Properties

Label 1404.2.cc.a.305.14
Level $1404$
Weight $2$
Character 1404.305
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(305,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.14
Character \(\chi\) \(=\) 1404.305
Dual form 1404.2.cc.a.557.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01961 - 3.80525i) q^{5} +(-1.33162 - 1.33162i) q^{7} +(-4.35045 - 1.16570i) q^{11} +(3.41964 + 1.14283i) q^{13} +(-2.31976 - 4.01793i) q^{17} +(7.37291 + 1.97557i) q^{19} +0.999222 q^{23} +(-9.11020 - 5.25978i) q^{25} +(-0.0144776 + 0.00835862i) q^{29} +(-3.02992 - 0.811864i) q^{31} +(-6.42489 + 3.70941i) q^{35} +(-5.97798 + 1.60179i) q^{37} +(-8.54895 - 8.54895i) q^{41} +2.30282i q^{43} +(0.0107778 + 0.0402231i) q^{47} -3.45357i q^{49} +1.73858i q^{53} +(-8.87157 + 15.3660i) q^{55} +(2.25516 + 8.41636i) q^{59} -5.22569 q^{61} +(7.83547 - 11.8473i) q^{65} +(-0.0524121 + 0.0524121i) q^{67} +(-1.28159 + 4.78296i) q^{71} +(-0.0292789 - 0.0292789i) q^{73} +(4.24088 + 7.34542i) q^{77} +(-1.17774 + 2.03990i) q^{79} +(4.57822 - 1.22673i) q^{83} +(-17.6545 + 4.73051i) q^{85} +(3.20395 + 11.9573i) q^{89} +(-3.03185 - 6.07548i) q^{91} +(15.0350 - 26.0415i) q^{95} +(6.01956 - 6.01956i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 12 q^{11} + 4 q^{19} - 4 q^{31} - 66 q^{35} + 2 q^{37} - 24 q^{41} + 36 q^{47} + 36 q^{65} - 14 q^{67} + 24 q^{71} - 14 q^{73} - 24 q^{77} + 12 q^{79} + 42 q^{83} - 36 q^{85} + 4 q^{91}+ \cdots - 46 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.01961 3.80525i 0.455985 1.70176i −0.229189 0.973382i \(-0.573608\pi\)
0.685175 0.728379i \(-0.259726\pi\)
\(6\) 0 0
\(7\) −1.33162 1.33162i −0.503305 0.503305i 0.409158 0.912463i \(-0.365822\pi\)
−0.912463 + 0.409158i \(0.865822\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.35045 1.16570i −1.31171 0.351472i −0.465844 0.884867i \(-0.654249\pi\)
−0.845866 + 0.533395i \(0.820916\pi\)
\(12\) 0 0
\(13\) 3.41964 + 1.14283i 0.948438 + 0.316964i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.31976 4.01793i −0.562623 0.974492i −0.997266 0.0738894i \(-0.976459\pi\)
0.434643 0.900603i \(-0.356875\pi\)
\(18\) 0 0
\(19\) 7.37291 + 1.97557i 1.69146 + 0.453226i 0.970766 0.240026i \(-0.0771561\pi\)
0.720695 + 0.693252i \(0.243823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.999222 0.208352 0.104176 0.994559i \(-0.466779\pi\)
0.104176 + 0.994559i \(0.466779\pi\)
\(24\) 0 0
\(25\) −9.11020 5.25978i −1.82204 1.05196i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.0144776 + 0.00835862i −0.00268841 + 0.00155216i −0.501344 0.865248i \(-0.667161\pi\)
0.498655 + 0.866800i \(0.333827\pi\)
\(30\) 0 0
\(31\) −3.02992 0.811864i −0.544189 0.145815i −0.0237564 0.999718i \(-0.507563\pi\)
−0.520433 + 0.853903i \(0.674229\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.42489 + 3.70941i −1.08601 + 0.627005i
\(36\) 0 0
\(37\) −5.97798 + 1.60179i −0.982774 + 0.263333i −0.714212 0.699929i \(-0.753215\pi\)
−0.268561 + 0.963263i \(0.586548\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.54895 8.54895i −1.33512 1.33512i −0.900719 0.434403i \(-0.856960\pi\)
−0.434403 0.900719i \(-0.643040\pi\)
\(42\) 0 0
\(43\) 2.30282i 0.351177i 0.984464 + 0.175588i \(0.0561828\pi\)
−0.984464 + 0.175588i \(0.943817\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.0107778 + 0.0402231i 0.00157210 + 0.00586715i 0.966707 0.255884i \(-0.0823666\pi\)
−0.965135 + 0.261751i \(0.915700\pi\)
\(48\) 0 0
\(49\) 3.45357i 0.493367i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.73858i 0.238812i 0.992845 + 0.119406i \(0.0380991\pi\)
−0.992845 + 0.119406i \(0.961901\pi\)
\(54\) 0 0
\(55\) −8.87157 + 15.3660i −1.19624 + 2.07195i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.25516 + 8.41636i 0.293596 + 1.09572i 0.942326 + 0.334697i \(0.108634\pi\)
−0.648729 + 0.761019i \(0.724699\pi\)
\(60\) 0 0
\(61\) −5.22569 −0.669082 −0.334541 0.942381i \(-0.608581\pi\)
−0.334541 + 0.942381i \(0.608581\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.83547 11.8473i 0.971870 1.46948i
\(66\) 0 0
\(67\) −0.0524121 + 0.0524121i −0.00640316 + 0.00640316i −0.710301 0.703898i \(-0.751441\pi\)
0.703898 + 0.710301i \(0.251441\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.28159 + 4.78296i −0.152097 + 0.567633i 0.847240 + 0.531211i \(0.178263\pi\)
−0.999336 + 0.0364221i \(0.988404\pi\)
\(72\) 0 0
\(73\) −0.0292789 0.0292789i −0.00342684 0.00342684i 0.705391 0.708818i \(-0.250771\pi\)
−0.708818 + 0.705391i \(0.750771\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.24088 + 7.34542i 0.483293 + 0.837089i
\(78\) 0 0
\(79\) −1.17774 + 2.03990i −0.132506 + 0.229507i −0.924642 0.380837i \(-0.875636\pi\)
0.792136 + 0.610345i \(0.208969\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.57822 1.22673i 0.502525 0.134651i 0.00135341 0.999999i \(-0.499569\pi\)
0.501172 + 0.865348i \(0.332903\pi\)
\(84\) 0 0
\(85\) −17.6545 + 4.73051i −1.91490 + 0.513096i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.20395 + 11.9573i 0.339618 + 1.26747i 0.898776 + 0.438409i \(0.144458\pi\)
−0.559158 + 0.829061i \(0.688875\pi\)
\(90\) 0 0
\(91\) −3.03185 6.07548i −0.317824 0.636883i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.0350 26.0415i 1.54256 2.67180i
\(96\) 0 0
\(97\) 6.01956 6.01956i 0.611194 0.611194i −0.332063 0.943257i \(-0.607745\pi\)
0.943257 + 0.332063i \(0.107745\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.89315 11.9393i −0.685894 1.18800i −0.973155 0.230151i \(-0.926078\pi\)
0.287261 0.957852i \(-0.407255\pi\)
\(102\) 0 0
\(103\) −14.2999 + 8.25605i −1.40901 + 0.813493i −0.995293 0.0969123i \(-0.969103\pi\)
−0.413718 + 0.910405i \(0.635770\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.79512 5.07786i −0.850256 0.490896i 0.0104810 0.999945i \(-0.496664\pi\)
−0.860737 + 0.509049i \(0.829997\pi\)
\(108\) 0 0
\(109\) 11.2739 11.2739i 1.07985 1.07985i 0.0833248 0.996522i \(-0.473446\pi\)
0.996522 0.0833248i \(-0.0265539\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.07280 + 1.77408i 0.289065 + 0.166892i 0.637520 0.770434i \(-0.279960\pi\)
−0.348455 + 0.937325i \(0.613294\pi\)
\(114\) 0 0
\(115\) 1.01882 3.80229i 0.0950056 0.354566i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.26133 + 8.43940i −0.207296 + 0.773638i
\(120\) 0 0
\(121\) 8.04130 + 4.64265i 0.731027 + 0.422059i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15.3755 + 15.3755i −1.37523 + 1.37523i
\(126\) 0 0
\(127\) −7.78898 4.49697i −0.691160 0.399042i 0.112886 0.993608i \(-0.463990\pi\)
−0.804047 + 0.594566i \(0.797324\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.85588 + 5.11294i −0.773742 + 0.446720i −0.834208 0.551450i \(-0.814075\pi\)
0.0604660 + 0.998170i \(0.480741\pi\)
\(132\) 0 0
\(133\) −7.18722 12.4486i −0.623211 1.07943i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.5721 12.5721i 1.07411 1.07411i 0.0770844 0.997025i \(-0.475439\pi\)
0.997025 0.0770844i \(-0.0245611\pi\)
\(138\) 0 0
\(139\) 5.49827 9.52329i 0.466358 0.807755i −0.532904 0.846176i \(-0.678899\pi\)
0.999262 + 0.0384207i \(0.0122327\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.5448 8.95810i −1.13267 0.749114i
\(144\) 0 0
\(145\) 0.0170451 + 0.0636133i 0.00141552 + 0.00528280i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.3835 5.72969i 1.75181 0.469395i 0.766795 0.641892i \(-0.221850\pi\)
0.985010 + 0.172497i \(0.0551835\pi\)
\(150\) 0 0
\(151\) 22.9143 6.13987i 1.86474 0.499655i 0.864742 0.502216i \(-0.167482\pi\)
0.999997 + 0.00256111i \(0.000815229\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.17869 + 10.7018i −0.496284 + 0.859590i
\(156\) 0 0
\(157\) −11.3850 19.7195i −0.908626 1.57379i −0.815975 0.578087i \(-0.803799\pi\)
−0.0926507 0.995699i \(-0.529534\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.33058 1.33058i −0.104865 0.104865i
\(162\) 0 0
\(163\) 3.35459 12.5195i 0.262752 0.980604i −0.700860 0.713299i \(-0.747200\pi\)
0.963612 0.267305i \(-0.0861330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.28123 + 4.28123i −0.331292 + 0.331292i −0.853077 0.521785i \(-0.825266\pi\)
0.521785 + 0.853077i \(0.325266\pi\)
\(168\) 0 0
\(169\) 10.3879 + 7.81613i 0.799068 + 0.601241i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.119661 −0.00909766 −0.00454883 0.999990i \(-0.501448\pi\)
−0.00454883 + 0.999990i \(0.501448\pi\)
\(174\) 0 0
\(175\) 5.12731 + 19.1354i 0.387588 + 1.44650i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.04673 12.2053i 0.526698 0.912267i −0.472819 0.881160i \(-0.656763\pi\)
0.999516 0.0311070i \(-0.00990327\pi\)
\(180\) 0 0
\(181\) 5.37997i 0.399890i 0.979807 + 0.199945i \(0.0640764\pi\)
−0.979807 + 0.199945i \(0.935924\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.3809i 1.79252i
\(186\) 0 0
\(187\) 5.40828 + 20.1840i 0.395492 + 1.47600i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3416i 0.748291i −0.927370 0.374146i \(-0.877936\pi\)
0.927370 0.374146i \(-0.122064\pi\)
\(192\) 0 0
\(193\) 11.2662 + 11.2662i 0.810960 + 0.810960i 0.984778 0.173818i \(-0.0556105\pi\)
−0.173818 + 0.984778i \(0.555610\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.40291 2.25155i 0.598683 0.160417i 0.0532643 0.998580i \(-0.483037\pi\)
0.545418 + 0.838164i \(0.316371\pi\)
\(198\) 0 0
\(199\) 12.1832 7.03398i 0.863645 0.498626i −0.00158596 0.999999i \(-0.500505\pi\)
0.865231 + 0.501373i \(0.167171\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.0304091 + 0.00814810i 0.00213430 + 0.000571884i
\(204\) 0 0
\(205\) −41.2475 + 23.8143i −2.88085 + 1.66326i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −29.7726 17.1892i −2.05941 1.18900i
\(210\) 0 0
\(211\) −1.89164 −0.130226 −0.0651131 0.997878i \(-0.520741\pi\)
−0.0651131 + 0.997878i \(0.520741\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.76281 + 2.34799i 0.597619 + 0.160131i
\(216\) 0 0
\(217\) 2.95360 + 5.11579i 0.200504 + 0.347283i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.34091 16.3910i −0.224734 1.10258i
\(222\) 0 0
\(223\) 18.4580 + 4.94580i 1.23604 + 0.331195i 0.816928 0.576740i \(-0.195675\pi\)
0.419110 + 0.907935i \(0.362342\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.53495 + 9.53495i 0.632857 + 0.632857i 0.948784 0.315927i \(-0.102315\pi\)
−0.315927 + 0.948784i \(0.602315\pi\)
\(228\) 0 0
\(229\) 2.94216 10.9803i 0.194424 0.725599i −0.797992 0.602669i \(-0.794104\pi\)
0.992415 0.122930i \(-0.0392292\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.36969 0.548316 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(234\) 0 0
\(235\) 0.164048 0.0107013
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.29278 + 16.0209i −0.277677 + 1.03630i 0.676349 + 0.736581i \(0.263561\pi\)
−0.954026 + 0.299724i \(0.903106\pi\)
\(240\) 0 0
\(241\) 0.480854 + 0.480854i 0.0309745 + 0.0309745i 0.722424 0.691450i \(-0.243028\pi\)
−0.691450 + 0.722424i \(0.743028\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.1417 3.52131i −0.839593 0.224968i
\(246\) 0 0
\(247\) 22.9550 + 15.1817i 1.46059 + 0.965989i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0317 + 24.3035i 0.885670 + 1.53403i 0.844944 + 0.534855i \(0.179634\pi\)
0.0407262 + 0.999170i \(0.487033\pi\)
\(252\) 0 0
\(253\) −4.34707 1.16479i −0.273298 0.0732299i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.89235 0.492311 0.246155 0.969230i \(-0.420833\pi\)
0.246155 + 0.969230i \(0.420833\pi\)
\(258\) 0 0
\(259\) 10.0934 + 5.82742i 0.627172 + 0.362098i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.14048 + 2.96786i −0.316976 + 0.183006i −0.650044 0.759897i \(-0.725249\pi\)
0.333068 + 0.942903i \(0.391916\pi\)
\(264\) 0 0
\(265\) 6.61574 + 1.77268i 0.406401 + 0.108895i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.40210 + 4.27360i −0.451314 + 0.260566i −0.708385 0.705826i \(-0.750576\pi\)
0.257071 + 0.966392i \(0.417243\pi\)
\(270\) 0 0
\(271\) −5.18870 + 1.39031i −0.315191 + 0.0844552i −0.412946 0.910755i \(-0.635500\pi\)
0.0977555 + 0.995210i \(0.468834\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33.5022 + 33.5022i 2.02026 + 2.02026i
\(276\) 0 0
\(277\) 23.1882i 1.39324i −0.717439 0.696621i \(-0.754686\pi\)
0.717439 0.696621i \(-0.245314\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.981285 + 3.66221i 0.0585386 + 0.218469i 0.988999 0.147924i \(-0.0472592\pi\)
−0.930460 + 0.366393i \(0.880593\pi\)
\(282\) 0 0
\(283\) 28.0666i 1.66838i −0.551474 0.834192i \(-0.685934\pi\)
0.551474 0.834192i \(-0.314066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.7679i 1.34395i
\(288\) 0 0
\(289\) −2.26253 + 3.91882i −0.133090 + 0.230519i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.45012 + 12.8760i 0.201558 + 0.752225i 0.990471 + 0.137720i \(0.0439775\pi\)
−0.788913 + 0.614505i \(0.789356\pi\)
\(294\) 0 0
\(295\) 34.3258 1.99852
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.41698 + 1.14194i 0.197609 + 0.0660401i
\(300\) 0 0
\(301\) 3.06648 3.06648i 0.176749 0.176749i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.32819 + 19.8851i −0.305091 + 1.13862i
\(306\) 0 0
\(307\) 9.09884 + 9.09884i 0.519298 + 0.519298i 0.917359 0.398061i \(-0.130317\pi\)
−0.398061 + 0.917359i \(0.630317\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.39052 2.40845i −0.0788492 0.136571i 0.823904 0.566729i \(-0.191791\pi\)
−0.902754 + 0.430158i \(0.858458\pi\)
\(312\) 0 0
\(313\) −8.75421 + 15.1627i −0.494817 + 0.857049i −0.999982 0.00597416i \(-0.998098\pi\)
0.505165 + 0.863023i \(0.331432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.3076 + 5.44141i −1.14059 + 0.305620i −0.779188 0.626790i \(-0.784368\pi\)
−0.361402 + 0.932410i \(0.617702\pi\)
\(318\) 0 0
\(319\) 0.0727275 0.0194873i 0.00407196 0.00109108i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.16566 34.2067i −0.509991 1.90331i
\(324\) 0 0
\(325\) −25.1426 28.3980i −1.39466 1.57524i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.0392101 0.0679138i 0.00216172 0.00374421i
\(330\) 0 0
\(331\) 0.792923 0.792923i 0.0435830 0.0435830i −0.684979 0.728562i \(-0.740189\pi\)
0.728562 + 0.684979i \(0.240189\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.146001 + 0.252882i 0.00797690 + 0.0138164i
\(336\) 0 0
\(337\) −1.39429 + 0.804994i −0.0759519 + 0.0438508i −0.537495 0.843267i \(-0.680629\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.2351 + 7.06395i 0.662569 + 0.382534i
\(342\) 0 0
\(343\) −13.9202 + 13.9202i −0.751620 + 0.751620i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.60090 + 1.50163i 0.139624 + 0.0806119i 0.568185 0.822901i \(-0.307646\pi\)
−0.428561 + 0.903513i \(0.640979\pi\)
\(348\) 0 0
\(349\) −6.17845 + 23.0583i −0.330725 + 1.23428i 0.577706 + 0.816245i \(0.303948\pi\)
−0.908430 + 0.418036i \(0.862718\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.88095 18.2159i 0.259787 0.969537i −0.705578 0.708632i \(-0.749313\pi\)
0.965365 0.260904i \(-0.0840208\pi\)
\(354\) 0 0
\(355\) 16.8936 + 9.75355i 0.896621 + 0.517664i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.19442 1.19442i 0.0630389 0.0630389i −0.674885 0.737923i \(-0.735807\pi\)
0.737923 + 0.674885i \(0.235807\pi\)
\(360\) 0 0
\(361\) 34.0025 + 19.6313i 1.78960 + 1.03323i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.141267 + 0.0815605i −0.00739425 + 0.00426907i
\(366\) 0 0
\(367\) −10.1517 17.5832i −0.529913 0.917836i −0.999391 0.0348923i \(-0.988891\pi\)
0.469478 0.882944i \(-0.344442\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.31513 2.31513i 0.120196 0.120196i
\(372\) 0 0
\(373\) −1.06229 + 1.83995i −0.0550034 + 0.0952688i −0.892216 0.451609i \(-0.850850\pi\)
0.837213 + 0.546877i \(0.184184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.0590605 + 0.0120381i −0.00304177 + 0.000619993i
\(378\) 0 0
\(379\) −4.82922 18.0229i −0.248060 0.925774i −0.971820 0.235722i \(-0.924254\pi\)
0.723760 0.690052i \(-0.242412\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.642392 0.172129i 0.0328247 0.00879536i −0.242369 0.970184i \(-0.577925\pi\)
0.275194 + 0.961389i \(0.411258\pi\)
\(384\) 0 0
\(385\) 32.2753 8.64813i 1.64490 0.440749i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.6152 20.1182i 0.588916 1.02003i −0.405458 0.914113i \(-0.632888\pi\)
0.994375 0.105919i \(-0.0337785\pi\)
\(390\) 0 0
\(391\) −2.31795 4.01481i −0.117224 0.203038i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.56151 + 6.56151i 0.330145 + 0.330145i
\(396\) 0 0
\(397\) 4.19965 15.6733i 0.210774 0.786621i −0.776837 0.629702i \(-0.783177\pi\)
0.987611 0.156919i \(-0.0501562\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.0928 20.0928i 1.00339 1.00339i 0.00339153 0.999994i \(-0.498920\pi\)
0.999994 0.00339153i \(-0.00107956\pi\)
\(402\) 0 0
\(403\) −9.43340 6.23896i −0.469911 0.310785i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.8741 1.38167
\(408\) 0 0
\(409\) −3.16669 11.8182i −0.156583 0.584375i −0.998965 0.0454938i \(-0.985514\pi\)
0.842382 0.538881i \(-0.181153\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.20438 14.2104i 0.403711 0.699249i
\(414\) 0 0
\(415\) 18.6721i 0.916576i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.438006i 0.0213980i −0.999943 0.0106990i \(-0.996594\pi\)
0.999943 0.0106990i \(-0.00340566\pi\)
\(420\) 0 0
\(421\) 1.63663 + 6.10799i 0.0797645 + 0.297685i 0.994271 0.106885i \(-0.0340877\pi\)
−0.914507 + 0.404570i \(0.867421\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 48.8056i 2.36742i
\(426\) 0 0
\(427\) 6.95864 + 6.95864i 0.336752 + 0.336752i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.5907 + 6.05315i −1.08815 + 0.291570i −0.757932 0.652333i \(-0.773790\pi\)
−0.330222 + 0.943903i \(0.607124\pi\)
\(432\) 0 0
\(433\) −7.49672 + 4.32823i −0.360269 + 0.208002i −0.669199 0.743083i \(-0.733363\pi\)
0.308930 + 0.951085i \(0.400029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.36717 + 1.97403i 0.352420 + 0.0944306i
\(438\) 0 0
\(439\) −1.49405 + 0.862589i −0.0713070 + 0.0411691i −0.535230 0.844707i \(-0.679775\pi\)
0.463923 + 0.885876i \(0.346442\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.81328 1.62425i −0.133663 0.0771704i 0.431677 0.902028i \(-0.357922\pi\)
−0.565340 + 0.824858i \(0.691255\pi\)
\(444\) 0 0
\(445\) 48.7673 2.31179
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.05170 + 1.08565i 0.191212 + 0.0512350i 0.353154 0.935565i \(-0.385109\pi\)
−0.161942 + 0.986800i \(0.551776\pi\)
\(450\) 0 0
\(451\) 27.2263 + 47.1573i 1.28204 + 2.22055i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −26.2101 + 5.34230i −1.22875 + 0.250451i
\(456\) 0 0
\(457\) 1.25001 + 0.334939i 0.0584730 + 0.0156678i 0.287937 0.957649i \(-0.407031\pi\)
−0.229464 + 0.973317i \(0.573697\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.85374 9.85374i −0.458934 0.458934i 0.439371 0.898306i \(-0.355201\pi\)
−0.898306 + 0.439371i \(0.855201\pi\)
\(462\) 0 0
\(463\) 9.59936 35.8253i 0.446120 1.66494i −0.266842 0.963740i \(-0.585980\pi\)
0.712962 0.701203i \(-0.247353\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.2780 0.938353 0.469176 0.883104i \(-0.344551\pi\)
0.469176 + 0.883104i \(0.344551\pi\)
\(468\) 0 0
\(469\) 0.139586 0.00644549
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.68440 10.0183i 0.123429 0.460642i
\(474\) 0 0
\(475\) −56.7777 56.7777i −2.60514 2.60514i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.6844 5.27443i −0.899405 0.240995i −0.220644 0.975354i \(-0.570816\pi\)
−0.678761 + 0.734360i \(0.737483\pi\)
\(480\) 0 0
\(481\) −22.2731 1.35425i −1.01557 0.0617485i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.7683 29.0436i −0.761411 1.31880i
\(486\) 0 0
\(487\) −5.24083 1.40428i −0.237485 0.0636338i 0.138114 0.990416i \(-0.455896\pi\)
−0.375598 + 0.926783i \(0.622563\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.2041 −1.04719 −0.523594 0.851968i \(-0.675409\pi\)
−0.523594 + 0.851968i \(0.675409\pi\)
\(492\) 0 0
\(493\) 0.0671688 + 0.0387799i 0.00302513 + 0.00174656i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.07568 4.66250i 0.362244 0.209142i
\(498\) 0 0
\(499\) −30.6811 8.22097i −1.37347 0.368021i −0.504728 0.863279i \(-0.668407\pi\)
−0.868746 + 0.495257i \(0.835074\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.3710 13.4932i 1.04206 0.601634i 0.121644 0.992574i \(-0.461183\pi\)
0.920416 + 0.390940i \(0.127850\pi\)
\(504\) 0 0
\(505\) −52.4603 + 14.0567i −2.33445 + 0.625515i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.32135 + 7.32135i 0.324513 + 0.324513i 0.850495 0.525982i \(-0.176302\pi\)
−0.525982 + 0.850495i \(0.676302\pi\)
\(510\) 0 0
\(511\) 0.0779769i 0.00344949i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.8360 + 62.8327i 0.741882 + 2.76874i
\(516\) 0 0
\(517\) 0.187552i 0.00824855i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.8080i 0.604939i 0.953159 + 0.302469i \(0.0978110\pi\)
−0.953159 + 0.302469i \(0.902189\pi\)
\(522\) 0 0
\(523\) −4.75258 + 8.23170i −0.207816 + 0.359947i −0.951026 0.309110i \(-0.899969\pi\)
0.743211 + 0.669058i \(0.233302\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.76665 + 14.0573i 0.164078 + 0.612347i
\(528\) 0 0
\(529\) −22.0016 −0.956589
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.4643 39.0043i −0.843094 1.68946i
\(534\) 0 0
\(535\) −28.2902 + 28.2902i −1.22309 + 1.22309i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.02583 + 15.0246i −0.173405 + 0.647155i
\(540\) 0 0
\(541\) 19.2507 + 19.2507i 0.827651 + 0.827651i 0.987191 0.159540i \(-0.0510012\pi\)
−0.159540 + 0.987191i \(0.551001\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −31.4051 54.3952i −1.34525 2.33004i
\(546\) 0 0
\(547\) −20.0559 + 34.7379i −0.857530 + 1.48529i 0.0167471 + 0.999860i \(0.494669\pi\)
−0.874277 + 0.485426i \(0.838664\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.123255 + 0.0330260i −0.00525083 + 0.00140695i
\(552\) 0 0
\(553\) 4.28468 1.14808i 0.182203 0.0488212i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.96905 7.34860i −0.0834313 0.311370i 0.911581 0.411120i \(-0.134862\pi\)
−0.995013 + 0.0997501i \(0.968196\pi\)
\(558\) 0 0
\(559\) −2.63173 + 7.87481i −0.111310 + 0.333069i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.29228 + 7.43445i −0.180898 + 0.313325i −0.942187 0.335089i \(-0.891234\pi\)
0.761289 + 0.648413i \(0.224567\pi\)
\(564\) 0 0
\(565\) 9.88390 9.88390i 0.415819 0.415819i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.9702 + 31.1253i 0.753351 + 1.30484i 0.946190 + 0.323611i \(0.104897\pi\)
−0.192839 + 0.981230i \(0.561770\pi\)
\(570\) 0 0
\(571\) 9.68042 5.58899i 0.405113 0.233892i −0.283575 0.958950i \(-0.591520\pi\)
0.688688 + 0.725058i \(0.258187\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.10312 5.25569i −0.379626 0.219177i
\(576\) 0 0
\(577\) 12.4732 12.4732i 0.519266 0.519266i −0.398083 0.917349i \(-0.630325\pi\)
0.917349 + 0.398083i \(0.130325\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.72999 4.46291i −0.320694 0.185153i
\(582\) 0 0
\(583\) 2.02666 7.56361i 0.0839358 0.313253i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.48074 + 12.9903i −0.143666 + 0.536167i 0.856146 + 0.516735i \(0.172853\pi\)
−0.999811 + 0.0194325i \(0.993814\pi\)
\(588\) 0 0
\(589\) −20.7354 11.9716i −0.854388 0.493281i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.12229 4.12229i 0.169282 0.169282i −0.617382 0.786664i \(-0.711807\pi\)
0.786664 + 0.617382i \(0.211807\pi\)
\(594\) 0 0
\(595\) 29.8084 + 17.2099i 1.22202 + 0.705536i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.3160 15.1935i 1.07524 0.620791i 0.145633 0.989339i \(-0.453478\pi\)
0.929609 + 0.368547i \(0.120145\pi\)
\(600\) 0 0
\(601\) 8.54362 + 14.7980i 0.348502 + 0.603622i 0.985983 0.166843i \(-0.0533573\pi\)
−0.637482 + 0.770465i \(0.720024\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.8655 25.8655i 1.05158 1.05158i
\(606\) 0 0
\(607\) 14.2310 24.6488i 0.577619 1.00047i −0.418133 0.908386i \(-0.637315\pi\)
0.995752 0.0920795i \(-0.0293514\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.00911214 + 0.149866i −0.000368638 + 0.00606292i
\(612\) 0 0
\(613\) 8.00452 + 29.8733i 0.323299 + 1.20657i 0.916010 + 0.401155i \(0.131391\pi\)
−0.592711 + 0.805415i \(0.701942\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.9588 + 7.22358i −1.08532 + 0.290810i −0.756773 0.653677i \(-0.773225\pi\)
−0.328546 + 0.944488i \(0.606559\pi\)
\(618\) 0 0
\(619\) −13.2777 + 3.55774i −0.533674 + 0.142998i −0.515584 0.856839i \(-0.672425\pi\)
−0.0180898 + 0.999836i \(0.505758\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.6561 20.1890i 0.466993 0.808856i
\(624\) 0 0
\(625\) 16.5317 + 28.6337i 0.661266 + 1.14535i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.3034 + 20.3034i 0.809548 + 0.809548i
\(630\) 0 0
\(631\) −2.32391 + 8.67295i −0.0925133 + 0.345265i −0.996631 0.0820197i \(-0.973863\pi\)
0.904117 + 0.427284i \(0.140530\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.0539 + 25.0539i −0.994232 + 0.994232i
\(636\) 0 0
\(637\) 3.94684 11.8100i 0.156380 0.467928i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 41.4190 1.63595 0.817976 0.575253i \(-0.195096\pi\)
0.817976 + 0.575253i \(0.195096\pi\)
\(642\) 0 0
\(643\) −12.7764 47.6823i −0.503854 1.88041i −0.473352 0.880874i \(-0.656956\pi\)
−0.0305022 0.999535i \(-0.509711\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.03827 1.79833i 0.0408184 0.0706996i −0.844894 0.534933i \(-0.820337\pi\)
0.885713 + 0.464233i \(0.153670\pi\)
\(648\) 0 0
\(649\) 39.2438i 1.54045i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.31179i 0.207867i 0.994584 + 0.103933i \(0.0331428\pi\)
−0.994584 + 0.103933i \(0.966857\pi\)
\(654\) 0 0
\(655\) 10.4265 + 38.9121i 0.407396 + 1.52042i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.00574i 0.272905i −0.990647 0.136452i \(-0.956430\pi\)
0.990647 0.136452i \(-0.0435701\pi\)
\(660\) 0 0
\(661\) 23.2482 + 23.2482i 0.904249 + 0.904249i 0.995800 0.0915510i \(-0.0291824\pi\)
−0.0915510 + 0.995800i \(0.529182\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −54.6983 + 14.6564i −2.12111 + 0.568350i
\(666\) 0 0
\(667\) −0.0144663 + 0.00835212i −0.000560137 + 0.000323395i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.7341 + 6.09159i 0.877641 + 0.235163i
\(672\) 0 0
\(673\) −1.68972 + 0.975559i −0.0651338 + 0.0376050i −0.532213 0.846610i \(-0.678640\pi\)
0.467079 + 0.884215i \(0.345306\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.1079 7.56783i −0.503776 0.290855i 0.226495 0.974012i \(-0.427273\pi\)
−0.730272 + 0.683157i \(0.760607\pi\)
\(678\) 0 0
\(679\) −16.0316 −0.615235
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.1296 7.00141i −0.999822 0.267901i −0.278451 0.960450i \(-0.589821\pi\)
−0.721371 + 0.692549i \(0.756488\pi\)
\(684\) 0 0
\(685\) −35.0214 60.6588i −1.33810 2.31765i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.98690 + 5.94532i −0.0756949 + 0.226499i
\(690\) 0 0
\(691\) 35.8188 + 9.59761i 1.36261 + 0.365110i 0.864774 0.502161i \(-0.167462\pi\)
0.497836 + 0.867271i \(0.334128\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30.6324 30.6324i −1.16195 1.16195i
\(696\) 0 0
\(697\) −14.5176 + 54.1806i −0.549895 + 2.05224i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.64065 −0.288583 −0.144292 0.989535i \(-0.546090\pi\)
−0.144292 + 0.989535i \(0.546090\pi\)
\(702\) 0 0
\(703\) −47.2395 −1.78167
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.71954 + 25.0777i −0.252714 + 0.943142i
\(708\) 0 0
\(709\) 24.1779 + 24.1779i 0.908021 + 0.908021i 0.996112 0.0880916i \(-0.0280768\pi\)
−0.0880916 + 0.996112i \(0.528077\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.02756 0.811232i −0.113383 0.0303809i
\(714\) 0 0
\(715\) −47.8983 + 42.4075i −1.79129 + 1.58595i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.01084 3.48288i −0.0749917 0.129889i 0.826091 0.563537i \(-0.190560\pi\)
−0.901083 + 0.433647i \(0.857226\pi\)
\(720\) 0 0
\(721\) 30.0360 + 8.04811i 1.11860 + 0.299727i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.175858 0.00653120
\(726\) 0 0
\(727\) −31.9389 18.4399i −1.18455 0.683900i −0.227486 0.973781i \(-0.573051\pi\)
−0.957062 + 0.289882i \(0.906384\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.25258 5.34198i 0.342219 0.197580i
\(732\) 0 0
\(733\) −38.9036 10.4242i −1.43694 0.385026i −0.545478 0.838125i \(-0.683652\pi\)
−0.891460 + 0.453099i \(0.850318\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.289113 0.166920i 0.0106496 0.00614857i
\(738\) 0 0
\(739\) 10.9711 2.93969i 0.403578 0.108138i −0.0513194 0.998682i \(-0.516343\pi\)
0.454897 + 0.890544i \(0.349676\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.17617 4.17617i −0.153209 0.153209i 0.626341 0.779549i \(-0.284552\pi\)
−0.779549 + 0.626341i \(0.784552\pi\)
\(744\) 0 0
\(745\) 87.2117i 3.19519i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.94997 + 18.4736i 0.180868 + 0.675009i
\(750\) 0 0
\(751\) 44.7900i 1.63441i 0.576348 + 0.817205i \(0.304477\pi\)
−0.576348 + 0.817205i \(0.695523\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 93.4550i 3.40117i
\(756\) 0 0
\(757\) 13.4400 23.2787i 0.488484 0.846079i −0.511428 0.859326i \(-0.670883\pi\)
0.999912 + 0.0132468i \(0.00421670\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.52394 35.5438i −0.345242 1.28846i −0.892329 0.451386i \(-0.850930\pi\)
0.547086 0.837076i \(-0.315737\pi\)
\(762\) 0 0
\(763\) −30.0252 −1.08699
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.90664 + 31.3582i −0.0688448 + 1.13228i
\(768\) 0 0
\(769\) −20.8065 + 20.8065i −0.750300 + 0.750300i −0.974535 0.224235i \(-0.928012\pi\)
0.224235 + 0.974535i \(0.428012\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.62390 13.5246i 0.130343 0.486445i −0.869631 0.493702i \(-0.835643\pi\)
0.999974 + 0.00725702i \(0.00231000\pi\)
\(774\) 0 0
\(775\) 23.3329 + 23.3329i 0.838144 + 0.838144i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −46.1416 79.9196i −1.65319 2.86342i
\(780\) 0 0
\(781\) 11.1510 19.3141i 0.399014 0.691112i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −86.6460 + 23.2167i −3.09253 + 0.828640i
\(786\) 0 0
\(787\) 9.08397 2.43404i 0.323809 0.0867643i −0.0932530 0.995642i \(-0.529727\pi\)
0.417062 + 0.908878i \(0.363060\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.72940 6.45421i −0.0614904 0.229485i
\(792\) 0 0
\(793\) −17.8700 5.97208i −0.634582 0.212075i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.9237 34.5089i 0.705735 1.22237i −0.260690 0.965423i \(-0.583950\pi\)
0.966426 0.256947i \(-0.0827166\pi\)
\(798\) 0 0
\(799\) 0.136612 0.136612i 0.00483299 0.00483299i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.0932461 + 0.161507i 0.00329058 + 0.00569946i
\(804\) 0 0
\(805\) −6.41989 + 3.70653i −0.226272 + 0.130638i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.19032 1.84193i −0.112166 0.0647588i 0.442868 0.896587i \(-0.353961\pi\)
−0.555033 + 0.831828i \(0.687294\pi\)
\(810\) 0 0
\(811\) 23.1531 23.1531i 0.813016 0.813016i −0.172069 0.985085i \(-0.555045\pi\)
0.985085 + 0.172069i \(0.0550453\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −44.2195 25.5301i −1.54894 0.894282i
\(816\) 0 0
\(817\) −4.54937 + 16.9785i −0.159162 + 0.594002i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.35025 + 12.5033i −0.116924 + 0.436368i −0.999424 0.0339458i \(-0.989193\pi\)
0.882499 + 0.470314i \(0.155859\pi\)
\(822\) 0 0
\(823\) 18.9105 + 10.9180i 0.659178 + 0.380577i 0.791964 0.610568i \(-0.209059\pi\)
−0.132785 + 0.991145i \(0.542392\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.4531 16.4531i 0.572131 0.572131i −0.360592 0.932724i \(-0.617425\pi\)
0.932724 + 0.360592i \(0.117425\pi\)
\(828\) 0 0
\(829\) −21.9234 12.6575i −0.761432 0.439613i 0.0683775 0.997660i \(-0.478218\pi\)
−0.829810 + 0.558046i \(0.811551\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.8762 + 8.01144i −0.480783 + 0.277580i
\(834\) 0 0
\(835\) 11.9260 + 20.6564i 0.412715 + 0.714843i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.3174 15.3174i 0.528814 0.528814i −0.391404 0.920219i \(-0.628011\pi\)
0.920219 + 0.391404i \(0.128011\pi\)
\(840\) 0 0
\(841\) −14.4999 + 25.1145i −0.499995 + 0.866017i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.3340 31.5591i 1.38753 1.08566i
\(846\) 0 0
\(847\) −4.52572 16.8902i −0.155505 0.580354i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.97333 + 1.60055i −0.204763 + 0.0548661i
\(852\) 0 0
\(853\) 12.3890 3.31961i 0.424190 0.113661i −0.0404076 0.999183i \(-0.512866\pi\)
0.464598 + 0.885522i \(0.346199\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.4649 + 42.3745i −0.835705 + 1.44748i 0.0577497 + 0.998331i \(0.481607\pi\)
−0.893455 + 0.449153i \(0.851726\pi\)
\(858\) 0 0
\(859\) 18.1131 + 31.3727i 0.618010 + 1.07042i 0.989848 + 0.142127i \(0.0453941\pi\)
−0.371839 + 0.928297i \(0.621273\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.6667 25.6667i −0.873704 0.873704i 0.119170 0.992874i \(-0.461977\pi\)
−0.992874 + 0.119170i \(0.961977\pi\)
\(864\) 0 0
\(865\) −0.122008 + 0.455341i −0.00414840 + 0.0154820i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.50162 7.50162i 0.254475 0.254475i
\(870\) 0 0
\(871\) −0.239129 + 0.119333i −0.00810257 + 0.00404343i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 40.9486 1.38432
\(876\) 0 0
\(877\) −7.39964 27.6158i −0.249868 0.932521i −0.970874 0.239592i \(-0.922986\pi\)
0.721006 0.692929i \(-0.243680\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −10.2203 + 17.7021i −0.344331 + 0.596399i −0.985232 0.171225i \(-0.945228\pi\)
0.640901 + 0.767624i \(0.278561\pi\)
\(882\) 0 0
\(883\) 59.1925i 1.99199i −0.0894367 0.995993i \(-0.528507\pi\)
0.0894367 0.995993i \(-0.471493\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.9612i 1.50965i −0.655927 0.754825i \(-0.727722\pi\)
0.655927 0.754825i \(-0.272278\pi\)
\(888\) 0 0
\(889\) 4.38371 + 16.3602i 0.147025 + 0.548705i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.317854i 0.0106366i
\(894\) 0 0
\(895\) −39.2593 39.2593i −1.31229 1.31229i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0506518 0.0135721i 0.00168933 0.000452655i
\(900\) 0 0
\(901\) 6.98550 4.03308i 0.232721 0.134361i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.4721 + 5.48550i 0.680517 + 0.182344i
\(906\) 0 0
\(907\) −16.8952 + 9.75445i −0.560996 + 0.323891i −0.753545 0.657396i \(-0.771658\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.3564 + 29.6506i 1.70151 + 0.982370i 0.944231 + 0.329283i \(0.106807\pi\)
0.757283 + 0.653087i \(0.226526\pi\)
\(912\) 0 0
\(913\) −21.3473 −0.706494
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.6012 + 4.98417i 0.614265 + 0.164592i
\(918\) 0 0
\(919\) 21.8304 + 37.8114i 0.720119 + 1.24728i 0.960952 + 0.276716i \(0.0892463\pi\)
−0.240832 + 0.970567i \(0.577420\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.84868 + 14.8914i −0.324173 + 0.490155i
\(924\) 0 0
\(925\) 62.8857 + 16.8502i 2.06767 + 0.554030i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0748 + 12.0748i 0.396160 + 0.396160i 0.876876 0.480716i \(-0.159623\pi\)
−0.480716 + 0.876876i \(0.659623\pi\)
\(930\) 0 0
\(931\) 6.82276 25.4629i 0.223607 0.834512i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 82.3195 2.69213
\(936\) 0 0
\(937\) 41.1938 1.34574 0.672871 0.739759i \(-0.265061\pi\)
0.672871 + 0.739759i \(0.265061\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.3736 + 38.7147i −0.338169 + 1.26206i 0.562224 + 0.826985i \(0.309946\pi\)
−0.900393 + 0.435078i \(0.856721\pi\)
\(942\) 0 0
\(943\) −8.54230 8.54230i −0.278175 0.278175i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.5842 6.58731i −0.798879 0.214059i −0.163787 0.986496i \(-0.552371\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(948\) 0 0
\(949\) −0.0666626 0.133584i −0.00216396 0.00433633i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.7501 + 20.3518i 0.380624 + 0.659260i 0.991152 0.132735i \(-0.0423758\pi\)
−0.610527 + 0.791995i \(0.709043\pi\)
\(954\) 0 0
\(955\) −39.3524 10.5444i −1.27341 0.341210i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −33.4826 −1.08121
\(960\) 0 0
\(961\) −18.3255 10.5802i −0.591146 0.341298i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 54.3580 31.3836i 1.74984 1.01027i
\(966\) 0 0
\(967\) −0.799247 0.214158i −0.0257021 0.00688685i 0.245945 0.969284i \(-0.420902\pi\)
−0.271647 + 0.962397i \(0.587568\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.6673 + 24.0566i −1.33717 + 0.772013i −0.986386 0.164444i \(-0.947417\pi\)
−0.350780 + 0.936458i \(0.614084\pi\)
\(972\) 0 0
\(973\) −20.0030 + 5.35980i −0.641268 + 0.171827i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.77017 + 8.77017i 0.280583 + 0.280583i 0.833341 0.552759i \(-0.186425\pi\)
−0.552759 + 0.833341i \(0.686425\pi\)
\(978\) 0 0
\(979\) 55.7545i 1.78192i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.2667 + 42.0477i 0.359350 + 1.34111i 0.874920 + 0.484267i \(0.160914\pi\)
−0.515570 + 0.856847i \(0.672420\pi\)
\(984\) 0 0
\(985\) 34.2709i 1.09196i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.30103i 0.0731684i
\(990\) 0 0
\(991\) 2.07400 3.59227i 0.0658826 0.114112i −0.831203 0.555970i \(-0.812347\pi\)
0.897085 + 0.441858i \(0.145680\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.3439 53.5322i −0.454732 1.69708i
\(996\) 0 0
\(997\) 25.4139 0.804868 0.402434 0.915449i \(-0.368164\pi\)
0.402434 + 0.915449i \(0.368164\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cc.a.305.14 56
3.2 odd 2 468.2.bz.a.461.7 yes 56
9.4 even 3 468.2.bw.a.149.12 56
9.5 odd 6 1404.2.bz.a.773.14 56
13.11 odd 12 1404.2.bz.a.89.14 56
39.11 even 12 468.2.bw.a.245.12 yes 56
117.50 even 12 inner 1404.2.cc.a.557.14 56
117.76 odd 12 468.2.bz.a.401.7 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bw.a.149.12 56 9.4 even 3
468.2.bw.a.245.12 yes 56 39.11 even 12
468.2.bz.a.401.7 yes 56 117.76 odd 12
468.2.bz.a.461.7 yes 56 3.2 odd 2
1404.2.bz.a.89.14 56 13.11 odd 12
1404.2.bz.a.773.14 56 9.5 odd 6
1404.2.cc.a.305.14 56 1.1 even 1 trivial
1404.2.cc.a.557.14 56 117.50 even 12 inner