Properties

Label 468.2.bz.a.461.7
Level $468$
Weight $2$
Character 468.461
Analytic conductor $3.737$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(41,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.bz (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 461.7
Character \(\chi\) \(=\) 468.461
Dual form 468.2.bz.a.401.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0566324 - 1.73112i) q^{3} +(-1.01961 + 3.80525i) q^{5} +(-1.33162 - 1.33162i) q^{7} +(-2.99359 - 0.196076i) q^{9} +(4.35045 + 1.16570i) q^{11} +(3.41964 + 1.14283i) q^{13} +(6.52962 + 1.98058i) q^{15} +(2.31976 + 4.01793i) q^{17} +(7.37291 + 1.97557i) q^{19} +(-2.38061 + 2.22979i) q^{21} -0.999222 q^{23} +(-9.11020 - 5.25978i) q^{25} +(-0.508965 + 5.17117i) q^{27} +(0.0144776 - 0.00835862i) q^{29} +(-3.02992 - 0.811864i) q^{31} +(2.26435 - 7.46516i) q^{33} +(6.42489 - 3.70941i) q^{35} +(-5.97798 + 1.60179i) q^{37} +(2.17204 - 5.85510i) q^{39} +(8.54895 + 8.54895i) q^{41} +2.30282i q^{43} +(3.79842 - 11.1914i) q^{45} +(-0.0107778 - 0.0402231i) q^{47} -3.45357i q^{49} +(7.08692 - 3.78824i) q^{51} -1.73858i q^{53} +(-8.87157 + 15.3660i) q^{55} +(3.83750 - 12.6515i) q^{57} +(-2.25516 - 8.41636i) q^{59} -5.22569 q^{61} +(3.72522 + 4.24742i) q^{63} +(-7.83547 + 11.8473i) q^{65} +(-0.0524121 + 0.0524121i) q^{67} +(-0.0565884 + 1.72978i) q^{69} +(1.28159 - 4.78296i) q^{71} +(-0.0292789 - 0.0292789i) q^{73} +(-9.62127 + 15.4730i) q^{75} +(-4.24088 - 7.34542i) q^{77} +(-1.17774 + 2.03990i) q^{79} +(8.92311 + 1.17394i) q^{81} +(-4.57822 + 1.22673i) q^{83} +(-17.6545 + 4.73051i) q^{85} +(-0.0136499 - 0.0255358i) q^{87} +(-3.20395 - 11.9573i) q^{89} +(-3.03185 - 6.07548i) q^{91} +(-1.57703 + 5.19918i) q^{93} +(-15.0350 + 26.0415i) q^{95} +(6.01956 - 6.01956i) q^{97} +(-12.7949 - 4.34264i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} + 12 q^{11} + 12 q^{15} + 4 q^{19} - 12 q^{21} - 4 q^{31} + 18 q^{33} + 66 q^{35} + 2 q^{37} + 24 q^{39} + 24 q^{41} + 24 q^{45} - 36 q^{47} - 12 q^{57} + 6 q^{63} - 36 q^{65} - 14 q^{67}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0566324 1.73112i 0.0326967 0.999465i
\(4\) 0 0
\(5\) −1.01961 + 3.80525i −0.455985 + 1.70176i 0.229189 + 0.973382i \(0.426392\pi\)
−0.685175 + 0.728379i \(0.740274\pi\)
\(6\) 0 0
\(7\) −1.33162 1.33162i −0.503305 0.503305i 0.409158 0.912463i \(-0.365822\pi\)
−0.912463 + 0.409158i \(0.865822\pi\)
\(8\) 0 0
\(9\) −2.99359 0.196076i −0.997862 0.0653585i
\(10\) 0 0
\(11\) 4.35045 + 1.16570i 1.31171 + 0.351472i 0.845866 0.533395i \(-0.179084\pi\)
0.465844 + 0.884867i \(0.345751\pi\)
\(12\) 0 0
\(13\) 3.41964 + 1.14283i 0.948438 + 0.316964i
\(14\) 0 0
\(15\) 6.52962 + 1.98058i 1.68594 + 0.511384i
\(16\) 0 0
\(17\) 2.31976 + 4.01793i 0.562623 + 0.974492i 0.997266 + 0.0738894i \(0.0235412\pi\)
−0.434643 + 0.900603i \(0.643125\pi\)
\(18\) 0 0
\(19\) 7.37291 + 1.97557i 1.69146 + 0.453226i 0.970766 0.240026i \(-0.0771561\pi\)
0.720695 + 0.693252i \(0.243823\pi\)
\(20\) 0 0
\(21\) −2.38061 + 2.22979i −0.519493 + 0.486580i
\(22\) 0 0
\(23\) −0.999222 −0.208352 −0.104176 0.994559i \(-0.533221\pi\)
−0.104176 + 0.994559i \(0.533221\pi\)
\(24\) 0 0
\(25\) −9.11020 5.25978i −1.82204 1.05196i
\(26\) 0 0
\(27\) −0.508965 + 5.17117i −0.0979504 + 0.995191i
\(28\) 0 0
\(29\) 0.0144776 0.00835862i 0.00268841 0.00155216i −0.498655 0.866800i \(-0.666173\pi\)
0.501344 + 0.865248i \(0.332839\pi\)
\(30\) 0 0
\(31\) −3.02992 0.811864i −0.544189 0.145815i −0.0237564 0.999718i \(-0.507563\pi\)
−0.520433 + 0.853903i \(0.674229\pi\)
\(32\) 0 0
\(33\) 2.26435 7.46516i 0.394173 1.29952i
\(34\) 0 0
\(35\) 6.42489 3.70941i 1.08601 0.627005i
\(36\) 0 0
\(37\) −5.97798 + 1.60179i −0.982774 + 0.263333i −0.714212 0.699929i \(-0.753215\pi\)
−0.268561 + 0.963263i \(0.586548\pi\)
\(38\) 0 0
\(39\) 2.17204 5.85510i 0.347805 0.937567i
\(40\) 0 0
\(41\) 8.54895 + 8.54895i 1.33512 + 1.33512i 0.900719 + 0.434403i \(0.143040\pi\)
0.434403 + 0.900719i \(0.356960\pi\)
\(42\) 0 0
\(43\) 2.30282i 0.351177i 0.984464 + 0.175588i \(0.0561828\pi\)
−0.984464 + 0.175588i \(0.943817\pi\)
\(44\) 0 0
\(45\) 3.79842 11.1914i 0.566235 1.66832i
\(46\) 0 0
\(47\) −0.0107778 0.0402231i −0.00157210 0.00586715i 0.965135 0.261751i \(-0.0843001\pi\)
−0.966707 + 0.255884i \(0.917633\pi\)
\(48\) 0 0
\(49\) 3.45357i 0.493367i
\(50\) 0 0
\(51\) 7.08692 3.78824i 0.992367 0.530460i
\(52\) 0 0
\(53\) 1.73858i 0.238812i −0.992845 0.119406i \(-0.961901\pi\)
0.992845 0.119406i \(-0.0380991\pi\)
\(54\) 0 0
\(55\) −8.87157 + 15.3660i −1.19624 + 2.07195i
\(56\) 0 0
\(57\) 3.83750 12.6515i 0.508289 1.67574i
\(58\) 0 0
\(59\) −2.25516 8.41636i −0.293596 1.09572i −0.942326 0.334697i \(-0.891366\pi\)
0.648729 0.761019i \(-0.275301\pi\)
\(60\) 0 0
\(61\) −5.22569 −0.669082 −0.334541 0.942381i \(-0.608581\pi\)
−0.334541 + 0.942381i \(0.608581\pi\)
\(62\) 0 0
\(63\) 3.72522 + 4.24742i 0.469334 + 0.535125i
\(64\) 0 0
\(65\) −7.83547 + 11.8473i −0.971870 + 1.46948i
\(66\) 0 0
\(67\) −0.0524121 + 0.0524121i −0.00640316 + 0.00640316i −0.710301 0.703898i \(-0.751441\pi\)
0.703898 + 0.710301i \(0.251441\pi\)
\(68\) 0 0
\(69\) −0.0565884 + 1.72978i −0.00681244 + 0.208241i
\(70\) 0 0
\(71\) 1.28159 4.78296i 0.152097 0.567633i −0.847240 0.531211i \(-0.821737\pi\)
0.999336 0.0364221i \(-0.0115961\pi\)
\(72\) 0 0
\(73\) −0.0292789 0.0292789i −0.00342684 0.00342684i 0.705391 0.708818i \(-0.250771\pi\)
−0.708818 + 0.705391i \(0.750771\pi\)
\(74\) 0 0
\(75\) −9.62127 + 15.4730i −1.11097 + 1.78667i
\(76\) 0 0
\(77\) −4.24088 7.34542i −0.483293 0.837089i
\(78\) 0 0
\(79\) −1.17774 + 2.03990i −0.132506 + 0.229507i −0.924642 0.380837i \(-0.875636\pi\)
0.792136 + 0.610345i \(0.208969\pi\)
\(80\) 0 0
\(81\) 8.92311 + 1.17394i 0.991457 + 0.130438i
\(82\) 0 0
\(83\) −4.57822 + 1.22673i −0.502525 + 0.134651i −0.501172 0.865348i \(-0.667097\pi\)
−0.00135341 + 0.999999i \(0.500431\pi\)
\(84\) 0 0
\(85\) −17.6545 + 4.73051i −1.91490 + 0.513096i
\(86\) 0 0
\(87\) −0.0136499 0.0255358i −0.00146342 0.00273773i
\(88\) 0 0
\(89\) −3.20395 11.9573i −0.339618 1.26747i −0.898776 0.438409i \(-0.855542\pi\)
0.559158 0.829061i \(-0.311125\pi\)
\(90\) 0 0
\(91\) −3.03185 6.07548i −0.317824 0.636883i
\(92\) 0 0
\(93\) −1.57703 + 5.19918i −0.163530 + 0.539130i
\(94\) 0 0
\(95\) −15.0350 + 26.0415i −1.54256 + 2.67180i
\(96\) 0 0
\(97\) 6.01956 6.01956i 0.611194 0.611194i −0.332063 0.943257i \(-0.607745\pi\)
0.943257 + 0.332063i \(0.107745\pi\)
\(98\) 0 0
\(99\) −12.7949 4.34264i −1.28593 0.436452i
\(100\) 0 0
\(101\) 6.89315 + 11.9393i 0.685894 + 1.18800i 0.973155 + 0.230151i \(0.0739218\pi\)
−0.287261 + 0.957852i \(0.592745\pi\)
\(102\) 0 0
\(103\) −14.2999 + 8.25605i −1.40901 + 0.813493i −0.995293 0.0969123i \(-0.969103\pi\)
−0.413718 + 0.910405i \(0.635770\pi\)
\(104\) 0 0
\(105\) −6.05760 11.3324i −0.591161 1.10593i
\(106\) 0 0
\(107\) 8.79512 + 5.07786i 0.850256 + 0.490896i 0.860737 0.509049i \(-0.170003\pi\)
−0.0104810 + 0.999945i \(0.503336\pi\)
\(108\) 0 0
\(109\) 11.2739 11.2739i 1.07985 1.07985i 0.0833248 0.996522i \(-0.473446\pi\)
0.996522 0.0833248i \(-0.0265539\pi\)
\(110\) 0 0
\(111\) 2.43436 + 10.4393i 0.231059 + 0.990858i
\(112\) 0 0
\(113\) −3.07280 1.77408i −0.289065 0.166892i 0.348455 0.937325i \(-0.386706\pi\)
−0.637520 + 0.770434i \(0.720040\pi\)
\(114\) 0 0
\(115\) 1.01882 3.80229i 0.0950056 0.354566i
\(116\) 0 0
\(117\) −10.0129 4.09167i −0.925693 0.378275i
\(118\) 0 0
\(119\) 2.26133 8.43940i 0.207296 0.773638i
\(120\) 0 0
\(121\) 8.04130 + 4.64265i 0.731027 + 0.422059i
\(122\) 0 0
\(123\) 15.2834 14.3151i 1.37806 1.29075i
\(124\) 0 0
\(125\) 15.3755 15.3755i 1.37523 1.37523i
\(126\) 0 0
\(127\) −7.78898 4.49697i −0.691160 0.399042i 0.112886 0.993608i \(-0.463990\pi\)
−0.804047 + 0.594566i \(0.797324\pi\)
\(128\) 0 0
\(129\) 3.98647 + 0.130414i 0.350989 + 0.0114823i
\(130\) 0 0
\(131\) 8.85588 5.11294i 0.773742 0.446720i −0.0604660 0.998170i \(-0.519259\pi\)
0.834208 + 0.551450i \(0.185925\pi\)
\(132\) 0 0
\(133\) −7.18722 12.4486i −0.623211 1.07943i
\(134\) 0 0
\(135\) −19.1586 7.20934i −1.64891 0.620481i
\(136\) 0 0
\(137\) −12.5721 + 12.5721i −1.07411 + 1.07411i −0.0770844 + 0.997025i \(0.524561\pi\)
−0.997025 + 0.0770844i \(0.975439\pi\)
\(138\) 0 0
\(139\) 5.49827 9.52329i 0.466358 0.807755i −0.532904 0.846176i \(-0.678899\pi\)
0.999262 + 0.0384207i \(0.0122327\pi\)
\(140\) 0 0
\(141\) −0.0702416 + 0.0163797i −0.00591541 + 0.00137942i
\(142\) 0 0
\(143\) 13.5448 + 8.95810i 1.13267 + 0.749114i
\(144\) 0 0
\(145\) 0.0170451 + 0.0636133i 0.00141552 + 0.00528280i
\(146\) 0 0
\(147\) −5.97856 0.195584i −0.493104 0.0161315i
\(148\) 0 0
\(149\) −21.3835 + 5.72969i −1.75181 + 0.469395i −0.985010 0.172497i \(-0.944816\pi\)
−0.766795 + 0.641892i \(0.778150\pi\)
\(150\) 0 0
\(151\) 22.9143 6.13987i 1.86474 0.499655i 0.864742 0.502216i \(-0.167482\pi\)
0.999997 + 0.00256111i \(0.000815229\pi\)
\(152\) 0 0
\(153\) −6.15657 12.4829i −0.497729 1.00918i
\(154\) 0 0
\(155\) 6.17869 10.7018i 0.496284 0.859590i
\(156\) 0 0
\(157\) −11.3850 19.7195i −0.908626 1.57379i −0.815975 0.578087i \(-0.803799\pi\)
−0.0926507 0.995699i \(-0.529534\pi\)
\(158\) 0 0
\(159\) −3.00970 0.0984600i −0.238685 0.00780839i
\(160\) 0 0
\(161\) 1.33058 + 1.33058i 0.104865 + 0.104865i
\(162\) 0 0
\(163\) 3.35459 12.5195i 0.262752 0.980604i −0.700860 0.713299i \(-0.747200\pi\)
0.963612 0.267305i \(-0.0861330\pi\)
\(164\) 0 0
\(165\) 26.0981 + 16.2280i 2.03173 + 1.26335i
\(166\) 0 0
\(167\) 4.28123 4.28123i 0.331292 0.331292i −0.521785 0.853077i \(-0.674734\pi\)
0.853077 + 0.521785i \(0.174734\pi\)
\(168\) 0 0
\(169\) 10.3879 + 7.81613i 0.799068 + 0.601241i
\(170\) 0 0
\(171\) −21.6841 7.35967i −1.65822 0.562808i
\(172\) 0 0
\(173\) 0.119661 0.00909766 0.00454883 0.999990i \(-0.498552\pi\)
0.00454883 + 0.999990i \(0.498552\pi\)
\(174\) 0 0
\(175\) 5.12731 + 19.1354i 0.387588 + 1.44650i
\(176\) 0 0
\(177\) −14.6975 + 3.42732i −1.10473 + 0.257613i
\(178\) 0 0
\(179\) −7.04673 + 12.2053i −0.526698 + 0.912267i 0.472819 + 0.881160i \(0.343237\pi\)
−0.999516 + 0.0311070i \(0.990097\pi\)
\(180\) 0 0
\(181\) 5.37997i 0.399890i 0.979807 + 0.199945i \(0.0640764\pi\)
−0.979807 + 0.199945i \(0.935924\pi\)
\(182\) 0 0
\(183\) −0.295944 + 9.04633i −0.0218768 + 0.668724i
\(184\) 0 0
\(185\) 24.3809i 1.79252i
\(186\) 0 0
\(187\) 5.40828 + 20.1840i 0.395492 + 1.47600i
\(188\) 0 0
\(189\) 7.56378 6.20828i 0.550184 0.451586i
\(190\) 0 0
\(191\) 10.3416i 0.748291i 0.927370 + 0.374146i \(0.122064\pi\)
−0.927370 + 0.374146i \(0.877936\pi\)
\(192\) 0 0
\(193\) 11.2662 + 11.2662i 0.810960 + 0.810960i 0.984778 0.173818i \(-0.0556105\pi\)
−0.173818 + 0.984778i \(0.555610\pi\)
\(194\) 0 0
\(195\) 20.0655 + 14.2351i 1.43692 + 1.01940i
\(196\) 0 0
\(197\) −8.40291 + 2.25155i −0.598683 + 0.160417i −0.545418 0.838164i \(-0.683629\pi\)
−0.0532643 + 0.998580i \(0.516963\pi\)
\(198\) 0 0
\(199\) 12.1832 7.03398i 0.863645 0.498626i −0.00158596 0.999999i \(-0.500505\pi\)
0.865231 + 0.501373i \(0.167171\pi\)
\(200\) 0 0
\(201\) 0.0877637 + 0.0937002i 0.00619038 + 0.00660910i
\(202\) 0 0
\(203\) −0.0304091 0.00814810i −0.00213430 0.000571884i
\(204\) 0 0
\(205\) −41.2475 + 23.8143i −2.88085 + 1.66326i
\(206\) 0 0
\(207\) 2.99126 + 0.195923i 0.207907 + 0.0136176i
\(208\) 0 0
\(209\) 29.7726 + 17.1892i 2.05941 + 1.18900i
\(210\) 0 0
\(211\) −1.89164 −0.130226 −0.0651131 0.997878i \(-0.520741\pi\)
−0.0651131 + 0.997878i \(0.520741\pi\)
\(212\) 0 0
\(213\) −8.20732 2.48946i −0.562356 0.170575i
\(214\) 0 0
\(215\) −8.76281 2.34799i −0.597619 0.160131i
\(216\) 0 0
\(217\) 2.95360 + 5.11579i 0.200504 + 0.347283i
\(218\) 0 0
\(219\) −0.0523436 + 0.0490273i −0.00353705 + 0.00331296i
\(220\) 0 0
\(221\) 3.34091 + 16.3910i 0.224734 + 1.10258i
\(222\) 0 0
\(223\) 18.4580 + 4.94580i 1.23604 + 0.331195i 0.816928 0.576740i \(-0.195675\pi\)
0.419110 + 0.907935i \(0.362342\pi\)
\(224\) 0 0
\(225\) 26.2409 + 17.5319i 1.74939 + 1.16879i
\(226\) 0 0
\(227\) −9.53495 9.53495i −0.632857 0.632857i 0.315927 0.948784i \(-0.397685\pi\)
−0.948784 + 0.315927i \(0.897685\pi\)
\(228\) 0 0
\(229\) 2.94216 10.9803i 0.194424 0.725599i −0.797992 0.602669i \(-0.794104\pi\)
0.992415 0.122930i \(-0.0392292\pi\)
\(230\) 0 0
\(231\) −12.9560 + 6.92551i −0.852443 + 0.455665i
\(232\) 0 0
\(233\) −8.36969 −0.548316 −0.274158 0.961685i \(-0.588399\pi\)
−0.274158 + 0.961685i \(0.588399\pi\)
\(234\) 0 0
\(235\) 0.164048 0.0107013
\(236\) 0 0
\(237\) 3.46463 + 2.15434i 0.225052 + 0.139939i
\(238\) 0 0
\(239\) 4.29278 16.0209i 0.277677 1.03630i −0.676349 0.736581i \(-0.736439\pi\)
0.954026 0.299724i \(-0.0968945\pi\)
\(240\) 0 0
\(241\) 0.480854 + 0.480854i 0.0309745 + 0.0309745i 0.722424 0.691450i \(-0.243028\pi\)
−0.691450 + 0.722424i \(0.743028\pi\)
\(242\) 0 0
\(243\) 2.53757 15.3805i 0.162785 0.986662i
\(244\) 0 0
\(245\) 13.1417 + 3.52131i 0.839593 + 0.224968i
\(246\) 0 0
\(247\) 22.9550 + 15.1817i 1.46059 + 0.965989i
\(248\) 0 0
\(249\) 1.86435 + 7.99494i 0.118148 + 0.506659i
\(250\) 0 0
\(251\) −14.0317 24.3035i −0.885670 1.53403i −0.844944 0.534855i \(-0.820366\pi\)
−0.0407262 0.999170i \(-0.512967\pi\)
\(252\) 0 0
\(253\) −4.34707 1.16479i −0.273298 0.0732299i
\(254\) 0 0
\(255\) 7.18929 + 30.8301i 0.450211 + 1.93065i
\(256\) 0 0
\(257\) −7.89235 −0.492311 −0.246155 0.969230i \(-0.579167\pi\)
−0.246155 + 0.969230i \(0.579167\pi\)
\(258\) 0 0
\(259\) 10.0934 + 5.82742i 0.627172 + 0.362098i
\(260\) 0 0
\(261\) −0.0449787 + 0.0221835i −0.00278411 + 0.00137313i
\(262\) 0 0
\(263\) 5.14048 2.96786i 0.316976 0.183006i −0.333068 0.942903i \(-0.608084\pi\)
0.650044 + 0.759897i \(0.274751\pi\)
\(264\) 0 0
\(265\) 6.61574 + 1.77268i 0.406401 + 0.108895i
\(266\) 0 0
\(267\) −20.8810 + 4.86926i −1.27790 + 0.297994i
\(268\) 0 0
\(269\) 7.40210 4.27360i 0.451314 0.260566i −0.257071 0.966392i \(-0.582757\pi\)
0.708385 + 0.705826i \(0.249424\pi\)
\(270\) 0 0
\(271\) −5.18870 + 1.39031i −0.315191 + 0.0844552i −0.412946 0.910755i \(-0.635500\pi\)
0.0977555 + 0.995210i \(0.468834\pi\)
\(272\) 0 0
\(273\) −10.6891 + 4.90444i −0.646935 + 0.296830i
\(274\) 0 0
\(275\) −33.5022 33.5022i −2.02026 2.02026i
\(276\) 0 0
\(277\) 23.1882i 1.39324i −0.717439 0.696621i \(-0.754686\pi\)
0.717439 0.696621i \(-0.245314\pi\)
\(278\) 0 0
\(279\) 8.91113 + 3.02448i 0.533495 + 0.181071i
\(280\) 0 0
\(281\) −0.981285 3.66221i −0.0585386 0.218469i 0.930460 0.366393i \(-0.119407\pi\)
−0.988999 + 0.147924i \(0.952741\pi\)
\(282\) 0 0
\(283\) 28.0666i 1.66838i −0.551474 0.834192i \(-0.685934\pi\)
0.551474 0.834192i \(-0.314066\pi\)
\(284\) 0 0
\(285\) 44.2296 + 27.5023i 2.61993 + 1.62910i
\(286\) 0 0
\(287\) 22.7679i 1.34395i
\(288\) 0 0
\(289\) −2.26253 + 3.91882i −0.133090 + 0.230519i
\(290\) 0 0
\(291\) −10.0797 10.7615i −0.590883 0.630851i
\(292\) 0 0
\(293\) −3.45012 12.8760i −0.201558 0.752225i −0.990471 0.137720i \(-0.956022\pi\)
0.788913 0.614505i \(-0.210644\pi\)
\(294\) 0 0
\(295\) 34.3258 1.99852
\(296\) 0 0
\(297\) −8.24226 + 21.9036i −0.478264 + 1.27098i
\(298\) 0 0
\(299\) −3.41698 1.14194i −0.197609 0.0660401i
\(300\) 0 0
\(301\) 3.06648 3.06648i 0.176749 0.176749i
\(302\) 0 0
\(303\) 21.0588 11.2567i 1.20979 0.646683i
\(304\) 0 0
\(305\) 5.32819 19.8851i 0.305091 1.13862i
\(306\) 0 0
\(307\) 9.09884 + 9.09884i 0.519298 + 0.519298i 0.917359 0.398061i \(-0.130317\pi\)
−0.398061 + 0.917359i \(0.630317\pi\)
\(308\) 0 0
\(309\) 13.4824 + 25.2225i 0.766988 + 1.43486i
\(310\) 0 0
\(311\) 1.39052 + 2.40845i 0.0788492 + 0.136571i 0.902754 0.430158i \(-0.141542\pi\)
−0.823904 + 0.566729i \(0.808209\pi\)
\(312\) 0 0
\(313\) −8.75421 + 15.1627i −0.494817 + 0.857049i −0.999982 0.00597416i \(-0.998098\pi\)
0.505165 + 0.863023i \(0.331432\pi\)
\(314\) 0 0
\(315\) −19.9608 + 9.84468i −1.12466 + 0.554685i
\(316\) 0 0
\(317\) 20.3076 5.44141i 1.14059 0.305620i 0.361402 0.932410i \(-0.382298\pi\)
0.779188 + 0.626790i \(0.215632\pi\)
\(318\) 0 0
\(319\) 0.0727275 0.0194873i 0.00407196 0.00109108i
\(320\) 0 0
\(321\) 9.28851 14.9379i 0.518434 0.833751i
\(322\) 0 0
\(323\) 9.16566 + 34.2067i 0.509991 + 1.90331i
\(324\) 0 0
\(325\) −25.1426 28.3980i −1.39466 1.57524i
\(326\) 0 0
\(327\) −18.8781 20.1551i −1.04396 1.11458i
\(328\) 0 0
\(329\) −0.0392101 + 0.0679138i −0.00216172 + 0.00374421i
\(330\) 0 0
\(331\) 0.792923 0.792923i 0.0435830 0.0435830i −0.684979 0.728562i \(-0.740189\pi\)
0.728562 + 0.684979i \(0.240189\pi\)
\(332\) 0 0
\(333\) 18.2097 3.62297i 0.997883 0.198538i
\(334\) 0 0
\(335\) −0.146001 0.252882i −0.00797690 0.0138164i
\(336\) 0 0
\(337\) −1.39429 + 0.804994i −0.0759519 + 0.0438508i −0.537495 0.843267i \(-0.680629\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(338\) 0 0
\(339\) −3.24518 + 5.21893i −0.176254 + 0.283453i
\(340\) 0 0
\(341\) −12.2351 7.06395i −0.662569 0.382534i
\(342\) 0 0
\(343\) −13.9202 + 13.9202i −0.751620 + 0.751620i
\(344\) 0 0
\(345\) −6.52454 1.97904i −0.351270 0.106548i
\(346\) 0 0
\(347\) −2.60090 1.50163i −0.139624 0.0806119i 0.428561 0.903513i \(-0.359021\pi\)
−0.568185 + 0.822901i \(0.692354\pi\)
\(348\) 0 0
\(349\) −6.17845 + 23.0583i −0.330725 + 1.23428i 0.577706 + 0.816245i \(0.303948\pi\)
−0.908430 + 0.418036i \(0.862718\pi\)
\(350\) 0 0
\(351\) −7.65024 + 17.1019i −0.408340 + 0.912830i
\(352\) 0 0
\(353\) −4.88095 + 18.2159i −0.259787 + 0.969537i 0.705578 + 0.708632i \(0.250687\pi\)
−0.965365 + 0.260904i \(0.915979\pi\)
\(354\) 0 0
\(355\) 16.8936 + 9.75355i 0.896621 + 0.517664i
\(356\) 0 0
\(357\) −14.4816 4.39259i −0.766447 0.232480i
\(358\) 0 0
\(359\) −1.19442 + 1.19442i −0.0630389 + 0.0630389i −0.737923 0.674885i \(-0.764193\pi\)
0.674885 + 0.737923i \(0.264193\pi\)
\(360\) 0 0
\(361\) 34.0025 + 19.6313i 1.78960 + 1.03323i
\(362\) 0 0
\(363\) 8.49240 13.6576i 0.445735 0.716836i
\(364\) 0 0
\(365\) 0.141267 0.0815605i 0.00739425 0.00426907i
\(366\) 0 0
\(367\) −10.1517 17.5832i −0.529913 0.917836i −0.999391 0.0348923i \(-0.988891\pi\)
0.469478 0.882944i \(-0.344442\pi\)
\(368\) 0 0
\(369\) −23.9158 27.2682i −1.24501 1.41953i
\(370\) 0 0
\(371\) −2.31513 + 2.31513i −0.120196 + 0.120196i
\(372\) 0 0
\(373\) −1.06229 + 1.83995i −0.0550034 + 0.0952688i −0.892216 0.451609i \(-0.850850\pi\)
0.837213 + 0.546877i \(0.184184\pi\)
\(374\) 0 0
\(375\) −25.7461 27.4876i −1.32952 1.41946i
\(376\) 0 0
\(377\) 0.0590605 0.0120381i 0.00304177 0.000619993i
\(378\) 0 0
\(379\) −4.82922 18.0229i −0.248060 0.925774i −0.971820 0.235722i \(-0.924254\pi\)
0.723760 0.690052i \(-0.242412\pi\)
\(380\) 0 0
\(381\) −8.22593 + 13.2290i −0.421427 + 0.677743i
\(382\) 0 0
\(383\) −0.642392 + 0.172129i −0.0328247 + 0.00879536i −0.275194 0.961389i \(-0.588742\pi\)
0.242369 + 0.970184i \(0.422075\pi\)
\(384\) 0 0
\(385\) 32.2753 8.64813i 1.64490 0.440749i
\(386\) 0 0
\(387\) 0.451527 6.89369i 0.0229524 0.350426i
\(388\) 0 0
\(389\) −11.6152 + 20.1182i −0.588916 + 1.02003i 0.405458 + 0.914113i \(0.367112\pi\)
−0.994375 + 0.105919i \(0.966221\pi\)
\(390\) 0 0
\(391\) −2.31795 4.01481i −0.117224 0.203038i
\(392\) 0 0
\(393\) −8.34961 15.6202i −0.421182 0.787934i
\(394\) 0 0
\(395\) −6.56151 6.56151i −0.330145 0.330145i
\(396\) 0 0
\(397\) 4.19965 15.6733i 0.210774 0.786621i −0.776837 0.629702i \(-0.783177\pi\)
0.987611 0.156919i \(-0.0501562\pi\)
\(398\) 0 0
\(399\) −21.9571 + 11.7370i −1.09923 + 0.587584i
\(400\) 0 0
\(401\) −20.0928 + 20.0928i −1.00339 + 1.00339i −0.00339153 + 0.999994i \(0.501080\pi\)
−0.999994 + 0.00339153i \(0.998920\pi\)
\(402\) 0 0
\(403\) −9.43340 6.23896i −0.469911 0.310785i
\(404\) 0 0
\(405\) −13.5653 + 32.7577i −0.674063 + 1.62774i
\(406\) 0 0
\(407\) −27.8741 −1.38167
\(408\) 0 0
\(409\) −3.16669 11.8182i −0.156583 0.584375i −0.998965 0.0454938i \(-0.985514\pi\)
0.842382 0.538881i \(-0.181153\pi\)
\(410\) 0 0
\(411\) 21.0519 + 22.4759i 1.03841 + 1.10865i
\(412\) 0 0
\(413\) −8.20438 + 14.2104i −0.403711 + 0.699249i
\(414\) 0 0
\(415\) 18.6721i 0.916576i
\(416\) 0 0
\(417\) −16.1746 10.0575i −0.792075 0.492519i
\(418\) 0 0
\(419\) 0.438006i 0.0213980i 0.999943 + 0.0106990i \(0.00340566\pi\)
−0.999943 + 0.0106990i \(0.996594\pi\)
\(420\) 0 0
\(421\) 1.63663 + 6.10799i 0.0797645 + 0.297685i 0.994271 0.106885i \(-0.0340877\pi\)
−0.914507 + 0.404570i \(0.867421\pi\)
\(422\) 0 0
\(423\) 0.0243774 + 0.122525i 0.00118527 + 0.00595735i
\(424\) 0 0
\(425\) 48.8056i 2.36742i
\(426\) 0 0
\(427\) 6.95864 + 6.95864i 0.336752 + 0.336752i
\(428\) 0 0
\(429\) 16.2747 22.9404i 0.785748 1.10757i
\(430\) 0 0
\(431\) 22.5907 6.05315i 1.08815 0.291570i 0.330222 0.943903i \(-0.392876\pi\)
0.757932 + 0.652333i \(0.226210\pi\)
\(432\) 0 0
\(433\) −7.49672 + 4.32823i −0.360269 + 0.208002i −0.669199 0.743083i \(-0.733363\pi\)
0.308930 + 0.951085i \(0.400029\pi\)
\(434\) 0 0
\(435\) 0.111088 0.0259047i 0.00532626 0.00124203i
\(436\) 0 0
\(437\) −7.36717 1.97403i −0.352420 0.0944306i
\(438\) 0 0
\(439\) −1.49405 + 0.862589i −0.0713070 + 0.0411691i −0.535230 0.844707i \(-0.679775\pi\)
0.463923 + 0.885876i \(0.346442\pi\)
\(440\) 0 0
\(441\) −0.677161 + 10.3386i −0.0322458 + 0.492313i
\(442\) 0 0
\(443\) 2.81328 + 1.62425i 0.133663 + 0.0771704i 0.565340 0.824858i \(-0.308745\pi\)
−0.431677 + 0.902028i \(0.642078\pi\)
\(444\) 0 0
\(445\) 48.7673 2.31179
\(446\) 0 0
\(447\) 8.70781 + 37.3420i 0.411865 + 1.76622i
\(448\) 0 0
\(449\) −4.05170 1.08565i −0.191212 0.0512350i 0.161942 0.986800i \(-0.448224\pi\)
−0.353154 + 0.935565i \(0.614891\pi\)
\(450\) 0 0
\(451\) 27.2263 + 47.1573i 1.28204 + 2.22055i
\(452\) 0 0
\(453\) −9.33118 40.0152i −0.438417 1.88008i
\(454\) 0 0
\(455\) 26.2101 5.34230i 1.22875 0.250451i
\(456\) 0 0
\(457\) 1.25001 + 0.334939i 0.0584730 + 0.0156678i 0.287937 0.957649i \(-0.407031\pi\)
−0.229464 + 0.973317i \(0.573697\pi\)
\(458\) 0 0
\(459\) −21.9581 + 9.95085i −1.02492 + 0.464466i
\(460\) 0 0
\(461\) 9.85374 + 9.85374i 0.458934 + 0.458934i 0.898306 0.439371i \(-0.144799\pi\)
−0.439371 + 0.898306i \(0.644799\pi\)
\(462\) 0 0
\(463\) 9.59936 35.8253i 0.446120 1.66494i −0.266842 0.963740i \(-0.585980\pi\)
0.712962 0.701203i \(-0.247353\pi\)
\(464\) 0 0
\(465\) −18.1762 11.3022i −0.842903 0.524125i
\(466\) 0 0
\(467\) −20.2780 −0.938353 −0.469176 0.883104i \(-0.655449\pi\)
−0.469176 + 0.883104i \(0.655449\pi\)
\(468\) 0 0
\(469\) 0.139586 0.00644549
\(470\) 0 0
\(471\) −34.7816 + 18.5922i −1.60265 + 0.856682i
\(472\) 0 0
\(473\) −2.68440 + 10.0183i −0.123429 + 0.460642i
\(474\) 0 0
\(475\) −56.7777 56.7777i −2.60514 2.60514i
\(476\) 0 0
\(477\) −0.340893 + 5.20459i −0.0156084 + 0.238302i
\(478\) 0 0
\(479\) 19.6844 + 5.27443i 0.899405 + 0.240995i 0.678761 0.734360i \(-0.262517\pi\)
0.220644 + 0.975354i \(0.429184\pi\)
\(480\) 0 0
\(481\) −22.2731 1.35425i −1.01557 0.0617485i
\(482\) 0 0
\(483\) 2.37876 2.22805i 0.108237 0.101380i
\(484\) 0 0
\(485\) 16.7683 + 29.0436i 0.761411 + 1.31880i
\(486\) 0 0
\(487\) −5.24083 1.40428i −0.237485 0.0636338i 0.138114 0.990416i \(-0.455896\pi\)
−0.375598 + 0.926783i \(0.622563\pi\)
\(488\) 0 0
\(489\) −21.4829 6.51623i −0.971488 0.294674i
\(490\) 0 0
\(491\) 23.2041 1.04719 0.523594 0.851968i \(-0.324591\pi\)
0.523594 + 0.851968i \(0.324591\pi\)
\(492\) 0 0
\(493\) 0.0671688 + 0.0387799i 0.00302513 + 0.00174656i
\(494\) 0 0
\(495\) 29.5707 44.2599i 1.32910 1.98934i
\(496\) 0 0
\(497\) −8.07568 + 4.66250i −0.362244 + 0.209142i
\(498\) 0 0
\(499\) −30.6811 8.22097i −1.37347 0.368021i −0.504728 0.863279i \(-0.668407\pi\)
−0.868746 + 0.495257i \(0.835074\pi\)
\(500\) 0 0
\(501\) −7.16889 7.65380i −0.320282 0.341947i
\(502\) 0 0
\(503\) −23.3710 + 13.4932i −1.04206 + 0.601634i −0.920416 0.390940i \(-0.872150\pi\)
−0.121644 + 0.992574i \(0.538817\pi\)
\(504\) 0 0
\(505\) −52.4603 + 14.0567i −2.33445 + 0.625515i
\(506\) 0 0
\(507\) 14.1190 17.5401i 0.627046 0.778982i
\(508\) 0 0
\(509\) −7.32135 7.32135i −0.324513 0.324513i 0.525982 0.850495i \(-0.323698\pi\)
−0.850495 + 0.525982i \(0.823698\pi\)
\(510\) 0 0
\(511\) 0.0779769i 0.00344949i
\(512\) 0 0
\(513\) −13.9685 + 37.1210i −0.616726 + 1.63893i
\(514\) 0 0
\(515\) −16.8360 62.8327i −0.741882 2.76874i
\(516\) 0 0
\(517\) 0.187552i 0.00824855i
\(518\) 0 0
\(519\) 0.00677670 0.207148i 0.000297464 0.00909280i
\(520\) 0 0
\(521\) 13.8080i 0.604939i −0.953159 0.302469i \(-0.902189\pi\)
0.953159 0.302469i \(-0.0978110\pi\)
\(522\) 0 0
\(523\) −4.75258 + 8.23170i −0.207816 + 0.359947i −0.951026 0.309110i \(-0.899969\pi\)
0.743211 + 0.669058i \(0.233302\pi\)
\(524\) 0 0
\(525\) 33.4161 7.79232i 1.45840 0.340085i
\(526\) 0 0
\(527\) −3.76665 14.0573i −0.164078 0.612347i
\(528\) 0 0
\(529\) −22.0016 −0.956589
\(530\) 0 0
\(531\) 5.10076 + 25.6373i 0.221354 + 1.11256i
\(532\) 0 0
\(533\) 19.4643 + 39.0043i 0.843094 + 1.68946i
\(534\) 0 0
\(535\) −28.2902 + 28.2902i −1.22309 + 1.22309i
\(536\) 0 0
\(537\) 20.7298 + 12.8900i 0.894558 + 0.556244i
\(538\) 0 0
\(539\) 4.02583 15.0246i 0.173405 0.647155i
\(540\) 0 0
\(541\) 19.2507 + 19.2507i 0.827651 + 0.827651i 0.987191 0.159540i \(-0.0510012\pi\)
−0.159540 + 0.987191i \(0.551001\pi\)
\(542\) 0 0
\(543\) 9.31340 + 0.304681i 0.399676 + 0.0130751i
\(544\) 0 0
\(545\) 31.4051 + 54.3952i 1.34525 + 2.33004i
\(546\) 0 0
\(547\) −20.0559 + 34.7379i −0.857530 + 1.48529i 0.0167471 + 0.999860i \(0.494669\pi\)
−0.874277 + 0.485426i \(0.838664\pi\)
\(548\) 0 0
\(549\) 15.6436 + 1.02463i 0.667651 + 0.0437302i
\(550\) 0 0
\(551\) 0.123255 0.0330260i 0.00525083 0.00140695i
\(552\) 0 0
\(553\) 4.28468 1.14808i 0.182203 0.0488212i
\(554\) 0 0
\(555\) −42.2064 1.38075i −1.79156 0.0586096i
\(556\) 0 0
\(557\) 1.96905 + 7.34860i 0.0834313 + 0.311370i 0.995013 0.0997501i \(-0.0318043\pi\)
−0.911581 + 0.411120i \(0.865138\pi\)
\(558\) 0 0
\(559\) −2.63173 + 7.87481i −0.111310 + 0.333069i
\(560\) 0 0
\(561\) 35.2473 8.21934i 1.48814 0.347021i
\(562\) 0 0
\(563\) 4.29228 7.43445i 0.180898 0.313325i −0.761289 0.648413i \(-0.775433\pi\)
0.942187 + 0.335089i \(0.108766\pi\)
\(564\) 0 0
\(565\) 9.88390 9.88390i 0.415819 0.415819i
\(566\) 0 0
\(567\) −10.3190 13.4454i −0.433355 0.564655i
\(568\) 0 0
\(569\) −17.9702 31.1253i −0.753351 1.30484i −0.946190 0.323611i \(-0.895103\pi\)
0.192839 0.981230i \(-0.438230\pi\)
\(570\) 0 0
\(571\) 9.68042 5.58899i 0.405113 0.233892i −0.283575 0.958950i \(-0.591520\pi\)
0.688688 + 0.725058i \(0.258187\pi\)
\(572\) 0 0
\(573\) 17.9026 + 0.585669i 0.747891 + 0.0244667i
\(574\) 0 0
\(575\) 9.10312 + 5.25569i 0.379626 + 0.219177i
\(576\) 0 0
\(577\) 12.4732 12.4732i 0.519266 0.519266i −0.398083 0.917349i \(-0.630325\pi\)
0.917349 + 0.398083i \(0.130325\pi\)
\(578\) 0 0
\(579\) 20.1413 18.8652i 0.837042 0.784010i
\(580\) 0 0
\(581\) 7.72999 + 4.46291i 0.320694 + 0.185153i
\(582\) 0 0
\(583\) 2.02666 7.56361i 0.0839358 0.313253i
\(584\) 0 0
\(585\) 25.7791 33.9297i 1.06584 1.40282i
\(586\) 0 0
\(587\) 3.48074 12.9903i 0.143666 0.536167i −0.856146 0.516735i \(-0.827147\pi\)
0.999811 0.0194325i \(-0.00618594\pi\)
\(588\) 0 0
\(589\) −20.7354 11.9716i −0.854388 0.493281i
\(590\) 0 0
\(591\) 3.42184 + 14.6740i 0.140756 + 0.603608i
\(592\) 0 0
\(593\) −4.12229 + 4.12229i −0.169282 + 0.169282i −0.786664 0.617382i \(-0.788193\pi\)
0.617382 + 0.786664i \(0.288193\pi\)
\(594\) 0 0
\(595\) 29.8084 + 17.2099i 1.22202 + 0.705536i
\(596\) 0 0
\(597\) −11.4867 21.4890i −0.470121 0.879487i
\(598\) 0 0
\(599\) −26.3160 + 15.1935i −1.07524 + 0.620791i −0.929609 0.368547i \(-0.879855\pi\)
−0.145633 + 0.989339i \(0.546522\pi\)
\(600\) 0 0
\(601\) 8.54362 + 14.7980i 0.348502 + 0.603622i 0.985983 0.166843i \(-0.0533573\pi\)
−0.637482 + 0.770465i \(0.720024\pi\)
\(602\) 0 0
\(603\) 0.167177 0.146624i 0.00680797 0.00597097i
\(604\) 0 0
\(605\) −25.8655 + 25.8655i −1.05158 + 1.05158i
\(606\) 0 0
\(607\) 14.2310 24.6488i 0.577619 1.00047i −0.418133 0.908386i \(-0.637315\pi\)
0.995752 0.0920795i \(-0.0293514\pi\)
\(608\) 0 0
\(609\) −0.0158275 + 0.0521805i −0.000641363 + 0.00211446i
\(610\) 0 0
\(611\) 0.00911214 0.149866i 0.000368638 0.00606292i
\(612\) 0 0
\(613\) 8.00452 + 29.8733i 0.323299 + 1.20657i 0.916010 + 0.401155i \(0.131391\pi\)
−0.592711 + 0.805415i \(0.701942\pi\)
\(614\) 0 0
\(615\) 38.8895 + 72.7533i 1.56818 + 2.93370i
\(616\) 0 0
\(617\) 26.9588 7.22358i 1.08532 0.290810i 0.328546 0.944488i \(-0.393441\pi\)
0.756773 + 0.653677i \(0.226775\pi\)
\(618\) 0 0
\(619\) −13.2777 + 3.55774i −0.533674 + 0.142998i −0.515584 0.856839i \(-0.672425\pi\)
−0.0180898 + 0.999836i \(0.505758\pi\)
\(620\) 0 0
\(621\) 0.508569 5.16714i 0.0204082 0.207350i
\(622\) 0 0
\(623\) −11.6561 + 20.1890i −0.466993 + 0.808856i
\(624\) 0 0
\(625\) 16.5317 + 28.6337i 0.661266 + 1.14535i
\(626\) 0 0
\(627\) 31.4427 50.5666i 1.25570 2.01943i
\(628\) 0 0
\(629\) −20.3034 20.3034i −0.809548 0.809548i
\(630\) 0 0
\(631\) −2.32391 + 8.67295i −0.0925133 + 0.345265i −0.996631 0.0820197i \(-0.973863\pi\)
0.904117 + 0.427284i \(0.140530\pi\)
\(632\) 0 0
\(633\) −0.107128 + 3.27467i −0.00425797 + 0.130157i
\(634\) 0 0
\(635\) 25.0539 25.0539i 0.994232 0.994232i
\(636\) 0 0
\(637\) 3.94684 11.8100i 0.156380 0.467928i
\(638\) 0 0
\(639\) −4.77437 + 14.0669i −0.188871 + 0.556478i
\(640\) 0 0
\(641\) −41.4190 −1.63595 −0.817976 0.575253i \(-0.804904\pi\)
−0.817976 + 0.575253i \(0.804904\pi\)
\(642\) 0 0
\(643\) −12.7764 47.6823i −0.503854 1.88041i −0.473352 0.880874i \(-0.656956\pi\)
−0.0305022 0.999535i \(-0.509711\pi\)
\(644\) 0 0
\(645\) −4.56092 + 15.0365i −0.179586 + 0.592063i
\(646\) 0 0
\(647\) −1.03827 + 1.79833i −0.0408184 + 0.0706996i −0.885713 0.464233i \(-0.846330\pi\)
0.844894 + 0.534933i \(0.179663\pi\)
\(648\) 0 0
\(649\) 39.2438i 1.54045i
\(650\) 0 0
\(651\) 9.02335 4.82334i 0.353653 0.189042i
\(652\) 0 0
\(653\) 5.31179i 0.207867i −0.994584 0.103933i \(-0.966857\pi\)
0.994584 0.103933i \(-0.0331428\pi\)
\(654\) 0 0
\(655\) 10.4265 + 38.9121i 0.407396 + 1.52042i
\(656\) 0 0
\(657\) 0.0819081 + 0.0933899i 0.00319554 + 0.00364349i
\(658\) 0 0
\(659\) 7.00574i 0.272905i 0.990647 + 0.136452i \(0.0435701\pi\)
−0.990647 + 0.136452i \(0.956430\pi\)
\(660\) 0 0
\(661\) 23.2482 + 23.2482i 0.904249 + 0.904249i 0.995800 0.0915510i \(-0.0291824\pi\)
−0.0915510 + 0.995800i \(0.529182\pi\)
\(662\) 0 0
\(663\) 28.5640 4.85528i 1.10933 0.188563i
\(664\) 0 0
\(665\) 54.6983 14.6564i 2.12111 0.568350i
\(666\) 0 0
\(667\) −0.0144663 + 0.00835212i −0.000560137 + 0.000323395i
\(668\) 0 0
\(669\) 9.60712 31.6730i 0.371433 1.22455i
\(670\) 0 0
\(671\) −22.7341 6.09159i −0.877641 0.235163i
\(672\) 0 0
\(673\) −1.68972 + 0.975559i −0.0651338 + 0.0376050i −0.532213 0.846610i \(-0.678640\pi\)
0.467079 + 0.884215i \(0.345306\pi\)
\(674\) 0 0
\(675\) 31.8360 44.4333i 1.22537 1.71024i
\(676\) 0 0
\(677\) 13.1079 + 7.56783i 0.503776 + 0.290855i 0.730272 0.683157i \(-0.239393\pi\)
−0.226495 + 0.974012i \(0.572727\pi\)
\(678\) 0 0
\(679\) −16.0316 −0.615235
\(680\) 0 0
\(681\) −17.0462 + 15.9662i −0.653211 + 0.611826i
\(682\) 0 0
\(683\) 26.1296 + 7.00141i 0.999822 + 0.267901i 0.721371 0.692549i \(-0.243512\pi\)
0.278451 + 0.960450i \(0.410179\pi\)
\(684\) 0 0
\(685\) −35.0214 60.6588i −1.33810 2.31765i
\(686\) 0 0
\(687\) −18.8417 5.71509i −0.718854 0.218044i
\(688\) 0 0
\(689\) 1.98690 5.94532i 0.0756949 0.226499i
\(690\) 0 0
\(691\) 35.8188 + 9.59761i 1.36261 + 0.365110i 0.864774 0.502161i \(-0.167462\pi\)
0.497836 + 0.867271i \(0.334128\pi\)
\(692\) 0 0
\(693\) 11.2552 + 22.8207i 0.427549 + 0.866886i
\(694\) 0 0
\(695\) 30.6324 + 30.6324i 1.16195 + 1.16195i
\(696\) 0 0
\(697\) −14.5176 + 54.1806i −0.549895 + 2.05224i
\(698\) 0 0
\(699\) −0.473996 + 14.4890i −0.0179282 + 0.548023i
\(700\) 0 0
\(701\) 7.64065 0.288583 0.144292 0.989535i \(-0.453910\pi\)
0.144292 + 0.989535i \(0.453910\pi\)
\(702\) 0 0
\(703\) −47.2395 −1.78167
\(704\) 0 0
\(705\) 0.00929045 0.283988i 0.000349899 0.0106956i
\(706\) 0 0
\(707\) 6.71954 25.0777i 0.252714 0.943142i
\(708\) 0 0
\(709\) 24.1779 + 24.1779i 0.908021 + 0.908021i 0.996112 0.0880916i \(-0.0280768\pi\)
−0.0880916 + 0.996112i \(0.528077\pi\)
\(710\) 0 0
\(711\) 3.92564 5.87570i 0.147223 0.220356i
\(712\) 0 0
\(713\) 3.02756 + 0.811232i 0.113383 + 0.0303809i
\(714\) 0 0
\(715\) −47.8983 + 42.4075i −1.79129 + 1.58595i
\(716\) 0 0
\(717\) −27.4910 8.33864i −1.02667 0.311412i
\(718\) 0 0
\(719\) 2.01084 + 3.48288i 0.0749917 + 0.129889i 0.901083 0.433647i \(-0.142774\pi\)
−0.826091 + 0.563537i \(0.809440\pi\)
\(720\) 0 0
\(721\) 30.0360 + 8.04811i 1.11860 + 0.299727i
\(722\) 0 0
\(723\) 0.859650 0.805187i 0.0319707 0.0299452i
\(724\) 0 0
\(725\) −0.175858 −0.00653120
\(726\) 0 0
\(727\) −31.9389 18.4399i −1.18455 0.683900i −0.227486 0.973781i \(-0.573051\pi\)
−0.957062 + 0.289882i \(0.906384\pi\)
\(728\) 0 0
\(729\) −26.4819 5.26389i −0.980811 0.194959i
\(730\) 0 0
\(731\) −9.25258 + 5.34198i −0.342219 + 0.197580i
\(732\) 0 0
\(733\) −38.9036 10.4242i −1.43694 0.385026i −0.545478 0.838125i \(-0.683652\pi\)
−0.891460 + 0.453099i \(0.850318\pi\)
\(734\) 0 0
\(735\) 6.84008 22.5505i 0.252300 0.831789i
\(736\) 0 0
\(737\) −0.289113 + 0.166920i −0.0106496 + 0.00614857i
\(738\) 0 0
\(739\) 10.9711 2.93969i 0.403578 0.108138i −0.0513194 0.998682i \(-0.516343\pi\)
0.454897 + 0.890544i \(0.349676\pi\)
\(740\) 0 0
\(741\) 27.5814 38.8781i 1.01323 1.42822i
\(742\) 0 0
\(743\) 4.17617 + 4.17617i 0.153209 + 0.153209i 0.779549 0.626341i \(-0.215448\pi\)
−0.626341 + 0.779549i \(0.715448\pi\)
\(744\) 0 0
\(745\) 87.2117i 3.19519i
\(746\) 0 0
\(747\) 13.9458 2.77465i 0.510251 0.101519i
\(748\) 0 0
\(749\) −4.94997 18.4736i −0.180868 0.675009i
\(750\) 0 0
\(751\) 44.7900i 1.63441i 0.576348 + 0.817205i \(0.304477\pi\)
−0.576348 + 0.817205i \(0.695523\pi\)
\(752\) 0 0
\(753\) −42.8671 + 22.9142i −1.56216 + 0.835039i
\(754\) 0 0
\(755\) 93.4550i 3.40117i
\(756\) 0 0
\(757\) 13.4400 23.2787i 0.488484 0.846079i −0.511428 0.859326i \(-0.670883\pi\)
0.999912 + 0.0132468i \(0.00421670\pi\)
\(758\) 0 0
\(759\) −2.26259 + 7.45935i −0.0821267 + 0.270757i
\(760\) 0 0
\(761\) 9.52394 + 35.5438i 0.345242 + 1.28846i 0.892329 + 0.451386i \(0.149070\pi\)
−0.547086 + 0.837076i \(0.684263\pi\)
\(762\) 0 0
\(763\) −30.0252 −1.08699
\(764\) 0 0
\(765\) 53.7778 10.6996i 1.94434 0.386844i
\(766\) 0 0
\(767\) 1.90664 31.3582i 0.0688448 1.13228i
\(768\) 0 0
\(769\) −20.8065 + 20.8065i −0.750300 + 0.750300i −0.974535 0.224235i \(-0.928012\pi\)
0.224235 + 0.974535i \(0.428012\pi\)
\(770\) 0 0
\(771\) −0.446963 + 13.6626i −0.0160970 + 0.492048i
\(772\) 0 0
\(773\) −3.62390 + 13.5246i −0.130343 + 0.486445i −0.999974 0.00725702i \(-0.997690\pi\)
0.869631 + 0.493702i \(0.164357\pi\)
\(774\) 0 0
\(775\) 23.3329 + 23.3329i 0.838144 + 0.838144i
\(776\) 0 0
\(777\) 10.6596 17.1429i 0.382411 0.614998i
\(778\) 0 0
\(779\) 46.1416 + 79.9196i 1.65319 + 2.86342i
\(780\) 0 0
\(781\) 11.1510 19.3141i 0.399014 0.691112i
\(782\) 0 0
\(783\) 0.0358552 + 0.0791201i 0.00128136 + 0.00282752i
\(784\) 0 0
\(785\) 86.6460 23.2167i 3.09253 0.828640i
\(786\) 0 0
\(787\) 9.08397 2.43404i 0.323809 0.0867643i −0.0932530 0.995642i \(-0.529727\pi\)
0.417062 + 0.908878i \(0.363060\pi\)
\(788\) 0 0
\(789\) −4.84661 9.06689i −0.172544 0.322790i
\(790\) 0 0
\(791\) 1.72940 + 6.45421i 0.0614904 + 0.229485i
\(792\) 0 0
\(793\) −17.8700 5.97208i −0.634582 0.212075i
\(794\) 0 0
\(795\) 3.44340 11.3523i 0.122125 0.402624i
\(796\) 0 0
\(797\) −19.9237 + 34.5089i −0.705735 + 1.22237i 0.260690 + 0.965423i \(0.416050\pi\)
−0.966426 + 0.256947i \(0.917283\pi\)
\(798\) 0 0
\(799\) 0.136612 0.136612i 0.00483299 0.00483299i
\(800\) 0 0
\(801\) 7.24675 + 36.4234i 0.256051 + 1.28696i
\(802\) 0 0
\(803\) −0.0932461 0.161507i −0.00329058 0.00569946i
\(804\) 0 0
\(805\) −6.41989 + 3.70653i −0.226272 + 0.130638i
\(806\) 0 0
\(807\) −6.97894 13.0560i −0.245670 0.459592i
\(808\) 0 0
\(809\) 3.19032 + 1.84193i 0.112166 + 0.0647588i 0.555033 0.831828i \(-0.312706\pi\)
−0.442868 + 0.896587i \(0.646039\pi\)
\(810\) 0 0
\(811\) 23.1531 23.1531i 0.813016 0.813016i −0.172069 0.985085i \(-0.555045\pi\)
0.985085 + 0.172069i \(0.0550453\pi\)
\(812\) 0 0
\(813\) 2.11295 + 9.06102i 0.0741043 + 0.317784i
\(814\) 0 0
\(815\) 44.2195 + 25.5301i 1.54894 + 0.894282i
\(816\) 0 0
\(817\) −4.54937 + 16.9785i −0.159162 + 0.594002i
\(818\) 0 0
\(819\) 7.88484 + 18.7819i 0.275519 + 0.656294i
\(820\) 0 0
\(821\) 3.35025 12.5033i 0.116924 0.436368i −0.882499 0.470314i \(-0.844141\pi\)
0.999424 + 0.0339458i \(0.0108074\pi\)
\(822\) 0 0
\(823\) 18.9105 + 10.9180i 0.659178 + 0.380577i 0.791964 0.610568i \(-0.209059\pi\)
−0.132785 + 0.991145i \(0.542392\pi\)
\(824\) 0 0
\(825\) −59.8938 + 56.0991i −2.08523 + 1.95312i
\(826\) 0 0
\(827\) −16.4531 + 16.4531i −0.572131 + 0.572131i −0.932724 0.360592i \(-0.882575\pi\)
0.360592 + 0.932724i \(0.382575\pi\)
\(828\) 0 0
\(829\) −21.9234 12.6575i −0.761432 0.439613i 0.0683775 0.997660i \(-0.478218\pi\)
−0.829810 + 0.558046i \(0.811551\pi\)
\(830\) 0 0
\(831\) −40.1416 1.31320i −1.39250 0.0455545i
\(832\) 0 0
\(833\) 13.8762 8.01144i 0.480783 0.277580i
\(834\) 0 0
\(835\) 11.9260 + 20.6564i 0.412715 + 0.714843i
\(836\) 0 0
\(837\) 5.74040 15.2550i 0.198417 0.527289i
\(838\) 0 0
\(839\) −15.3174 + 15.3174i −0.528814 + 0.528814i −0.920219 0.391404i \(-0.871989\pi\)
0.391404 + 0.920219i \(0.371989\pi\)
\(840\) 0 0
\(841\) −14.4999 + 25.1145i −0.499995 + 0.866017i
\(842\) 0 0
\(843\) −6.39531 + 1.49133i −0.220266 + 0.0513640i
\(844\) 0 0
\(845\) −40.3340 + 31.5591i −1.38753 + 1.08566i
\(846\) 0 0
\(847\) −4.52572 16.8902i −0.155505 0.580354i
\(848\) 0 0
\(849\) −48.5867 1.58948i −1.66749 0.0545507i
\(850\) 0 0
\(851\) 5.97333 1.60055i 0.204763 0.0548661i
\(852\) 0 0
\(853\) 12.3890 3.31961i 0.424190 0.113661i −0.0404076 0.999183i \(-0.512866\pi\)
0.464598 + 0.885522i \(0.346199\pi\)
\(854\) 0 0
\(855\) 50.1148 75.0093i 1.71389 2.56527i
\(856\) 0 0
\(857\) 24.4649 42.3745i 0.835705 1.44748i −0.0577497 0.998331i \(-0.518393\pi\)
0.893455 0.449153i \(-0.148274\pi\)
\(858\) 0 0
\(859\) 18.1131 + 31.3727i 0.618010 + 1.07042i 0.989848 + 0.142127i \(0.0453941\pi\)
−0.371839 + 0.928297i \(0.621273\pi\)
\(860\) 0 0
\(861\) −39.4141 1.28940i −1.34323 0.0439427i
\(862\) 0 0
\(863\) 25.6667 + 25.6667i 0.873704 + 0.873704i 0.992874 0.119170i \(-0.0380232\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(864\) 0 0
\(865\) −0.122008 + 0.455341i −0.00414840 + 0.0154820i
\(866\) 0 0
\(867\) 6.65583 + 4.13865i 0.226044 + 0.140556i
\(868\) 0 0
\(869\) −7.50162 + 7.50162i −0.254475 + 0.254475i
\(870\) 0 0
\(871\) −0.239129 + 0.119333i −0.00810257 + 0.00404343i
\(872\) 0 0
\(873\) −19.2004 + 16.8398i −0.649834 + 0.569941i
\(874\) 0 0
\(875\) −40.9486 −1.38432
\(876\) 0 0
\(877\) −7.39964 27.6158i −0.249868 0.932521i −0.970874 0.239592i \(-0.922986\pi\)
0.721006 0.692929i \(-0.243680\pi\)
\(878\) 0 0
\(879\) −22.4854 + 5.24339i −0.758413 + 0.176855i
\(880\) 0 0
\(881\) 10.2203 17.7021i 0.344331 0.596399i −0.640901 0.767624i \(-0.721439\pi\)
0.985232 + 0.171225i \(0.0547724\pi\)
\(882\) 0 0
\(883\) 59.1925i 1.99199i −0.0894367 0.995993i \(-0.528507\pi\)
0.0894367 0.995993i \(-0.471493\pi\)
\(884\) 0 0
\(885\) 1.94395 59.4222i 0.0653452 1.99745i
\(886\) 0 0
\(887\) 44.9612i 1.50965i 0.655927 + 0.754825i \(0.272278\pi\)
−0.655927 + 0.754825i \(0.727722\pi\)
\(888\) 0 0
\(889\) 4.38371 + 16.3602i 0.147025 + 0.548705i
\(890\) 0 0
\(891\) 37.4511 + 15.5088i 1.25466 + 0.519565i
\(892\) 0 0
\(893\) 0.317854i 0.0106366i
\(894\) 0 0
\(895\) −39.2593 39.2593i −1.31229 1.31229i
\(896\) 0 0
\(897\) −2.17035 + 5.85055i −0.0724660 + 0.195344i
\(898\) 0 0
\(899\) −0.0506518 + 0.0135721i −0.00168933 + 0.000452655i
\(900\) 0 0
\(901\) 6.98550 4.03308i 0.232721 0.134361i
\(902\) 0 0
\(903\) −5.13480 5.48212i −0.170875 0.182434i
\(904\) 0 0
\(905\) −20.4721 5.48550i −0.680517 0.182344i
\(906\) 0 0
\(907\) −16.8952 + 9.75445i −0.560996 + 0.323891i −0.753545 0.657396i \(-0.771658\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(908\) 0 0
\(909\) −18.2942 37.0928i −0.606781 1.23029i
\(910\) 0 0
\(911\) −51.3564 29.6506i −1.70151 0.982370i −0.944231 0.329283i \(-0.893193\pi\)
−0.757283 0.653087i \(-0.773474\pi\)
\(912\) 0 0
\(913\) −21.3473 −0.706494
\(914\) 0 0
\(915\) −34.1218 10.3499i −1.12803 0.342157i
\(916\) 0 0
\(917\) −18.6012 4.98417i −0.614265 0.164592i
\(918\) 0 0
\(919\) 21.8304 + 37.8114i 0.720119 + 1.24728i 0.960952 + 0.276716i \(0.0892463\pi\)
−0.240832 + 0.970567i \(0.577420\pi\)
\(920\) 0 0
\(921\) 16.2665 15.2359i 0.536000 0.502041i
\(922\) 0 0
\(923\) 9.84868 14.8914i 0.324173 0.490155i
\(924\) 0 0
\(925\) 62.8857 + 16.8502i 2.06767 + 0.554030i
\(926\) 0 0
\(927\) 44.4268 21.9113i 1.45917 0.719663i
\(928\) 0 0
\(929\) −12.0748 12.0748i −0.396160 0.396160i 0.480716 0.876876i \(-0.340377\pi\)
−0.876876 + 0.480716i \(0.840377\pi\)
\(930\) 0 0
\(931\) 6.82276 25.4629i 0.223607 0.834512i
\(932\) 0 0
\(933\) 4.24808 2.27077i 0.139076 0.0743416i
\(934\) 0 0
\(935\) −82.3195 −2.69213
\(936\) 0 0
\(937\) 41.1938 1.34574 0.672871 0.739759i \(-0.265061\pi\)
0.672871 + 0.739759i \(0.265061\pi\)
\(938\) 0 0
\(939\) 25.7528 + 16.0133i 0.840412 + 0.522575i
\(940\) 0 0
\(941\) 10.3736 38.7147i 0.338169 1.26206i −0.562224 0.826985i \(-0.690054\pi\)
0.900393 0.435078i \(-0.143279\pi\)
\(942\) 0 0
\(943\) −8.54230 8.54230i −0.278175 0.278175i
\(944\) 0 0
\(945\) 15.9119 + 35.1121i 0.517616 + 1.14220i
\(946\) 0 0
\(947\) 24.5842 + 6.58731i 0.798879 + 0.214059i 0.635092 0.772437i \(-0.280962\pi\)
0.163787 + 0.986496i \(0.447629\pi\)
\(948\) 0 0
\(949\) −0.0666626 0.133584i −0.00216396 0.00433633i
\(950\) 0 0
\(951\) −8.26969 35.4632i −0.268163 1.14997i
\(952\) 0 0
\(953\) −11.7501 20.3518i −0.380624 0.659260i 0.610527 0.791995i \(-0.290957\pi\)
−0.991152 + 0.132735i \(0.957624\pi\)
\(954\) 0 0
\(955\) −39.3524 10.5444i −1.27341 0.341210i
\(956\) 0 0
\(957\) −0.0296162 0.127004i −0.000957355 0.00410546i
\(958\) 0 0
\(959\) 33.4826 1.08121
\(960\) 0 0
\(961\) −18.3255 10.5802i −0.591146 0.341298i
\(962\) 0 0
\(963\) −25.3333 16.9255i −0.816354 0.545418i
\(964\) 0 0
\(965\) −54.3580 + 31.3836i −1.74984 + 1.01027i
\(966\) 0 0
\(967\) −0.799247 0.214158i −0.0257021 0.00688685i 0.245945 0.969284i \(-0.420902\pi\)
−0.271647 + 0.962397i \(0.587568\pi\)
\(968\) 0 0
\(969\) 59.7351 13.9297i 1.91897 0.447486i
\(970\) 0 0
\(971\) 41.6673 24.0566i 1.33717 0.772013i 0.350780 0.936458i \(-0.385916\pi\)
0.986386 + 0.164444i \(0.0525831\pi\)
\(972\) 0 0
\(973\) −20.0030 + 5.35980i −0.641268 + 0.171827i
\(974\) 0 0
\(975\) −50.5843 + 41.9167i −1.61999 + 1.34241i
\(976\) 0 0
\(977\) −8.77017 8.77017i −0.280583 0.280583i 0.552759 0.833341i \(-0.313575\pi\)
−0.833341 + 0.552759i \(0.813575\pi\)
\(978\) 0 0
\(979\) 55.7545i 1.78192i
\(980\) 0 0
\(981\) −35.9600 + 31.5389i −1.14812 + 1.00696i
\(982\) 0 0
\(983\) −11.2667 42.0477i −0.359350 1.34111i −0.874920 0.484267i \(-0.839086\pi\)
0.515570 0.856847i \(-0.327580\pi\)
\(984\) 0 0
\(985\) 34.2709i 1.09196i
\(986\) 0 0
\(987\) 0.115347 + 0.0717237i 0.00367153 + 0.00228299i
\(988\) 0 0
\(989\) 2.30103i 0.0731684i
\(990\) 0 0
\(991\) 2.07400 3.59227i 0.0658826 0.114112i −0.831203 0.555970i \(-0.812347\pi\)
0.897085 + 0.441858i \(0.145680\pi\)
\(992\) 0 0
\(993\) −1.32774 1.41755i −0.0421347 0.0449847i
\(994\) 0 0
\(995\) 14.3439 + 53.5322i 0.454732 + 1.69708i
\(996\) 0 0
\(997\) 25.4139 0.804868 0.402434 0.915449i \(-0.368164\pi\)
0.402434 + 0.915449i \(0.368164\pi\)
\(998\) 0 0
\(999\) −5.24056 31.7284i −0.165804 1.00384i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.bz.a.461.7 yes 56
3.2 odd 2 1404.2.cc.a.305.14 56
9.4 even 3 1404.2.bz.a.773.14 56
9.5 odd 6 468.2.bw.a.149.12 56
13.11 odd 12 468.2.bw.a.245.12 yes 56
39.11 even 12 1404.2.bz.a.89.14 56
117.50 even 12 inner 468.2.bz.a.401.7 yes 56
117.76 odd 12 1404.2.cc.a.557.14 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bw.a.149.12 56 9.5 odd 6
468.2.bw.a.245.12 yes 56 13.11 odd 12
468.2.bz.a.401.7 yes 56 117.50 even 12 inner
468.2.bz.a.461.7 yes 56 1.1 even 1 trivial
1404.2.bz.a.89.14 56 39.11 even 12
1404.2.bz.a.773.14 56 9.4 even 3
1404.2.cc.a.305.14 56 3.2 odd 2
1404.2.cc.a.557.14 56 117.76 odd 12