i
\(254\) 0 0
\(255\) 0.686770 1.02478i 0.0430072 0.0641740i
\(256\) 0 0
\(257\) 3.72220 6.44703i 0.232184 0.402155i −0.726266 0.687413i \(-0.758746\pi\)
0.958451 + 0.285259i \(0.0920795\pi\)
\(258\) 0 0
\(259\) −2.87609 + 4.98154i −0.178712 + 0.309538i
\(260\) 0 0
\(261\) 3.84722 + 9.36061i 0.238137 + 0.579407i
\(262\) 0 0
\(263\) 7.13493 0.439958 0.219979 0.975505i \(-0.429401\pi\)
0.219979 + 0.975505i \(0.429401\pi\)
\(264\) 0 0
\(265\) 0.878769 + 1.52207i 0.0539824 + 0.0935002i
\(266\) 0 0
\(267\) 21.1961 + 1.41849i 1.29718 + 0.0868100i
\(268\) 0 0
\(269\) 14.1183 24.4536i 0.860807 1.49096i −0.0103450 0.999946i \(-0.503293\pi\)
0.871152 0.491014i \(-0.163374\pi\)
\(270\) 0 0
\(271\) −3.82382 6.62305i −0.232281 0.402322i 0.726198 0.687485i \(-0.241285\pi\)
−0.958479 + 0.285164i \(0.907952\pi\)
\(272\) 0 0
\(273\) −3.50668 9.24481i −0.212234 0.559521i
\(274\) 0 0
\(275\) −7.90491 + 13.6917i −0.476684 + 0.825641i
\(276\) 0 0
\(277\) 9.47813 + 16.4166i 0.569486 + 0.986378i 0.996617 + 0.0821882i \(0.0261909\pi\)
−0.427131 + 0.904190i \(0.640476\pi\)
\(278\) 0 0
\(279\) −10.0410 + 13.0116i −0.601141 + 0.778986i
\(280\) 0 0
\(281\) 12.7457 22.0763i 0.760347 1.31696i −0.182325 0.983238i \(-0.558362\pi\)
0.942672 0.333721i \(-0.108304\pi\)
\(282\) 0 0
\(283\) −4.26197 + 7.38195i −0.253348 + 0.438811i −0.964445 0.264282i \(-0.914865\pi\)
0.711098 + 0.703093i \(0.248198\pi\)
\(284\) 0 0
\(285\) 0.0125856 0.0187799i 0.000745508 0.00111242i
\(286\) 0 0
\(287\) −5.74747 −0.339262
\(288\) 0 0
\(289\) 7.15280 + 12.3890i 0.420753 + 0.728765i
\(290\) 0 0
\(291\) −22.3594 1.49633i −1.31073 0.0877167i
\(292\) 0 0
\(293\) −2.30817 −0.134845 −0.0674223 0.997725i \(-0.521477\pi\)
−0.0674223 + 0.997725i \(0.521477\pi\)
\(294\) 0 0
\(295\) 0.0787140 + 0.136337i 0.00458290 + 0.00793782i
\(296\) 0 0
\(297\) −16.7310 3.39968i −0.970831 0.197269i
\(298\) 0 0
\(299\) −0.202459 0.0191342i −0.0117085 0.00110656i
\(300\) 0 0
\(301\) −2.12156 + 3.67464i −0.122285 + 0.211803i
\(302\) 0 0
\(303\) 7.36269 10.9864i 0.422975 0.631150i
\(304\) 0 0
\(305\) 0.749665 1.29846i 0.0429257 0.0743495i
\(306\) 0 0
\(307\) 25.9276 1.47976 0.739882 0.672736i \(-0.234881\pi\)
0.739882 + 0.672736i \(0.234881\pi\)
\(308\) 0 0
\(309\) 12.3966 + 0.829607i 0.705220 + 0.0471947i
\(310\) 0 0
\(311\) −16.1747 28.0154i −0.917181 1.58860i −0.803676 0.595068i \(-0.797125\pi\)
−0.113506 0.993537i \(-0.536208\pi\)
\(312\) 0 0
\(313\) −1.84638 + 3.19803i −0.104364 + 0.180763i −0.913478 0.406888i \(-0.866614\pi\)
0.809114 + 0.587651i \(0.199947\pi\)
\(314\) 0 0
\(315\) 2.04257 + 0.274615i 0.115086 + 0.0154728i
\(316\) 0 0
\(317\) 6.38892 11.0659i 0.358837 0.621524i −0.628930 0.777462i \(-0.716507\pi\)
0.987767 + 0.155938i \(0.0498400\pi\)
\(318\) 0 0
\(319\) 11.0841 0.620592
\(320\) 0 0
\(321\) −25.2082 1.68698i −1.40699 0.0941582i
\(322\) 0 0
\(323\) −0.0246886 0.0427620i −0.00137371 0.00237934i
\(324\) 0 0
\(325\) −17.2720 1.63236i −0.958077 0.0905471i
\(326\) 0 0
\(327\) 15.6850 23.4047i 0.867384 1.29428i
\(328\) 0 0
\(329\) 12.0000 0.661582
\(330\) 0 0
\(331\) −4.05904 7.03047i −0.223105 0.386430i 0.732644 0.680612i \(-0.238286\pi\)
−0.955749 + 0.294182i \(0.904953\pi\)
\(332\) 0 0
\(333\) −6.65878 + 8.62875i −0.364899 + 0.472853i
\(334\) 0 0
\(335\) 1.11168 0.0607376
\(336\) 0 0
\(337\) 17.4314 + 30.1921i 0.949551 + 1.64467i 0.746373 + 0.665528i \(0.231794\pi\)
0.203178 + 0.979142i \(0.434873\pi\)
\(338\) 0 0
\(339\) −18.5951 + 27.7470i −1.00995 + 1.50701i
\(340\) 0 0
\(341\) 9.00029 + 15.5890i 0.487393 + 0.844190i
\(342\) 0 0
\(343\) −18.1969 −0.982543
\(344\) 0 0
\(345\) 0.0235980 0.0352122i 0.00127047 0.00189576i
\(346\) 0 0
\(347\) 22.1469 1.18891 0.594453 0.804130i \(-0.297369\pi\)
0.594453 + 0.804130i \(0.297369\pi\)
\(348\) 0 0
\(349\) 17.8426 0.955094 0.477547 0.878606i \(-0.341526\pi\)
0.477547 + 0.878606i \(0.341526\pi\)
\(350\) 0 0
\(351\) −4.25113 18.2463i −0.226909 0.973916i
\(352\) 0 0
\(353\) 14.9858 0.797616 0.398808 0.917034i \(-0.369424\pi\)
0.398808 + 0.917034i \(0.369424\pi\)
\(354\) 0 0
\(355\) 6.33327 0.336135
\(356\) 0 0
\(357\) 2.50598 3.73934i 0.132630 0.197907i
\(358\) 0 0
\(359\) 2.49334 0.131594 0.0657968 0.997833i \(-0.479041\pi\)
0.0657968 + 0.997833i \(0.479041\pi\)
\(360\) 0 0
\(361\) 9.49955 + 16.4537i 0.499976 + 0.865984i
\(362\) 0 0
\(363\) 0.196979 0.293926i 0.0103387 0.0154271i
\(364\) 0 0
\(365\) 0.0353385 + 0.0612081i 0.00184970 + 0.00320378i
\(366\) 0 0
\(367\) −4.38816 −0.229060 −0.114530 0.993420i \(-0.536536\pi\)
−0.114530 + 0.993420i \(0.536536\pi\)
\(368\) 0 0
\(369\) −10.7933 1.45111i −0.561874 0.0755418i
\(370\) 0 0
\(371\) 3.20657 + 5.55395i 0.166477 + 0.288347i
\(372\) 0 0
\(373\) 15.0702 0.780304 0.390152 0.920750i \(-0.372422\pi\)
0.390152 + 0.920750i \(0.372422\pi\)
\(374\) 0 0
\(375\) 4.10511 6.12552i 0.211987 0.316321i
\(376\) 0 0
\(377\) 5.06350 + 11.0591i 0.260784 + 0.569573i
\(378\) 0 0
\(379\) −13.2405 22.9331i −0.680117 1.17800i −0.974945 0.222446i \(-0.928596\pi\)
0.294828 0.955550i \(-0.404738\pi\)
\(380\) 0 0
\(381\) −15.1968 1.01700i −0.778558 0.0521026i
\(382\) 0 0
\(383\) −3.05939 −0.156327 −0.0781637 0.996941i \(-0.524906\pi\)
−0.0781637 + 0.996941i \(0.524906\pi\)
\(384\) 0 0
\(385\) 1.12860 1.95480i 0.0575189 0.0996256i
\(386\) 0 0
\(387\) −4.91187 + 6.36502i −0.249684 + 0.323552i
\(388\) 0 0
\(389\) −7.58306 + 13.1342i −0.384476 + 0.665932i −0.991696 0.128601i \(-0.958951\pi\)
0.607220 + 0.794534i \(0.292285\pi\)
\(390\) 0 0
\(391\) −0.0462911 0.0801785i −0.00234104 0.00405480i
\(392\) 0 0
\(393\) 31.2905 + 2.09402i 1.57840 + 0.105629i
\(394\) 0 0
\(395\) −4.94756 −0.248939
\(396\) 0 0
\(397\) 6.92576 11.9958i 0.347594 0.602050i −0.638228 0.769848i \(-0.720332\pi\)
0.985821 + 0.167798i \(0.0536655\pi\)
\(398\) 0 0
\(399\) 0.0459242 0.0685266i 0.00229908 0.00343062i
\(400\) 0 0
\(401\) 1.31025 2.26942i 0.0654309 0.113330i −0.831454 0.555593i \(-0.812491\pi\)
0.896885 + 0.442264i \(0.145824\pi\)
\(402\) 0 0
\(403\) −11.4422 + 16.1014i −0.569978 + 0.802068i
\(404\) 0 0
\(405\) 3.76643 + 1.03141i 0.187155 + 0.0512510i
\(406\) 0 0
\(407\) 5.96861 + 10.3379i 0.295853 + 0.512432i
\(408\) 0 0
\(409\) −15.7656 −0.779558 −0.389779 0.920909i \(-0.627449\pi\)
−0.389779 + 0.920909i \(0.627449\pi\)
\(410\) 0 0
\(411\) 7.11024 + 0.475831i 0.350722 + 0.0234710i
\(412\) 0 0
\(413\) 0.287222 + 0.497484i 0.0141333 + 0.0244796i
\(414\) 0 0
\(415\) 4.79042 0.235152
\(416\) 0 0
\(417\) −11.7341 + 17.5092i −0.574619 + 0.857428i
\(418\) 0 0
\(419\) −4.26344 + 7.38449i −0.208282 + 0.360756i −0.951174 0.308656i \(-0.900121\pi\)
0.742891 + 0.669412i \(0.233454\pi\)
\(420\) 0 0
\(421\) −7.83552 + 13.5715i −0.381880 + 0.661436i −0.991331 0.131388i \(-0.958057\pi\)
0.609451 + 0.792824i \(0.291390\pi\)
\(422\) 0 0
\(423\) 22.5350 + 3.02974i 1.09569 + 0.147311i
\(424\) 0 0
\(425\) −3.94914 6.84012i −0.191562 0.331794i
\(426\) 0 0
\(427\) 2.73548 4.73799i 0.132379 0.229288i
\(428\) 0 0
\(429\) −20.2536 3.29037i −0.977851 0.158860i
\(430\) 0 0
\(431\) 12.8332 + 22.2278i 0.618155 + 1.07068i 0.989822 + 0.142310i \(0.0454528\pi\)
−0.371667 + 0.928366i \(0.621214\pi\)
\(432\) 0 0
\(433\) −18.3374 + 31.7614i −0.881241 + 1.52635i −0.0312791 + 0.999511i \(0.509958\pi\)
−0.849962 + 0.526844i \(0.823375\pi\)
\(434\) 0 0
\(435\) −2.52962 0.169287i −0.121286 0.00811669i
\(436\) 0 0
\(437\) −0.000848323 0.00146934i −4.05808e−5 7.02880e-5i
\(438\) 0 0
\(439\) 4.99493 0.238395 0.119197 0.992871i \(-0.461968\pi\)
0.119197 + 0.992871i \(0.461968\pi\)
\(440\) 0 0
\(441\) −13.3595 1.79614i −0.636169 0.0855304i
\(442\) 0 0
\(443\) −15.1200 + 26.1886i −0.718373 + 1.24426i 0.243271 + 0.969958i \(0.421780\pi\)
−0.961644 + 0.274300i \(0.911554\pi\)
\(444\) 0 0
\(445\) −2.66088 + 4.60878i −0.126138 + 0.218477i
\(446\) 0 0
\(447\) −9.11260 + 13.5975i −0.431011 + 0.643141i
\(448\) 0 0
\(449\) −9.70002 + 16.8009i −0.457772 + 0.792885i −0.998843 0.0480922i \(-0.984686\pi\)
0.541071 + 0.840977i \(0.318019\pi\)
\(450\) 0 0
\(451\) −5.96372 + 10.3295i −0.280820 + 0.486395i
\(452\) 0 0
\(453\) 8.12292 + 16.5288i 0.381648 + 0.776591i
\(454\) 0 0
\(455\) 2.46596 + 0.233056i 0.115606 + 0.0109258i
\(456\) 0 0
\(457\) −9.45223 −0.442156 −0.221078 0.975256i \(-0.570958\pi\)
−0.221078 + 0.975256i \(0.570958\pi\)
\(458\) 0 0
\(459\) 5.65011 6.38946i 0.263725 0.298234i
\(460\) 0 0
\(461\) −11.5227 19.9580i −0.536668 0.929536i −0.999081 0.0428711i \(-0.986350\pi\)
0.462413 0.886665i \(-0.346984\pi\)
\(462\) 0 0
\(463\) −10.3312 17.8942i −0.480134 0.831616i 0.519607 0.854406i \(-0.326078\pi\)
−0.999740 + 0.0227898i \(0.992745\pi\)
\(464\) 0 0
\(465\) −1.81596 3.69518i −0.0842130 0.171360i
\(466\) 0 0
\(467\) −5.84410 −0.270433 −0.135216 0.990816i \(-0.543173\pi\)
−0.135216 + 0.990816i \(0.543173\pi\)
\(468\) 0 0
\(469\) 4.05645 0.187309
\(470\) 0 0
\(471\) 0.505080 + 0.0338009i 0.0232728 + 0.00155746i
\(472\) 0 0
\(473\) 4.40276 + 7.62580i 0.202439 + 0.350635i
\(474\) 0 0
\(475\) −0.0723714 0.125351i −0.00332063 0.00575149i
\(476\) 0 0
\(477\) 4.61942 + 11.2394i 0.211509 + 0.514618i
\(478\) 0 0
\(479\) 9.41643 0.430248 0.215124 0.976587i \(-0.430985\pi\)
0.215124 + 0.976587i \(0.430985\pi\)
\(480\) 0 0
\(481\) −7.58800 + 10.6778i −0.345983 + 0.486864i
\(482\) 0 0
\(483\) 0.0861076 0.128487i 0.00391803 0.00584636i
\(484\) 0 0
\(485\) 2.80691 4.86172i 0.127455 0.220759i
\(486\) 0 0
\(487\) 1.94398 3.36708i 0.0880903 0.152577i −0.818614 0.574345i \(-0.805257\pi\)
0.906704 + 0.421768i \(0.138590\pi\)
\(488\) 0 0
\(489\) 10.8802 + 22.1394i 0.492020 + 1.00118i
\(490\) 0 0
\(491\) 2.62024 4.53840i 0.118250 0.204815i −0.800824 0.598899i \(-0.795605\pi\)
0.919074 + 0.394084i \(0.128938\pi\)
\(492\) 0 0
\(493\) −2.76871 + 4.79554i −0.124696 + 0.215980i
\(494\) 0 0
\(495\) 2.61296 3.38599i 0.117444 0.152189i
\(496\) 0 0
\(497\) 23.1097 1.03661
\(498\) 0 0
\(499\) 10.8182 + 18.7377i 0.484289 + 0.838813i 0.999837 0.0180474i \(-0.00574497\pi\)
−0.515548 + 0.856861i \(0.672412\pi\)
\(500\) 0 0
\(501\) 11.6532 + 23.7124i 0.520629 + 1.05939i
\(502\) 0 0
\(503\) 14.9763 25.9397i 0.667760 1.15659i −0.310769 0.950485i \(-0.600587\pi\)
0.978529 0.206108i \(-0.0660800\pi\)
\(504\) 0 0
\(505\) 1.65655 + 2.86923i 0.0737156 + 0.127679i
\(506\) 0 0
\(507\) −5.96939 21.7110i −0.265110 0.964218i
\(508\) 0 0
\(509\) −12.5253 + 21.6945i −0.555176 + 0.961594i 0.442713 + 0.896663i \(0.354016\pi\)
−0.997890 + 0.0649305i \(0.979317\pi\)
\(510\) 0 0
\(511\) 0.128948 + 0.223345i 0.00570433 + 0.00988018i
\(512\) 0 0
\(513\) 0.103543 0.117092i 0.00457154 0.00516975i
\(514\) 0 0
\(515\) −1.55623 + 2.69546i −0.0685756 + 0.118776i
\(516\) 0 0
\(517\) 12.4515 21.5666i 0.547617 0.948500i
\(518\) 0 0
\(519\) 13.4117 + 0.897535i 0.588707 + 0.0393974i
\(520\) 0 0
\(521\) −21.4586 −0.940116 −0.470058 0.882635i \(-0.655767\pi\)
−0.470058 + 0.882635i \(0.655767\pi\)
\(522\) 0 0
\(523\) −0.790297 1.36883i −0.0345573 0.0598550i 0.848230 0.529629i \(-0.177669\pi\)
−0.882787 + 0.469774i \(0.844335\pi\)
\(524\) 0 0
\(525\) 7.34594 10.9614i 0.320603 0.478394i
\(526\) 0 0
\(527\) −8.99275 −0.391730
\(528\) 0 0
\(529\) 11.4984 + 19.9158i 0.499931 + 0.865906i
\(530\) 0 0
\(531\) 0.413775 + 1.00675i 0.0179563 + 0.0436892i
\(532\) 0 0
\(533\) −13.0305 1.23151i −0.564415 0.0533424i
\(534\) 0 0
\(535\) 3.16454 5.48115i 0.136815 0.236971i
\(536\) 0 0
\(537\) −15.2257 1.01893i −0.657036 0.0439701i
\(538\) 0 0
\(539\) −7.38170 + 12.7855i −0.317952 + 0.550709i
\(540\) 0 0
\(541\) 26.1156 1.12280 0.561398 0.827546i \(-0.310264\pi\)
0.561398 + 0.827546i \(0.310264\pi\)
\(542\) 0 0
\(543\) −8.97877 + 13.3978i −0.385316 + 0.574956i
\(544\) 0 0
\(545\) 3.52902 + 6.11244i 0.151167 + 0.261828i
\(546\) 0 0
\(547\) 10.4157 18.0406i 0.445344 0.771359i −0.552732 0.833359i \(-0.686415\pi\)
0.998076 + 0.0620002i \(0.0197479\pi\)
\(548\) 0 0
\(549\) 6.33324 8.20689i 0.270296 0.350262i
\(550\) 0 0
\(551\) −0.0507389 + 0.0878823i −0.00216155 + 0.00374391i
\(552\) 0 0
\(553\) −18.0533 −0.767706
\(554\) 0 0
\(555\) −1.20427 2.45048i −0.0511182 0.104017i
\(556\) 0 0
\(557\) −19.4069 33.6138i −0.822299 1.42426i −0.903967 0.427603i \(-0.859358\pi\)
0.0816680 0.996660i \(-0.473975\pi\)
\(558\) 0 0
\(559\) −5.59730 + 7.87648i −0.236741 + 0.333140i
\(560\) 0 0
\(561\) −4.12015 8.38382i −0.173953 0.353965i
\(562\) 0 0
\(563\) −0.804224 −0.0338940 −0.0169470 0.999856i \(-0.505395\pi\)
−0.0169470 + 0.999856i \(0.505395\pi\)
\(564\) 0 0
\(565\) −4.18377 7.24650i −0.176012 0.304862i
\(566\) 0 0
\(567\) 13.7435 + 3.76353i 0.577171 + 0.158054i
\(568\) 0 0
\(569\) 19.8108 0.830514 0.415257 0.909704i \(-0.363692\pi\)
0.415257 + 0.909704i \(0.363692\pi\)
\(570\) 0 0
\(571\) −18.8485 32.6466i −0.788786 1.36622i −0.926711 0.375775i \(-0.877376\pi\)
0.137924 0.990443i \(-0.455957\pi\)
\(572\) 0 0
\(573\) 31.2708 + 2.09270i 1.30636 + 0.0874239i
\(574\) 0 0
\(575\) −0.135696 0.235032i −0.00565891 0.00980153i
\(576\) 0 0
\(577\) 1.66499 0.0693145 0.0346573 0.999399i \(-0.488966\pi\)
0.0346573 + 0.999399i \(0.488966\pi\)
\(578\) 0 0
\(579\) 3.19148 + 6.49414i 0.132634 + 0.269887i
\(580\) 0 0
\(581\) 17.4799 0.725190
\(582\) 0 0
\(583\) 13.3089 0.551197
\(584\) 0 0
\(585\) 4.57201 + 1.06026i 0.189029 + 0.0438363i
\(586\) 0 0
\(587\) −13.7504 −0.567541 −0.283770 0.958892i \(-0.591585\pi\)
−0.283770 + 0.958892i \(0.591585\pi\)
\(588\) 0 0
\(589\) −0.164800 −0.00679045
\(590\) 0 0
\(591\) −37.3564 2.49997i −1.53664 0.102835i
\(592\) 0 0
\(593\) −48.0032 −1.97125 −0.985627 0.168937i \(-0.945967\pi\)
−0.985627 + 0.168937i \(0.945967\pi\)
\(594\) 0 0
\(595\) 0.563828 + 0.976578i 0.0231147 + 0.0400358i
\(596\) 0 0
\(597\) 11.5996 + 23.6033i 0.474740 + 0.966018i
\(598\) 0 0
\(599\) −18.5595 32.1459i −0.758319 1.31345i −0.943707 0.330782i \(-0.892688\pi\)
0.185388 0.982665i \(-0.440646\pi\)
\(600\) 0 0
\(601\) 7.04826 0.287505 0.143752 0.989614i \(-0.454083\pi\)
0.143752 + 0.989614i \(0.454083\pi\)
\(602\) 0 0
\(603\) 7.61766 + 1.02416i 0.310215 + 0.0417072i
\(604\) 0 0
\(605\) 0.0443189 + 0.0767627i 0.00180182 + 0.00312085i
\(606\) 0 0
\(607\) 10.3740 0.421068 0.210534 0.977587i \(-0.432480\pi\)
0.210534 + 0.977587i \(0.432480\pi\)
\(608\) 0 0
\(609\) −9.23042 0.617718i −0.374036 0.0250312i
\(610\) 0 0
\(611\) 27.2061 + 2.57123i 1.10064 + 0.104021i
\(612\) 0 0
\(613\) −16.7614 29.0316i −0.676986 1.17257i −0.975884 0.218289i \(-0.929952\pi\)
0.298898 0.954285i \(-0.403381\pi\)
\(614\) 0 0
\(615\) 1.51880 2.26631i 0.0612439 0.0913863i
\(616\) 0 0
\(617\) 35.1206 1.41390 0.706952 0.707262i \(-0.250070\pi\)
0.706952 + 0.707262i \(0.250070\pi\)
\(618\) 0 0
\(619\) 19.5529 33.8667i 0.785899 1.36122i −0.142562 0.989786i \(-0.545534\pi\)
0.928461 0.371431i \(-0.121133\pi\)
\(620\) 0 0
\(621\) 0.194143 0.219547i 0.00779068 0.00881013i
\(622\) 0 0
\(623\) −9.70939 + 16.8172i −0.388999 + 0.673765i
\(624\) 0 0
\(625\) −11.1057 19.2356i −0.444228 0.769426i
\(626\) 0 0
\(627\) −0.0755052 0.153641i −0.00301539 0.00613581i
\(628\) 0 0
\(629\) −5.96361 −0.237785
\(630\) 0 0
\(631\) 11.2857 19.5474i 0.449277 0.778170i −0.549062 0.835781i \(-0.685015\pi\)
0.998339 + 0.0576114i \(0.0183484\pi\)
\(632\) 0 0
\(633\) −15.2288 30.9881i −0.605292 1.23167i
\(634\) 0 0
\(635\) 1.90775 3.30433i 0.0757069 0.131128i
\(636\) 0 0
\(637\) −16.1288 1.52432i −0.639045 0.0603957i
\(638\) 0 0
\(639\) 43.3980 + 5.83469i 1.71680 + 0.230817i
\(640\) 0 0
\(641\) 5.60461 + 9.70746i 0.221369 + 0.383422i 0.955224 0.295884i \(-0.0956143\pi\)
−0.733855 + 0.679306i \(0.762281\pi\)
\(642\) 0 0
\(643\) 2.98337 0.117653 0.0588264 0.998268i \(-0.481264\pi\)
0.0588264 + 0.998268i \(0.481264\pi\)
\(644\) 0 0
\(645\) −0.888329 1.80760i −0.0349779 0.0711743i
\(646\) 0 0
\(647\) −19.2748 33.3850i −0.757772 1.31250i −0.943984 0.329990i \(-0.892955\pi\)
0.186212 0.982510i \(-0.440379\pi\)
\(648\) 0 0
\(649\) 1.19212 0.0467946
\(650\) 0 0
\(651\) −6.62632 13.4835i −0.259706 0.528459i
\(652\) 0 0
\(653\) −25.0269 + 43.3478i −0.979377 + 1.69633i −0.314716 + 0.949186i \(0.601909\pi\)
−0.664661 + 0.747145i \(0.731424\pi\)
\(654\) 0 0
\(655\) −3.92809 + 6.80365i −0.153483 + 0.265841i
\(656\) 0 0
\(657\) 0.185764 + 0.451978i 0.00724733 + 0.0176334i
\(658\) 0 0
\(659\) −1.65831 2.87228i −0.0645985 0.111888i 0.831917 0.554900i \(-0.187243\pi\)
−0.896516 + 0.443012i \(0.853910\pi\)
\(660\) 0 0
\(661\) 5.56081 9.63160i 0.216290 0.374626i −0.737381 0.675478i \(-0.763938\pi\)
0.953671 + 0.300852i \(0.0972709\pi\)
\(662\) 0 0
\(663\) 6.48272 7.94079i 0.251768 0.308395i
\(664\) 0 0
\(665\) 0.0103326 + 0.0178966i 0.000400682 + 0.000694001i
\(666\) 0 0
\(667\) −0.0951352 + 0.164779i −0.00368365 + 0.00638027i
\(668\) 0 0
\(669\) 18.4223 27.4892i 0.712247 1.06279i
\(670\) 0 0
\(671\) −5.67680 9.83251i −0.219151 0.379580i
\(672\) 0 0
\(673\) 32.4363 1.25033 0.625163 0.780494i \(-0.285032\pi\)
0.625163 + 0.780494i \(0.285032\pi\)
\(674\) 0 0
\(675\) 16.5625 18.7298i 0.637493 0.720912i
\(676\) 0 0
\(677\) −12.6356 + 21.8854i −0.485624 + 0.841126i −0.999864 0.0165208i \(-0.994741\pi\)
0.514239 + 0.857647i \(0.328074\pi\)
\(678\) 0 0
\(679\) 10.2423 17.7401i 0.393062 0.680803i
\(680\) 0 0
\(681\) 22.2711 + 1.49043i 0.853432 + 0.0571133i
\(682\) 0 0
\(683\) 0.343395 0.594778i 0.0131397 0.0227585i −0.859381 0.511336i \(-0.829151\pi\)
0.872520 + 0.488578i \(0.162484\pi\)
\(684\) 0 0
\(685\) −0.892592 + 1.54601i −0.0341042 + 0.0590702i
\(686\) 0 0
\(687\) −17.5027 1.17131i −0.667769 0.0446884i
\(688\) 0 0
\(689\) 6.07983 + 13.2788i 0.231623 + 0.505884i
\(690\) 0 0
\(691\) −44.4463 −1.69082 −0.845409 0.534119i \(-0.820643\pi\)
−0.845409 + 0.534119i \(0.820643\pi\)
\(692\) 0 0
\(693\) 9.53452 12.3553i 0.362187 0.469338i
\(694\) 0 0
\(695\) −2.64008 4.57275i −0.100144 0.173454i
\(696\) 0 0
\(697\) −2.97936 5.16040i −0.112851 0.195464i
\(698\) 0 0
\(699\) −18.7597 + 27.9926i −0.709556 + 1.05878i
\(700\) 0 0
\(701\) −5.00391 −0.188995 −0.0944975 0.995525i \(-0.530124\pi\)
−0.0944975 + 0.995525i \(0.530124\pi\)
\(702\) 0 0
\(703\) −0.109288 −0.00412188
\(704\) 0 0
\(705\) −3.17107 + 4.73177i −0.119429 + 0.178209i
\(706\) 0 0
\(707\) 6.04466 + 10.4697i 0.227333 + 0.393752i
\(708\) 0 0
\(709\) −22.0166 38.1339i −0.826852 1.43215i −0.900495 0.434866i \(-0.856796\pi\)
0.0736428 0.997285i \(-0.476538\pi\)
\(710\) 0 0
\(711\) −33.9026 4.55807i −1.27145 0.170941i
\(712\) 0 0
\(713\) −0.308999 −0.0115721
\(714\) 0 0
\(715\) 2.97759 4.19004i 0.111356 0.156699i
\(716\) 0 0
\(717\) 21.8879 + 1.46478i 0.817419 + 0.0547032i
\(718\) 0 0
\(719\) 16.8809 29.2385i 0.629551 1.09041i −0.358091 0.933687i \(-0.616572\pi\)
0.987642 0.156727i \(-0.0500943\pi\)
\(720\) 0 0
\(721\) −5.67858 + 9.83558i −0.211481 + 0.366296i
\(722\) 0 0
\(723\) 25.9377 + 1.73580i 0.964633 + 0.0645551i
\(724\) 0 0
\(725\) −8.11609 + 14.0575i −0.301424 + 0.522082i
\(726\) 0 0
\(727\) 19.1552 33.1778i 0.710427 1.23050i −0.254270 0.967133i \(-0.581835\pi\)
0.964697 0.263362i \(-0.0848313\pi\)
\(728\) 0 0
\(729\) 24.8588 + 10.5375i 0.920697 + 0.390278i
\(730\) 0 0
\(731\) −4.39907 −0.162705
\(732\) 0 0
\(733\) −24.2010 41.9174i −0.893885 1.54825i −0.835179 0.549978i \(-0.814636\pi\)
−0.0587059 0.998275i \(-0.518697\pi\)
\(734\) 0 0
\(735\) 1.87992 2.80516i 0.0693420 0.103470i
\(736\) 0 0
\(737\) 4.20907 7.29033i 0.155043 0.268543i
\(738\) 0 0
\(739\) 20.1732 + 34.9409i 0.742082 + 1.28532i 0.951546 + 0.307507i \(0.0994946\pi\)
−0.209464 + 0.977816i \(0.567172\pi\)
\(740\) 0 0
\(741\) 0.118801 0.145522i 0.00436427 0.00534587i
\(742\) 0 0
\(743\) −22.8084 + 39.5053i −0.836758 + 1.44931i 0.0558331 + 0.998440i \(0.482219\pi\)
−0.892591 + 0.450867i \(0.851115\pi\)
\(744\) 0 0
\(745\) −2.05027 3.55117i −0.0751161 0.130105i
\(746\) 0 0
\(747\) 32.8258 + 4.41330i 1.20103 + 0.161474i
\(748\) 0 0
\(749\) 11.5472 20.0004i 0.421926 0.730798i
\(750\) 0 0
\(751\) −21.0467 + 36.4540i −0.768007 + 1.33023i 0.170636 + 0.985334i \(0.445418\pi\)
−0.938642 + 0.344892i \(0.887915\pi\)
\(752\) 0 0
\(753\) 5.96109 + 12.1298i 0.217234 + 0.442036i
\(754\) 0 0
\(755\) −4.61366 −0.167908
\(756\) 0 0
\(757\) −15.6559 27.1168i −0.569024 0.985578i −0.996663 0.0816283i \(-0.973988\pi\)
0.427639 0.903949i \(-0.359345\pi\)
\(758\) 0 0
\(759\) −0.141572 0.288075i −0.00513874 0.0104565i
\(760\) 0 0
\(761\) −51.3570 −1.86169 −0.930845 0.365414i \(-0.880927\pi\)
−0.930845 + 0.365414i \(0.880927\pi\)
\(762\) 0 0
\(763\) 12.8772 + 22.3039i 0.466185 + 0.807456i
\(764\) 0 0
\(765\) 0.812255 + 1.97628i 0.0293671 + 0.0714527i
\(766\) 0 0
\(767\) 0.544588 + 1.18943i 0.0196639 + 0.0429477i
\(768\) 0 0
\(769\) −10.8919 + 18.8653i −0.392772 + 0.680301i −0.992814 0.119667i \(-0.961817\pi\)
0.600042 + 0.799969i \(0.295151\pi\)
\(770\) 0 0
\(771\) 5.68702 + 11.5721i 0.204813 + 0.416761i
\(772\) 0 0
\(773\) −9.64820 + 16.7112i −0.347022 + 0.601059i −0.985719 0.168399i \(-0.946140\pi\)
0.638697 + 0.769458i \(0.279474\pi\)
\(774\) 0 0
\(775\) −26.3610 −0.946916
\(776\) 0 0
\(777\) −4.39429 8.94165i −0.157644 0.320780i
\(778\) 0 0
\(779\) −0.0545992 0.0945687i −0.00195622 0.00338827i
\(780\) 0 0
\(781\) 23.9792 41.5332i 0.858043 1.48617i
\(782\) 0 0
\(783\) −17.1780 3.49050i −0.613891 0.124740i
\(784\) 0 0
\(785\) −0.0634058 + 0.109822i −0.00226305 + 0.00391972i
\(786\) 0 0
\(787\) −10.4299 −0.371785 −0.185893 0.982570i \(-0.559518\pi\)
−0.185893 + 0.982570i \(0.559518\pi\)
\(788\) 0 0
\(789\) −6.87986 + 10.2659i −0.244930 + 0.365476i
\(790\) 0 0
\(791\) −15.2663 26.4420i −0.542807 0.940170i
\(792\) 0 0
\(793\) 7.21702 10.1557i 0.256284 0.360641i
\(794\) 0 0
\(795\) −3.03735 0.203266i −0.107724 0.00720908i
\(796\) 0 0
\(797\) −0.852516 −0.0301977 −0.0150988 0.999886i \(-0.504806\pi\)
−0.0150988 + 0.999886i \(0.504806\pi\)
\(798\) 0 0
\(799\) 6.22053 + 10.7743i 0.220067 + 0.381167i
\(800\) 0 0
\(801\) −22.4794 + 29.1298i −0.794269 + 1.02925i
\(802\) 0 0
\(803\) 0.535199 0.0188867
\(804\) 0 0
\(805\) 0.0193736 + 0.0335561i 0.000682830 + 0.00118270i
\(806\) 0 0
\(807\) 21.5709 + 43.8931i 0.759330 + 1.54511i
\(808\) 0 0
\(809\) −22.8597 39.5942i −0.803704 1.39206i −0.917162 0.398514i \(-0.869526\pi\)
0.113458 0.993543i \(-0.463807\pi\)
\(810\) 0 0
\(811\) 14.7191 0.516857 0.258429 0.966030i \(-0.416795\pi\)
0.258429 + 0.966030i \(0.416795\pi\)
\(812\) 0 0
\(813\) 13.2165 + 0.884476i 0.463524 + 0.0310199i
\(814\) 0 0
\(815\) −6.17975 −0.216467
\(816\) 0 0
\(817\) −0.0806166 −0.00282042
\(818\) 0 0
\(819\) 16.6830 + 3.86882i 0.582951 + 0.135187i
\(820\) 0 0
\(821\) 12.6029 0.439843 0.219922 0.975518i \(-0.429420\pi\)
0.219922 + 0.975518i \(0.429420\pi\)
\(822\) 0 0
\(823\) −2.12581 −0.0741012 −0.0370506 0.999313i \(-0.511796\pi\)
−0.0370506 + 0.999313i \(0.511796\pi\)
\(824\) 0 0
\(825\) −12.0777 24.5760i −0.420490 0.855628i
\(826\) 0 0
\(827\) −30.0089 −1.04351 −0.521756 0.853095i \(-0.674723\pi\)
−0.521756 + 0.853095i \(0.674723\pi\)
\(828\) 0 0
\(829\) −19.6435 34.0235i −0.682246 1.18168i −0.974294 0.225281i \(-0.927670\pi\)
0.292048 0.956404i \(-0.405663\pi\)
\(830\) 0 0
\(831\) −32.7599 2.19236i −1.13643 0.0760520i
\(832\) 0 0
\(833\) −3.68775 6.38738i −0.127773 0.221310i
\(834\) 0 0
\(835\) −6.61882 −0.229054
\(836\) 0 0
\(837\) −9.03937 26.9938i −0.312446 0.933041i
\(838\) 0 0
\(839\) 26.4687 + 45.8452i 0.913802 + 1.58275i 0.808646 + 0.588296i \(0.200201\pi\)
0.105156 + 0.994456i \(0.466466\pi\)
\(840\) 0 0
\(841\) −17.6198 −0.607578
\(842\) 0 0
\(843\) 19.4738 + 39.6259i 0.670713 + 1.36479i
\(844\) 0 0
\(845\) 5.54082 + 1.05676i 0.190610 + 0.0363535i
\(846\) 0 0
\(847\) 0.161717 + 0.280102i 0.00555666 + 0.00962442i
\(848\) 0 0
\(849\) −6.51173 13.2503i −0.223482 0.454749i
\(850\) 0 0
\(851\) −0.204915 −0.00702438
\(852\) 0 0
\(853\) −2.51731 + 4.36011i −0.0861911 + 0.149287i −0.905898 0.423496i \(-0.860803\pi\)
0.819707 + 0.572783i \(0.194136\pi\)
\(854\) 0 0
\(855\) 0.0148853 + 0.0362170i 0.000509065 + 0.00123860i
\(856\) 0 0
\(857\) 1.95321 3.38305i 0.0667203 0.115563i −0.830736 0.556667i \(-0.812080\pi\)
0.897456 + 0.441104i \(0.145413\pi\)
\(858\) 0 0
\(859\) −0.493148 0.854157i −0.0168260 0.0291435i 0.857490 0.514501i \(-0.172023\pi\)
−0.874316 + 0.485357i \(0.838689\pi\)
\(860\) 0 0
\(861\) 5.54201 8.26961i 0.188871 0.281828i
\(862\) 0 0
\(863\) 44.2030 1.50469 0.752345 0.658770i \(-0.228923\pi\)
0.752345 + 0.658770i \(0.228923\pi\)
\(864\) 0 0
\(865\) −1.68365 + 2.91617i −0.0572458 + 0.0991526i
\(866\) 0 0
\(867\) −24.7227 1.65449i −0.839627 0.0561895i
\(868\) 0 0
\(869\) −18.7326 + 32.4458i −0.635460 + 1.10065i
\(870\) 0 0
\(871\) 9.19669 + 0.869172i 0.311618 + 0.0294508i
\(872\) 0 0
\(873\) 23.7130 30.7284i 0.802565 1.04000i
\(874\) 0 0
\(875\) 3.37024 + 5.83742i 0.113935 + 0.197341i
\(876\) 0 0
\(877\) 39.7236 1.34137 0.670685 0.741743i \(-0.266000\pi\)
0.670685 + 0.741743i \(0.266000\pi\)
\(878\) 0 0
\(879\) 2.22566 3.32105i 0.0750695 0.112016i
\(880\) 0 0
\(881\) −21.1534 36.6387i −0.712675 1.23439i −0.963849 0.266448i \(-0.914150\pi\)
0.251174 0.967942i \(-0.419183\pi\)
\(882\) 0 0
\(883\) −32.9536 −1.10898 −0.554488 0.832192i \(-0.687086\pi\)
−0.554488 + 0.832192i \(0.687086\pi\)
\(884\) 0 0
\(885\) −0.272065 0.0182071i −0.00914535 0.000612025i
\(886\) 0 0
\(887\) −5.45287 + 9.44465i −0.183090 + 0.317120i −0.942931 0.332988i \(-0.891943\pi\)
0.759842 + 0.650108i \(0.225276\pi\)
\(888\) 0 0
\(889\) 6.96127 12.0573i 0.233474 0.404388i
\(890\) 0 0
\(891\) 21.0244 20.7949i 0.704345 0.696654i
\(892\) 0 0
\(893\) 0.113996 + 0.197448i 0.00381475 + 0.00660733i
\(894\) 0 0
\(895\) 1.91137 3.31059i 0.0638901 0.110661i
\(896\) 0 0
\(897\) 0.222752 0.272853i 0.00743747 0.00911028i
\(898\) 0 0
\(899\) 9.24074 + 16.0054i 0.308196 + 0.533811i
\(900\) 0 0
\(901\) −3.32443 + 5.75808i −0.110753 + 0.191830i
\(902\) 0 0
\(903\) −3.24146 6.59583i −0.107869 0.219496i
\(904\) 0 0
\(905\) −2.02016 3.49902i −0.0671524 0.116311i
\(906\) 0 0
\(907\) 18.7810 0.623612 0.311806 0.950146i \(-0.399066\pi\)
0.311806 + 0.950146i \(0.399066\pi\)
\(908\) 0 0
\(909\) 8.70798 + 21.1872i 0.288826 + 0.702736i
\(910\) 0 0
\(911\) −3.88256 + 6.72478i −0.128635 + 0.222802i −0.923148 0.384445i \(-0.874393\pi\)
0.794513 + 0.607247i \(0.207726\pi\)
\(912\) 0 0
\(913\) 18.1376 31.4153i 0.600267 1.03969i
\(914\) 0 0
\(915\) 1.14539 + 2.33068i 0.0378654 + 0.0770498i
\(916\) 0 0
\(917\) −14.3334 + 24.8261i −0.473329 + 0.819830i
\(918\) 0 0
\(919\) −20.9504 + 36.2872i −0.691090 + 1.19700i 0.280391 + 0.959886i \(0.409536\pi\)
−0.971481 + 0.237118i \(0.923797\pi\)
\(920\) 0 0
\(921\) −25.0007 + 37.3053i −0.823801 + 1.22925i
\(922\) 0 0
\(923\) 52.3938 + 4.95170i 1.72456 + 0.162987i
\(924\) 0 0
\(925\) −17.4815 −0.574788
\(926\) 0 0
\(927\) −13.1471 + 17.0367i −0.431809 + 0.559557i
\(928\) 0 0
\(929\) 20.8258 + 36.0714i 0.683273 + 1.18346i 0.973976 + 0.226651i \(0.0727775\pi\)
−0.290703 + 0.956813i \(0.593889\pi\)
\(930\) 0 0
\(931\) −0.0675812 0.117054i −0.00221488 0.00383629i
\(932\) 0 0
\(933\) 55.9057 + 3.74132i 1.83027 + 0.122485i
\(934\) 0 0
\(935\) 2.34017 0.0765316
\(936\) 0 0
\(937\) 46.9101 1.53249 0.766244 0.642550i \(-0.222124\pi\)
0.766244 + 0.642550i \(0.222124\pi\)
\(938\) 0 0
\(939\) −2.82103 5.74032i −0.0920607 0.187328i
\(940\) 0 0
\(941\) 1.71346 + 2.96780i 0.0558571 + 0.0967474i 0.892602 0.450846i \(-0.148878\pi\)
−0.836745 + 0.547593i \(0.815544\pi\)
\(942\) 0 0
\(943\) −0.102373 0.177316i −0.00333373 0.00577420i
\(944\) 0 0
\(945\) −2.36467 + 2.67410i −0.0769227 + 0.0869884i
\(946\) 0 0
\(947\) 21.0542 0.684170 0.342085 0.939669i \(-0.388867\pi\)
0.342085 + 0.939669i \(0.388867\pi\)
\(948\) 0 0
\(949\) 0.244492 + 0.533991i 0.00793655 + 0.0173341i
\(950\) 0 0
\(951\) 9.76142 + 19.8629i 0.316536 + 0.644098i
\(952\) 0 0
\(953\) 5.77633 10.0049i 0.187114 0.324090i −0.757173 0.653214i \(-0.773420\pi\)
0.944287 + 0.329124i \(0.106753\pi\)
\(954\) 0 0
\(955\) −3.92562 + 6.79937i −0.127030 + 0.220022i
\(956\) 0 0
\(957\) −10.6879 + 15.9481i −0.345490 + 0.515530i
\(958\) 0 0
\(959\) −3.25701 + 5.64131i −0.105174 + 0.182167i
\(960\) 0 0
\(961\) 0.493070 0.854023i 0.0159055 0.0275491i
\(962\) 0 0
\(963\) 26.7343 34.6436i 0.861502 1.11637i
\(964\) 0 0
\(965\) −1.81270 −0.0583529
\(966\) 0 0
\(967\) 9.28441 + 16.0811i 0.298567 + 0.517133i 0.975808 0.218628i \(-0.0701582\pi\)
−0.677242 + 0.735761i \(0.736825\pi\)
\(968\) 0 0
\(969\) 0.0853330 + 0.00571065i 0.00274129 + 0.000183453i
\(970\) 0 0
\(971\) −9.28362 + 16.0797i −0.297926 + 0.516022i −0.975661 0.219283i \(-0.929628\pi\)
0.677736 + 0.735306i \(0.262961\pi\)
\(972\) 0 0
\(973\) −9.63348 16.6857i −0.308835 0.534918i
\(974\) 0 0
\(975\) 19.0032 23.2774i 0.608590 0.745472i
\(976\) 0 0
\(977\) 23.9560 41.4930i 0.766421 1.32748i −0.173071 0.984909i \(-0.555369\pi\)
0.939492 0.342571i \(-0.111298\pi\)
\(978\) 0 0
\(979\) 20.1494 + 34.8998i 0.643978 + 1.11540i
\(980\) 0 0
\(981\) 18.5510 + 45.1360i 0.592287 + 1.44108i
\(982\) 0 0
\(983\) −28.1105 + 48.6888i −0.896586 + 1.55293i −0.0647561 + 0.997901i \(0.520627\pi\)
−0.831830 + 0.555031i \(0.812706\pi\)
\(984\) 0 0
\(985\) 4.68958 8.12260i 0.149423 0.258808i
\(986\) 0 0
\(987\) −11.5710 + 17.2659i −0.368310 + 0.549580i
\(988\) 0 0
\(989\) −0.151156 −0.00480647
\(990\) 0 0
\(991\) 0.830293 + 1.43811i 0.0263751 + 0.0456831i 0.878912 0.476985i \(-0.158270\pi\)
−0.852537 + 0.522668i \(0.824937\pi\)
\(992\) 0 0
\(993\) 14.0296 + 0.938885i 0.445215 + 0.0297946i
\(994\) 0 0
\(995\) −6.58835 −0.208865
\(996\) 0 0
\(997\) 27.4394 + 47.5265i 0.869016 + 1.50518i 0.863004 + 0.505197i \(0.168580\pi\)
0.00601173 + 0.999982i \(0.498086\pi\)
\(998\) 0 0
\(999\) −5.99453 17.9011i −0.189658 0.566366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.j.a.133.5 28
3.2 odd 2 1404.2.j.a.289.8 28
9.4 even 3 468.2.k.a.445.14 yes 28
9.5 odd 6 1404.2.k.a.1225.8 28
13.9 even 3 468.2.k.a.61.14 yes 28
39.35 odd 6 1404.2.k.a.1153.8 28
117.22 even 3 inner 468.2.j.a.373.5 yes 28
117.113 odd 6 1404.2.j.a.685.8 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.5 28 1.1 even 1 trivial
468.2.j.a.373.5 yes 28 117.22 even 3 inner
468.2.k.a.61.14 yes 28 13.9 even 3
468.2.k.a.445.14 yes 28 9.4 even 3
1404.2.j.a.289.8 28 3.2 odd 2
1404.2.j.a.685.8 28 117.113 odd 6
1404.2.k.a.1153.8 28 39.35 odd 6
1404.2.k.a.1225.8 28 9.5 odd 6