Properties

Label 468.2.bl.b.337.8
Level $468$
Weight $2$
Character 468.337
Analytic conductor $3.737$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(25,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 337.8
Character \(\chi\) \(=\) 468.337
Dual form 468.2.bl.b.25.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.444415 + 1.67407i) q^{3} +(2.13836 + 1.23458i) q^{5} +(0.836915 - 0.483193i) q^{7} +(-2.60499 + 1.48796i) q^{9} +(3.21548 - 1.85646i) q^{11} +(3.60327 + 0.128201i) q^{13} +(-1.11645 + 4.12841i) q^{15} -2.85159 q^{17} +0.604961i q^{19} +(1.18083 + 1.18631i) q^{21} +(-3.15810 + 5.47000i) q^{23} +(0.548379 + 0.949821i) q^{25} +(-3.64864 - 3.69966i) q^{27} +(0.550851 + 0.954102i) q^{29} +(-8.22775 - 4.75029i) q^{31} +(4.53684 + 4.55789i) q^{33} +2.38617 q^{35} -1.98412i q^{37} +(1.38673 + 6.08909i) q^{39} +(10.2623 + 5.92492i) q^{41} +(-4.32783 - 7.49603i) q^{43} +(-7.40741 - 0.0342863i) q^{45} +(-2.83777 + 1.63839i) q^{47} +(-3.03305 + 5.25339i) q^{49} +(-1.26729 - 4.77375i) q^{51} +5.79913 q^{53} +9.16780 q^{55} +(-1.01274 + 0.268853i) q^{57} +(5.40887 + 3.12281i) q^{59} +(4.03552 + 6.98973i) q^{61} +(-1.46119 + 2.50401i) q^{63} +(7.54681 + 4.72267i) q^{65} +(-7.70819 - 4.45033i) q^{67} +(-10.5606 - 2.85593i) q^{69} -14.5420i q^{71} -13.9731i q^{73} +(-1.34635 + 1.34014i) q^{75} +(1.79406 - 3.10740i) q^{77} +(-4.13435 - 7.16090i) q^{79} +(4.57196 - 7.75224i) q^{81} +(-1.62677 + 0.939215i) q^{83} +(-6.09771 - 3.52052i) q^{85} +(-1.35242 + 1.34618i) q^{87} -0.377612i q^{89} +(3.07758 - 1.63378i) q^{91} +(4.29577 - 15.8849i) q^{93} +(-0.746873 + 1.29362i) q^{95} +(5.89116 - 3.40126i) q^{97} +(-5.61397 + 9.62057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{3} + 2 q^{9} + 5 q^{13} - 4 q^{17} - 22 q^{23} + 16 q^{25} - 18 q^{27} + 22 q^{29} + 8 q^{35} + 37 q^{39} - 2 q^{43} + 22 q^{49} - 38 q^{51} - 12 q^{53} + 48 q^{55} + 8 q^{61} - q^{65} - 26 q^{69}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.444415 + 1.67407i 0.256583 + 0.966522i
\(4\) 0 0
\(5\) 2.13836 + 1.23458i 0.956302 + 0.552121i 0.895033 0.446000i \(-0.147152\pi\)
0.0612692 + 0.998121i \(0.480485\pi\)
\(6\) 0 0
\(7\) 0.836915 0.483193i 0.316324 0.182630i −0.333429 0.942775i \(-0.608206\pi\)
0.649753 + 0.760145i \(0.274872\pi\)
\(8\) 0 0
\(9\) −2.60499 + 1.48796i −0.868330 + 0.495986i
\(10\) 0 0
\(11\) 3.21548 1.85646i 0.969505 0.559744i 0.0704194 0.997517i \(-0.477566\pi\)
0.899085 + 0.437774i \(0.144233\pi\)
\(12\) 0 0
\(13\) 3.60327 + 0.128201i 0.999368 + 0.0355565i
\(14\) 0 0
\(15\) −1.11645 + 4.12841i −0.288267 + 1.06595i
\(16\) 0 0
\(17\) −2.85159 −0.691612 −0.345806 0.938306i \(-0.612394\pi\)
−0.345806 + 0.938306i \(0.612394\pi\)
\(18\) 0 0
\(19\) 0.604961i 0.138787i 0.997589 + 0.0693937i \(0.0221065\pi\)
−0.997589 + 0.0693937i \(0.977894\pi\)
\(20\) 0 0
\(21\) 1.18083 + 1.18631i 0.257679 + 0.258875i
\(22\) 0 0
\(23\) −3.15810 + 5.47000i −0.658510 + 1.14057i 0.322491 + 0.946573i \(0.395480\pi\)
−0.981001 + 0.194001i \(0.937854\pi\)
\(24\) 0 0
\(25\) 0.548379 + 0.949821i 0.109676 + 0.189964i
\(26\) 0 0
\(27\) −3.64864 3.69966i −0.702180 0.711999i
\(28\) 0 0
\(29\) 0.550851 + 0.954102i 0.102290 + 0.177172i 0.912628 0.408791i \(-0.134050\pi\)
−0.810337 + 0.585963i \(0.800716\pi\)
\(30\) 0 0
\(31\) −8.22775 4.75029i −1.47775 0.853178i −0.478064 0.878325i \(-0.658661\pi\)
−0.999684 + 0.0251470i \(0.991995\pi\)
\(32\) 0 0
\(33\) 4.53684 + 4.55789i 0.789763 + 0.793427i
\(34\) 0 0
\(35\) 2.38617 0.403336
\(36\) 0 0
\(37\) 1.98412i 0.326187i −0.986611 0.163093i \(-0.947853\pi\)
0.986611 0.163093i \(-0.0521472\pi\)
\(38\) 0 0
\(39\) 1.38673 + 6.08909i 0.222055 + 0.975034i
\(40\) 0 0
\(41\) 10.2623 + 5.92492i 1.60270 + 0.925317i 0.990945 + 0.134266i \(0.0428675\pi\)
0.611750 + 0.791051i \(0.290466\pi\)
\(42\) 0 0
\(43\) −4.32783 7.49603i −0.659988 1.14313i −0.980618 0.195929i \(-0.937228\pi\)
0.320630 0.947205i \(-0.396105\pi\)
\(44\) 0 0
\(45\) −7.40741 0.0342863i −1.10423 0.00511110i
\(46\) 0 0
\(47\) −2.83777 + 1.63839i −0.413931 + 0.238983i −0.692477 0.721440i \(-0.743481\pi\)
0.278546 + 0.960423i \(0.410147\pi\)
\(48\) 0 0
\(49\) −3.03305 + 5.25339i −0.433293 + 0.750485i
\(50\) 0 0
\(51\) −1.26729 4.77375i −0.177456 0.668458i
\(52\) 0 0
\(53\) 5.79913 0.796572 0.398286 0.917261i \(-0.369605\pi\)
0.398286 + 0.917261i \(0.369605\pi\)
\(54\) 0 0
\(55\) 9.16780 1.23619
\(56\) 0 0
\(57\) −1.01274 + 0.268853i −0.134141 + 0.0356105i
\(58\) 0 0
\(59\) 5.40887 + 3.12281i 0.704175 + 0.406556i 0.808901 0.587945i \(-0.200063\pi\)
−0.104725 + 0.994501i \(0.533396\pi\)
\(60\) 0 0
\(61\) 4.03552 + 6.98973i 0.516695 + 0.894943i 0.999812 + 0.0193867i \(0.00617136\pi\)
−0.483117 + 0.875556i \(0.660495\pi\)
\(62\) 0 0
\(63\) −1.46119 + 2.50401i −0.184092 + 0.315476i
\(64\) 0 0
\(65\) 7.54681 + 4.72267i 0.936066 + 0.585775i
\(66\) 0 0
\(67\) −7.70819 4.45033i −0.941705 0.543694i −0.0512109 0.998688i \(-0.516308\pi\)
−0.890494 + 0.454994i \(0.849641\pi\)
\(68\) 0 0
\(69\) −10.5606 2.85593i −1.27135 0.343813i
\(70\) 0 0
\(71\) 14.5420i 1.72582i −0.505357 0.862910i \(-0.668639\pi\)
0.505357 0.862910i \(-0.331361\pi\)
\(72\) 0 0
\(73\) 13.9731i 1.63542i −0.575629 0.817711i \(-0.695243\pi\)
0.575629 0.817711i \(-0.304757\pi\)
\(74\) 0 0
\(75\) −1.34635 + 1.34014i −0.155464 + 0.154746i
\(76\) 0 0
\(77\) 1.79406 3.10740i 0.204452 0.354121i
\(78\) 0 0
\(79\) −4.13435 7.16090i −0.465151 0.805664i 0.534058 0.845448i \(-0.320666\pi\)
−0.999208 + 0.0397836i \(0.987333\pi\)
\(80\) 0 0
\(81\) 4.57196 7.75224i 0.507995 0.861360i
\(82\) 0 0
\(83\) −1.62677 + 0.939215i −0.178561 + 0.103092i −0.586616 0.809865i \(-0.699540\pi\)
0.408055 + 0.912957i \(0.366207\pi\)
\(84\) 0 0
\(85\) −6.09771 3.52052i −0.661390 0.381854i
\(86\) 0 0
\(87\) −1.35242 + 1.34618i −0.144995 + 0.144325i
\(88\) 0 0
\(89\) 0.377612i 0.0400268i −0.999800 0.0200134i \(-0.993629\pi\)
0.999800 0.0200134i \(-0.00637089\pi\)
\(90\) 0 0
\(91\) 3.07758 1.63378i 0.322618 0.171267i
\(92\) 0 0
\(93\) 4.29577 15.8849i 0.445451 1.64719i
\(94\) 0 0
\(95\) −0.746873 + 1.29362i −0.0766275 + 0.132723i
\(96\) 0 0
\(97\) 5.89116 3.40126i 0.598157 0.345346i −0.170159 0.985417i \(-0.554428\pi\)
0.768316 + 0.640071i \(0.221095\pi\)
\(98\) 0 0
\(99\) −5.61397 + 9.62057i −0.564225 + 0.966903i
\(100\) 0 0
\(101\) −2.74567 4.75564i −0.273204 0.473204i 0.696476 0.717580i \(-0.254750\pi\)
−0.969681 + 0.244376i \(0.921417\pi\)
\(102\) 0 0
\(103\) 5.54471 9.60373i 0.546337 0.946283i −0.452185 0.891924i \(-0.649355\pi\)
0.998521 0.0543589i \(-0.0173115\pi\)
\(104\) 0 0
\(105\) 1.06045 + 3.99460i 0.103489 + 0.389833i
\(106\) 0 0
\(107\) 4.13605 0.399847 0.199924 0.979811i \(-0.435931\pi\)
0.199924 + 0.979811i \(0.435931\pi\)
\(108\) 0 0
\(109\) 0.950905i 0.0910801i −0.998963 0.0455401i \(-0.985499\pi\)
0.998963 0.0455401i \(-0.0145009\pi\)
\(110\) 0 0
\(111\) 3.32154 0.881770i 0.315267 0.0836939i
\(112\) 0 0
\(113\) −6.14525 + 10.6439i −0.578096 + 1.00129i 0.417602 + 0.908630i \(0.362871\pi\)
−0.995698 + 0.0926615i \(0.970463\pi\)
\(114\) 0 0
\(115\) −13.5063 + 7.79787i −1.25947 + 0.727155i
\(116\) 0 0
\(117\) −9.57725 + 5.02756i −0.885417 + 0.464798i
\(118\) 0 0
\(119\) −2.38654 + 1.37787i −0.218774 + 0.126309i
\(120\) 0 0
\(121\) 1.39289 2.41255i 0.126626 0.219323i
\(122\) 0 0
\(123\) −5.35800 + 19.8128i −0.483115 + 1.78646i
\(124\) 0 0
\(125\) 9.63773i 0.862025i
\(126\) 0 0
\(127\) −0.285266 −0.0253133 −0.0126566 0.999920i \(-0.504029\pi\)
−0.0126566 + 0.999920i \(0.504029\pi\)
\(128\) 0 0
\(129\) 10.6255 10.5764i 0.935522 0.931202i
\(130\) 0 0
\(131\) −1.91413 + 3.31537i −0.167238 + 0.289665i −0.937448 0.348126i \(-0.886818\pi\)
0.770210 + 0.637791i \(0.220152\pi\)
\(132\) 0 0
\(133\) 0.292313 + 0.506301i 0.0253467 + 0.0439019i
\(134\) 0 0
\(135\) −3.23456 12.4157i −0.278387 1.06858i
\(136\) 0 0
\(137\) −9.55752 + 5.51804i −0.816554 + 0.471438i −0.849227 0.528028i \(-0.822931\pi\)
0.0326726 + 0.999466i \(0.489598\pi\)
\(138\) 0 0
\(139\) 0.590037 1.02197i 0.0500463 0.0866827i −0.839917 0.542715i \(-0.817396\pi\)
0.889963 + 0.456032i \(0.150730\pi\)
\(140\) 0 0
\(141\) −4.00391 4.02249i −0.337190 0.338755i
\(142\) 0 0
\(143\) 11.8243 6.27710i 0.988794 0.524918i
\(144\) 0 0
\(145\) 2.72028i 0.225907i
\(146\) 0 0
\(147\) −10.1425 2.74284i −0.836536 0.226225i
\(148\) 0 0
\(149\) 2.33150 + 1.34609i 0.191004 + 0.110276i 0.592453 0.805605i \(-0.298160\pi\)
−0.401448 + 0.915882i \(0.631493\pi\)
\(150\) 0 0
\(151\) 2.45457 1.41715i 0.199750 0.115326i −0.396789 0.917910i \(-0.629875\pi\)
0.596539 + 0.802584i \(0.296542\pi\)
\(152\) 0 0
\(153\) 7.42836 4.24305i 0.600548 0.343030i
\(154\) 0 0
\(155\) −11.7292 20.3156i −0.942116 1.63179i
\(156\) 0 0
\(157\) 7.69413 13.3266i 0.614058 1.06358i −0.376491 0.926420i \(-0.622869\pi\)
0.990549 0.137159i \(-0.0437973\pi\)
\(158\) 0 0
\(159\) 2.57722 + 9.70813i 0.204387 + 0.769905i
\(160\) 0 0
\(161\) 6.10390i 0.481055i
\(162\) 0 0
\(163\) 7.58832i 0.594363i 0.954821 + 0.297182i \(0.0960467\pi\)
−0.954821 + 0.297182i \(0.903953\pi\)
\(164\) 0 0
\(165\) 4.07430 + 15.3475i 0.317184 + 1.19480i
\(166\) 0 0
\(167\) 4.65877 + 2.68974i 0.360506 + 0.208138i 0.669303 0.742990i \(-0.266593\pi\)
−0.308796 + 0.951128i \(0.599926\pi\)
\(168\) 0 0
\(169\) 12.9671 + 0.923883i 0.997471 + 0.0710679i
\(170\) 0 0
\(171\) −0.900156 1.57592i −0.0688367 0.120513i
\(172\) 0 0
\(173\) −8.69857 15.0664i −0.661340 1.14547i −0.980264 0.197694i \(-0.936655\pi\)
0.318924 0.947780i \(-0.396679\pi\)
\(174\) 0 0
\(175\) 0.917894 + 0.529947i 0.0693863 + 0.0400602i
\(176\) 0 0
\(177\) −2.82401 + 10.4426i −0.212266 + 0.784916i
\(178\) 0 0
\(179\) −9.46824 −0.707690 −0.353845 0.935304i \(-0.615126\pi\)
−0.353845 + 0.935304i \(0.615126\pi\)
\(180\) 0 0
\(181\) −8.43962 −0.627312 −0.313656 0.949537i \(-0.601554\pi\)
−0.313656 + 0.949537i \(0.601554\pi\)
\(182\) 0 0
\(183\) −9.90782 + 9.86206i −0.732407 + 0.729025i
\(184\) 0 0
\(185\) 2.44955 4.24275i 0.180095 0.311933i
\(186\) 0 0
\(187\) −9.16924 + 5.29386i −0.670521 + 0.387125i
\(188\) 0 0
\(189\) −4.84125 1.33330i −0.352149 0.0969835i
\(190\) 0 0
\(191\) 8.24996 + 14.2894i 0.596946 + 1.03394i 0.993269 + 0.115830i \(0.0369528\pi\)
−0.396323 + 0.918111i \(0.629714\pi\)
\(192\) 0 0
\(193\) 16.0793 + 9.28338i 1.15741 + 0.668232i 0.950682 0.310166i \(-0.100385\pi\)
0.206729 + 0.978398i \(0.433718\pi\)
\(194\) 0 0
\(195\) −4.55215 + 14.7327i −0.325986 + 1.05503i
\(196\) 0 0
\(197\) 10.3879i 0.740110i 0.929010 + 0.370055i \(0.120661\pi\)
−0.929010 + 0.370055i \(0.879339\pi\)
\(198\) 0 0
\(199\) −11.7516 −0.833050 −0.416525 0.909124i \(-0.636752\pi\)
−0.416525 + 0.909124i \(0.636752\pi\)
\(200\) 0 0
\(201\) 4.02450 14.8818i 0.283867 1.04968i
\(202\) 0 0
\(203\) 0.922032 + 0.532335i 0.0647139 + 0.0373626i
\(204\) 0 0
\(205\) 14.6296 + 25.3392i 1.02177 + 1.76976i
\(206\) 0 0
\(207\) 0.0877056 18.9484i 0.00609596 1.31701i
\(208\) 0 0
\(209\) 1.12309 + 1.94524i 0.0776854 + 0.134555i
\(210\) 0 0
\(211\) −7.90926 + 13.6992i −0.544496 + 0.943095i 0.454142 + 0.890929i \(0.349946\pi\)
−0.998638 + 0.0521656i \(0.983388\pi\)
\(212\) 0 0
\(213\) 24.3443 6.46269i 1.66804 0.442816i
\(214\) 0 0
\(215\) 21.3722i 1.45757i
\(216\) 0 0
\(217\) −9.18124 −0.623263
\(218\) 0 0
\(219\) 23.3918 6.20983i 1.58067 0.419621i
\(220\) 0 0
\(221\) −10.2750 0.365575i −0.691175 0.0245913i
\(222\) 0 0
\(223\) −9.84728 + 5.68533i −0.659423 + 0.380718i −0.792057 0.610447i \(-0.790990\pi\)
0.132634 + 0.991165i \(0.457656\pi\)
\(224\) 0 0
\(225\) −2.84182 1.65831i −0.189454 0.110554i
\(226\) 0 0
\(227\) −9.13976 + 5.27685i −0.606627 + 0.350237i −0.771644 0.636054i \(-0.780565\pi\)
0.165017 + 0.986291i \(0.447232\pi\)
\(228\) 0 0
\(229\) 25.9319 + 14.9718i 1.71363 + 0.989365i 0.929542 + 0.368715i \(0.120202\pi\)
0.784088 + 0.620650i \(0.213131\pi\)
\(230\) 0 0
\(231\) 5.99930 + 1.62240i 0.394725 + 0.106746i
\(232\) 0 0
\(233\) −21.4256 −1.40364 −0.701819 0.712356i \(-0.747628\pi\)
−0.701819 + 0.712356i \(0.747628\pi\)
\(234\) 0 0
\(235\) −8.09088 −0.527791
\(236\) 0 0
\(237\) 10.1505 10.1036i 0.659343 0.656298i
\(238\) 0 0
\(239\) 22.8507 + 13.1929i 1.47809 + 0.853375i 0.999693 0.0247696i \(-0.00788521\pi\)
0.478396 + 0.878144i \(0.341219\pi\)
\(240\) 0 0
\(241\) 9.17135 5.29508i 0.590779 0.341086i −0.174627 0.984635i \(-0.555872\pi\)
0.765405 + 0.643548i \(0.222539\pi\)
\(242\) 0 0
\(243\) 15.0096 + 4.20855i 0.962866 + 0.269979i
\(244\) 0 0
\(245\) −12.9715 + 7.48909i −0.828717 + 0.478460i
\(246\) 0 0
\(247\) −0.0775563 + 2.17984i −0.00493479 + 0.138700i
\(248\) 0 0
\(249\) −2.29527 2.30592i −0.145457 0.146131i
\(250\) 0 0
\(251\) 29.2257 1.84471 0.922356 0.386340i \(-0.126261\pi\)
0.922356 + 0.386340i \(0.126261\pi\)
\(252\) 0 0
\(253\) 23.4516i 1.47439i
\(254\) 0 0
\(255\) 3.18366 11.7725i 0.199369 0.737225i
\(256\) 0 0
\(257\) −4.12597 + 7.14638i −0.257371 + 0.445779i −0.965537 0.260267i \(-0.916189\pi\)
0.708166 + 0.706046i \(0.249523\pi\)
\(258\) 0 0
\(259\) −0.958711 1.66054i −0.0595714 0.103181i
\(260\) 0 0
\(261\) −2.85463 1.66578i −0.176697 0.103109i
\(262\) 0 0
\(263\) 0.243109 + 0.421077i 0.0149907 + 0.0259647i 0.873423 0.486961i \(-0.161895\pi\)
−0.858433 + 0.512926i \(0.828561\pi\)
\(264\) 0 0
\(265\) 12.4006 + 7.15950i 0.761764 + 0.439804i
\(266\) 0 0
\(267\) 0.632148 0.167816i 0.0386868 0.0102702i
\(268\) 0 0
\(269\) 10.1445 0.618519 0.309260 0.950978i \(-0.399919\pi\)
0.309260 + 0.950978i \(0.399919\pi\)
\(270\) 0 0
\(271\) 24.5027i 1.48843i −0.667938 0.744217i \(-0.732823\pi\)
0.667938 0.744217i \(-0.267177\pi\)
\(272\) 0 0
\(273\) 4.10278 + 4.42599i 0.248312 + 0.267873i
\(274\) 0 0
\(275\) 3.52661 + 2.03609i 0.212663 + 0.122781i
\(276\) 0 0
\(277\) −12.5962 21.8173i −0.756833 1.31087i −0.944458 0.328632i \(-0.893412\pi\)
0.187625 0.982241i \(-0.439921\pi\)
\(278\) 0 0
\(279\) 28.5015 + 0.131923i 1.70634 + 0.00789804i
\(280\) 0 0
\(281\) −15.9234 + 9.19338i −0.949911 + 0.548431i −0.893053 0.449951i \(-0.851441\pi\)
−0.0568575 + 0.998382i \(0.518108\pi\)
\(282\) 0 0
\(283\) −15.2630 + 26.4363i −0.907292 + 1.57148i −0.0894819 + 0.995988i \(0.528521\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(284\) 0 0
\(285\) −2.49753 0.675410i −0.147941 0.0400078i
\(286\) 0 0
\(287\) 11.4515 0.675962
\(288\) 0 0
\(289\) −8.86844 −0.521673
\(290\) 0 0
\(291\) 8.31205 + 8.35062i 0.487261 + 0.489522i
\(292\) 0 0
\(293\) −13.5381 7.81623i −0.790904 0.456629i 0.0493765 0.998780i \(-0.484277\pi\)
−0.840281 + 0.542151i \(0.817610\pi\)
\(294\) 0 0
\(295\) 7.71073 + 13.3554i 0.448936 + 0.777580i
\(296\) 0 0
\(297\) −18.6004 5.12263i −1.07930 0.297245i
\(298\) 0 0
\(299\) −12.0808 + 19.3050i −0.698649 + 1.11644i
\(300\) 0 0
\(301\) −7.24406 4.18236i −0.417541 0.241067i
\(302\) 0 0
\(303\) 6.74104 6.70991i 0.387262 0.385474i
\(304\) 0 0
\(305\) 19.9287i 1.14111i
\(306\) 0 0
\(307\) 28.8097i 1.64426i 0.569303 + 0.822128i \(0.307213\pi\)
−0.569303 + 0.822128i \(0.692787\pi\)
\(308\) 0 0
\(309\) 18.5414 + 5.01418i 1.05478 + 0.285247i
\(310\) 0 0
\(311\) 8.33245 14.4322i 0.472490 0.818377i −0.527014 0.849856i \(-0.676689\pi\)
0.999504 + 0.0314797i \(0.0100219\pi\)
\(312\) 0 0
\(313\) −11.7801 20.4038i −0.665852 1.15329i −0.979054 0.203603i \(-0.934735\pi\)
0.313201 0.949687i \(-0.398599\pi\)
\(314\) 0 0
\(315\) −6.21594 + 3.55051i −0.350228 + 0.200049i
\(316\) 0 0
\(317\) −9.56285 + 5.52111i −0.537103 + 0.310097i −0.743904 0.668286i \(-0.767028\pi\)
0.206801 + 0.978383i \(0.433695\pi\)
\(318\) 0 0
\(319\) 3.54250 + 2.04527i 0.198342 + 0.114513i
\(320\) 0 0
\(321\) 1.83812 + 6.92402i 0.102594 + 0.386461i
\(322\) 0 0
\(323\) 1.72510i 0.0959871i
\(324\) 0 0
\(325\) 1.85419 + 3.49276i 0.102852 + 0.193744i
\(326\) 0 0
\(327\) 1.59188 0.422596i 0.0880310 0.0233696i
\(328\) 0 0
\(329\) −1.58331 + 2.74238i −0.0872910 + 0.151192i
\(330\) 0 0
\(331\) 29.4521 17.0042i 1.61883 0.934634i 0.631610 0.775286i \(-0.282394\pi\)
0.987223 0.159348i \(-0.0509391\pi\)
\(332\) 0 0
\(333\) 2.95228 + 5.16860i 0.161784 + 0.283238i
\(334\) 0 0
\(335\) −10.9886 19.0328i −0.600370 1.03987i
\(336\) 0 0
\(337\) −13.4264 + 23.2553i −0.731384 + 1.26679i 0.224908 + 0.974380i \(0.427792\pi\)
−0.956292 + 0.292414i \(0.905541\pi\)
\(338\) 0 0
\(339\) −20.5496 5.55725i −1.11610 0.301828i
\(340\) 0 0
\(341\) −35.2749 −1.91024
\(342\) 0 0
\(343\) 12.6269i 0.681789i
\(344\) 0 0
\(345\) −19.0565 19.1450i −1.02597 1.03073i
\(346\) 0 0
\(347\) −2.38126 + 4.12447i −0.127833 + 0.221413i −0.922837 0.385191i \(-0.874135\pi\)
0.795004 + 0.606604i \(0.207469\pi\)
\(348\) 0 0
\(349\) −21.2143 + 12.2481i −1.13557 + 0.655624i −0.945331 0.326113i \(-0.894261\pi\)
−0.190244 + 0.981737i \(0.560928\pi\)
\(350\) 0 0
\(351\) −12.6727 13.7986i −0.676420 0.736516i
\(352\) 0 0
\(353\) −6.66472 + 3.84788i −0.354727 + 0.204802i −0.666765 0.745268i \(-0.732322\pi\)
0.312038 + 0.950070i \(0.398988\pi\)
\(354\) 0 0
\(355\) 17.9533 31.0960i 0.952862 1.65041i
\(356\) 0 0
\(357\) −3.36726 3.38288i −0.178214 0.179041i
\(358\) 0 0
\(359\) 27.6325i 1.45839i −0.684307 0.729194i \(-0.739895\pi\)
0.684307 0.729194i \(-0.260105\pi\)
\(360\) 0 0
\(361\) 18.6340 0.980738
\(362\) 0 0
\(363\) 4.65779 + 1.25961i 0.244470 + 0.0661124i
\(364\) 0 0
\(365\) 17.2509 29.8794i 0.902951 1.56396i
\(366\) 0 0
\(367\) 5.13322 + 8.89100i 0.267952 + 0.464106i 0.968333 0.249663i \(-0.0803198\pi\)
−0.700381 + 0.713769i \(0.746986\pi\)
\(368\) 0 0
\(369\) −35.5491 0.164544i −1.85061 0.00856584i
\(370\) 0 0
\(371\) 4.85338 2.80210i 0.251975 0.145478i
\(372\) 0 0
\(373\) −11.8096 + 20.4548i −0.611476 + 1.05911i 0.379516 + 0.925185i \(0.376091\pi\)
−0.990992 + 0.133922i \(0.957243\pi\)
\(374\) 0 0
\(375\) 16.1342 4.28315i 0.833166 0.221181i
\(376\) 0 0
\(377\) 1.86255 + 3.50851i 0.0959262 + 0.180697i
\(378\) 0 0
\(379\) 2.97603i 0.152869i 0.997075 + 0.0764343i \(0.0243535\pi\)
−0.997075 + 0.0764343i \(0.975646\pi\)
\(380\) 0 0
\(381\) −0.126777 0.477555i −0.00649496 0.0244659i
\(382\) 0 0
\(383\) −23.6642 13.6625i −1.20918 0.698122i −0.246602 0.969117i \(-0.579314\pi\)
−0.962581 + 0.270995i \(0.912647\pi\)
\(384\) 0 0
\(385\) 7.67267 4.42982i 0.391036 0.225765i
\(386\) 0 0
\(387\) 22.4277 + 13.0874i 1.14007 + 0.665272i
\(388\) 0 0
\(389\) −13.0974 22.6854i −0.664066 1.15020i −0.979538 0.201261i \(-0.935496\pi\)
0.315471 0.948935i \(-0.397837\pi\)
\(390\) 0 0
\(391\) 9.00562 15.5982i 0.455434 0.788834i
\(392\) 0 0
\(393\) −6.40081 1.73098i −0.322878 0.0873164i
\(394\) 0 0
\(395\) 20.4167i 1.02728i
\(396\) 0 0
\(397\) 15.4798i 0.776908i 0.921468 + 0.388454i \(0.126991\pi\)
−0.921468 + 0.388454i \(0.873009\pi\)
\(398\) 0 0
\(399\) −0.717673 + 0.714359i −0.0359286 + 0.0357627i
\(400\) 0 0
\(401\) 2.58648 + 1.49330i 0.129163 + 0.0745721i 0.563189 0.826328i \(-0.309574\pi\)
−0.434027 + 0.900900i \(0.642908\pi\)
\(402\) 0 0
\(403\) −29.0378 18.1714i −1.44648 0.905182i
\(404\) 0 0
\(405\) 19.3472 10.9326i 0.961372 0.543245i
\(406\) 0 0
\(407\) −3.68343 6.37989i −0.182581 0.316239i
\(408\) 0 0
\(409\) −24.1716 13.9555i −1.19521 0.690055i −0.235727 0.971819i \(-0.575747\pi\)
−0.959484 + 0.281764i \(0.909081\pi\)
\(410\) 0 0
\(411\) −13.4851 13.5476i −0.665169 0.668255i
\(412\) 0 0
\(413\) 6.03569 0.296997
\(414\) 0 0
\(415\) −4.63815 −0.227678
\(416\) 0 0
\(417\) 1.97307 + 0.533580i 0.0966217 + 0.0261295i
\(418\) 0 0
\(419\) −5.20703 + 9.01883i −0.254380 + 0.440599i −0.964727 0.263253i \(-0.915205\pi\)
0.710347 + 0.703852i \(0.248538\pi\)
\(420\) 0 0
\(421\) 7.33296 4.23369i 0.357387 0.206337i −0.310547 0.950558i \(-0.600512\pi\)
0.667934 + 0.744221i \(0.267179\pi\)
\(422\) 0 0
\(423\) 4.95451 8.49046i 0.240897 0.412820i
\(424\) 0 0
\(425\) −1.56375 2.70850i −0.0758531 0.131381i
\(426\) 0 0
\(427\) 6.75478 + 3.89987i 0.326887 + 0.188728i
\(428\) 0 0
\(429\) 15.7632 + 17.0049i 0.761052 + 0.821007i
\(430\) 0 0
\(431\) 14.4601i 0.696520i −0.937398 0.348260i \(-0.886773\pi\)
0.937398 0.348260i \(-0.113227\pi\)
\(432\) 0 0
\(433\) 18.2767 0.878320 0.439160 0.898409i \(-0.355276\pi\)
0.439160 + 0.898409i \(0.355276\pi\)
\(434\) 0 0
\(435\) −4.55393 + 1.20893i −0.218344 + 0.0579639i
\(436\) 0 0
\(437\) −3.30913 1.91053i −0.158297 0.0913930i
\(438\) 0 0
\(439\) 13.3139 + 23.0604i 0.635438 + 1.10061i 0.986422 + 0.164229i \(0.0525137\pi\)
−0.350984 + 0.936381i \(0.614153\pi\)
\(440\) 0 0
\(441\) 0.0842326 18.1981i 0.00401107 0.866576i
\(442\) 0 0
\(443\) 10.2947 + 17.8309i 0.489115 + 0.847173i 0.999922 0.0125231i \(-0.00398632\pi\)
−0.510806 + 0.859696i \(0.670653\pi\)
\(444\) 0 0
\(445\) 0.466193 0.807470i 0.0220997 0.0382777i
\(446\) 0 0
\(447\) −1.21730 + 4.50132i −0.0575761 + 0.212905i
\(448\) 0 0
\(449\) 21.1213i 0.996777i 0.866954 + 0.498389i \(0.166075\pi\)
−0.866954 + 0.498389i \(0.833925\pi\)
\(450\) 0 0
\(451\) 43.9975 2.07176
\(452\) 0 0
\(453\) 3.46324 + 3.47931i 0.162717 + 0.163472i
\(454\) 0 0
\(455\) 8.59800 + 0.305908i 0.403080 + 0.0143412i
\(456\) 0 0
\(457\) 14.1429 8.16541i 0.661577 0.381962i −0.131301 0.991343i \(-0.541915\pi\)
0.792878 + 0.609381i \(0.208582\pi\)
\(458\) 0 0
\(459\) 10.4044 + 10.5499i 0.485636 + 0.492427i
\(460\) 0 0
\(461\) 15.1548 8.74962i 0.705829 0.407510i −0.103686 0.994610i \(-0.533064\pi\)
0.809515 + 0.587100i \(0.199730\pi\)
\(462\) 0 0
\(463\) −12.2690 7.08352i −0.570190 0.329199i 0.187036 0.982353i \(-0.440112\pi\)
−0.757225 + 0.653154i \(0.773445\pi\)
\(464\) 0 0
\(465\) 28.7971 28.6641i 1.33543 1.32927i
\(466\) 0 0
\(467\) −41.3643 −1.91411 −0.957057 0.289901i \(-0.906377\pi\)
−0.957057 + 0.289901i \(0.906377\pi\)
\(468\) 0 0
\(469\) −8.60147 −0.397179
\(470\) 0 0
\(471\) 25.7290 + 6.95793i 1.18553 + 0.320604i
\(472\) 0 0
\(473\) −27.8321 16.0689i −1.27972 0.738849i
\(474\) 0 0
\(475\) −0.574604 + 0.331748i −0.0263646 + 0.0152216i
\(476\) 0 0
\(477\) −15.1067 + 8.62887i −0.691688 + 0.395089i
\(478\) 0 0
\(479\) −10.7120 + 6.18459i −0.489445 + 0.282581i −0.724344 0.689439i \(-0.757857\pi\)
0.234899 + 0.972020i \(0.424524\pi\)
\(480\) 0 0
\(481\) 0.254365 7.14931i 0.0115980 0.325980i
\(482\) 0 0
\(483\) −10.2183 + 2.71266i −0.464950 + 0.123430i
\(484\) 0 0
\(485\) 16.7965 0.762691
\(486\) 0 0
\(487\) 4.59653i 0.208289i −0.994562 0.104144i \(-0.966790\pi\)
0.994562 0.104144i \(-0.0332104\pi\)
\(488\) 0 0
\(489\) −12.7033 + 3.37236i −0.574465 + 0.152503i
\(490\) 0 0
\(491\) −10.1989 + 17.6651i −0.460272 + 0.797214i −0.998974 0.0452823i \(-0.985581\pi\)
0.538703 + 0.842496i \(0.318915\pi\)
\(492\) 0 0
\(493\) −1.57080 2.72071i −0.0707453 0.122534i
\(494\) 0 0
\(495\) −23.8820 + 13.6413i −1.07342 + 0.613131i
\(496\) 0 0
\(497\) −7.02661 12.1704i −0.315187 0.545919i
\(498\) 0 0
\(499\) 2.19017 + 1.26449i 0.0980453 + 0.0566065i 0.548221 0.836334i \(-0.315305\pi\)
−0.450176 + 0.892940i \(0.648639\pi\)
\(500\) 0 0
\(501\) −2.43238 + 8.99445i −0.108671 + 0.401842i
\(502\) 0 0
\(503\) 32.7292 1.45932 0.729662 0.683808i \(-0.239677\pi\)
0.729662 + 0.683808i \(0.239677\pi\)
\(504\) 0 0
\(505\) 13.5590i 0.603368i
\(506\) 0 0
\(507\) 4.21614 + 22.1184i 0.187245 + 0.982313i
\(508\) 0 0
\(509\) −23.9961 13.8541i −1.06361 0.614074i −0.137180 0.990546i \(-0.543804\pi\)
−0.926428 + 0.376472i \(0.877137\pi\)
\(510\) 0 0
\(511\) −6.75169 11.6943i −0.298677 0.517324i
\(512\) 0 0
\(513\) 2.23815 2.20728i 0.0988166 0.0974538i
\(514\) 0 0
\(515\) 23.7132 13.6908i 1.04493 0.603288i
\(516\) 0 0
\(517\) −6.08320 + 10.5364i −0.267539 + 0.463391i
\(518\) 0 0
\(519\) 21.3563 21.2577i 0.937438 0.933109i
\(520\) 0 0
\(521\) 27.7798 1.21705 0.608527 0.793533i \(-0.291761\pi\)
0.608527 + 0.793533i \(0.291761\pi\)
\(522\) 0 0
\(523\) −22.3749 −0.978385 −0.489192 0.872176i \(-0.662708\pi\)
−0.489192 + 0.872176i \(0.662708\pi\)
\(524\) 0 0
\(525\) −0.479240 + 1.77213i −0.0209157 + 0.0773421i
\(526\) 0 0
\(527\) 23.4622 + 13.5459i 1.02203 + 0.590068i
\(528\) 0 0
\(529\) −8.44725 14.6311i −0.367272 0.636134i
\(530\) 0 0
\(531\) −18.7367 0.0867255i −0.813103 0.00376357i
\(532\) 0 0
\(533\) 36.2181 + 22.6647i 1.56878 + 0.981718i
\(534\) 0 0
\(535\) 8.84435 + 5.10629i 0.382375 + 0.220764i
\(536\) 0 0
\(537\) −4.20783 15.8505i −0.181581 0.683998i
\(538\) 0 0
\(539\) 22.5229i 0.970131i
\(540\) 0 0
\(541\) 29.6979i 1.27681i −0.769699 0.638407i \(-0.779594\pi\)
0.769699 0.638407i \(-0.220406\pi\)
\(542\) 0 0
\(543\) −3.75069 14.1285i −0.160958 0.606311i
\(544\) 0 0
\(545\) 1.17397 2.03337i 0.0502873 0.0871001i
\(546\) 0 0
\(547\) −6.40592 11.0954i −0.273897 0.474404i 0.695959 0.718082i \(-0.254980\pi\)
−0.969856 + 0.243677i \(0.921646\pi\)
\(548\) 0 0
\(549\) −20.9129 12.2035i −0.892542 0.520832i
\(550\) 0 0
\(551\) −0.577194 + 0.333243i −0.0245893 + 0.0141966i
\(552\) 0 0
\(553\) −6.92020 3.99538i −0.294277 0.169901i
\(554\) 0 0
\(555\) 8.19125 + 2.21517i 0.347699 + 0.0940287i
\(556\) 0 0
\(557\) 0.852804i 0.0361345i 0.999837 + 0.0180672i \(0.00575129\pi\)
−0.999837 + 0.0180672i \(0.994249\pi\)
\(558\) 0 0
\(559\) −14.6334 27.5650i −0.618925 1.16588i
\(560\) 0 0
\(561\) −12.9372 12.9972i −0.546210 0.548744i
\(562\) 0 0
\(563\) 9.36436 16.2195i 0.394661 0.683572i −0.598397 0.801200i \(-0.704195\pi\)
0.993058 + 0.117627i \(0.0375288\pi\)
\(564\) 0 0
\(565\) −26.2815 + 15.1736i −1.10567 + 0.638358i
\(566\) 0 0
\(567\) 0.0805134 8.69711i 0.00338125 0.365244i
\(568\) 0 0
\(569\) −9.83795 17.0398i −0.412428 0.714347i 0.582726 0.812668i \(-0.301986\pi\)
−0.995155 + 0.0983215i \(0.968653\pi\)
\(570\) 0 0
\(571\) −9.02737 + 15.6359i −0.377784 + 0.654340i −0.990739 0.135777i \(-0.956647\pi\)
0.612956 + 0.790117i \(0.289980\pi\)
\(572\) 0 0
\(573\) −20.2549 + 20.1614i −0.846161 + 0.842254i
\(574\) 0 0
\(575\) −6.92736 −0.288891
\(576\) 0 0
\(577\) 18.9118i 0.787308i −0.919259 0.393654i \(-0.871211\pi\)
0.919259 0.393654i \(-0.128789\pi\)
\(578\) 0 0
\(579\) −8.39511 + 31.0434i −0.348889 + 1.29012i
\(580\) 0 0
\(581\) −0.907645 + 1.57209i −0.0376555 + 0.0652212i
\(582\) 0 0
\(583\) 18.6470 10.7659i 0.772280 0.445876i
\(584\) 0 0
\(585\) −26.6865 1.07318i −1.10335 0.0443704i
\(586\) 0 0
\(587\) 9.12219 5.26670i 0.376513 0.217380i −0.299787 0.954006i \(-0.596916\pi\)
0.676300 + 0.736626i \(0.263582\pi\)
\(588\) 0 0
\(589\) 2.87374 4.97746i 0.118410 0.205093i
\(590\) 0 0
\(591\) −17.3901 + 4.61655i −0.715333 + 0.189900i
\(592\) 0 0
\(593\) 31.4536i 1.29164i 0.763489 + 0.645821i \(0.223485\pi\)
−0.763489 + 0.645821i \(0.776515\pi\)
\(594\) 0 0
\(595\) −6.80436 −0.278952
\(596\) 0 0
\(597\) −5.22259 19.6730i −0.213746 0.805162i
\(598\) 0 0
\(599\) −20.9691 + 36.3196i −0.856776 + 1.48398i 0.0182122 + 0.999834i \(0.494203\pi\)
−0.874988 + 0.484145i \(0.839131\pi\)
\(600\) 0 0
\(601\) 14.1771 + 24.5554i 0.578295 + 1.00164i 0.995675 + 0.0929046i \(0.0296152\pi\)
−0.417380 + 0.908732i \(0.637052\pi\)
\(602\) 0 0
\(603\) 26.7017 + 0.123593i 1.08738 + 0.00503308i
\(604\) 0 0
\(605\) 5.95698 3.43926i 0.242186 0.139826i
\(606\) 0 0
\(607\) 4.57424 7.92281i 0.185663 0.321577i −0.758137 0.652095i \(-0.773890\pi\)
0.943800 + 0.330518i \(0.107224\pi\)
\(608\) 0 0
\(609\) −0.481400 + 1.78012i −0.0195073 + 0.0721341i
\(610\) 0 0
\(611\) −10.4353 + 5.53975i −0.422167 + 0.224114i
\(612\) 0 0
\(613\) 33.4190i 1.34978i 0.737918 + 0.674890i \(0.235809\pi\)
−0.737918 + 0.674890i \(0.764191\pi\)
\(614\) 0 0
\(615\) −35.9178 + 35.7520i −1.44835 + 1.44166i
\(616\) 0 0
\(617\) 26.0079 + 15.0157i 1.04704 + 0.604508i 0.921819 0.387621i \(-0.126703\pi\)
0.125219 + 0.992129i \(0.460037\pi\)
\(618\) 0 0
\(619\) −38.6197 + 22.2971i −1.55226 + 0.896195i −0.554297 + 0.832319i \(0.687013\pi\)
−0.997958 + 0.0638764i \(0.979654\pi\)
\(620\) 0 0
\(621\) 31.7599 8.27413i 1.27448 0.332030i
\(622\) 0 0
\(623\) −0.182460 0.316030i −0.00731009 0.0126615i
\(624\) 0 0
\(625\) 14.6405 25.3580i 0.585618 1.01432i
\(626\) 0 0
\(627\) −2.75734 + 2.74461i −0.110118 + 0.109609i
\(628\) 0 0
\(629\) 5.65788i 0.225595i
\(630\) 0 0
\(631\) 3.10797i 0.123726i −0.998085 0.0618632i \(-0.980296\pi\)
0.998085 0.0618632i \(-0.0197042\pi\)
\(632\) 0 0
\(633\) −26.4484 7.15248i −1.05123 0.284285i
\(634\) 0 0
\(635\) −0.610001 0.352184i −0.0242072 0.0139760i
\(636\) 0 0
\(637\) −11.6024 + 18.5406i −0.459703 + 0.734604i
\(638\) 0 0
\(639\) 21.6379 + 37.8818i 0.855983 + 1.49858i
\(640\) 0 0
\(641\) 18.6677 + 32.3333i 0.737328 + 1.27709i 0.953694 + 0.300778i \(0.0972462\pi\)
−0.216366 + 0.976312i \(0.569420\pi\)
\(642\) 0 0
\(643\) −23.3479 13.4799i −0.920751 0.531596i −0.0368765 0.999320i \(-0.511741\pi\)
−0.883875 + 0.467724i \(0.845074\pi\)
\(644\) 0 0
\(645\) 35.7785 9.49814i 1.40878 0.373989i
\(646\) 0 0
\(647\) −26.3718 −1.03678 −0.518391 0.855143i \(-0.673469\pi\)
−0.518391 + 0.855143i \(0.673469\pi\)
\(648\) 0 0
\(649\) 23.1895 0.910268
\(650\) 0 0
\(651\) −4.08028 15.3700i −0.159919 0.602398i
\(652\) 0 0
\(653\) 13.9271 24.1224i 0.545009 0.943984i −0.453597 0.891207i \(-0.649859\pi\)
0.998606 0.0527770i \(-0.0168072\pi\)
\(654\) 0 0
\(655\) −8.18618 + 4.72629i −0.319861 + 0.184672i
\(656\) 0 0
\(657\) 20.7913 + 36.3997i 0.811147 + 1.42009i
\(658\) 0 0
\(659\) 0.417010 + 0.722282i 0.0162444 + 0.0281361i 0.874033 0.485866i \(-0.161496\pi\)
−0.857789 + 0.514002i \(0.828162\pi\)
\(660\) 0 0
\(661\) 9.53031 + 5.50233i 0.370686 + 0.214016i 0.673758 0.738952i \(-0.264679\pi\)
−0.303072 + 0.952968i \(0.598012\pi\)
\(662\) 0 0
\(663\) −3.95439 17.3636i −0.153576 0.674345i
\(664\) 0 0
\(665\) 1.44354i 0.0559779i
\(666\) 0 0
\(667\) −6.95858 −0.269437
\(668\) 0 0
\(669\) −13.8939 13.9584i −0.537169 0.539661i
\(670\) 0 0
\(671\) 25.9523 + 14.9836i 1.00188 + 0.578434i
\(672\) 0 0
\(673\) 13.6492 + 23.6410i 0.526136 + 0.911295i 0.999536 + 0.0304475i \(0.00969322\pi\)
−0.473400 + 0.880848i \(0.656973\pi\)
\(674\) 0 0
\(675\) 1.51317 5.49437i 0.0582421 0.211478i
\(676\) 0 0
\(677\) 22.7311 + 39.3714i 0.873626 + 1.51317i 0.858219 + 0.513284i \(0.171571\pi\)
0.0154074 + 0.999881i \(0.495095\pi\)
\(678\) 0 0
\(679\) 3.28693 5.69314i 0.126141 0.218483i
\(680\) 0 0
\(681\) −12.8956 12.9555i −0.494162 0.496454i
\(682\) 0 0
\(683\) 4.27442i 0.163556i 0.996651 + 0.0817782i \(0.0260599\pi\)
−0.996651 + 0.0817782i \(0.973940\pi\)
\(684\) 0 0
\(685\) −27.2499 −1.04116
\(686\) 0 0
\(687\) −13.5393 + 50.0654i −0.516555 + 1.91012i
\(688\) 0 0
\(689\) 20.8959 + 0.743452i 0.796069 + 0.0283233i
\(690\) 0 0
\(691\) 44.0686 25.4430i 1.67645 0.967897i 0.712550 0.701621i \(-0.247540\pi\)
0.963897 0.266276i \(-0.0857932\pi\)
\(692\) 0 0
\(693\) −0.0498239 + 10.7642i −0.00189265 + 0.408899i
\(694\) 0 0
\(695\) 2.52342 1.45690i 0.0957187 0.0552632i
\(696\) 0 0
\(697\) −29.2637 16.8954i −1.10844 0.639960i
\(698\) 0 0
\(699\) −9.52185 35.8678i −0.360149 1.35665i
\(700\) 0 0
\(701\) −22.3325 −0.843488 −0.421744 0.906715i \(-0.638582\pi\)
−0.421744 + 0.906715i \(0.638582\pi\)
\(702\) 0 0
\(703\) 1.20031 0.0452706
\(704\) 0 0
\(705\) −3.59571 13.5447i −0.135422 0.510122i
\(706\) 0 0
\(707\) −4.59579 2.65338i −0.172842 0.0997906i
\(708\) 0 0
\(709\) 30.6075 17.6712i 1.14949 0.663657i 0.200726 0.979647i \(-0.435670\pi\)
0.948763 + 0.315990i \(0.102337\pi\)
\(710\) 0 0
\(711\) 21.4251 + 12.5023i 0.803503 + 0.468875i
\(712\) 0 0
\(713\) 51.9682 30.0039i 1.94622 1.12365i
\(714\) 0 0
\(715\) 33.0341 + 1.17532i 1.23540 + 0.0439544i
\(716\) 0 0
\(717\) −11.9305 + 44.1167i −0.445554 + 1.64757i
\(718\) 0 0
\(719\) 38.7053 1.44346 0.721732 0.692172i \(-0.243346\pi\)
0.721732 + 0.692172i \(0.243346\pi\)
\(720\) 0 0
\(721\) 10.7167i 0.399110i
\(722\) 0 0
\(723\) 12.9402 + 13.0002i 0.481251 + 0.483484i
\(724\) 0 0
\(725\) −0.604151 + 1.04642i −0.0224376 + 0.0388631i
\(726\) 0 0
\(727\) 13.8426 + 23.9762i 0.513395 + 0.889227i 0.999879 + 0.0155372i \(0.00494584\pi\)
−0.486484 + 0.873689i \(0.661721\pi\)
\(728\) 0 0
\(729\) −0.374906 + 26.9974i −0.0138854 + 0.999904i
\(730\) 0 0
\(731\) 12.3412 + 21.3756i 0.456456 + 0.790605i
\(732\) 0 0
\(733\) −3.00643 1.73576i −0.111045 0.0641119i 0.443449 0.896300i \(-0.353755\pi\)
−0.554494 + 0.832188i \(0.687088\pi\)
\(734\) 0 0
\(735\) −18.3019 18.3868i −0.675077 0.678209i
\(736\) 0 0
\(737\) −33.0474 −1.21732
\(738\) 0 0
\(739\) 11.4153i 0.419920i 0.977710 + 0.209960i \(0.0673334\pi\)
−0.977710 + 0.209960i \(0.932667\pi\)
\(740\) 0 0
\(741\) −3.68366 + 0.838917i −0.135323 + 0.0308184i
\(742\) 0 0
\(743\) −7.91486 4.56965i −0.290368 0.167644i 0.347740 0.937591i \(-0.386949\pi\)
−0.638108 + 0.769947i \(0.720283\pi\)
\(744\) 0 0
\(745\) 3.32373 + 5.75686i 0.121772 + 0.210915i
\(746\) 0 0
\(747\) 2.84020 4.86721i 0.103918 0.178082i
\(748\) 0 0
\(749\) 3.46153 1.99851i 0.126481 0.0730241i
\(750\) 0 0
\(751\) −4.52322 + 7.83444i −0.165055 + 0.285883i −0.936675 0.350201i \(-0.886113\pi\)
0.771620 + 0.636084i \(0.219447\pi\)
\(752\) 0 0
\(753\) 12.9883 + 48.9258i 0.473322 + 1.78296i
\(754\) 0 0
\(755\) 6.99833 0.254695
\(756\) 0 0
\(757\) 12.0569 0.438216 0.219108 0.975701i \(-0.429685\pi\)
0.219108 + 0.975701i \(0.429685\pi\)
\(758\) 0 0
\(759\) −39.2595 + 10.4222i −1.42503 + 0.378303i
\(760\) 0 0
\(761\) 15.1457 + 8.74438i 0.549032 + 0.316984i 0.748731 0.662874i \(-0.230663\pi\)
−0.199700 + 0.979857i \(0.563997\pi\)
\(762\) 0 0
\(763\) −0.459471 0.795827i −0.0166340 0.0288109i
\(764\) 0 0
\(765\) 21.1229 + 0.0977704i 0.763699 + 0.00353489i
\(766\) 0 0
\(767\) 19.0893 + 11.9458i 0.689274 + 0.431337i
\(768\) 0 0
\(769\) −10.8002 6.23549i −0.389464 0.224857i 0.292464 0.956277i \(-0.405525\pi\)
−0.681928 + 0.731419i \(0.738858\pi\)
\(770\) 0 0
\(771\) −13.7972 3.73118i −0.496892 0.134375i
\(772\) 0 0
\(773\) 31.1669i 1.12100i −0.828155 0.560499i \(-0.810610\pi\)
0.828155 0.560499i \(-0.189390\pi\)
\(774\) 0 0
\(775\) 10.4199i 0.374292i
\(776\) 0 0
\(777\) 2.35378 2.34291i 0.0844415 0.0840515i
\(778\) 0 0
\(779\) −3.58434 + 6.20826i −0.128422 + 0.222434i
\(780\) 0 0
\(781\) −26.9967 46.7596i −0.966017 1.67319i
\(782\) 0 0
\(783\) 1.51999 5.51913i 0.0543202 0.197238i
\(784\) 0 0
\(785\) 32.9056 18.9980i 1.17445 0.678069i
\(786\) 0 0
\(787\) −7.34438 4.24028i −0.261799 0.151150i 0.363356 0.931650i \(-0.381631\pi\)
−0.625155 + 0.780501i \(0.714964\pi\)
\(788\) 0 0
\(789\) −0.596869 + 0.594113i −0.0212491 + 0.0211510i
\(790\) 0 0
\(791\) 11.8774i 0.422311i
\(792\) 0 0
\(793\) 13.6450 + 25.7032i 0.484548 + 0.912749i
\(794\) 0 0
\(795\) −6.47446 + 23.9412i −0.229625 + 0.849108i
\(796\) 0 0
\(797\) −25.2381 + 43.7137i −0.893980 + 1.54842i −0.0589177 + 0.998263i \(0.518765\pi\)
−0.835062 + 0.550156i \(0.814568\pi\)
\(798\) 0 0
\(799\) 8.09215 4.67200i 0.286280 0.165284i
\(800\) 0 0
\(801\) 0.561871 + 0.983677i 0.0198527 + 0.0347565i
\(802\) 0 0
\(803\) −25.9404 44.9301i −0.915417 1.58555i
\(804\) 0 0
\(805\) −7.53576 + 13.0523i −0.265601 + 0.460034i
\(806\) 0 0
\(807\) 4.50835 + 16.9825i 0.158701 + 0.597812i
\(808\) 0 0
\(809\) −49.7947 −1.75069 −0.875344 0.483501i \(-0.839365\pi\)
−0.875344 + 0.483501i \(0.839365\pi\)
\(810\) 0 0
\(811\) 48.5676i 1.70544i −0.522370 0.852719i \(-0.674952\pi\)
0.522370 0.852719i \(-0.325048\pi\)
\(812\) 0 0
\(813\) 41.0192 10.8894i 1.43861 0.381907i
\(814\) 0 0
\(815\) −9.36840 + 16.2265i −0.328161 + 0.568391i
\(816\) 0 0
\(817\) 4.53480 2.61817i 0.158653 0.0915981i
\(818\) 0 0
\(819\) −5.58606 + 8.83530i −0.195193 + 0.308730i
\(820\) 0 0
\(821\) 33.0145 19.0609i 1.15221 0.665231i 0.202789 0.979223i \(-0.435000\pi\)
0.949426 + 0.313991i \(0.101666\pi\)
\(822\) 0 0
\(823\) 6.58476 11.4051i 0.229530 0.397558i −0.728139 0.685430i \(-0.759614\pi\)
0.957669 + 0.287872i \(0.0929477\pi\)
\(824\) 0 0
\(825\) −1.84127 + 6.80864i −0.0641048 + 0.237046i
\(826\) 0 0
\(827\) 51.3046i 1.78403i 0.452001 + 0.892017i \(0.350710\pi\)
−0.452001 + 0.892017i \(0.649290\pi\)
\(828\) 0 0
\(829\) 2.43558 0.0845912 0.0422956 0.999105i \(-0.486533\pi\)
0.0422956 + 0.999105i \(0.486533\pi\)
\(830\) 0 0
\(831\) 30.9256 30.7828i 1.07280 1.06784i
\(832\) 0 0
\(833\) 8.64901 14.9805i 0.299670 0.519044i
\(834\) 0 0
\(835\) 6.64141 + 11.5033i 0.229835 + 0.398087i
\(836\) 0 0
\(837\) 12.4456 + 47.7719i 0.430183 + 1.65124i
\(838\) 0 0
\(839\) 1.70711 0.985602i 0.0589361 0.0340268i −0.470242 0.882537i \(-0.655834\pi\)
0.529179 + 0.848511i \(0.322500\pi\)
\(840\) 0 0
\(841\) 13.8931 24.0636i 0.479073 0.829779i
\(842\) 0 0
\(843\) −22.4669 22.5712i −0.773802 0.777392i
\(844\) 0 0
\(845\) 26.5877 + 17.9846i 0.914646 + 0.618688i
\(846\) 0 0
\(847\) 2.69213i 0.0925029i
\(848\) 0 0
\(849\) −51.0392 13.8026i −1.75166 0.473704i
\(850\) 0 0
\(851\) 10.8531 + 6.26604i 0.372040 + 0.214797i
\(852\) 0 0
\(853\) −20.8994 + 12.0663i −0.715581 + 0.413141i −0.813124 0.582091i \(-0.802235\pi\)
0.0975432 + 0.995231i \(0.468902\pi\)
\(854\) 0 0
\(855\) 0.0207418 4.48119i 0.000709356 0.153253i
\(856\) 0 0
\(857\) 8.35232 + 14.4667i 0.285310 + 0.494171i 0.972684 0.232132i \(-0.0745701\pi\)
−0.687374 + 0.726303i \(0.741237\pi\)
\(858\) 0 0
\(859\) 10.8152 18.7326i 0.369011 0.639147i −0.620400 0.784286i \(-0.713030\pi\)
0.989411 + 0.145139i \(0.0463630\pi\)
\(860\) 0 0
\(861\) 5.08922 + 19.1706i 0.173440 + 0.653332i
\(862\) 0 0
\(863\) 5.05668i 0.172131i −0.996289 0.0860657i \(-0.972570\pi\)
0.996289 0.0860657i \(-0.0274295\pi\)
\(864\) 0 0
\(865\) 42.9563i 1.46056i
\(866\) 0 0
\(867\) −3.94126 14.8463i −0.133852 0.504208i
\(868\) 0 0
\(869\) −26.5879 15.3505i −0.901931 0.520730i
\(870\) 0 0
\(871\) −27.2042 17.0239i −0.921778 0.576834i
\(872\) 0 0
\(873\) −10.2855 + 17.6261i −0.348111 + 0.596552i
\(874\) 0 0
\(875\) −4.65689 8.06597i −0.157432 0.272679i
\(876\) 0 0
\(877\) 23.2344 + 13.4144i 0.784572 + 0.452973i 0.838048 0.545597i \(-0.183697\pi\)
−0.0534764 + 0.998569i \(0.517030\pi\)
\(878\) 0 0
\(879\) 7.06835 26.1373i 0.238409 0.881590i
\(880\) 0 0
\(881\) −37.4816 −1.26279 −0.631394 0.775462i \(-0.717517\pi\)
−0.631394 + 0.775462i \(0.717517\pi\)
\(882\) 0 0
\(883\) 14.6841 0.494160 0.247080 0.968995i \(-0.420529\pi\)
0.247080 + 0.968995i \(0.420529\pi\)
\(884\) 0 0
\(885\) −18.9310 + 18.8436i −0.636359 + 0.633421i
\(886\) 0 0
\(887\) 21.6755 37.5431i 0.727793 1.26057i −0.230021 0.973186i \(-0.573880\pi\)
0.957814 0.287388i \(-0.0927871\pi\)
\(888\) 0 0
\(889\) −0.238744 + 0.137839i −0.00800721 + 0.00462297i
\(890\) 0 0
\(891\) 0.309338 33.4148i 0.0103632 1.11944i
\(892\) 0 0
\(893\) −0.991159 1.71674i −0.0331679 0.0574484i
\(894\) 0 0
\(895\) −20.2465 11.6893i −0.676765 0.390731i
\(896\) 0 0
\(897\) −37.6867 11.6446i −1.25832 0.388801i
\(898\) 0 0
\(899\) 10.4668i 0.349088i
\(900\) 0 0
\(901\) −16.5367 −0.550919
\(902\) 0 0
\(903\) 3.78218 13.9857i 0.125863 0.465416i
\(904\) 0 0
\(905\) −18.0469 10.4194i −0.599900 0.346352i
\(906\) 0 0
\(907\) 9.37590 + 16.2395i 0.311322 + 0.539225i 0.978649 0.205540i \(-0.0658950\pi\)
−0.667327 + 0.744765i \(0.732562\pi\)
\(908\) 0 0
\(909\) 14.2286 + 8.30296i 0.471934 + 0.275392i
\(910\) 0 0
\(911\) −1.80609 3.12824i −0.0598385 0.103643i 0.834554 0.550926i \(-0.185725\pi\)
−0.894393 + 0.447282i \(0.852392\pi\)
\(912\) 0 0
\(913\) −3.48723 + 6.04006i −0.115410 + 0.199897i
\(914\) 0 0
\(915\) −33.3620 + 8.85661i −1.10291 + 0.292790i
\(916\) 0 0
\(917\) 3.69958i 0.122171i
\(918\) 0 0
\(919\) 11.3389 0.374037 0.187018 0.982356i \(-0.440118\pi\)
0.187018 + 0.982356i \(0.440118\pi\)
\(920\) 0 0
\(921\) −48.2293 + 12.8034i −1.58921 + 0.421888i
\(922\) 0 0
\(923\) 1.86430 52.3989i 0.0613641 1.72473i
\(924\) 0 0
\(925\) 1.88455 1.08805i 0.0619638 0.0357748i
\(926\) 0 0
\(927\) −0.153986 + 33.2679i −0.00505755 + 1.09266i
\(928\) 0 0
\(929\) 26.2595 15.1609i 0.861547 0.497414i −0.00298336 0.999996i \(-0.500950\pi\)
0.864530 + 0.502581i \(0.167616\pi\)
\(930\) 0 0
\(931\) −3.17810 1.83487i −0.104158 0.0601356i
\(932\) 0 0
\(933\) 27.8636 + 7.53518i 0.912212 + 0.246691i
\(934\) 0 0
\(935\) −26.1428 −0.854961
\(936\) 0 0
\(937\) 21.5357 0.703539 0.351770 0.936087i \(-0.385580\pi\)
0.351770 + 0.936087i \(0.385580\pi\)
\(938\) 0 0
\(939\) 28.9220 28.7884i 0.943834 0.939475i
\(940\) 0 0
\(941\) −31.6998 18.3019i −1.03338 0.596624i −0.115431 0.993315i \(-0.536825\pi\)
−0.917952 + 0.396691i \(0.870158\pi\)
\(942\) 0 0
\(943\) −64.8186 + 37.4230i −2.11078 + 1.21866i
\(944\) 0 0
\(945\) −8.70625 8.82799i −0.283214 0.287175i
\(946\) 0 0
\(947\) −1.88636 + 1.08909i −0.0612983 + 0.0353906i −0.530336 0.847788i \(-0.677934\pi\)
0.469038 + 0.883178i \(0.344601\pi\)
\(948\) 0 0
\(949\) 1.79135 50.3487i 0.0581498 1.63439i
\(950\) 0 0
\(951\) −13.4926 13.5552i −0.437527 0.439557i
\(952\) 0 0
\(953\) 14.2017 0.460038 0.230019 0.973186i \(-0.426121\pi\)
0.230019 + 0.973186i \(0.426121\pi\)
\(954\) 0 0
\(955\) 40.7410i 1.31835i
\(956\) 0 0
\(957\) −1.84957 + 6.83933i −0.0597881 + 0.221084i
\(958\) 0 0
\(959\) −5.33256 + 9.23626i −0.172197 + 0.298254i
\(960\) 0 0
\(961\) 29.6306 + 51.3217i 0.955825 + 1.65554i
\(962\) 0 0
\(963\) −10.7744 + 6.15427i −0.347200 + 0.198319i
\(964\) 0 0
\(965\) 22.9222 + 39.7023i 0.737890 + 1.27806i
\(966\) 0 0
\(967\) 38.4346 + 22.1903i 1.23597 + 0.713590i 0.968269 0.249910i \(-0.0804011\pi\)
0.267706 + 0.963501i \(0.413734\pi\)
\(968\) 0 0
\(969\) 2.88793 0.766659i 0.0927736 0.0246286i
\(970\) 0 0
\(971\) 2.43486 0.0781385 0.0390693 0.999237i \(-0.487561\pi\)
0.0390693 + 0.999237i \(0.487561\pi\)
\(972\) 0 0
\(973\) 1.14041i 0.0365598i
\(974\) 0 0
\(975\) −5.02309 + 4.65627i −0.160868 + 0.149120i
\(976\) 0 0
\(977\) −2.66609 1.53927i −0.0852959 0.0492456i 0.456745 0.889597i \(-0.349015\pi\)
−0.542041 + 0.840352i \(0.682348\pi\)
\(978\) 0 0
\(979\) −0.701022 1.21421i −0.0224048 0.0388062i
\(980\) 0 0
\(981\) 1.41491 + 2.47710i 0.0451745 + 0.0790877i
\(982\) 0 0
\(983\) −31.3772 + 18.1156i −1.00078 + 0.577799i −0.908478 0.417933i \(-0.862755\pi\)
−0.0922985 + 0.995731i \(0.529421\pi\)
\(984\) 0 0
\(985\) −12.8248 + 22.2131i −0.408631 + 0.707769i
\(986\) 0 0
\(987\) −5.29457 1.43182i −0.168528 0.0455753i
\(988\) 0 0
\(989\) 54.6710 1.73844
\(990\) 0 0
\(991\) 32.5893 1.03523 0.517616 0.855613i \(-0.326820\pi\)
0.517616 + 0.855613i \(0.326820\pi\)
\(992\) 0 0
\(993\) 41.5550 + 41.7478i 1.31871 + 1.32483i
\(994\) 0 0
\(995\) −25.1292 14.5083i −0.796648 0.459945i
\(996\) 0 0
\(997\) −28.5185 49.3955i −0.903191 1.56437i −0.823327 0.567567i \(-0.807885\pi\)
−0.0798637 0.996806i \(-0.525448\pi\)
\(998\) 0 0
\(999\) −7.34054 + 7.23932i −0.232245 + 0.229042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.bl.b.337.8 yes 24
3.2 odd 2 1404.2.bl.b.1117.3 24
9.2 odd 6 1404.2.bl.b.181.10 24
9.4 even 3 4212.2.b.g.649.3 12
9.5 odd 6 4212.2.b.h.649.10 12
9.7 even 3 inner 468.2.bl.b.25.7 24
13.12 even 2 inner 468.2.bl.b.337.7 yes 24
39.38 odd 2 1404.2.bl.b.1117.10 24
117.25 even 6 inner 468.2.bl.b.25.8 yes 24
117.38 odd 6 1404.2.bl.b.181.3 24
117.77 odd 6 4212.2.b.h.649.3 12
117.103 even 6 4212.2.b.g.649.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bl.b.25.7 24 9.7 even 3 inner
468.2.bl.b.25.8 yes 24 117.25 even 6 inner
468.2.bl.b.337.7 yes 24 13.12 even 2 inner
468.2.bl.b.337.8 yes 24 1.1 even 1 trivial
1404.2.bl.b.181.3 24 117.38 odd 6
1404.2.bl.b.181.10 24 9.2 odd 6
1404.2.bl.b.1117.3 24 3.2 odd 2
1404.2.bl.b.1117.10 24 39.38 odd 2
4212.2.b.g.649.3 12 9.4 even 3
4212.2.b.g.649.10 12 117.103 even 6
4212.2.b.h.649.3 12 117.77 odd 6
4212.2.b.h.649.10 12 9.5 odd 6