L(s) = 1 | + (0.444 + 1.67i)3-s + (2.13 + 1.23i)5-s + (0.836 − 0.483i)7-s + (−2.60 + 1.48i)9-s + (3.21 − 1.85i)11-s + (3.60 + 0.128i)13-s + (−1.11 + 4.12i)15-s − 2.85·17-s + 0.604i·19-s + (1.18 + 1.18i)21-s + (−3.15 + 5.46i)23-s + (0.548 + 0.949i)25-s + (−3.64 − 3.69i)27-s + (0.550 + 0.954i)29-s + (−8.22 − 4.75i)31-s + ⋯ |
L(s) = 1 | + (0.256 + 0.966i)3-s + (0.956 + 0.552i)5-s + (0.316 − 0.182i)7-s + (−0.868 + 0.495i)9-s + (0.969 − 0.559i)11-s + (0.999 + 0.0355i)13-s + (−0.288 + 1.06i)15-s − 0.691·17-s + 0.138i·19-s + (0.257 + 0.258i)21-s + (−0.658 + 1.14i)23-s + (0.109 + 0.189i)25-s + (−0.702 − 0.711i)27-s + (0.102 + 0.177i)29-s + (−1.47 − 0.853i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.53977 + 1.03267i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.53977 + 1.03267i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.444 - 1.67i)T \) |
| 13 | \( 1 + (-3.60 - 0.128i)T \) |
good | 5 | \( 1 + (-2.13 - 1.23i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.836 + 0.483i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.21 + 1.85i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 2.85T + 17T^{2} \) |
| 19 | \( 1 - 0.604iT - 19T^{2} \) |
| 23 | \( 1 + (3.15 - 5.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.550 - 0.954i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (8.22 + 4.75i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 1.98iT - 37T^{2} \) |
| 41 | \( 1 + (-10.2 - 5.92i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.32 + 7.49i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.83 - 1.63i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 5.79T + 53T^{2} \) |
| 59 | \( 1 + (-5.40 - 3.12i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.03 - 6.98i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.70 + 4.45i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.5iT - 71T^{2} \) |
| 73 | \( 1 + 13.9iT - 73T^{2} \) |
| 79 | \( 1 + (4.13 + 7.16i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.62 - 0.939i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 0.377iT - 89T^{2} \) |
| 97 | \( 1 + (-5.89 + 3.40i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05721693652523138243743944109, −10.32926976969246804927603830921, −9.355827101792753016182772262254, −8.853504102260593346763544671159, −7.64793073024422102859222134199, −6.24024297792270456668243332975, −5.69850053535200559297078014506, −4.25239159424046289637969608026, −3.37895884874893101934391964139, −1.90826050279660351876337643244,
1.34122663588536324296364887729, 2.27530107657032866699269691274, 3.96670689581773596221451868501, 5.37293932346239655014990151740, 6.29476632992854820865465426827, 7.02125822579774881005439517275, 8.375335901898964235126553694376, 8.883166345630694479452579965990, 9.752682153299211888142306396861, 11.03005084049972066488634995497