Properties

Label 1404.2.j.a.289.8
Level $1404$
Weight $2$
Character 1404.289
Analytic conductor $11.211$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(289,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 1404.289
Dual form 1404.2.j.a.685.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.216950 + 0.375768i) q^{5} +(-0.791636 - 1.37115i) q^{7} +3.28568 q^{11} +(-1.50098 - 3.27827i) q^{13} +(-0.820732 + 1.42155i) q^{17} +(0.0150406 - 0.0260511i) q^{19} +(-0.0282011 + 0.0488457i) q^{23} +(2.40587 - 4.16708i) q^{25} +3.37346 q^{29} +(-2.73925 - 4.74451i) q^{31} +(0.343491 - 0.594943i) q^{35} +(-1.81655 - 3.14636i) q^{37} +(-1.81506 + 3.14378i) q^{41} +(-1.33998 - 2.32092i) q^{43} +(3.78962 - 6.56382i) q^{47} +(2.24662 - 3.89127i) q^{49} +4.05057 q^{53} +(0.712828 + 1.23465i) q^{55} +0.362821 q^{59} +(1.72774 + 2.99253i) q^{61} +(0.906231 - 1.27524i) q^{65} +(-1.28103 + 2.21882i) q^{67} +(7.29808 - 12.6407i) q^{71} -0.162888 q^{73} +(-2.60107 - 4.50518i) q^{77} +(5.70128 - 9.87490i) q^{79} +(5.52019 - 9.56125i) q^{83} -0.712231 q^{85} +(6.13248 + 10.6218i) q^{89} +(-3.30678 + 4.65327i) q^{91} +0.0130522 q^{95} +(6.46904 + 11.2047i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{7} - 8 q^{11} + q^{13} + 8 q^{17} - q^{19} + 4 q^{23} - 14 q^{25} - 26 q^{29} + 2 q^{31} - 3 q^{35} - q^{37} - 4 q^{41} + 2 q^{43} - 11 q^{47} - 12 q^{49} - 52 q^{53} - 16 q^{59} - 7 q^{61}+ \cdots - 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.216950 + 0.375768i 0.0970229 + 0.168049i 0.910451 0.413617i \(-0.135735\pi\)
−0.813428 + 0.581665i \(0.802401\pi\)
\(6\) 0 0
\(7\) −0.791636 1.37115i −0.299210 0.518248i 0.676745 0.736217i \(-0.263390\pi\)
−0.975956 + 0.217970i \(0.930057\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.28568 0.990671 0.495335 0.868702i \(-0.335045\pi\)
0.495335 + 0.868702i \(0.335045\pi\)
\(12\) 0 0
\(13\) −1.50098 3.27827i −0.416298 0.909228i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.820732 + 1.42155i −0.199057 + 0.344777i −0.948223 0.317606i \(-0.897121\pi\)
0.749166 + 0.662382i \(0.230455\pi\)
\(18\) 0 0
\(19\) 0.0150406 0.0260511i 0.00345055 0.00597653i −0.864295 0.502985i \(-0.832235\pi\)
0.867746 + 0.497009i \(0.165568\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.0282011 + 0.0488457i −0.00588033 + 0.0101850i −0.868951 0.494899i \(-0.835205\pi\)
0.863070 + 0.505084i \(0.168538\pi\)
\(24\) 0 0
\(25\) 2.40587 4.16708i 0.481173 0.833416i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.37346 0.626436 0.313218 0.949681i \(-0.398593\pi\)
0.313218 + 0.949681i \(0.398593\pi\)
\(30\) 0 0
\(31\) −2.73925 4.74451i −0.491983 0.852140i 0.507974 0.861372i \(-0.330394\pi\)
−0.999957 + 0.00923265i \(0.997061\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.343491 0.594943i 0.0580605 0.100564i
\(36\) 0 0
\(37\) −1.81655 3.14636i −0.298639 0.517258i 0.677186 0.735812i \(-0.263199\pi\)
−0.975825 + 0.218554i \(0.929866\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.81506 + 3.14378i −0.283465 + 0.490976i −0.972236 0.234004i \(-0.924817\pi\)
0.688771 + 0.724979i \(0.258151\pi\)
\(42\) 0 0
\(43\) −1.33998 2.32092i −0.204345 0.353937i 0.745579 0.666418i \(-0.232173\pi\)
−0.949924 + 0.312481i \(0.898840\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.78962 6.56382i 0.552773 0.957432i −0.445300 0.895382i \(-0.646903\pi\)
0.998073 0.0620500i \(-0.0197638\pi\)
\(48\) 0 0
\(49\) 2.24662 3.89127i 0.320946 0.555895i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.05057 0.556388 0.278194 0.960525i \(-0.410264\pi\)
0.278194 + 0.960525i \(0.410264\pi\)
\(54\) 0 0
\(55\) 0.712828 + 1.23465i 0.0961178 + 0.166481i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.362821 0.0472353 0.0236176 0.999721i \(-0.492482\pi\)
0.0236176 + 0.999721i \(0.492482\pi\)
\(60\) 0 0
\(61\) 1.72774 + 2.99253i 0.221214 + 0.383154i 0.955177 0.296035i \(-0.0956646\pi\)
−0.733963 + 0.679190i \(0.762331\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.906231 1.27524i 0.112404 0.158174i
\(66\) 0 0
\(67\) −1.28103 + 2.21882i −0.156503 + 0.271071i −0.933605 0.358303i \(-0.883355\pi\)
0.777102 + 0.629374i \(0.216689\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.29808 12.6407i 0.866123 1.50017i 0.000195676 1.00000i \(-0.499938\pi\)
0.865928 0.500169i \(-0.166729\pi\)
\(72\) 0 0
\(73\) −0.162888 −0.0190646 −0.00953230 0.999955i \(-0.503034\pi\)
−0.00953230 + 0.999955i \(0.503034\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.60107 4.50518i −0.296419 0.513413i
\(78\) 0 0
\(79\) 5.70128 9.87490i 0.641444 1.11101i −0.343667 0.939092i \(-0.611669\pi\)
0.985111 0.171922i \(-0.0549976\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.52019 9.56125i 0.605920 1.04948i −0.385986 0.922505i \(-0.626139\pi\)
0.991905 0.126979i \(-0.0405281\pi\)
\(84\) 0 0
\(85\) −0.712231 −0.0772523
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.13248 + 10.6218i 0.650042 + 1.12591i 0.983112 + 0.183004i \(0.0585820\pi\)
−0.333070 + 0.942902i \(0.608085\pi\)
\(90\) 0 0
\(91\) −3.30678 + 4.65327i −0.346645 + 0.487796i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.0130522 0.00133913
\(96\) 0 0
\(97\) 6.46904 + 11.2047i 0.656831 + 1.13767i 0.981431 + 0.191814i \(0.0614371\pi\)
−0.324600 + 0.945851i \(0.605230\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.63565 0.759775 0.379888 0.925033i \(-0.375963\pi\)
0.379888 + 0.925033i \(0.375963\pi\)
\(102\) 0 0
\(103\) −3.58661 6.21219i −0.353399 0.612105i 0.633444 0.773789i \(-0.281641\pi\)
−0.986843 + 0.161684i \(0.948307\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.29326 12.6323i −0.705066 1.22121i −0.966668 0.256035i \(-0.917584\pi\)
0.261601 0.965176i \(-0.415750\pi\)
\(108\) 0 0
\(109\) −16.2665 −1.55805 −0.779026 0.626992i \(-0.784286\pi\)
−0.779026 + 0.626992i \(0.784286\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.2845 −1.81413 −0.907066 0.420988i \(-0.861683\pi\)
−0.907066 + 0.420988i \(0.861683\pi\)
\(114\) 0 0
\(115\) −0.0244729 −0.00228211
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.59889 0.238239
\(120\) 0 0
\(121\) −0.204282 −0.0185711
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.25731 0.380785
\(126\) 0 0
\(127\) 4.39676 + 7.61542i 0.390150 + 0.675759i 0.992469 0.122496i \(-0.0390899\pi\)
−0.602319 + 0.798255i \(0.705757\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.05299 + 15.6802i 0.790964 + 1.36999i 0.925371 + 0.379063i \(0.123754\pi\)
−0.134407 + 0.990926i \(0.542913\pi\)
\(132\) 0 0
\(133\) −0.0476268 −0.00412976
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.05714 + 3.56307i 0.175753 + 0.304414i 0.940422 0.340010i \(-0.110431\pi\)
−0.764668 + 0.644424i \(0.777097\pi\)
\(138\) 0 0
\(139\) 12.1691 1.03217 0.516084 0.856538i \(-0.327389\pi\)
0.516084 + 0.856538i \(0.327389\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.93175 10.7714i −0.412414 0.900746i
\(144\) 0 0
\(145\) 0.731872 + 1.26764i 0.0607786 + 0.105272i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.45044 −0.774210 −0.387105 0.922036i \(-0.626525\pi\)
−0.387105 + 0.922036i \(0.626525\pi\)
\(150\) 0 0
\(151\) 5.31651 9.20847i 0.432651 0.749374i −0.564449 0.825468i \(-0.690911\pi\)
0.997101 + 0.0760934i \(0.0242447\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.18856 2.05864i 0.0954672 0.165354i
\(156\) 0 0
\(157\) −0.146130 0.253105i −0.0116624 0.0202000i 0.860135 0.510066i \(-0.170379\pi\)
−0.871798 + 0.489866i \(0.837046\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0893000 0.00703782
\(162\) 0 0
\(163\) 7.12118 12.3342i 0.557774 0.966092i −0.439908 0.898043i \(-0.644989\pi\)
0.997682 0.0680496i \(-0.0216776\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.62713 + 13.2106i −0.590205 + 1.02227i 0.403999 + 0.914759i \(0.367620\pi\)
−0.994204 + 0.107506i \(0.965714\pi\)
\(168\) 0 0
\(169\) −8.49411 + 9.84125i −0.653393 + 0.757019i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.88027 + 6.72083i 0.295012 + 0.510975i 0.974988 0.222259i \(-0.0713431\pi\)
−0.679976 + 0.733235i \(0.738010\pi\)
\(174\) 0 0
\(175\) −7.61828 −0.575888
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.40510 7.62986i −0.329253 0.570282i 0.653111 0.757262i \(-0.273463\pi\)
−0.982364 + 0.186980i \(0.940130\pi\)
\(180\) 0 0
\(181\) 9.31165 0.692129 0.346065 0.938211i \(-0.387518\pi\)
0.346065 + 0.938211i \(0.387518\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.788200 1.36520i 0.0579496 0.100372i
\(186\) 0 0
\(187\) −2.69667 + 4.67076i −0.197200 + 0.341560i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.04730 + 15.6704i 0.654639 + 1.13387i 0.981984 + 0.188964i \(0.0605128\pi\)
−0.327345 + 0.944905i \(0.606154\pi\)
\(192\) 0 0
\(193\) 2.08885 3.61799i 0.150359 0.260429i −0.781001 0.624530i \(-0.785290\pi\)
0.931359 + 0.364101i \(0.118624\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.8080 18.7200i −0.770038 1.33374i −0.937542 0.347873i \(-0.886904\pi\)
0.167504 0.985871i \(-0.446429\pi\)
\(198\) 0 0
\(199\) 7.59202 13.1498i 0.538184 0.932162i −0.460818 0.887495i \(-0.652444\pi\)
0.999002 0.0446676i \(-0.0142229\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.67055 4.62553i −0.187436 0.324649i
\(204\) 0 0
\(205\) −1.57511 −0.110010
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0494187 0.0855957i 0.00341836 0.00592078i
\(210\) 0 0
\(211\) −9.96737 + 17.2640i −0.686182 + 1.18850i 0.286881 + 0.957966i \(0.407381\pi\)
−0.973064 + 0.230537i \(0.925952\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.581418 1.00705i 0.0396524 0.0686799i
\(216\) 0 0
\(217\) −4.33697 + 7.51185i −0.294413 + 0.509938i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.89213 + 0.556861i 0.396348 + 0.0374585i
\(222\) 0 0
\(223\) −19.1053 −1.27938 −0.639692 0.768631i \(-0.720938\pi\)
−0.639692 + 0.768631i \(0.720938\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.44350 + 11.1605i 0.427670 + 0.740747i 0.996666 0.0815941i \(-0.0260011\pi\)
−0.568995 + 0.822341i \(0.692668\pi\)
\(228\) 0 0
\(229\) 5.06389 + 8.77091i 0.334631 + 0.579598i 0.983414 0.181376i \(-0.0580550\pi\)
−0.648783 + 0.760974i \(0.724722\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.4552 −1.27455 −0.637275 0.770637i \(-0.719938\pi\)
−0.637275 + 0.770637i \(0.719938\pi\)
\(234\) 0 0
\(235\) 3.28863 0.214527
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.33263 + 10.9684i 0.409623 + 0.709489i 0.994847 0.101383i \(-0.0323268\pi\)
−0.585224 + 0.810872i \(0.698993\pi\)
\(240\) 0 0
\(241\) −7.50431 12.9979i −0.483395 0.837265i 0.516423 0.856334i \(-0.327263\pi\)
−0.999818 + 0.0190684i \(0.993930\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.94962 0.124557
\(246\) 0 0
\(247\) −0.107978 0.0102049i −0.00687049 0.000649325i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.90158 + 6.75773i −0.246265 + 0.426544i −0.962487 0.271329i \(-0.912537\pi\)
0.716221 + 0.697873i \(0.245870\pi\)
\(252\) 0 0
\(253\) −0.0926598 + 0.160492i −0.00582547 + 0.0100900i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.72220 + 6.44703i −0.232184 + 0.402155i −0.958451 0.285259i \(-0.907921\pi\)
0.726266 + 0.687413i \(0.241254\pi\)
\(258\) 0 0
\(259\) −2.87609 + 4.98154i −0.178712 + 0.309538i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.13493 −0.439958 −0.219979 0.975505i \(-0.570599\pi\)
−0.219979 + 0.975505i \(0.570599\pi\)
\(264\) 0 0
\(265\) 0.878769 + 1.52207i 0.0539824 + 0.0935002i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.1183 + 24.4536i −0.860807 + 1.49096i 0.0103450 + 0.999946i \(0.496707\pi\)
−0.871152 + 0.491014i \(0.836626\pi\)
\(270\) 0 0
\(271\) −3.82382 6.62305i −0.232281 0.402322i 0.726198 0.687485i \(-0.241285\pi\)
−0.958479 + 0.285164i \(0.907952\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.90491 13.6917i 0.476684 0.825641i
\(276\) 0 0
\(277\) 9.47813 + 16.4166i 0.569486 + 0.986378i 0.996617 + 0.0821882i \(0.0261909\pi\)
−0.427131 + 0.904190i \(0.640476\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.7457 + 22.0763i −0.760347 + 1.31696i 0.182325 + 0.983238i \(0.441638\pi\)
−0.942672 + 0.333721i \(0.891696\pi\)
\(282\) 0 0
\(283\) −4.26197 + 7.38195i −0.253348 + 0.438811i −0.964445 0.264282i \(-0.914865\pi\)
0.711098 + 0.703093i \(0.248198\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.74747 0.339262
\(288\) 0 0
\(289\) 7.15280 + 12.3890i 0.420753 + 0.728765i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.30817 0.134845 0.0674223 0.997725i \(-0.478523\pi\)
0.0674223 + 0.997725i \(0.478523\pi\)
\(294\) 0 0
\(295\) 0.0787140 + 0.136337i 0.00458290 + 0.00793782i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.202459 + 0.0191342i 0.0117085 + 0.00110656i
\(300\) 0 0
\(301\) −2.12156 + 3.67464i −0.122285 + 0.211803i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.749665 + 1.29846i −0.0429257 + 0.0743495i
\(306\) 0 0
\(307\) 25.9276 1.47976 0.739882 0.672736i \(-0.234881\pi\)
0.739882 + 0.672736i \(0.234881\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.1747 + 28.0154i 0.917181 + 1.58860i 0.803676 + 0.595068i \(0.202875\pi\)
0.113506 + 0.993537i \(0.463792\pi\)
\(312\) 0 0
\(313\) −1.84638 + 3.19803i −0.104364 + 0.180763i −0.913478 0.406888i \(-0.866614\pi\)
0.809114 + 0.587651i \(0.199947\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.38892 + 11.0659i −0.358837 + 0.621524i −0.987767 0.155938i \(-0.950160\pi\)
0.628930 + 0.777462i \(0.283493\pi\)
\(318\) 0 0
\(319\) 11.0841 0.620592
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0246886 + 0.0427620i 0.00137371 + 0.00237934i
\(324\) 0 0
\(325\) −17.2720 1.63236i −0.958077 0.0905471i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0000 −0.661582
\(330\) 0 0
\(331\) −4.05904 7.03047i −0.223105 0.386430i 0.732644 0.680612i \(-0.238286\pi\)
−0.955749 + 0.294182i \(0.904953\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.11168 −0.0607376
\(336\) 0 0
\(337\) 17.4314 + 30.1921i 0.949551 + 1.64467i 0.746373 + 0.665528i \(0.231794\pi\)
0.203178 + 0.979142i \(0.434873\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.00029 15.5890i −0.487393 0.844190i
\(342\) 0 0
\(343\) −18.1969 −0.982543
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.1469 −1.18891 −0.594453 0.804130i \(-0.702631\pi\)
−0.594453 + 0.804130i \(0.702631\pi\)
\(348\) 0 0
\(349\) 17.8426 0.955094 0.477547 0.878606i \(-0.341526\pi\)
0.477547 + 0.878606i \(0.341526\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.9858 −0.797616 −0.398808 0.917034i \(-0.630576\pi\)
−0.398808 + 0.917034i \(0.630576\pi\)
\(354\) 0 0
\(355\) 6.33327 0.336135
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.49334 −0.131594 −0.0657968 0.997833i \(-0.520959\pi\)
−0.0657968 + 0.997833i \(0.520959\pi\)
\(360\) 0 0
\(361\) 9.49955 + 16.4537i 0.499976 + 0.865984i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.0353385 0.0612081i −0.00184970 0.00320378i
\(366\) 0 0
\(367\) −4.38816 −0.229060 −0.114530 0.993420i \(-0.536536\pi\)
−0.114530 + 0.993420i \(0.536536\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.20657 5.55395i −0.166477 0.288347i
\(372\) 0 0
\(373\) 15.0702 0.780304 0.390152 0.920750i \(-0.372422\pi\)
0.390152 + 0.920750i \(0.372422\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.06350 11.0591i −0.260784 0.569573i
\(378\) 0 0
\(379\) −13.2405 22.9331i −0.680117 1.17800i −0.974945 0.222446i \(-0.928596\pi\)
0.294828 0.955550i \(-0.404738\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.05939 0.156327 0.0781637 0.996941i \(-0.475094\pi\)
0.0781637 + 0.996941i \(0.475094\pi\)
\(384\) 0 0
\(385\) 1.12860 1.95480i 0.0575189 0.0996256i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.58306 13.1342i 0.384476 0.665932i −0.607220 0.794534i \(-0.707715\pi\)
0.991696 + 0.128601i \(0.0410487\pi\)
\(390\) 0 0
\(391\) −0.0462911 0.0801785i −0.00234104 0.00405480i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.94756 0.248939
\(396\) 0 0
\(397\) 6.92576 11.9958i 0.347594 0.602050i −0.638228 0.769848i \(-0.720332\pi\)
0.985821 + 0.167798i \(0.0536655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.31025 + 2.26942i −0.0654309 + 0.113330i −0.896885 0.442264i \(-0.854176\pi\)
0.831454 + 0.555593i \(0.187509\pi\)
\(402\) 0 0
\(403\) −11.4422 + 16.1014i −0.569978 + 0.802068i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.96861 10.3379i −0.295853 0.512432i
\(408\) 0 0
\(409\) −15.7656 −0.779558 −0.389779 0.920909i \(-0.627449\pi\)
−0.389779 + 0.920909i \(0.627449\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.287222 0.497484i −0.0141333 0.0244796i
\(414\) 0 0
\(415\) 4.79042 0.235152
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.26344 7.38449i 0.208282 0.360756i −0.742891 0.669412i \(-0.766546\pi\)
0.951174 + 0.308656i \(0.0998793\pi\)
\(420\) 0 0
\(421\) −7.83552 + 13.5715i −0.381880 + 0.661436i −0.991331 0.131388i \(-0.958057\pi\)
0.609451 + 0.792824i \(0.291390\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.94914 + 6.84012i 0.191562 + 0.331794i
\(426\) 0 0
\(427\) 2.73548 4.73799i 0.132379 0.229288i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8332 22.2278i −0.618155 1.07068i −0.989822 0.142310i \(-0.954547\pi\)
0.371667 0.928366i \(-0.378786\pi\)
\(432\) 0 0
\(433\) −18.3374 + 31.7614i −0.881241 + 1.52635i −0.0312791 + 0.999511i \(0.509958\pi\)
−0.849962 + 0.526844i \(0.823375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.000848323 0.00146934i 4.05808e−5 7.02880e-5i
\(438\) 0 0
\(439\) 4.99493 0.238395 0.119197 0.992871i \(-0.461968\pi\)
0.119197 + 0.992871i \(0.461968\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.1200 26.1886i 0.718373 1.24426i −0.243271 0.969958i \(-0.578220\pi\)
0.961644 0.274300i \(-0.0884462\pi\)
\(444\) 0 0
\(445\) −2.66088 + 4.60878i −0.126138 + 0.218477i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.70002 16.8009i 0.457772 0.792885i −0.541071 0.840977i \(-0.681981\pi\)
0.998843 + 0.0480922i \(0.0153141\pi\)
\(450\) 0 0
\(451\) −5.96372 + 10.3295i −0.280820 + 0.486395i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.46596 0.233056i −0.115606 0.0109258i
\(456\) 0 0
\(457\) −9.45223 −0.442156 −0.221078 0.975256i \(-0.570958\pi\)
−0.221078 + 0.975256i \(0.570958\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5227 + 19.9580i 0.536668 + 0.929536i 0.999081 + 0.0428711i \(0.0136505\pi\)
−0.462413 + 0.886665i \(0.653016\pi\)
\(462\) 0 0
\(463\) −10.3312 17.8942i −0.480134 0.831616i 0.519607 0.854406i \(-0.326078\pi\)
−0.999740 + 0.0227898i \(0.992745\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.84410 0.270433 0.135216 0.990816i \(-0.456827\pi\)
0.135216 + 0.990816i \(0.456827\pi\)
\(468\) 0 0
\(469\) 4.05645 0.187309
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.40276 7.62580i −0.202439 0.350635i
\(474\) 0 0
\(475\) −0.0723714 0.125351i −0.00332063 0.00575149i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.41643 −0.430248 −0.215124 0.976587i \(-0.569015\pi\)
−0.215124 + 0.976587i \(0.569015\pi\)
\(480\) 0 0
\(481\) −7.58800 + 10.6778i −0.345983 + 0.486864i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.80691 + 4.86172i −0.127455 + 0.220759i
\(486\) 0 0
\(487\) 1.94398 3.36708i 0.0880903 0.152577i −0.818614 0.574345i \(-0.805257\pi\)
0.906704 + 0.421768i \(0.138590\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.62024 + 4.53840i −0.118250 + 0.204815i −0.919074 0.394084i \(-0.871062\pi\)
0.800824 + 0.598899i \(0.204395\pi\)
\(492\) 0 0
\(493\) −2.76871 + 4.79554i −0.124696 + 0.215980i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.1097 −1.03661
\(498\) 0 0
\(499\) 10.8182 + 18.7377i 0.484289 + 0.838813i 0.999837 0.0180474i \(-0.00574497\pi\)
−0.515548 + 0.856861i \(0.672412\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.9763 + 25.9397i −0.667760 + 1.15659i 0.310769 + 0.950485i \(0.399413\pi\)
−0.978529 + 0.206108i \(0.933920\pi\)
\(504\) 0 0
\(505\) 1.65655 + 2.86923i 0.0737156 + 0.127679i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.5253 21.6945i 0.555176 0.961594i −0.442713 0.896663i \(-0.645984\pi\)
0.997890 0.0649305i \(-0.0206826\pi\)
\(510\) 0 0
\(511\) 0.128948 + 0.223345i 0.00570433 + 0.00988018i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.55623 2.69546i 0.0685756 0.118776i
\(516\) 0 0
\(517\) 12.4515 21.5666i 0.547617 0.948500i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.4586 0.940116 0.470058 0.882635i \(-0.344233\pi\)
0.470058 + 0.882635i \(0.344233\pi\)
\(522\) 0 0
\(523\) −0.790297 1.36883i −0.0345573 0.0598550i 0.848230 0.529629i \(-0.177669\pi\)
−0.882787 + 0.469774i \(0.844335\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.99275 0.391730
\(528\) 0 0
\(529\) 11.4984 + 19.9158i 0.499931 + 0.865906i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 13.0305 + 1.23151i 0.564415 + 0.0533424i
\(534\) 0 0
\(535\) 3.16454 5.48115i 0.136815 0.236971i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.38170 12.7855i 0.317952 0.550709i
\(540\) 0 0
\(541\) 26.1156 1.12280 0.561398 0.827546i \(-0.310264\pi\)
0.561398 + 0.827546i \(0.310264\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.52902 6.11244i −0.151167 0.261828i
\(546\) 0 0
\(547\) 10.4157 18.0406i 0.445344 0.771359i −0.552732 0.833359i \(-0.686415\pi\)
0.998076 + 0.0620002i \(0.0197479\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0507389 0.0878823i 0.00216155 0.00374391i
\(552\) 0 0
\(553\) −18.0533 −0.767706
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.4069 + 33.6138i 0.822299 + 1.42426i 0.903967 + 0.427603i \(0.140642\pi\)
−0.0816680 + 0.996660i \(0.526025\pi\)
\(558\) 0 0
\(559\) −5.59730 + 7.87648i −0.236741 + 0.333140i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.804224 0.0338940 0.0169470 0.999856i \(-0.494605\pi\)
0.0169470 + 0.999856i \(0.494605\pi\)
\(564\) 0 0
\(565\) −4.18377 7.24650i −0.176012 0.304862i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.8108 −0.830514 −0.415257 0.909704i \(-0.636308\pi\)
−0.415257 + 0.909704i \(0.636308\pi\)
\(570\) 0 0
\(571\) −18.8485 32.6466i −0.788786 1.36622i −0.926711 0.375775i \(-0.877376\pi\)
0.137924 0.990443i \(-0.455957\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.135696 + 0.235032i 0.00565891 + 0.00980153i
\(576\) 0 0
\(577\) 1.66499 0.0693145 0.0346573 0.999399i \(-0.488966\pi\)
0.0346573 + 0.999399i \(0.488966\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −17.4799 −0.725190
\(582\) 0 0
\(583\) 13.3089 0.551197
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.7504 0.567541 0.283770 0.958892i \(-0.408415\pi\)
0.283770 + 0.958892i \(0.408415\pi\)
\(588\) 0 0
\(589\) −0.164800 −0.00679045
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 48.0032 1.97125 0.985627 0.168937i \(-0.0540334\pi\)
0.985627 + 0.168937i \(0.0540334\pi\)
\(594\) 0 0
\(595\) 0.563828 + 0.976578i 0.0231147 + 0.0400358i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.5595 + 32.1459i 0.758319 + 1.31345i 0.943707 + 0.330782i \(0.107312\pi\)
−0.185388 + 0.982665i \(0.559354\pi\)
\(600\) 0 0
\(601\) 7.04826 0.287505 0.143752 0.989614i \(-0.454083\pi\)
0.143752 + 0.989614i \(0.454083\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0443189 0.0767627i −0.00180182 0.00312085i
\(606\) 0 0
\(607\) 10.3740 0.421068 0.210534 0.977587i \(-0.432480\pi\)
0.210534 + 0.977587i \(0.432480\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.2061 2.57123i −1.10064 0.104021i
\(612\) 0 0
\(613\) −16.7614 29.0316i −0.676986 1.17257i −0.975884 0.218289i \(-0.929952\pi\)
0.298898 0.954285i \(-0.403381\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −35.1206 −1.41390 −0.706952 0.707262i \(-0.749930\pi\)
−0.706952 + 0.707262i \(0.749930\pi\)
\(618\) 0 0
\(619\) 19.5529 33.8667i 0.785899 1.36122i −0.142562 0.989786i \(-0.545534\pi\)
0.928461 0.371431i \(-0.121133\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.70939 16.8172i 0.388999 0.673765i
\(624\) 0 0
\(625\) −11.1057 19.2356i −0.444228 0.769426i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.96361 0.237785
\(630\) 0 0
\(631\) 11.2857 19.5474i 0.449277 0.778170i −0.549062 0.835781i \(-0.685015\pi\)
0.998339 + 0.0576114i \(0.0183484\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.90775 + 3.30433i −0.0757069 + 0.131128i
\(636\) 0 0
\(637\) −16.1288 1.52432i −0.639045 0.0603957i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.60461 9.70746i −0.221369 0.383422i 0.733855 0.679306i \(-0.237719\pi\)
−0.955224 + 0.295884i \(0.904386\pi\)
\(642\) 0 0
\(643\) 2.98337 0.117653 0.0588264 0.998268i \(-0.481264\pi\)
0.0588264 + 0.998268i \(0.481264\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.2748 + 33.3850i 0.757772 + 1.31250i 0.943984 + 0.329990i \(0.107045\pi\)
−0.186212 + 0.982510i \(0.559621\pi\)
\(648\) 0 0
\(649\) 1.19212 0.0467946
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.0269 43.3478i 0.979377 1.69633i 0.314716 0.949186i \(-0.398091\pi\)
0.664661 0.747145i \(-0.268576\pi\)
\(654\) 0 0
\(655\) −3.92809 + 6.80365i −0.153483 + 0.265841i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.65831 + 2.87228i 0.0645985 + 0.111888i 0.896516 0.443012i \(-0.146090\pi\)
−0.831917 + 0.554900i \(0.812757\pi\)
\(660\) 0 0
\(661\) 5.56081 9.63160i 0.216290 0.374626i −0.737381 0.675478i \(-0.763938\pi\)
0.953671 + 0.300852i \(0.0972709\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.0103326 0.0178966i −0.000400682 0.000694001i
\(666\) 0 0
\(667\) −0.0951352 + 0.164779i −0.00368365 + 0.00638027i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.67680 + 9.83251i 0.219151 + 0.379580i
\(672\) 0 0
\(673\) 32.4363 1.25033 0.625163 0.780494i \(-0.285032\pi\)
0.625163 + 0.780494i \(0.285032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.6356 21.8854i 0.485624 0.841126i −0.514239 0.857647i \(-0.671926\pi\)
0.999864 + 0.0165208i \(0.00525897\pi\)
\(678\) 0 0
\(679\) 10.2423 17.7401i 0.393062 0.680803i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.343395 + 0.594778i −0.0131397 + 0.0227585i −0.872520 0.488578i \(-0.837516\pi\)
0.859381 + 0.511336i \(0.170849\pi\)
\(684\) 0 0
\(685\) −0.892592 + 1.54601i −0.0341042 + 0.0590702i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.07983 13.2788i −0.231623 0.505884i
\(690\) 0 0
\(691\) −44.4463 −1.69082 −0.845409 0.534119i \(-0.820643\pi\)
−0.845409 + 0.534119i \(0.820643\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.64008 + 4.57275i 0.100144 + 0.173454i
\(696\) 0 0
\(697\) −2.97936 5.16040i −0.112851 0.195464i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.00391 0.188995 0.0944975 0.995525i \(-0.469876\pi\)
0.0944975 + 0.995525i \(0.469876\pi\)
\(702\) 0 0
\(703\) −0.109288 −0.00412188
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.04466 10.4697i −0.227333 0.393752i
\(708\) 0 0
\(709\) −22.0166 38.1339i −0.826852 1.43215i −0.900495 0.434866i \(-0.856796\pi\)
0.0736428 0.997285i \(-0.476538\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.308999 0.0115721
\(714\) 0 0
\(715\) 2.97759 4.19004i 0.111356 0.156699i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8809 + 29.2385i −0.629551 + 1.09041i 0.358091 + 0.933687i \(0.383428\pi\)
−0.987642 + 0.156727i \(0.949906\pi\)
\(720\) 0 0
\(721\) −5.67858 + 9.83558i −0.211481 + 0.366296i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.11609 14.0575i 0.301424 0.522082i
\(726\) 0 0
\(727\) 19.1552 33.1778i 0.710427 1.23050i −0.254270 0.967133i \(-0.581835\pi\)
0.964697 0.263362i \(-0.0848313\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.39907 0.162705
\(732\) 0 0
\(733\) −24.2010 41.9174i −0.893885 1.54825i −0.835179 0.549978i \(-0.814636\pi\)
−0.0587059 0.998275i \(-0.518697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.20907 + 7.29033i −0.155043 + 0.268543i
\(738\) 0 0
\(739\) 20.1732 + 34.9409i 0.742082 + 1.28532i 0.951546 + 0.307507i \(0.0994946\pi\)
−0.209464 + 0.977816i \(0.567172\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.8084 39.5053i 0.836758 1.44931i −0.0558331 0.998440i \(-0.517781\pi\)
0.892591 0.450867i \(-0.148885\pi\)
\(744\) 0 0
\(745\) −2.05027 3.55117i −0.0751161 0.130105i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.5472 + 20.0004i −0.421926 + 0.730798i
\(750\) 0 0
\(751\) −21.0467 + 36.4540i −0.768007 + 1.33023i 0.170636 + 0.985334i \(0.445418\pi\)
−0.938642 + 0.344892i \(0.887915\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.61366 0.167908
\(756\) 0 0
\(757\) −15.6559 27.1168i −0.569024 0.985578i −0.996663 0.0816283i \(-0.973988\pi\)
0.427639 0.903949i \(-0.359345\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.3570 1.86169 0.930845 0.365414i \(-0.119073\pi\)
0.930845 + 0.365414i \(0.119073\pi\)
\(762\) 0 0
\(763\) 12.8772 + 22.3039i 0.466185 + 0.807456i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.544588 1.18943i −0.0196639 0.0429477i
\(768\) 0 0
\(769\) −10.8919 + 18.8653i −0.392772 + 0.680301i −0.992814 0.119667i \(-0.961817\pi\)
0.600042 + 0.799969i \(0.295151\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.64820 16.7112i 0.347022 0.601059i −0.638697 0.769458i \(-0.720526\pi\)
0.985719 + 0.168399i \(0.0538597\pi\)
\(774\) 0 0
\(775\) −26.3610 −0.946916
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.0545992 + 0.0945687i 0.00195622 + 0.00338827i
\(780\) 0 0
\(781\) 23.9792 41.5332i 0.858043 1.48617i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.0634058 0.109822i 0.00226305 0.00391972i
\(786\) 0 0
\(787\) −10.4299 −0.371785 −0.185893 0.982570i \(-0.559518\pi\)
−0.185893 + 0.982570i \(0.559518\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.2663 + 26.4420i 0.542807 + 0.940170i
\(792\) 0 0
\(793\) 7.21702 10.1557i 0.256284 0.360641i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.852516 0.0301977 0.0150988 0.999886i \(-0.495194\pi\)
0.0150988 + 0.999886i \(0.495194\pi\)
\(798\) 0 0
\(799\) 6.22053 + 10.7743i 0.220067 + 0.381167i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.535199 −0.0188867
\(804\) 0 0
\(805\) 0.0193736 + 0.0335561i 0.000682830 + 0.00118270i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.8597 + 39.5942i 0.803704 + 1.39206i 0.917162 + 0.398514i \(0.130474\pi\)
−0.113458 + 0.993543i \(0.536193\pi\)
\(810\) 0 0
\(811\) 14.7191 0.516857 0.258429 0.966030i \(-0.416795\pi\)
0.258429 + 0.966030i \(0.416795\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.17975 0.216467
\(816\) 0 0
\(817\) −0.0806166 −0.00282042
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.6029 −0.439843 −0.219922 0.975518i \(-0.570580\pi\)
−0.219922 + 0.975518i \(0.570580\pi\)
\(822\) 0 0
\(823\) −2.12581 −0.0741012 −0.0370506 0.999313i \(-0.511796\pi\)
−0.0370506 + 0.999313i \(0.511796\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.0089 1.04351 0.521756 0.853095i \(-0.325277\pi\)
0.521756 + 0.853095i \(0.325277\pi\)
\(828\) 0 0
\(829\) −19.6435 34.0235i −0.682246 1.18168i −0.974294 0.225281i \(-0.927670\pi\)
0.292048 0.956404i \(-0.405663\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.68775 + 6.38738i 0.127773 + 0.221310i
\(834\) 0 0
\(835\) −6.61882 −0.229054
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −26.4687 45.8452i −0.913802 1.58275i −0.808646 0.588296i \(-0.799799\pi\)
−0.105156 0.994456i \(-0.533534\pi\)
\(840\) 0 0
\(841\) −17.6198 −0.607578
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.54082 1.05676i −0.190610 0.0363535i
\(846\) 0 0
\(847\) 0.161717 + 0.280102i 0.00555666 + 0.00962442i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.204915 0.00702438
\(852\) 0 0
\(853\) −2.51731 + 4.36011i −0.0861911 + 0.149287i −0.905898 0.423496i \(-0.860803\pi\)
0.819707 + 0.572783i \(0.194136\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.95321 + 3.38305i −0.0667203 + 0.115563i −0.897456 0.441104i \(-0.854587\pi\)
0.830736 + 0.556667i \(0.187920\pi\)
\(858\) 0 0
\(859\) −0.493148 0.854157i −0.0168260 0.0291435i 0.857490 0.514501i \(-0.172023\pi\)
−0.874316 + 0.485357i \(0.838689\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −44.2030 −1.50469 −0.752345 0.658770i \(-0.771077\pi\)
−0.752345 + 0.658770i \(0.771077\pi\)
\(864\) 0 0
\(865\) −1.68365 + 2.91617i −0.0572458 + 0.0991526i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.7326 32.4458i 0.635460 1.10065i
\(870\) 0 0
\(871\) 9.19669 + 0.869172i 0.311618 + 0.0294508i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.37024 5.83742i −0.113935 0.197341i
\(876\) 0 0
\(877\) 39.7236 1.34137 0.670685 0.741743i \(-0.266000\pi\)
0.670685 + 0.741743i \(0.266000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.1534 + 36.6387i 0.712675 + 1.23439i 0.963849 + 0.266448i \(0.0858501\pi\)
−0.251174 + 0.967942i \(0.580817\pi\)
\(882\) 0 0
\(883\) −32.9536 −1.10898 −0.554488 0.832192i \(-0.687086\pi\)
−0.554488 + 0.832192i \(0.687086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.45287 9.44465i 0.183090 0.317120i −0.759842 0.650108i \(-0.774724\pi\)
0.942931 + 0.332988i \(0.108057\pi\)
\(888\) 0 0
\(889\) 6.96127 12.0573i 0.233474 0.404388i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.113996 0.197448i −0.00381475 0.00660733i
\(894\) 0 0
\(895\) 1.91137 3.31059i 0.0638901 0.110661i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.24074 16.0054i −0.308196 0.533811i
\(900\) 0 0
\(901\) −3.32443 + 5.75808i −0.110753 + 0.191830i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.02016 + 3.49902i 0.0671524 + 0.116311i
\(906\) 0 0
\(907\) 18.7810 0.623612 0.311806 0.950146i \(-0.399066\pi\)
0.311806 + 0.950146i \(0.399066\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.88256 6.72478i 0.128635 0.222802i −0.794513 0.607247i \(-0.792274\pi\)
0.923148 + 0.384445i \(0.125607\pi\)
\(912\) 0 0
\(913\) 18.1376 31.4153i 0.600267 1.03969i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.3334 24.8261i 0.473329 0.819830i
\(918\) 0 0
\(919\) −20.9504 + 36.2872i −0.691090 + 1.19700i 0.280391 + 0.959886i \(0.409536\pi\)
−0.971481 + 0.237118i \(0.923797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −52.3938 4.95170i −1.72456 0.162987i
\(924\) 0 0
\(925\) −17.4815 −0.574788
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20.8258 36.0714i −0.683273 1.18346i −0.973976 0.226651i \(-0.927222\pi\)
0.290703 0.956813i \(-0.406111\pi\)
\(930\) 0 0
\(931\) −0.0675812 0.117054i −0.00221488 0.00383629i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.34017 −0.0765316
\(936\) 0 0
\(937\) 46.9101 1.53249 0.766244 0.642550i \(-0.222124\pi\)
0.766244 + 0.642550i \(0.222124\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.71346 2.96780i −0.0558571 0.0967474i 0.836745 0.547593i \(-0.184456\pi\)
−0.892602 + 0.450846i \(0.851122\pi\)
\(942\) 0 0
\(943\) −0.102373 0.177316i −0.00333373 0.00577420i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.0542 −0.684170 −0.342085 0.939669i \(-0.611133\pi\)
−0.342085 + 0.939669i \(0.611133\pi\)
\(948\) 0 0
\(949\) 0.244492 + 0.533991i 0.00793655 + 0.0173341i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.77633 + 10.0049i −0.187114 + 0.324090i −0.944287 0.329124i \(-0.893247\pi\)
0.757173 + 0.653214i \(0.226580\pi\)
\(954\) 0 0
\(955\) −3.92562 + 6.79937i −0.127030 + 0.220022i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.25701 5.64131i 0.105174 0.182167i
\(960\) 0 0
\(961\) 0.493070 0.854023i 0.0159055 0.0275491i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.81270 0.0583529
\(966\) 0 0
\(967\) 9.28441 + 16.0811i 0.298567 + 0.517133i 0.975808 0.218628i \(-0.0701582\pi\)
−0.677242 + 0.735761i \(0.736825\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.28362 16.0797i 0.297926 0.516022i −0.677736 0.735306i \(-0.737039\pi\)
0.975661 + 0.219283i \(0.0703719\pi\)
\(972\) 0 0
\(973\) −9.63348 16.6857i −0.308835 0.534918i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.9560 + 41.4930i −0.766421 + 1.32748i 0.173071 + 0.984909i \(0.444631\pi\)
−0.939492 + 0.342571i \(0.888702\pi\)
\(978\) 0 0
\(979\) 20.1494 + 34.8998i 0.643978 + 1.11540i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.1105 48.6888i 0.896586 1.55293i 0.0647561 0.997901i \(-0.479373\pi\)
0.831830 0.555031i \(-0.187294\pi\)
\(984\) 0 0
\(985\) 4.68958 8.12260i 0.149423 0.258808i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.151156 0.00480647
\(990\) 0 0
\(991\) 0.830293 + 1.43811i 0.0263751 + 0.0456831i 0.878912 0.476985i \(-0.158270\pi\)
−0.852537 + 0.522668i \(0.824937\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.58835 0.208865
\(996\) 0 0
\(997\) 27.4394 + 47.5265i 0.869016 + 1.50518i 0.863004 + 0.505197i \(0.168580\pi\)
0.00601173 + 0.999982i \(0.498086\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.j.a.289.8 28
3.2 odd 2 468.2.j.a.133.5 28
9.4 even 3 1404.2.k.a.1225.8 28
9.5 odd 6 468.2.k.a.445.14 yes 28
13.9 even 3 1404.2.k.a.1153.8 28
39.35 odd 6 468.2.k.a.61.14 yes 28
117.22 even 3 inner 1404.2.j.a.685.8 28
117.113 odd 6 468.2.j.a.373.5 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.j.a.133.5 28 3.2 odd 2
468.2.j.a.373.5 yes 28 117.113 odd 6
468.2.k.a.61.14 yes 28 39.35 odd 6
468.2.k.a.445.14 yes 28 9.5 odd 6
1404.2.j.a.289.8 28 1.1 even 1 trivial
1404.2.j.a.685.8 28 117.22 even 3 inner
1404.2.k.a.1153.8 28 13.9 even 3
1404.2.k.a.1225.8 28 9.4 even 3