Properties

Label 465.2.a.h.1.3
Level $465$
Weight $2$
Character 465.1
Self dual yes
Analytic conductor $3.713$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(1,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.704624\) of defining polynomial
Character \(\chi\) \(=\) 465.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.79888 q^{2} -1.00000 q^{3} +1.23597 q^{4} +1.00000 q^{5} -1.79888 q^{6} +4.20813 q^{7} -1.37440 q^{8} +1.00000 q^{9} +1.79888 q^{10} -3.00701 q^{11} -1.23597 q^{12} +7.14544 q^{13} +7.56992 q^{14} -1.00000 q^{15} -4.94432 q^{16} -5.17328 q^{17} +1.79888 q^{18} +4.00000 q^{19} +1.23597 q^{20} -4.20813 q^{21} -5.40925 q^{22} +8.29910 q^{23} +1.37440 q^{24} +1.00000 q^{25} +12.8538 q^{26} -1.00000 q^{27} +5.20112 q^{28} -3.97216 q^{29} -1.79888 q^{30} -1.00000 q^{31} -6.14544 q^{32} +3.00701 q^{33} -9.30611 q^{34} +4.20813 q^{35} +1.23597 q^{36} -3.80589 q^{37} +7.19552 q^{38} -7.14544 q^{39} -1.37440 q^{40} -2.18851 q^{41} -7.56992 q^{42} -9.35357 q^{43} -3.71657 q^{44} +1.00000 q^{45} +14.9291 q^{46} -1.95254 q^{47} +4.94432 q^{48} +10.7083 q^{49} +1.79888 q^{50} +5.17328 q^{51} +8.83155 q^{52} -6.77104 q^{53} -1.79888 q^{54} -3.00701 q^{55} -5.78365 q^{56} -4.00000 q^{57} -7.14544 q^{58} +3.90246 q^{59} -1.23597 q^{60} -14.3606 q^{61} -1.79888 q^{62} +4.20813 q^{63} -1.16627 q^{64} +7.14544 q^{65} +5.40925 q^{66} -4.39664 q^{67} -6.39402 q^{68} -8.29910 q^{69} +7.56992 q^{70} -4.50723 q^{71} -1.37440 q^{72} -7.38963 q^{73} -6.84634 q^{74} -1.00000 q^{75} +4.94388 q^{76} -12.6539 q^{77} -12.8538 q^{78} +14.5573 q^{79} -4.94432 q^{80} +1.00000 q^{81} -3.93687 q^{82} -5.24298 q^{83} -5.20112 q^{84} -5.17328 q^{85} -16.8259 q^{86} +3.97216 q^{87} +4.13283 q^{88} -4.49321 q^{89} +1.79888 q^{90} +30.0689 q^{91} +10.2574 q^{92} +1.00000 q^{93} -3.51239 q^{94} +4.00000 q^{95} +6.14544 q^{96} +1.00701 q^{97} +19.2630 q^{98} -3.00701 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 8 q^{4} + 4 q^{5} - 2 q^{6} + 4 q^{7} + 4 q^{9} + 2 q^{10} + 6 q^{11} - 8 q^{12} + 2 q^{13} + 4 q^{14} - 4 q^{15} + 12 q^{16} - 10 q^{17} + 2 q^{18} + 16 q^{19} + 8 q^{20} - 4 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.79888 1.27200 0.636000 0.771689i \(-0.280588\pi\)
0.636000 + 0.771689i \(0.280588\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.23597 0.617985
\(5\) 1.00000 0.447214
\(6\) −1.79888 −0.734390
\(7\) 4.20813 1.59052 0.795262 0.606266i \(-0.207333\pi\)
0.795262 + 0.606266i \(0.207333\pi\)
\(8\) −1.37440 −0.485923
\(9\) 1.00000 0.333333
\(10\) 1.79888 0.568856
\(11\) −3.00701 −0.906647 −0.453324 0.891346i \(-0.649762\pi\)
−0.453324 + 0.891346i \(0.649762\pi\)
\(12\) −1.23597 −0.356794
\(13\) 7.14544 1.98179 0.990894 0.134644i \(-0.0429892\pi\)
0.990894 + 0.134644i \(0.0429892\pi\)
\(14\) 7.56992 2.02315
\(15\) −1.00000 −0.258199
\(16\) −4.94432 −1.23608
\(17\) −5.17328 −1.25470 −0.627352 0.778736i \(-0.715861\pi\)
−0.627352 + 0.778736i \(0.715861\pi\)
\(18\) 1.79888 0.424000
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.23597 0.276371
\(21\) −4.20813 −0.918289
\(22\) −5.40925 −1.15326
\(23\) 8.29910 1.73048 0.865241 0.501356i \(-0.167165\pi\)
0.865241 + 0.501356i \(0.167165\pi\)
\(24\) 1.37440 0.280548
\(25\) 1.00000 0.200000
\(26\) 12.8538 2.52083
\(27\) −1.00000 −0.192450
\(28\) 5.20112 0.982919
\(29\) −3.97216 −0.737611 −0.368806 0.929507i \(-0.620233\pi\)
−0.368806 + 0.929507i \(0.620233\pi\)
\(30\) −1.79888 −0.328429
\(31\) −1.00000 −0.179605
\(32\) −6.14544 −1.08637
\(33\) 3.00701 0.523453
\(34\) −9.30611 −1.59598
\(35\) 4.20813 0.711304
\(36\) 1.23597 0.205995
\(37\) −3.80589 −0.625684 −0.312842 0.949805i \(-0.601281\pi\)
−0.312842 + 0.949805i \(0.601281\pi\)
\(38\) 7.19552 1.16727
\(39\) −7.14544 −1.14419
\(40\) −1.37440 −0.217312
\(41\) −2.18851 −0.341788 −0.170894 0.985289i \(-0.554666\pi\)
−0.170894 + 0.985289i \(0.554666\pi\)
\(42\) −7.56992 −1.16806
\(43\) −9.35357 −1.42641 −0.713203 0.700958i \(-0.752756\pi\)
−0.713203 + 0.700958i \(0.752756\pi\)
\(44\) −3.71657 −0.560294
\(45\) 1.00000 0.149071
\(46\) 14.9291 2.20117
\(47\) −1.95254 −0.284807 −0.142404 0.989809i \(-0.545483\pi\)
−0.142404 + 0.989809i \(0.545483\pi\)
\(48\) 4.94432 0.713651
\(49\) 10.7083 1.52976
\(50\) 1.79888 0.254400
\(51\) 5.17328 0.724404
\(52\) 8.83155 1.22471
\(53\) −6.77104 −0.930074 −0.465037 0.885291i \(-0.653959\pi\)
−0.465037 + 0.885291i \(0.653959\pi\)
\(54\) −1.79888 −0.244797
\(55\) −3.00701 −0.405465
\(56\) −5.78365 −0.772872
\(57\) −4.00000 −0.529813
\(58\) −7.14544 −0.938242
\(59\) 3.90246 0.508057 0.254028 0.967197i \(-0.418244\pi\)
0.254028 + 0.967197i \(0.418244\pi\)
\(60\) −1.23597 −0.159563
\(61\) −14.3606 −1.83868 −0.919342 0.393460i \(-0.871278\pi\)
−0.919342 + 0.393460i \(0.871278\pi\)
\(62\) −1.79888 −0.228458
\(63\) 4.20813 0.530174
\(64\) −1.16627 −0.145784
\(65\) 7.14544 0.886283
\(66\) 5.40925 0.665832
\(67\) −4.39664 −0.537135 −0.268568 0.963261i \(-0.586550\pi\)
−0.268568 + 0.963261i \(0.586550\pi\)
\(68\) −6.39402 −0.775388
\(69\) −8.29910 −0.999094
\(70\) 7.56992 0.904778
\(71\) −4.50723 −0.534910 −0.267455 0.963570i \(-0.586183\pi\)
−0.267455 + 0.963570i \(0.586183\pi\)
\(72\) −1.37440 −0.161974
\(73\) −7.38963 −0.864891 −0.432445 0.901660i \(-0.642349\pi\)
−0.432445 + 0.901660i \(0.642349\pi\)
\(74\) −6.84634 −0.795871
\(75\) −1.00000 −0.115470
\(76\) 4.94388 0.567102
\(77\) −12.6539 −1.44204
\(78\) −12.8538 −1.45540
\(79\) 14.5573 1.63783 0.818913 0.573918i \(-0.194577\pi\)
0.818913 + 0.573918i \(0.194577\pi\)
\(80\) −4.94432 −0.552792
\(81\) 1.00000 0.111111
\(82\) −3.93687 −0.434755
\(83\) −5.24298 −0.575492 −0.287746 0.957707i \(-0.592906\pi\)
−0.287746 + 0.957707i \(0.592906\pi\)
\(84\) −5.20112 −0.567489
\(85\) −5.17328 −0.561121
\(86\) −16.8259 −1.81439
\(87\) 3.97216 0.425860
\(88\) 4.13283 0.440561
\(89\) −4.49321 −0.476279 −0.238140 0.971231i \(-0.576538\pi\)
−0.238140 + 0.971231i \(0.576538\pi\)
\(90\) 1.79888 0.189619
\(91\) 30.0689 3.15208
\(92\) 10.2574 1.06941
\(93\) 1.00000 0.103695
\(94\) −3.51239 −0.362275
\(95\) 4.00000 0.410391
\(96\) 6.14544 0.627216
\(97\) 1.00701 0.102246 0.0511231 0.998692i \(-0.483720\pi\)
0.0511231 + 0.998692i \(0.483720\pi\)
\(98\) 19.2630 1.94586
\(99\) −3.00701 −0.302216
\(100\) 1.23597 0.123597
\(101\) 0.535070 0.0532414 0.0266207 0.999646i \(-0.491525\pi\)
0.0266207 + 0.999646i \(0.491525\pi\)
\(102\) 9.30611 0.921442
\(103\) −14.2156 −1.40070 −0.700351 0.713798i \(-0.746973\pi\)
−0.700351 + 0.713798i \(0.746973\pi\)
\(104\) −9.82068 −0.962997
\(105\) −4.20813 −0.410671
\(106\) −12.1803 −1.18305
\(107\) 13.9918 1.35264 0.676318 0.736610i \(-0.263575\pi\)
0.676318 + 0.736610i \(0.263575\pi\)
\(108\) −1.23597 −0.118931
\(109\) 6.95955 0.666604 0.333302 0.942820i \(-0.391837\pi\)
0.333302 + 0.942820i \(0.391837\pi\)
\(110\) −5.40925 −0.515752
\(111\) 3.80589 0.361239
\(112\) −20.8063 −1.96601
\(113\) 7.26522 0.683454 0.341727 0.939799i \(-0.388988\pi\)
0.341727 + 0.939799i \(0.388988\pi\)
\(114\) −7.19552 −0.673922
\(115\) 8.29910 0.773895
\(116\) −4.90947 −0.455833
\(117\) 7.14544 0.660596
\(118\) 7.02006 0.646249
\(119\) −21.7698 −1.99564
\(120\) 1.37440 0.125465
\(121\) −1.95790 −0.177991
\(122\) −25.8330 −2.33881
\(123\) 2.18851 0.197331
\(124\) −1.23597 −0.110993
\(125\) 1.00000 0.0894427
\(126\) 7.56992 0.674382
\(127\) −5.48640 −0.486839 −0.243419 0.969921i \(-0.578269\pi\)
−0.243419 + 0.969921i \(0.578269\pi\)
\(128\) 10.1929 0.900933
\(129\) 9.35357 0.823536
\(130\) 12.8538 1.12735
\(131\) 11.5699 1.01087 0.505434 0.862865i \(-0.331332\pi\)
0.505434 + 0.862865i \(0.331332\pi\)
\(132\) 3.71657 0.323486
\(133\) 16.8325 1.45956
\(134\) −7.90903 −0.683236
\(135\) −1.00000 −0.0860663
\(136\) 7.11015 0.609690
\(137\) 1.17328 0.100240 0.0501200 0.998743i \(-0.484040\pi\)
0.0501200 + 0.998743i \(0.484040\pi\)
\(138\) −14.9291 −1.27085
\(139\) 13.3601 1.13319 0.566596 0.823996i \(-0.308260\pi\)
0.566596 + 0.823996i \(0.308260\pi\)
\(140\) 5.20112 0.439575
\(141\) 1.95254 0.164434
\(142\) −8.10796 −0.680405
\(143\) −21.4864 −1.79678
\(144\) −4.94432 −0.412027
\(145\) −3.97216 −0.329870
\(146\) −13.2931 −1.10014
\(147\) −10.7083 −0.883210
\(148\) −4.70396 −0.386663
\(149\) 0.867610 0.0710773 0.0355387 0.999368i \(-0.488685\pi\)
0.0355387 + 0.999368i \(0.488685\pi\)
\(150\) −1.79888 −0.146878
\(151\) 16.9596 1.38015 0.690074 0.723738i \(-0.257578\pi\)
0.690074 + 0.723738i \(0.257578\pi\)
\(152\) −5.49760 −0.445914
\(153\) −5.17328 −0.418235
\(154\) −22.7628 −1.83428
\(155\) −1.00000 −0.0803219
\(156\) −8.83155 −0.707090
\(157\) 2.89807 0.231292 0.115646 0.993291i \(-0.463106\pi\)
0.115646 + 0.993291i \(0.463106\pi\)
\(158\) 26.1869 2.08331
\(159\) 6.77104 0.536978
\(160\) −6.14544 −0.485840
\(161\) 34.9237 2.75237
\(162\) 1.79888 0.141333
\(163\) 14.3550 1.12437 0.562184 0.827012i \(-0.309961\pi\)
0.562184 + 0.827012i \(0.309961\pi\)
\(164\) −2.70493 −0.211220
\(165\) 3.00701 0.234095
\(166\) −9.43149 −0.732026
\(167\) 5.93030 0.458900 0.229450 0.973320i \(-0.426307\pi\)
0.229450 + 0.973320i \(0.426307\pi\)
\(168\) 5.78365 0.446218
\(169\) 38.0573 2.92748
\(170\) −9.30611 −0.713746
\(171\) 4.00000 0.305888
\(172\) −11.5607 −0.881497
\(173\) 9.00044 0.684291 0.342145 0.939647i \(-0.388846\pi\)
0.342145 + 0.939647i \(0.388846\pi\)
\(174\) 7.14544 0.541694
\(175\) 4.20813 0.318105
\(176\) 14.8676 1.12069
\(177\) −3.90246 −0.293327
\(178\) −8.08275 −0.605828
\(179\) −7.52806 −0.562674 −0.281337 0.959609i \(-0.590778\pi\)
−0.281337 + 0.959609i \(0.590778\pi\)
\(180\) 1.23597 0.0921237
\(181\) −24.6122 −1.82941 −0.914706 0.404120i \(-0.867578\pi\)
−0.914706 + 0.404120i \(0.867578\pi\)
\(182\) 54.0904 4.00945
\(183\) 14.3606 1.06156
\(184\) −11.4063 −0.840882
\(185\) −3.80589 −0.279815
\(186\) 1.79888 0.131900
\(187\) 15.5561 1.13757
\(188\) −2.41328 −0.176007
\(189\) −4.20813 −0.306096
\(190\) 7.19552 0.522018
\(191\) −12.9726 −0.938664 −0.469332 0.883022i \(-0.655505\pi\)
−0.469332 + 0.883022i \(0.655505\pi\)
\(192\) 1.16627 0.0841683
\(193\) −5.71657 −0.411488 −0.205744 0.978606i \(-0.565961\pi\)
−0.205744 + 0.978606i \(0.565961\pi\)
\(194\) 1.81149 0.130057
\(195\) −7.14544 −0.511695
\(196\) 13.2352 0.945371
\(197\) −23.5643 −1.67889 −0.839444 0.543446i \(-0.817119\pi\)
−0.839444 + 0.543446i \(0.817119\pi\)
\(198\) −5.40925 −0.384419
\(199\) −9.74758 −0.690988 −0.345494 0.938421i \(-0.612289\pi\)
−0.345494 + 0.938421i \(0.612289\pi\)
\(200\) −1.37440 −0.0971847
\(201\) 4.39664 0.310115
\(202\) 0.962526 0.0677231
\(203\) −16.7154 −1.17319
\(204\) 6.39402 0.447671
\(205\) −2.18851 −0.152852
\(206\) −25.5721 −1.78169
\(207\) 8.29910 0.576827
\(208\) −35.3293 −2.44965
\(209\) −12.0280 −0.831997
\(210\) −7.56992 −0.522374
\(211\) −4.08372 −0.281135 −0.140567 0.990071i \(-0.544893\pi\)
−0.140567 + 0.990071i \(0.544893\pi\)
\(212\) −8.36880 −0.574772
\(213\) 4.50723 0.308830
\(214\) 25.1695 1.72055
\(215\) −9.35357 −0.637908
\(216\) 1.37440 0.0935160
\(217\) −4.20813 −0.285666
\(218\) 12.5194 0.847921
\(219\) 7.38963 0.499345
\(220\) −3.71657 −0.250571
\(221\) −36.9653 −2.48656
\(222\) 6.84634 0.459496
\(223\) −5.88119 −0.393833 −0.196917 0.980420i \(-0.563093\pi\)
−0.196917 + 0.980420i \(0.563093\pi\)
\(224\) −25.8608 −1.72790
\(225\) 1.00000 0.0666667
\(226\) 13.0693 0.869354
\(227\) −23.2013 −1.53993 −0.769963 0.638089i \(-0.779725\pi\)
−0.769963 + 0.638089i \(0.779725\pi\)
\(228\) −4.94388 −0.327416
\(229\) 4.30732 0.284636 0.142318 0.989821i \(-0.454544\pi\)
0.142318 + 0.989821i \(0.454544\pi\)
\(230\) 14.9291 0.984395
\(231\) 12.6539 0.832564
\(232\) 5.45933 0.358423
\(233\) 12.9357 0.847443 0.423721 0.905793i \(-0.360724\pi\)
0.423721 + 0.905793i \(0.360724\pi\)
\(234\) 12.8538 0.840278
\(235\) −1.95254 −0.127370
\(236\) 4.82332 0.313972
\(237\) −14.5573 −0.945599
\(238\) −39.1613 −2.53845
\(239\) 24.5883 1.59049 0.795243 0.606291i \(-0.207343\pi\)
0.795243 + 0.606291i \(0.207343\pi\)
\(240\) 4.94432 0.319154
\(241\) 6.27686 0.404328 0.202164 0.979352i \(-0.435203\pi\)
0.202164 + 0.979352i \(0.435203\pi\)
\(242\) −3.52202 −0.226404
\(243\) −1.00000 −0.0641500
\(244\) −17.7492 −1.13628
\(245\) 10.7083 0.684131
\(246\) 3.93687 0.251006
\(247\) 28.5818 1.81861
\(248\) 1.37440 0.0872744
\(249\) 5.24298 0.332260
\(250\) 1.79888 0.113771
\(251\) 24.6262 1.55439 0.777197 0.629257i \(-0.216641\pi\)
0.777197 + 0.629257i \(0.216641\pi\)
\(252\) 5.20112 0.327640
\(253\) −24.9555 −1.56894
\(254\) −9.86937 −0.619259
\(255\) 5.17328 0.323963
\(256\) 20.6683 1.29177
\(257\) −10.8103 −0.674326 −0.337163 0.941446i \(-0.609467\pi\)
−0.337163 + 0.941446i \(0.609467\pi\)
\(258\) 16.8259 1.04754
\(259\) −16.0157 −0.995165
\(260\) 8.83155 0.547709
\(261\) −3.97216 −0.245870
\(262\) 20.8129 1.28583
\(263\) 6.52850 0.402565 0.201282 0.979533i \(-0.435489\pi\)
0.201282 + 0.979533i \(0.435489\pi\)
\(264\) −4.13283 −0.254358
\(265\) −6.77104 −0.415942
\(266\) 30.2797 1.85657
\(267\) 4.49321 0.274980
\(268\) −5.43411 −0.331941
\(269\) 2.41888 0.147482 0.0737409 0.997277i \(-0.476506\pi\)
0.0737409 + 0.997277i \(0.476506\pi\)
\(270\) −1.79888 −0.109476
\(271\) 19.1234 1.16166 0.580832 0.814024i \(-0.302727\pi\)
0.580832 + 0.814024i \(0.302727\pi\)
\(272\) 25.5783 1.55091
\(273\) −30.0689 −1.81985
\(274\) 2.11059 0.127505
\(275\) −3.00701 −0.181329
\(276\) −10.2574 −0.617425
\(277\) 11.0014 0.661011 0.330505 0.943804i \(-0.392781\pi\)
0.330505 + 0.943804i \(0.392781\pi\)
\(278\) 24.0333 1.44142
\(279\) −1.00000 −0.0598684
\(280\) −5.78365 −0.345639
\(281\) −1.23476 −0.0736593 −0.0368297 0.999322i \(-0.511726\pi\)
−0.0368297 + 0.999322i \(0.511726\pi\)
\(282\) 3.51239 0.209160
\(283\) −29.3620 −1.74539 −0.872694 0.488267i \(-0.837629\pi\)
−0.872694 + 0.488267i \(0.837629\pi\)
\(284\) −5.57080 −0.330566
\(285\) −4.00000 −0.236940
\(286\) −38.6515 −2.28551
\(287\) −9.20954 −0.543622
\(288\) −6.14544 −0.362123
\(289\) 9.76282 0.574283
\(290\) −7.14544 −0.419595
\(291\) −1.00701 −0.0590319
\(292\) −9.13336 −0.534490
\(293\) −12.9357 −0.755709 −0.377855 0.925865i \(-0.623338\pi\)
−0.377855 + 0.925865i \(0.623338\pi\)
\(294\) −19.2630 −1.12344
\(295\) 3.90246 0.227210
\(296\) 5.23081 0.304035
\(297\) 3.00701 0.174484
\(298\) 1.56073 0.0904104
\(299\) 59.3007 3.42945
\(300\) −1.23597 −0.0713587
\(301\) −39.3610 −2.26873
\(302\) 30.5082 1.75555
\(303\) −0.535070 −0.0307389
\(304\) −19.7773 −1.13430
\(305\) −14.3606 −0.822284
\(306\) −9.30611 −0.531995
\(307\) −18.0827 −1.03204 −0.516018 0.856577i \(-0.672586\pi\)
−0.516018 + 0.856577i \(0.672586\pi\)
\(308\) −15.6398 −0.891161
\(309\) 14.2156 0.808696
\(310\) −1.79888 −0.102170
\(311\) 27.1326 1.53855 0.769274 0.638919i \(-0.220618\pi\)
0.769274 + 0.638919i \(0.220618\pi\)
\(312\) 9.82068 0.555987
\(313\) −8.18754 −0.462787 −0.231394 0.972860i \(-0.574329\pi\)
−0.231394 + 0.972860i \(0.574329\pi\)
\(314\) 5.21329 0.294203
\(315\) 4.20813 0.237101
\(316\) 17.9924 1.01215
\(317\) −19.3804 −1.08851 −0.544257 0.838919i \(-0.683188\pi\)
−0.544257 + 0.838919i \(0.683188\pi\)
\(318\) 12.1803 0.683037
\(319\) 11.9443 0.668753
\(320\) −1.16627 −0.0651965
\(321\) −13.9918 −0.780945
\(322\) 62.8235 3.50102
\(323\) −20.6931 −1.15140
\(324\) 1.23597 0.0686650
\(325\) 7.14544 0.396358
\(326\) 25.8229 1.43020
\(327\) −6.95955 −0.384864
\(328\) 3.00789 0.166083
\(329\) −8.21655 −0.452993
\(330\) 5.40925 0.297769
\(331\) 15.8618 0.871842 0.435921 0.899985i \(-0.356423\pi\)
0.435921 + 0.899985i \(0.356423\pi\)
\(332\) −6.48016 −0.355645
\(333\) −3.80589 −0.208561
\(334\) 10.6679 0.583721
\(335\) −4.39664 −0.240214
\(336\) 20.8063 1.13508
\(337\) −2.16889 −0.118147 −0.0590736 0.998254i \(-0.518815\pi\)
−0.0590736 + 0.998254i \(0.518815\pi\)
\(338\) 68.4605 3.72376
\(339\) −7.26522 −0.394593
\(340\) −6.39402 −0.346764
\(341\) 3.00701 0.162839
\(342\) 7.19552 0.389089
\(343\) 15.6052 0.842602
\(344\) 12.8555 0.693124
\(345\) −8.29910 −0.446809
\(346\) 16.1907 0.870418
\(347\) 27.0285 1.45096 0.725482 0.688241i \(-0.241617\pi\)
0.725482 + 0.688241i \(0.241617\pi\)
\(348\) 4.90947 0.263175
\(349\) −14.7088 −0.787343 −0.393672 0.919251i \(-0.628795\pi\)
−0.393672 + 0.919251i \(0.628795\pi\)
\(350\) 7.56992 0.404629
\(351\) −7.14544 −0.381395
\(352\) 18.4794 0.984955
\(353\) 23.0315 1.22584 0.612920 0.790145i \(-0.289995\pi\)
0.612920 + 0.790145i \(0.289995\pi\)
\(354\) −7.02006 −0.373112
\(355\) −4.50723 −0.239219
\(356\) −5.55347 −0.294333
\(357\) 21.7698 1.15218
\(358\) −13.5421 −0.715721
\(359\) 10.2065 0.538677 0.269339 0.963046i \(-0.413195\pi\)
0.269339 + 0.963046i \(0.413195\pi\)
\(360\) −1.37440 −0.0724372
\(361\) −3.00000 −0.157895
\(362\) −44.2744 −2.32701
\(363\) 1.95790 0.102763
\(364\) 37.1643 1.94794
\(365\) −7.38963 −0.386791
\(366\) 25.8330 1.35031
\(367\) −1.60896 −0.0839870 −0.0419935 0.999118i \(-0.513371\pi\)
−0.0419935 + 0.999118i \(0.513371\pi\)
\(368\) −41.0334 −2.13901
\(369\) −2.18851 −0.113929
\(370\) −6.84634 −0.355924
\(371\) −28.4934 −1.47930
\(372\) 1.23597 0.0640820
\(373\) 0.0696997 0.00360891 0.00180446 0.999998i \(-0.499426\pi\)
0.00180446 + 0.999998i \(0.499426\pi\)
\(374\) 27.9836 1.44700
\(375\) −1.00000 −0.0516398
\(376\) 2.68357 0.138395
\(377\) −28.3828 −1.46179
\(378\) −7.56992 −0.389355
\(379\) 29.7633 1.52884 0.764418 0.644721i \(-0.223026\pi\)
0.764418 + 0.644721i \(0.223026\pi\)
\(380\) 4.94388 0.253616
\(381\) 5.48640 0.281077
\(382\) −23.3361 −1.19398
\(383\) 26.6737 1.36296 0.681481 0.731836i \(-0.261336\pi\)
0.681481 + 0.731836i \(0.261336\pi\)
\(384\) −10.1929 −0.520154
\(385\) −12.6539 −0.644902
\(386\) −10.2834 −0.523413
\(387\) −9.35357 −0.475469
\(388\) 1.24463 0.0631866
\(389\) 20.7981 1.05451 0.527253 0.849708i \(-0.323222\pi\)
0.527253 + 0.849708i \(0.323222\pi\)
\(390\) −12.8538 −0.650877
\(391\) −42.9336 −2.17124
\(392\) −14.7175 −0.743348
\(393\) −11.5699 −0.583625
\(394\) −42.3894 −2.13555
\(395\) 14.5573 0.732458
\(396\) −3.71657 −0.186765
\(397\) −6.73760 −0.338150 −0.169075 0.985603i \(-0.554078\pi\)
−0.169075 + 0.985603i \(0.554078\pi\)
\(398\) −17.5347 −0.878937
\(399\) −16.8325 −0.842680
\(400\) −4.94432 −0.247216
\(401\) 21.7308 1.08518 0.542592 0.839997i \(-0.317443\pi\)
0.542592 + 0.839997i \(0.317443\pi\)
\(402\) 7.90903 0.394467
\(403\) −7.14544 −0.355940
\(404\) 0.661330 0.0329024
\(405\) 1.00000 0.0496904
\(406\) −30.0689 −1.49230
\(407\) 11.4443 0.567275
\(408\) −7.11015 −0.352005
\(409\) −16.3746 −0.809672 −0.404836 0.914389i \(-0.632671\pi\)
−0.404836 + 0.914389i \(0.632671\pi\)
\(410\) −3.93687 −0.194428
\(411\) −1.17328 −0.0578736
\(412\) −17.5700 −0.865613
\(413\) 16.4221 0.808076
\(414\) 14.9291 0.733725
\(415\) −5.24298 −0.257368
\(416\) −43.9118 −2.15296
\(417\) −13.3601 −0.654249
\(418\) −21.6370 −1.05830
\(419\) −32.9235 −1.60842 −0.804209 0.594347i \(-0.797411\pi\)
−0.804209 + 0.594347i \(0.797411\pi\)
\(420\) −5.20112 −0.253789
\(421\) −13.2636 −0.646427 −0.323213 0.946326i \(-0.604763\pi\)
−0.323213 + 0.946326i \(0.604763\pi\)
\(422\) −7.34612 −0.357603
\(423\) −1.95254 −0.0949358
\(424\) 9.30611 0.451945
\(425\) −5.17328 −0.250941
\(426\) 8.10796 0.392832
\(427\) −60.4312 −2.92447
\(428\) 17.2934 0.835909
\(429\) 21.4864 1.03737
\(430\) −16.8259 −0.811419
\(431\) −12.5465 −0.604342 −0.302171 0.953254i \(-0.597711\pi\)
−0.302171 + 0.953254i \(0.597711\pi\)
\(432\) 4.94432 0.237884
\(433\) 27.9733 1.34431 0.672156 0.740409i \(-0.265368\pi\)
0.672156 + 0.740409i \(0.265368\pi\)
\(434\) −7.56992 −0.363368
\(435\) 3.97216 0.190450
\(436\) 8.60179 0.411951
\(437\) 33.1964 1.58800
\(438\) 13.2931 0.635167
\(439\) 27.7492 1.32440 0.662199 0.749328i \(-0.269623\pi\)
0.662199 + 0.749328i \(0.269623\pi\)
\(440\) 4.13283 0.197025
\(441\) 10.7083 0.509921
\(442\) −66.4962 −3.16290
\(443\) −2.57508 −0.122346 −0.0611729 0.998127i \(-0.519484\pi\)
−0.0611729 + 0.998127i \(0.519484\pi\)
\(444\) 4.70396 0.223240
\(445\) −4.49321 −0.212999
\(446\) −10.5796 −0.500956
\(447\) −0.867610 −0.0410365
\(448\) −4.90781 −0.231872
\(449\) −11.6330 −0.548998 −0.274499 0.961587i \(-0.588512\pi\)
−0.274499 + 0.961587i \(0.588512\pi\)
\(450\) 1.79888 0.0848000
\(451\) 6.58087 0.309881
\(452\) 8.97959 0.422364
\(453\) −16.9596 −0.796829
\(454\) −41.7364 −1.95879
\(455\) 30.0689 1.40965
\(456\) 5.49760 0.257448
\(457\) −5.63797 −0.263733 −0.131866 0.991267i \(-0.542097\pi\)
−0.131866 + 0.991267i \(0.542097\pi\)
\(458\) 7.74836 0.362057
\(459\) 5.17328 0.241468
\(460\) 10.2574 0.478255
\(461\) −37.0980 −1.72783 −0.863913 0.503642i \(-0.831993\pi\)
−0.863913 + 0.503642i \(0.831993\pi\)
\(462\) 22.7628 1.05902
\(463\) −3.62166 −0.168313 −0.0841563 0.996453i \(-0.526820\pi\)
−0.0841563 + 0.996453i \(0.526820\pi\)
\(464\) 19.6396 0.911746
\(465\) 1.00000 0.0463739
\(466\) 23.2697 1.07795
\(467\) 23.0507 1.06666 0.533330 0.845907i \(-0.320940\pi\)
0.533330 + 0.845907i \(0.320940\pi\)
\(468\) 8.83155 0.408238
\(469\) −18.5016 −0.854326
\(470\) −3.51239 −0.162014
\(471\) −2.89807 −0.133536
\(472\) −5.36354 −0.246877
\(473\) 28.1263 1.29325
\(474\) −26.1869 −1.20280
\(475\) 4.00000 0.183533
\(476\) −26.9068 −1.23327
\(477\) −6.77104 −0.310025
\(478\) 44.2314 2.02310
\(479\) −18.4768 −0.844225 −0.422112 0.906543i \(-0.638711\pi\)
−0.422112 + 0.906543i \(0.638711\pi\)
\(480\) 6.14544 0.280500
\(481\) −27.1947 −1.23997
\(482\) 11.2913 0.514305
\(483\) −34.9237 −1.58908
\(484\) −2.41990 −0.109996
\(485\) 1.00701 0.0457259
\(486\) −1.79888 −0.0815989
\(487\) 16.4607 0.745907 0.372954 0.927850i \(-0.378345\pi\)
0.372954 + 0.927850i \(0.378345\pi\)
\(488\) 19.7372 0.893459
\(489\) −14.3550 −0.649154
\(490\) 19.2630 0.870215
\(491\) −34.5730 −1.56026 −0.780128 0.625619i \(-0.784846\pi\)
−0.780128 + 0.625619i \(0.784846\pi\)
\(492\) 2.70493 0.121948
\(493\) 20.5491 0.925484
\(494\) 51.4151 2.31328
\(495\) −3.00701 −0.135155
\(496\) 4.94432 0.222006
\(497\) −18.9670 −0.850786
\(498\) 9.43149 0.422635
\(499\) 6.91672 0.309635 0.154817 0.987943i \(-0.450521\pi\)
0.154817 + 0.987943i \(0.450521\pi\)
\(500\) 1.23597 0.0552742
\(501\) −5.93030 −0.264946
\(502\) 44.2996 1.97719
\(503\) 6.87997 0.306763 0.153381 0.988167i \(-0.450984\pi\)
0.153381 + 0.988167i \(0.450984\pi\)
\(504\) −5.78365 −0.257624
\(505\) 0.535070 0.0238103
\(506\) −44.8919 −1.99569
\(507\) −38.0573 −1.69018
\(508\) −6.78102 −0.300859
\(509\) −20.7701 −0.920617 −0.460309 0.887759i \(-0.652261\pi\)
−0.460309 + 0.887759i \(0.652261\pi\)
\(510\) 9.30611 0.412081
\(511\) −31.0965 −1.37563
\(512\) 16.7941 0.742200
\(513\) −4.00000 −0.176604
\(514\) −19.4464 −0.857743
\(515\) −14.2156 −0.626413
\(516\) 11.5607 0.508933
\(517\) 5.87131 0.258220
\(518\) −28.8103 −1.26585
\(519\) −9.00044 −0.395075
\(520\) −9.82068 −0.430665
\(521\) −15.6357 −0.685011 −0.342506 0.939516i \(-0.611276\pi\)
−0.342506 + 0.939516i \(0.611276\pi\)
\(522\) −7.14544 −0.312747
\(523\) −29.9583 −1.30999 −0.654993 0.755635i \(-0.727329\pi\)
−0.654993 + 0.755635i \(0.727329\pi\)
\(524\) 14.3001 0.624701
\(525\) −4.20813 −0.183658
\(526\) 11.7440 0.512062
\(527\) 5.17328 0.225352
\(528\) −14.8676 −0.647030
\(529\) 45.8751 1.99457
\(530\) −12.1803 −0.529078
\(531\) 3.90246 0.169352
\(532\) 20.8045 0.901989
\(533\) −15.6379 −0.677352
\(534\) 8.08275 0.349775
\(535\) 13.9918 0.604917
\(536\) 6.04274 0.261007
\(537\) 7.52806 0.324860
\(538\) 4.35128 0.187597
\(539\) −32.2001 −1.38696
\(540\) −1.23597 −0.0531877
\(541\) 36.1919 1.55601 0.778005 0.628258i \(-0.216232\pi\)
0.778005 + 0.628258i \(0.216232\pi\)
\(542\) 34.4007 1.47764
\(543\) 24.6122 1.05621
\(544\) 31.7921 1.36307
\(545\) 6.95955 0.298114
\(546\) −54.0904 −2.31486
\(547\) −6.88260 −0.294279 −0.147139 0.989116i \(-0.547007\pi\)
−0.147139 + 0.989116i \(0.547007\pi\)
\(548\) 1.45014 0.0619468
\(549\) −14.3606 −0.612894
\(550\) −5.40925 −0.230651
\(551\) −15.8886 −0.676879
\(552\) 11.4063 0.485483
\(553\) 61.2590 2.60500
\(554\) 19.7902 0.840806
\(555\) 3.80589 0.161551
\(556\) 16.5127 0.700296
\(557\) −18.9810 −0.804252 −0.402126 0.915584i \(-0.631729\pi\)
−0.402126 + 0.915584i \(0.631729\pi\)
\(558\) −1.79888 −0.0761527
\(559\) −66.8353 −2.82683
\(560\) −20.8063 −0.879228
\(561\) −15.5561 −0.656779
\(562\) −2.22118 −0.0936947
\(563\) −17.6428 −0.743555 −0.371777 0.928322i \(-0.621252\pi\)
−0.371777 + 0.928322i \(0.621252\pi\)
\(564\) 2.41328 0.101618
\(565\) 7.26522 0.305650
\(566\) −52.8187 −2.22014
\(567\) 4.20813 0.176725
\(568\) 6.19473 0.259925
\(569\) −20.7045 −0.867978 −0.433989 0.900918i \(-0.642894\pi\)
−0.433989 + 0.900918i \(0.642894\pi\)
\(570\) −7.19552 −0.301387
\(571\) −20.0392 −0.838616 −0.419308 0.907844i \(-0.637727\pi\)
−0.419308 + 0.907844i \(0.637727\pi\)
\(572\) −26.5565 −1.11038
\(573\) 12.9726 0.541938
\(574\) −16.5669 −0.691487
\(575\) 8.29910 0.346096
\(576\) −1.16627 −0.0485946
\(577\) 31.1585 1.29714 0.648572 0.761153i \(-0.275366\pi\)
0.648572 + 0.761153i \(0.275366\pi\)
\(578\) 17.5621 0.730489
\(579\) 5.71657 0.237573
\(580\) −4.90947 −0.203855
\(581\) −22.0631 −0.915333
\(582\) −1.81149 −0.0750886
\(583\) 20.3606 0.843249
\(584\) 10.1563 0.420271
\(585\) 7.14544 0.295428
\(586\) −23.2697 −0.961262
\(587\) 22.1927 0.915989 0.457994 0.888955i \(-0.348568\pi\)
0.457994 + 0.888955i \(0.348568\pi\)
\(588\) −13.2352 −0.545810
\(589\) −4.00000 −0.164817
\(590\) 7.02006 0.289011
\(591\) 23.5643 0.969307
\(592\) 18.8175 0.773396
\(593\) −15.3601 −0.630765 −0.315383 0.948965i \(-0.602133\pi\)
−0.315383 + 0.948965i \(0.602133\pi\)
\(594\) 5.40925 0.221944
\(595\) −21.7698 −0.892476
\(596\) 1.07234 0.0439247
\(597\) 9.74758 0.398942
\(598\) 106.675 4.36226
\(599\) 14.9487 0.610787 0.305394 0.952226i \(-0.401212\pi\)
0.305394 + 0.952226i \(0.401212\pi\)
\(600\) 1.37440 0.0561096
\(601\) 13.6118 0.555236 0.277618 0.960692i \(-0.410455\pi\)
0.277618 + 0.960692i \(0.410455\pi\)
\(602\) −70.8057 −2.88583
\(603\) −4.39664 −0.179045
\(604\) 20.9615 0.852911
\(605\) −1.95790 −0.0795998
\(606\) −0.962526 −0.0390999
\(607\) 5.24560 0.212912 0.106456 0.994317i \(-0.466050\pi\)
0.106456 + 0.994317i \(0.466050\pi\)
\(608\) −24.5818 −0.996922
\(609\) 16.7154 0.677340
\(610\) −25.8330 −1.04595
\(611\) −13.9518 −0.564428
\(612\) −6.39402 −0.258463
\(613\) −12.8434 −0.518739 −0.259369 0.965778i \(-0.583515\pi\)
−0.259369 + 0.965778i \(0.583515\pi\)
\(614\) −32.5287 −1.31275
\(615\) 2.18851 0.0882493
\(616\) 17.3915 0.700723
\(617\) 32.5677 1.31113 0.655564 0.755140i \(-0.272431\pi\)
0.655564 + 0.755140i \(0.272431\pi\)
\(618\) 25.5721 1.02866
\(619\) −35.8991 −1.44291 −0.721453 0.692464i \(-0.756525\pi\)
−0.721453 + 0.692464i \(0.756525\pi\)
\(620\) −1.23597 −0.0496377
\(621\) −8.29910 −0.333031
\(622\) 48.8083 1.95703
\(623\) −18.9080 −0.757533
\(624\) 35.3293 1.41430
\(625\) 1.00000 0.0400000
\(626\) −14.7284 −0.588665
\(627\) 12.0280 0.480353
\(628\) 3.58193 0.142935
\(629\) 19.6889 0.785049
\(630\) 7.56992 0.301593
\(631\) −1.69792 −0.0675933 −0.0337967 0.999429i \(-0.510760\pi\)
−0.0337967 + 0.999429i \(0.510760\pi\)
\(632\) −20.0076 −0.795858
\(633\) 4.08372 0.162313
\(634\) −34.8631 −1.38459
\(635\) −5.48640 −0.217721
\(636\) 8.36880 0.331844
\(637\) 76.5158 3.03167
\(638\) 21.4864 0.850655
\(639\) −4.50723 −0.178303
\(640\) 10.1929 0.402910
\(641\) 31.7659 1.25468 0.627338 0.778747i \(-0.284144\pi\)
0.627338 + 0.778747i \(0.284144\pi\)
\(642\) −25.1695 −0.993362
\(643\) 32.2100 1.27024 0.635119 0.772414i \(-0.280951\pi\)
0.635119 + 0.772414i \(0.280951\pi\)
\(644\) 43.1646 1.70092
\(645\) 9.35357 0.368296
\(646\) −37.2244 −1.46458
\(647\) −30.5140 −1.19963 −0.599814 0.800139i \(-0.704759\pi\)
−0.599814 + 0.800139i \(0.704759\pi\)
\(648\) −1.37440 −0.0539915
\(649\) −11.7347 −0.460628
\(650\) 12.8538 0.504167
\(651\) 4.20813 0.164930
\(652\) 17.7423 0.694843
\(653\) −20.4786 −0.801390 −0.400695 0.916211i \(-0.631231\pi\)
−0.400695 + 0.916211i \(0.631231\pi\)
\(654\) −12.5194 −0.489547
\(655\) 11.5699 0.452074
\(656\) 10.8207 0.422477
\(657\) −7.38963 −0.288297
\(658\) −14.7806 −0.576207
\(659\) 22.1442 0.862616 0.431308 0.902205i \(-0.358052\pi\)
0.431308 + 0.902205i \(0.358052\pi\)
\(660\) 3.71657 0.144667
\(661\) 28.2744 1.09975 0.549874 0.835248i \(-0.314676\pi\)
0.549874 + 0.835248i \(0.314676\pi\)
\(662\) 28.5334 1.10898
\(663\) 36.9653 1.43562
\(664\) 7.20594 0.279645
\(665\) 16.8325 0.652737
\(666\) −6.84634 −0.265290
\(667\) −32.9653 −1.27642
\(668\) 7.32967 0.283594
\(669\) 5.88119 0.227380
\(670\) −7.90903 −0.305552
\(671\) 43.1824 1.66704
\(672\) 25.8608 0.997602
\(673\) 20.7857 0.801231 0.400616 0.916246i \(-0.368796\pi\)
0.400616 + 0.916246i \(0.368796\pi\)
\(674\) −3.90158 −0.150283
\(675\) −1.00000 −0.0384900
\(676\) 47.0377 1.80914
\(677\) 30.6432 1.17771 0.588857 0.808237i \(-0.299578\pi\)
0.588857 + 0.808237i \(0.299578\pi\)
\(678\) −13.0693 −0.501922
\(679\) 4.23762 0.162625
\(680\) 7.11015 0.272662
\(681\) 23.2013 0.889076
\(682\) 5.40925 0.207131
\(683\) −6.24585 −0.238991 −0.119495 0.992835i \(-0.538128\pi\)
−0.119495 + 0.992835i \(0.538128\pi\)
\(684\) 4.94388 0.189034
\(685\) 1.17328 0.0448287
\(686\) 28.0719 1.07179
\(687\) −4.30732 −0.164335
\(688\) 46.2470 1.76315
\(689\) −48.3820 −1.84321
\(690\) −14.9291 −0.568341
\(691\) −7.39060 −0.281152 −0.140576 0.990070i \(-0.544895\pi\)
−0.140576 + 0.990070i \(0.544895\pi\)
\(692\) 11.1243 0.422881
\(693\) −12.6539 −0.480681
\(694\) 48.6210 1.84563
\(695\) 13.3601 0.506779
\(696\) −5.45933 −0.206935
\(697\) 11.3218 0.428843
\(698\) −26.4593 −1.00150
\(699\) −12.9357 −0.489271
\(700\) 5.20112 0.196584
\(701\) 4.36802 0.164978 0.0824890 0.996592i \(-0.473713\pi\)
0.0824890 + 0.996592i \(0.473713\pi\)
\(702\) −12.8538 −0.485135
\(703\) −15.2236 −0.574167
\(704\) 3.50698 0.132174
\(705\) 1.95254 0.0735370
\(706\) 41.4308 1.55927
\(707\) 2.25164 0.0846817
\(708\) −4.82332 −0.181272
\(709\) 22.8325 0.857493 0.428747 0.903425i \(-0.358955\pi\)
0.428747 + 0.903425i \(0.358955\pi\)
\(710\) −8.10796 −0.304286
\(711\) 14.5573 0.545942
\(712\) 6.17546 0.231435
\(713\) −8.29910 −0.310804
\(714\) 39.1613 1.46558
\(715\) −21.4864 −0.803546
\(716\) −9.30445 −0.347724
\(717\) −24.5883 −0.918268
\(718\) 18.3602 0.685198
\(719\) 21.8404 0.814510 0.407255 0.913315i \(-0.366486\pi\)
0.407255 + 0.913315i \(0.366486\pi\)
\(720\) −4.94432 −0.184264
\(721\) −59.8210 −2.22785
\(722\) −5.39664 −0.200842
\(723\) −6.27686 −0.233439
\(724\) −30.4200 −1.13055
\(725\) −3.97216 −0.147522
\(726\) 3.52202 0.130714
\(727\) −13.6566 −0.506496 −0.253248 0.967401i \(-0.581499\pi\)
−0.253248 + 0.967401i \(0.581499\pi\)
\(728\) −41.3267 −1.53167
\(729\) 1.00000 0.0370370
\(730\) −13.2931 −0.491998
\(731\) 48.3886 1.78972
\(732\) 17.7492 0.656031
\(733\) −7.14861 −0.264040 −0.132020 0.991247i \(-0.542146\pi\)
−0.132020 + 0.991247i \(0.542146\pi\)
\(734\) −2.89432 −0.106831
\(735\) −10.7083 −0.394983
\(736\) −51.0016 −1.87994
\(737\) 13.2207 0.486992
\(738\) −3.93687 −0.144918
\(739\) −0.221952 −0.00816463 −0.00408231 0.999992i \(-0.501299\pi\)
−0.00408231 + 0.999992i \(0.501299\pi\)
\(740\) −4.70396 −0.172921
\(741\) −28.5818 −1.04998
\(742\) −51.2562 −1.88168
\(743\) 38.5285 1.41347 0.706737 0.707477i \(-0.250167\pi\)
0.706737 + 0.707477i \(0.250167\pi\)
\(744\) −1.37440 −0.0503879
\(745\) 0.867610 0.0317868
\(746\) 0.125381 0.00459054
\(747\) −5.24298 −0.191831
\(748\) 19.2269 0.703004
\(749\) 58.8792 2.15140
\(750\) −1.79888 −0.0656858
\(751\) −15.5508 −0.567459 −0.283729 0.958904i \(-0.591572\pi\)
−0.283729 + 0.958904i \(0.591572\pi\)
\(752\) 9.65399 0.352045
\(753\) −24.6262 −0.897430
\(754\) −51.0573 −1.85940
\(755\) 16.9596 0.617221
\(756\) −5.20112 −0.189163
\(757\) 40.9532 1.48847 0.744234 0.667919i \(-0.232815\pi\)
0.744234 + 0.667919i \(0.232815\pi\)
\(758\) 53.5405 1.94468
\(759\) 24.9555 0.905826
\(760\) −5.49760 −0.199419
\(761\) −32.3308 −1.17199 −0.585995 0.810315i \(-0.699296\pi\)
−0.585995 + 0.810315i \(0.699296\pi\)
\(762\) 9.86937 0.357530
\(763\) 29.2867 1.06025
\(764\) −16.0337 −0.580080
\(765\) −5.17328 −0.187040
\(766\) 47.9828 1.73369
\(767\) 27.8848 1.00686
\(768\) −20.6683 −0.745804
\(769\) 51.7592 1.86648 0.933242 0.359249i \(-0.116967\pi\)
0.933242 + 0.359249i \(0.116967\pi\)
\(770\) −22.7628 −0.820315
\(771\) 10.8103 0.389323
\(772\) −7.06551 −0.254293
\(773\) −34.8383 −1.25305 −0.626523 0.779403i \(-0.715523\pi\)
−0.626523 + 0.779403i \(0.715523\pi\)
\(774\) −16.8259 −0.604796
\(775\) −1.00000 −0.0359211
\(776\) −1.38403 −0.0496839
\(777\) 16.0157 0.574559
\(778\) 37.4133 1.34133
\(779\) −8.75405 −0.313646
\(780\) −8.83155 −0.316220
\(781\) 13.5533 0.484974
\(782\) −77.2323 −2.76182
\(783\) 3.97216 0.141953
\(784\) −52.9455 −1.89091
\(785\) 2.89807 0.103437
\(786\) −20.8129 −0.742371
\(787\) 42.1782 1.50349 0.751745 0.659454i \(-0.229212\pi\)
0.751745 + 0.659454i \(0.229212\pi\)
\(788\) −29.1248 −1.03753
\(789\) −6.52850 −0.232421
\(790\) 26.1869 0.931687
\(791\) 30.5730 1.08705
\(792\) 4.13283 0.146854
\(793\) −102.613 −3.64388
\(794\) −12.1201 −0.430127
\(795\) 6.77104 0.240144
\(796\) −12.0477 −0.427020
\(797\) −9.01743 −0.319414 −0.159707 0.987164i \(-0.551055\pi\)
−0.159707 + 0.987164i \(0.551055\pi\)
\(798\) −30.2797 −1.07189
\(799\) 10.1010 0.357349
\(800\) −6.14544 −0.217274
\(801\) −4.49321 −0.158760
\(802\) 39.0911 1.38035
\(803\) 22.2207 0.784151
\(804\) 5.43411 0.191646
\(805\) 34.9237 1.23090
\(806\) −12.8538 −0.452755
\(807\) −2.41888 −0.0851487
\(808\) −0.735399 −0.0258712
\(809\) 8.91472 0.313425 0.156712 0.987644i \(-0.449910\pi\)
0.156712 + 0.987644i \(0.449910\pi\)
\(810\) 1.79888 0.0632062
\(811\) 10.1515 0.356467 0.178233 0.983988i \(-0.442962\pi\)
0.178233 + 0.983988i \(0.442962\pi\)
\(812\) −20.6597 −0.725012
\(813\) −19.1234 −0.670687
\(814\) 20.5870 0.721574
\(815\) 14.3550 0.502833
\(816\) −25.5783 −0.895421
\(817\) −37.4143 −1.30896
\(818\) −29.4559 −1.02990
\(819\) 30.0689 1.05069
\(820\) −2.70493 −0.0944604
\(821\) −16.2720 −0.567898 −0.283949 0.958839i \(-0.591645\pi\)
−0.283949 + 0.958839i \(0.591645\pi\)
\(822\) −2.11059 −0.0736152
\(823\) −10.4682 −0.364898 −0.182449 0.983215i \(-0.558402\pi\)
−0.182449 + 0.983215i \(0.558402\pi\)
\(824\) 19.5379 0.680634
\(825\) 3.00701 0.104691
\(826\) 29.5413 1.02787
\(827\) 0.407155 0.0141582 0.00707909 0.999975i \(-0.497747\pi\)
0.00707909 + 0.999975i \(0.497747\pi\)
\(828\) 10.2574 0.356471
\(829\) 3.66464 0.127278 0.0636391 0.997973i \(-0.479729\pi\)
0.0636391 + 0.997973i \(0.479729\pi\)
\(830\) −9.43149 −0.327372
\(831\) −11.0014 −0.381635
\(832\) −8.33351 −0.288912
\(833\) −55.3973 −1.91940
\(834\) −24.0333 −0.832205
\(835\) 5.93030 0.205227
\(836\) −14.8663 −0.514161
\(837\) 1.00000 0.0345651
\(838\) −59.2254 −2.04591
\(839\) 20.0811 0.693276 0.346638 0.937999i \(-0.387323\pi\)
0.346638 + 0.937999i \(0.387323\pi\)
\(840\) 5.78365 0.199555
\(841\) −13.2220 −0.455929
\(842\) −23.8596 −0.822255
\(843\) 1.23476 0.0425272
\(844\) −5.04735 −0.173737
\(845\) 38.0573 1.30921
\(846\) −3.51239 −0.120758
\(847\) −8.23908 −0.283098
\(848\) 33.4782 1.14965
\(849\) 29.3620 1.00770
\(850\) −9.30611 −0.319197
\(851\) −31.5855 −1.08274
\(852\) 5.57080 0.190852
\(853\) −20.0074 −0.685042 −0.342521 0.939510i \(-0.611281\pi\)
−0.342521 + 0.939510i \(0.611281\pi\)
\(854\) −108.708 −3.71992
\(855\) 4.00000 0.136797
\(856\) −19.2303 −0.657278
\(857\) 9.62823 0.328894 0.164447 0.986386i \(-0.447416\pi\)
0.164447 + 0.986386i \(0.447416\pi\)
\(858\) 38.6515 1.31954
\(859\) 0.804479 0.0274485 0.0137242 0.999906i \(-0.495631\pi\)
0.0137242 + 0.999906i \(0.495631\pi\)
\(860\) −11.5607 −0.394217
\(861\) 9.20954 0.313860
\(862\) −22.5696 −0.768723
\(863\) 17.8746 0.608459 0.304230 0.952599i \(-0.401601\pi\)
0.304230 + 0.952599i \(0.401601\pi\)
\(864\) 6.14544 0.209072
\(865\) 9.00044 0.306024
\(866\) 50.3207 1.70997
\(867\) −9.76282 −0.331563
\(868\) −5.20112 −0.176538
\(869\) −43.7740 −1.48493
\(870\) 7.14544 0.242253
\(871\) −31.4159 −1.06449
\(872\) −9.56520 −0.323919
\(873\) 1.00701 0.0340821
\(874\) 59.7163 2.01994
\(875\) 4.20813 0.142261
\(876\) 9.13336 0.308588
\(877\) −24.0041 −0.810562 −0.405281 0.914192i \(-0.632826\pi\)
−0.405281 + 0.914192i \(0.632826\pi\)
\(878\) 49.9176 1.68464
\(879\) 12.9357 0.436309
\(880\) 14.8676 0.501187
\(881\) 10.6727 0.359573 0.179787 0.983706i \(-0.442459\pi\)
0.179787 + 0.983706i \(0.442459\pi\)
\(882\) 19.2630 0.648620
\(883\) −9.92567 −0.334025 −0.167013 0.985955i \(-0.553412\pi\)
−0.167013 + 0.985955i \(0.553412\pi\)
\(884\) −45.6880 −1.53666
\(885\) −3.90246 −0.131180
\(886\) −4.63226 −0.155624
\(887\) 24.4352 0.820453 0.410227 0.911984i \(-0.365450\pi\)
0.410227 + 0.911984i \(0.365450\pi\)
\(888\) −5.23081 −0.175534
\(889\) −23.0875 −0.774329
\(890\) −8.08275 −0.270934
\(891\) −3.00701 −0.100739
\(892\) −7.26897 −0.243383
\(893\) −7.81017 −0.261357
\(894\) −1.56073 −0.0521985
\(895\) −7.52806 −0.251635
\(896\) 42.8930 1.43296
\(897\) −59.3007 −1.97999
\(898\) −20.9265 −0.698325
\(899\) 3.97216 0.132479
\(900\) 1.23597 0.0411990
\(901\) 35.0285 1.16697
\(902\) 11.8382 0.394169
\(903\) 39.3610 1.30985
\(904\) −9.98531 −0.332106
\(905\) −24.6122 −0.818138
\(906\) −30.5082 −1.01357
\(907\) 8.66887 0.287845 0.143923 0.989589i \(-0.454028\pi\)
0.143923 + 0.989589i \(0.454028\pi\)
\(908\) −28.6761 −0.951651
\(909\) 0.535070 0.0177471
\(910\) 54.0904 1.79308
\(911\) 42.8676 1.42027 0.710134 0.704067i \(-0.248635\pi\)
0.710134 + 0.704067i \(0.248635\pi\)
\(912\) 19.7773 0.654891
\(913\) 15.7657 0.521768
\(914\) −10.1420 −0.335468
\(915\) 14.3606 0.474746
\(916\) 5.32372 0.175901
\(917\) 48.6877 1.60781
\(918\) 9.30611 0.307147
\(919\) −47.4316 −1.56462 −0.782312 0.622887i \(-0.785960\pi\)
−0.782312 + 0.622887i \(0.785960\pi\)
\(920\) −11.4063 −0.376054
\(921\) 18.0827 0.595847
\(922\) −66.7348 −2.19779
\(923\) −32.2061 −1.06008
\(924\) 15.6398 0.514512
\(925\) −3.80589 −0.125137
\(926\) −6.51492 −0.214094
\(927\) −14.2156 −0.466901
\(928\) 24.4107 0.801319
\(929\) 50.0568 1.64231 0.821154 0.570706i \(-0.193330\pi\)
0.821154 + 0.570706i \(0.193330\pi\)
\(930\) 1.79888 0.0589876
\(931\) 42.8334 1.40381
\(932\) 15.9881 0.523707
\(933\) −27.1326 −0.888281
\(934\) 41.4655 1.35679
\(935\) 15.5561 0.508739
\(936\) −9.82068 −0.320999
\(937\) −25.5888 −0.835948 −0.417974 0.908459i \(-0.637260\pi\)
−0.417974 + 0.908459i \(0.637260\pi\)
\(938\) −33.2822 −1.08670
\(939\) 8.18754 0.267190
\(940\) −2.41328 −0.0787126
\(941\) 26.3029 0.857450 0.428725 0.903435i \(-0.358963\pi\)
0.428725 + 0.903435i \(0.358963\pi\)
\(942\) −5.21329 −0.169858
\(943\) −18.1627 −0.591458
\(944\) −19.2950 −0.627999
\(945\) −4.20813 −0.136890
\(946\) 50.5958 1.64501
\(947\) −47.1292 −1.53149 −0.765746 0.643143i \(-0.777630\pi\)
−0.765746 + 0.643143i \(0.777630\pi\)
\(948\) −17.9924 −0.584366
\(949\) −52.8022 −1.71403
\(950\) 7.19552 0.233454
\(951\) 19.3804 0.628454
\(952\) 29.9204 0.969726
\(953\) 39.0091 1.26363 0.631814 0.775120i \(-0.282311\pi\)
0.631814 + 0.775120i \(0.282311\pi\)
\(954\) −12.1803 −0.394351
\(955\) −12.9726 −0.419783
\(956\) 30.3904 0.982896
\(957\) −11.9443 −0.386105
\(958\) −33.2375 −1.07385
\(959\) 4.93731 0.159434
\(960\) 1.16627 0.0376412
\(961\) 1.00000 0.0322581
\(962\) −48.9201 −1.57725
\(963\) 13.9918 0.450879
\(964\) 7.75801 0.249869
\(965\) −5.71657 −0.184023
\(966\) −62.8235 −2.02131
\(967\) −61.6585 −1.98280 −0.991401 0.130857i \(-0.958227\pi\)
−0.991401 + 0.130857i \(0.958227\pi\)
\(968\) 2.69093 0.0864898
\(969\) 20.6931 0.664759
\(970\) 1.81149 0.0581634
\(971\) −39.4375 −1.26561 −0.632804 0.774312i \(-0.718096\pi\)
−0.632804 + 0.774312i \(0.718096\pi\)
\(972\) −1.23597 −0.0396437
\(973\) 56.2212 1.80237
\(974\) 29.6109 0.948794
\(975\) −7.14544 −0.228837
\(976\) 71.0033 2.27276
\(977\) 40.7549 1.30387 0.651933 0.758277i \(-0.273958\pi\)
0.651933 + 0.758277i \(0.273958\pi\)
\(978\) −25.8229 −0.825725
\(979\) 13.5111 0.431817
\(980\) 13.2352 0.422783
\(981\) 6.95955 0.222201
\(982\) −62.1927 −1.98465
\(983\) 31.8349 1.01538 0.507688 0.861541i \(-0.330500\pi\)
0.507688 + 0.861541i \(0.330500\pi\)
\(984\) −3.00789 −0.0958880
\(985\) −23.5643 −0.750822
\(986\) 36.9653 1.17722
\(987\) 8.21655 0.261536
\(988\) 35.3262 1.12388
\(989\) −77.6262 −2.46837
\(990\) −5.40925 −0.171917
\(991\) −14.9055 −0.473490 −0.236745 0.971572i \(-0.576081\pi\)
−0.236745 + 0.971572i \(0.576081\pi\)
\(992\) 6.14544 0.195118
\(993\) −15.8618 −0.503358
\(994\) −34.1194 −1.08220
\(995\) −9.74758 −0.309019
\(996\) 6.48016 0.205332
\(997\) 26.6001 0.842435 0.421217 0.906960i \(-0.361603\pi\)
0.421217 + 0.906960i \(0.361603\pi\)
\(998\) 12.4424 0.393856
\(999\) 3.80589 0.120413
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.a.h.1.3 4
3.2 odd 2 1395.2.a.k.1.2 4
4.3 odd 2 7440.2.a.bz.1.1 4
5.2 odd 4 2325.2.c.p.1024.6 8
5.3 odd 4 2325.2.c.p.1024.3 8
5.4 even 2 2325.2.a.v.1.2 4
15.14 odd 2 6975.2.a.bo.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.h.1.3 4 1.1 even 1 trivial
1395.2.a.k.1.2 4 3.2 odd 2
2325.2.a.v.1.2 4 5.4 even 2
2325.2.c.p.1024.3 8 5.3 odd 4
2325.2.c.p.1024.6 8 5.2 odd 4
6975.2.a.bo.1.3 4 15.14 odd 2
7440.2.a.bz.1.1 4 4.3 odd 2