Properties

Label 6975.2.a.bo.1.3
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6975,2,Mod(1,6975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,8,0,0,-4,0,0,0,-6,0,-2,-4,0,12,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.704624\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.79888 q^{2} +1.23597 q^{4} -4.20813 q^{7} -1.37440 q^{8} +3.00701 q^{11} -7.14544 q^{13} -7.56992 q^{14} -4.94432 q^{16} -5.17328 q^{17} +4.00000 q^{19} +5.40925 q^{22} +8.29910 q^{23} -12.8538 q^{26} -5.20112 q^{28} +3.97216 q^{29} -1.00000 q^{31} -6.14544 q^{32} -9.30611 q^{34} +3.80589 q^{37} +7.19552 q^{38} +2.18851 q^{41} +9.35357 q^{43} +3.71657 q^{44} +14.9291 q^{46} -1.95254 q^{47} +10.7083 q^{49} -8.83155 q^{52} -6.77104 q^{53} +5.78365 q^{56} +7.14544 q^{58} -3.90246 q^{59} -14.3606 q^{61} -1.79888 q^{62} -1.16627 q^{64} +4.39664 q^{67} -6.39402 q^{68} +4.50723 q^{71} +7.38963 q^{73} +6.84634 q^{74} +4.94388 q^{76} -12.6539 q^{77} +14.5573 q^{79} +3.93687 q^{82} -5.24298 q^{83} +16.8259 q^{86} -4.13283 q^{88} +4.49321 q^{89} +30.0689 q^{91} +10.2574 q^{92} -3.51239 q^{94} -1.00701 q^{97} +19.2630 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 8 q^{4} - 4 q^{7} - 6 q^{11} - 2 q^{13} - 4 q^{14} + 12 q^{16} - 10 q^{17} + 16 q^{19} + 14 q^{22} + 6 q^{23} + 10 q^{26} - 26 q^{28} - 4 q^{31} + 2 q^{32} + 8 q^{34} - 8 q^{37} + 8 q^{38}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.79888 1.27200 0.636000 0.771689i \(-0.280588\pi\)
0.636000 + 0.771689i \(0.280588\pi\)
\(3\) 0 0
\(4\) 1.23597 0.617985
\(5\) 0 0
\(6\) 0 0
\(7\) −4.20813 −1.59052 −0.795262 0.606266i \(-0.792667\pi\)
−0.795262 + 0.606266i \(0.792667\pi\)
\(8\) −1.37440 −0.485923
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00701 0.906647 0.453324 0.891346i \(-0.350238\pi\)
0.453324 + 0.891346i \(0.350238\pi\)
\(12\) 0 0
\(13\) −7.14544 −1.98179 −0.990894 0.134644i \(-0.957011\pi\)
−0.990894 + 0.134644i \(0.957011\pi\)
\(14\) −7.56992 −2.02315
\(15\) 0 0
\(16\) −4.94432 −1.23608
\(17\) −5.17328 −1.25470 −0.627352 0.778736i \(-0.715861\pi\)
−0.627352 + 0.778736i \(0.715861\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.40925 1.15326
\(23\) 8.29910 1.73048 0.865241 0.501356i \(-0.167165\pi\)
0.865241 + 0.501356i \(0.167165\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −12.8538 −2.52083
\(27\) 0 0
\(28\) −5.20112 −0.982919
\(29\) 3.97216 0.737611 0.368806 0.929507i \(-0.379767\pi\)
0.368806 + 0.929507i \(0.379767\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −6.14544 −1.08637
\(33\) 0 0
\(34\) −9.30611 −1.59598
\(35\) 0 0
\(36\) 0 0
\(37\) 3.80589 0.625684 0.312842 0.949805i \(-0.398719\pi\)
0.312842 + 0.949805i \(0.398719\pi\)
\(38\) 7.19552 1.16727
\(39\) 0 0
\(40\) 0 0
\(41\) 2.18851 0.341788 0.170894 0.985289i \(-0.445334\pi\)
0.170894 + 0.985289i \(0.445334\pi\)
\(42\) 0 0
\(43\) 9.35357 1.42641 0.713203 0.700958i \(-0.247244\pi\)
0.713203 + 0.700958i \(0.247244\pi\)
\(44\) 3.71657 0.560294
\(45\) 0 0
\(46\) 14.9291 2.20117
\(47\) −1.95254 −0.284807 −0.142404 0.989809i \(-0.545483\pi\)
−0.142404 + 0.989809i \(0.545483\pi\)
\(48\) 0 0
\(49\) 10.7083 1.52976
\(50\) 0 0
\(51\) 0 0
\(52\) −8.83155 −1.22471
\(53\) −6.77104 −0.930074 −0.465037 0.885291i \(-0.653959\pi\)
−0.465037 + 0.885291i \(0.653959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.78365 0.772872
\(57\) 0 0
\(58\) 7.14544 0.938242
\(59\) −3.90246 −0.508057 −0.254028 0.967197i \(-0.581756\pi\)
−0.254028 + 0.967197i \(0.581756\pi\)
\(60\) 0 0
\(61\) −14.3606 −1.83868 −0.919342 0.393460i \(-0.871278\pi\)
−0.919342 + 0.393460i \(0.871278\pi\)
\(62\) −1.79888 −0.228458
\(63\) 0 0
\(64\) −1.16627 −0.145784
\(65\) 0 0
\(66\) 0 0
\(67\) 4.39664 0.537135 0.268568 0.963261i \(-0.413450\pi\)
0.268568 + 0.963261i \(0.413450\pi\)
\(68\) −6.39402 −0.775388
\(69\) 0 0
\(70\) 0 0
\(71\) 4.50723 0.534910 0.267455 0.963570i \(-0.413817\pi\)
0.267455 + 0.963570i \(0.413817\pi\)
\(72\) 0 0
\(73\) 7.38963 0.864891 0.432445 0.901660i \(-0.357651\pi\)
0.432445 + 0.901660i \(0.357651\pi\)
\(74\) 6.84634 0.795871
\(75\) 0 0
\(76\) 4.94388 0.567102
\(77\) −12.6539 −1.44204
\(78\) 0 0
\(79\) 14.5573 1.63783 0.818913 0.573918i \(-0.194577\pi\)
0.818913 + 0.573918i \(0.194577\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.93687 0.434755
\(83\) −5.24298 −0.575492 −0.287746 0.957707i \(-0.592906\pi\)
−0.287746 + 0.957707i \(0.592906\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.8259 1.81439
\(87\) 0 0
\(88\) −4.13283 −0.440561
\(89\) 4.49321 0.476279 0.238140 0.971231i \(-0.423462\pi\)
0.238140 + 0.971231i \(0.423462\pi\)
\(90\) 0 0
\(91\) 30.0689 3.15208
\(92\) 10.2574 1.06941
\(93\) 0 0
\(94\) −3.51239 −0.362275
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00701 −0.102246 −0.0511231 0.998692i \(-0.516280\pi\)
−0.0511231 + 0.998692i \(0.516280\pi\)
\(98\) 19.2630 1.94586
\(99\) 0 0
\(100\) 0 0
\(101\) −0.535070 −0.0532414 −0.0266207 0.999646i \(-0.508475\pi\)
−0.0266207 + 0.999646i \(0.508475\pi\)
\(102\) 0 0
\(103\) 14.2156 1.40070 0.700351 0.713798i \(-0.253027\pi\)
0.700351 + 0.713798i \(0.253027\pi\)
\(104\) 9.82068 0.962997
\(105\) 0 0
\(106\) −12.1803 −1.18305
\(107\) 13.9918 1.35264 0.676318 0.736610i \(-0.263575\pi\)
0.676318 + 0.736610i \(0.263575\pi\)
\(108\) 0 0
\(109\) 6.95955 0.666604 0.333302 0.942820i \(-0.391837\pi\)
0.333302 + 0.942820i \(0.391837\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 20.8063 1.96601
\(113\) 7.26522 0.683454 0.341727 0.939799i \(-0.388988\pi\)
0.341727 + 0.939799i \(0.388988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.90947 0.455833
\(117\) 0 0
\(118\) −7.02006 −0.646249
\(119\) 21.7698 1.99564
\(120\) 0 0
\(121\) −1.95790 −0.177991
\(122\) −25.8330 −2.33881
\(123\) 0 0
\(124\) −1.23597 −0.110993
\(125\) 0 0
\(126\) 0 0
\(127\) 5.48640 0.486839 0.243419 0.969921i \(-0.421731\pi\)
0.243419 + 0.969921i \(0.421731\pi\)
\(128\) 10.1929 0.900933
\(129\) 0 0
\(130\) 0 0
\(131\) −11.5699 −1.01087 −0.505434 0.862865i \(-0.668668\pi\)
−0.505434 + 0.862865i \(0.668668\pi\)
\(132\) 0 0
\(133\) −16.8325 −1.45956
\(134\) 7.90903 0.683236
\(135\) 0 0
\(136\) 7.11015 0.609690
\(137\) 1.17328 0.100240 0.0501200 0.998743i \(-0.484040\pi\)
0.0501200 + 0.998743i \(0.484040\pi\)
\(138\) 0 0
\(139\) 13.3601 1.13319 0.566596 0.823996i \(-0.308260\pi\)
0.566596 + 0.823996i \(0.308260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.10796 0.680405
\(143\) −21.4864 −1.79678
\(144\) 0 0
\(145\) 0 0
\(146\) 13.2931 1.10014
\(147\) 0 0
\(148\) 4.70396 0.386663
\(149\) −0.867610 −0.0710773 −0.0355387 0.999368i \(-0.511315\pi\)
−0.0355387 + 0.999368i \(0.511315\pi\)
\(150\) 0 0
\(151\) 16.9596 1.38015 0.690074 0.723738i \(-0.257578\pi\)
0.690074 + 0.723738i \(0.257578\pi\)
\(152\) −5.49760 −0.445914
\(153\) 0 0
\(154\) −22.7628 −1.83428
\(155\) 0 0
\(156\) 0 0
\(157\) −2.89807 −0.231292 −0.115646 0.993291i \(-0.536894\pi\)
−0.115646 + 0.993291i \(0.536894\pi\)
\(158\) 26.1869 2.08331
\(159\) 0 0
\(160\) 0 0
\(161\) −34.9237 −2.75237
\(162\) 0 0
\(163\) −14.3550 −1.12437 −0.562184 0.827012i \(-0.690039\pi\)
−0.562184 + 0.827012i \(0.690039\pi\)
\(164\) 2.70493 0.211220
\(165\) 0 0
\(166\) −9.43149 −0.732026
\(167\) 5.93030 0.458900 0.229450 0.973320i \(-0.426307\pi\)
0.229450 + 0.973320i \(0.426307\pi\)
\(168\) 0 0
\(169\) 38.0573 2.92748
\(170\) 0 0
\(171\) 0 0
\(172\) 11.5607 0.881497
\(173\) 9.00044 0.684291 0.342145 0.939647i \(-0.388846\pi\)
0.342145 + 0.939647i \(0.388846\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.8676 −1.12069
\(177\) 0 0
\(178\) 8.08275 0.605828
\(179\) 7.52806 0.562674 0.281337 0.959609i \(-0.409222\pi\)
0.281337 + 0.959609i \(0.409222\pi\)
\(180\) 0 0
\(181\) −24.6122 −1.82941 −0.914706 0.404120i \(-0.867578\pi\)
−0.914706 + 0.404120i \(0.867578\pi\)
\(182\) 54.0904 4.00945
\(183\) 0 0
\(184\) −11.4063 −0.840882
\(185\) 0 0
\(186\) 0 0
\(187\) −15.5561 −1.13757
\(188\) −2.41328 −0.176007
\(189\) 0 0
\(190\) 0 0
\(191\) 12.9726 0.938664 0.469332 0.883022i \(-0.344495\pi\)
0.469332 + 0.883022i \(0.344495\pi\)
\(192\) 0 0
\(193\) 5.71657 0.411488 0.205744 0.978606i \(-0.434039\pi\)
0.205744 + 0.978606i \(0.434039\pi\)
\(194\) −1.81149 −0.130057
\(195\) 0 0
\(196\) 13.2352 0.945371
\(197\) −23.5643 −1.67889 −0.839444 0.543446i \(-0.817119\pi\)
−0.839444 + 0.543446i \(0.817119\pi\)
\(198\) 0 0
\(199\) −9.74758 −0.690988 −0.345494 0.938421i \(-0.612289\pi\)
−0.345494 + 0.938421i \(0.612289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.962526 −0.0677231
\(203\) −16.7154 −1.17319
\(204\) 0 0
\(205\) 0 0
\(206\) 25.5721 1.78169
\(207\) 0 0
\(208\) 35.3293 2.44965
\(209\) 12.0280 0.831997
\(210\) 0 0
\(211\) −4.08372 −0.281135 −0.140567 0.990071i \(-0.544893\pi\)
−0.140567 + 0.990071i \(0.544893\pi\)
\(212\) −8.36880 −0.574772
\(213\) 0 0
\(214\) 25.1695 1.72055
\(215\) 0 0
\(216\) 0 0
\(217\) 4.20813 0.285666
\(218\) 12.5194 0.847921
\(219\) 0 0
\(220\) 0 0
\(221\) 36.9653 2.48656
\(222\) 0 0
\(223\) 5.88119 0.393833 0.196917 0.980420i \(-0.436907\pi\)
0.196917 + 0.980420i \(0.436907\pi\)
\(224\) 25.8608 1.72790
\(225\) 0 0
\(226\) 13.0693 0.869354
\(227\) −23.2013 −1.53993 −0.769963 0.638089i \(-0.779725\pi\)
−0.769963 + 0.638089i \(0.779725\pi\)
\(228\) 0 0
\(229\) 4.30732 0.284636 0.142318 0.989821i \(-0.454544\pi\)
0.142318 + 0.989821i \(0.454544\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.45933 −0.358423
\(233\) 12.9357 0.847443 0.423721 0.905793i \(-0.360724\pi\)
0.423721 + 0.905793i \(0.360724\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.82332 −0.313972
\(237\) 0 0
\(238\) 39.1613 2.53845
\(239\) −24.5883 −1.59049 −0.795243 0.606291i \(-0.792657\pi\)
−0.795243 + 0.606291i \(0.792657\pi\)
\(240\) 0 0
\(241\) 6.27686 0.404328 0.202164 0.979352i \(-0.435203\pi\)
0.202164 + 0.979352i \(0.435203\pi\)
\(242\) −3.52202 −0.226404
\(243\) 0 0
\(244\) −17.7492 −1.13628
\(245\) 0 0
\(246\) 0 0
\(247\) −28.5818 −1.81861
\(248\) 1.37440 0.0872744
\(249\) 0 0
\(250\) 0 0
\(251\) −24.6262 −1.55439 −0.777197 0.629257i \(-0.783359\pi\)
−0.777197 + 0.629257i \(0.783359\pi\)
\(252\) 0 0
\(253\) 24.9555 1.56894
\(254\) 9.86937 0.619259
\(255\) 0 0
\(256\) 20.6683 1.29177
\(257\) −10.8103 −0.674326 −0.337163 0.941446i \(-0.609467\pi\)
−0.337163 + 0.941446i \(0.609467\pi\)
\(258\) 0 0
\(259\) −16.0157 −0.995165
\(260\) 0 0
\(261\) 0 0
\(262\) −20.8129 −1.28583
\(263\) 6.52850 0.402565 0.201282 0.979533i \(-0.435489\pi\)
0.201282 + 0.979533i \(0.435489\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −30.2797 −1.85657
\(267\) 0 0
\(268\) 5.43411 0.331941
\(269\) −2.41888 −0.147482 −0.0737409 0.997277i \(-0.523494\pi\)
−0.0737409 + 0.997277i \(0.523494\pi\)
\(270\) 0 0
\(271\) 19.1234 1.16166 0.580832 0.814024i \(-0.302727\pi\)
0.580832 + 0.814024i \(0.302727\pi\)
\(272\) 25.5783 1.55091
\(273\) 0 0
\(274\) 2.11059 0.127505
\(275\) 0 0
\(276\) 0 0
\(277\) −11.0014 −0.661011 −0.330505 0.943804i \(-0.607219\pi\)
−0.330505 + 0.943804i \(0.607219\pi\)
\(278\) 24.0333 1.44142
\(279\) 0 0
\(280\) 0 0
\(281\) 1.23476 0.0736593 0.0368297 0.999322i \(-0.488274\pi\)
0.0368297 + 0.999322i \(0.488274\pi\)
\(282\) 0 0
\(283\) 29.3620 1.74539 0.872694 0.488267i \(-0.162371\pi\)
0.872694 + 0.488267i \(0.162371\pi\)
\(284\) 5.57080 0.330566
\(285\) 0 0
\(286\) −38.6515 −2.28551
\(287\) −9.20954 −0.543622
\(288\) 0 0
\(289\) 9.76282 0.574283
\(290\) 0 0
\(291\) 0 0
\(292\) 9.13336 0.534490
\(293\) −12.9357 −0.755709 −0.377855 0.925865i \(-0.623338\pi\)
−0.377855 + 0.925865i \(0.623338\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5.23081 −0.304035
\(297\) 0 0
\(298\) −1.56073 −0.0904104
\(299\) −59.3007 −3.42945
\(300\) 0 0
\(301\) −39.3610 −2.26873
\(302\) 30.5082 1.75555
\(303\) 0 0
\(304\) −19.7773 −1.13430
\(305\) 0 0
\(306\) 0 0
\(307\) 18.0827 1.03204 0.516018 0.856577i \(-0.327414\pi\)
0.516018 + 0.856577i \(0.327414\pi\)
\(308\) −15.6398 −0.891161
\(309\) 0 0
\(310\) 0 0
\(311\) −27.1326 −1.53855 −0.769274 0.638919i \(-0.779382\pi\)
−0.769274 + 0.638919i \(0.779382\pi\)
\(312\) 0 0
\(313\) 8.18754 0.462787 0.231394 0.972860i \(-0.425671\pi\)
0.231394 + 0.972860i \(0.425671\pi\)
\(314\) −5.21329 −0.294203
\(315\) 0 0
\(316\) 17.9924 1.01215
\(317\) −19.3804 −1.08851 −0.544257 0.838919i \(-0.683188\pi\)
−0.544257 + 0.838919i \(0.683188\pi\)
\(318\) 0 0
\(319\) 11.9443 0.668753
\(320\) 0 0
\(321\) 0 0
\(322\) −62.8235 −3.50102
\(323\) −20.6931 −1.15140
\(324\) 0 0
\(325\) 0 0
\(326\) −25.8229 −1.43020
\(327\) 0 0
\(328\) −3.00789 −0.166083
\(329\) 8.21655 0.452993
\(330\) 0 0
\(331\) 15.8618 0.871842 0.435921 0.899985i \(-0.356423\pi\)
0.435921 + 0.899985i \(0.356423\pi\)
\(332\) −6.48016 −0.355645
\(333\) 0 0
\(334\) 10.6679 0.583721
\(335\) 0 0
\(336\) 0 0
\(337\) 2.16889 0.118147 0.0590736 0.998254i \(-0.481185\pi\)
0.0590736 + 0.998254i \(0.481185\pi\)
\(338\) 68.4605 3.72376
\(339\) 0 0
\(340\) 0 0
\(341\) −3.00701 −0.162839
\(342\) 0 0
\(343\) −15.6052 −0.842602
\(344\) −12.8555 −0.693124
\(345\) 0 0
\(346\) 16.1907 0.870418
\(347\) 27.0285 1.45096 0.725482 0.688241i \(-0.241617\pi\)
0.725482 + 0.688241i \(0.241617\pi\)
\(348\) 0 0
\(349\) −14.7088 −0.787343 −0.393672 0.919251i \(-0.628795\pi\)
−0.393672 + 0.919251i \(0.628795\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −18.4794 −0.984955
\(353\) 23.0315 1.22584 0.612920 0.790145i \(-0.289995\pi\)
0.612920 + 0.790145i \(0.289995\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.55347 0.294333
\(357\) 0 0
\(358\) 13.5421 0.715721
\(359\) −10.2065 −0.538677 −0.269339 0.963046i \(-0.586805\pi\)
−0.269339 + 0.963046i \(0.586805\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −44.2744 −2.32701
\(363\) 0 0
\(364\) 37.1643 1.94794
\(365\) 0 0
\(366\) 0 0
\(367\) 1.60896 0.0839870 0.0419935 0.999118i \(-0.486629\pi\)
0.0419935 + 0.999118i \(0.486629\pi\)
\(368\) −41.0334 −2.13901
\(369\) 0 0
\(370\) 0 0
\(371\) 28.4934 1.47930
\(372\) 0 0
\(373\) −0.0696997 −0.00360891 −0.00180446 0.999998i \(-0.500574\pi\)
−0.00180446 + 0.999998i \(0.500574\pi\)
\(374\) −27.9836 −1.44700
\(375\) 0 0
\(376\) 2.68357 0.138395
\(377\) −28.3828 −1.46179
\(378\) 0 0
\(379\) 29.7633 1.52884 0.764418 0.644721i \(-0.223026\pi\)
0.764418 + 0.644721i \(0.223026\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 23.3361 1.19398
\(383\) 26.6737 1.36296 0.681481 0.731836i \(-0.261336\pi\)
0.681481 + 0.731836i \(0.261336\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.2834 0.523413
\(387\) 0 0
\(388\) −1.24463 −0.0631866
\(389\) −20.7981 −1.05451 −0.527253 0.849708i \(-0.676778\pi\)
−0.527253 + 0.849708i \(0.676778\pi\)
\(390\) 0 0
\(391\) −42.9336 −2.17124
\(392\) −14.7175 −0.743348
\(393\) 0 0
\(394\) −42.3894 −2.13555
\(395\) 0 0
\(396\) 0 0
\(397\) 6.73760 0.338150 0.169075 0.985603i \(-0.445922\pi\)
0.169075 + 0.985603i \(0.445922\pi\)
\(398\) −17.5347 −0.878937
\(399\) 0 0
\(400\) 0 0
\(401\) −21.7308 −1.08518 −0.542592 0.839997i \(-0.682557\pi\)
−0.542592 + 0.839997i \(0.682557\pi\)
\(402\) 0 0
\(403\) 7.14544 0.355940
\(404\) −0.661330 −0.0329024
\(405\) 0 0
\(406\) −30.0689 −1.49230
\(407\) 11.4443 0.567275
\(408\) 0 0
\(409\) −16.3746 −0.809672 −0.404836 0.914389i \(-0.632671\pi\)
−0.404836 + 0.914389i \(0.632671\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 17.5700 0.865613
\(413\) 16.4221 0.808076
\(414\) 0 0
\(415\) 0 0
\(416\) 43.9118 2.15296
\(417\) 0 0
\(418\) 21.6370 1.05830
\(419\) 32.9235 1.60842 0.804209 0.594347i \(-0.202589\pi\)
0.804209 + 0.594347i \(0.202589\pi\)
\(420\) 0 0
\(421\) −13.2636 −0.646427 −0.323213 0.946326i \(-0.604763\pi\)
−0.323213 + 0.946326i \(0.604763\pi\)
\(422\) −7.34612 −0.357603
\(423\) 0 0
\(424\) 9.30611 0.451945
\(425\) 0 0
\(426\) 0 0
\(427\) 60.4312 2.92447
\(428\) 17.2934 0.835909
\(429\) 0 0
\(430\) 0 0
\(431\) 12.5465 0.604342 0.302171 0.953254i \(-0.402289\pi\)
0.302171 + 0.953254i \(0.402289\pi\)
\(432\) 0 0
\(433\) −27.9733 −1.34431 −0.672156 0.740409i \(-0.734632\pi\)
−0.672156 + 0.740409i \(0.734632\pi\)
\(434\) 7.56992 0.363368
\(435\) 0 0
\(436\) 8.60179 0.411951
\(437\) 33.1964 1.58800
\(438\) 0 0
\(439\) 27.7492 1.32440 0.662199 0.749328i \(-0.269623\pi\)
0.662199 + 0.749328i \(0.269623\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 66.4962 3.16290
\(443\) −2.57508 −0.122346 −0.0611729 0.998127i \(-0.519484\pi\)
−0.0611729 + 0.998127i \(0.519484\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.5796 0.500956
\(447\) 0 0
\(448\) 4.90781 0.231872
\(449\) 11.6330 0.548998 0.274499 0.961587i \(-0.411488\pi\)
0.274499 + 0.961587i \(0.411488\pi\)
\(450\) 0 0
\(451\) 6.58087 0.309881
\(452\) 8.97959 0.422364
\(453\) 0 0
\(454\) −41.7364 −1.95879
\(455\) 0 0
\(456\) 0 0
\(457\) 5.63797 0.263733 0.131866 0.991267i \(-0.457903\pi\)
0.131866 + 0.991267i \(0.457903\pi\)
\(458\) 7.74836 0.362057
\(459\) 0 0
\(460\) 0 0
\(461\) 37.0980 1.72783 0.863913 0.503642i \(-0.168007\pi\)
0.863913 + 0.503642i \(0.168007\pi\)
\(462\) 0 0
\(463\) 3.62166 0.168313 0.0841563 0.996453i \(-0.473180\pi\)
0.0841563 + 0.996453i \(0.473180\pi\)
\(464\) −19.6396 −0.911746
\(465\) 0 0
\(466\) 23.2697 1.07795
\(467\) 23.0507 1.06666 0.533330 0.845907i \(-0.320940\pi\)
0.533330 + 0.845907i \(0.320940\pi\)
\(468\) 0 0
\(469\) −18.5016 −0.854326
\(470\) 0 0
\(471\) 0 0
\(472\) 5.36354 0.246877
\(473\) 28.1263 1.29325
\(474\) 0 0
\(475\) 0 0
\(476\) 26.9068 1.23327
\(477\) 0 0
\(478\) −44.2314 −2.02310
\(479\) 18.4768 0.844225 0.422112 0.906543i \(-0.361289\pi\)
0.422112 + 0.906543i \(0.361289\pi\)
\(480\) 0 0
\(481\) −27.1947 −1.23997
\(482\) 11.2913 0.514305
\(483\) 0 0
\(484\) −2.41990 −0.109996
\(485\) 0 0
\(486\) 0 0
\(487\) −16.4607 −0.745907 −0.372954 0.927850i \(-0.621655\pi\)
−0.372954 + 0.927850i \(0.621655\pi\)
\(488\) 19.7372 0.893459
\(489\) 0 0
\(490\) 0 0
\(491\) 34.5730 1.56026 0.780128 0.625619i \(-0.215154\pi\)
0.780128 + 0.625619i \(0.215154\pi\)
\(492\) 0 0
\(493\) −20.5491 −0.925484
\(494\) −51.4151 −2.31328
\(495\) 0 0
\(496\) 4.94432 0.222006
\(497\) −18.9670 −0.850786
\(498\) 0 0
\(499\) 6.91672 0.309635 0.154817 0.987943i \(-0.450521\pi\)
0.154817 + 0.987943i \(0.450521\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −44.2996 −1.97719
\(503\) 6.87997 0.306763 0.153381 0.988167i \(-0.450984\pi\)
0.153381 + 0.988167i \(0.450984\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 44.8919 1.99569
\(507\) 0 0
\(508\) 6.78102 0.300859
\(509\) 20.7701 0.920617 0.460309 0.887759i \(-0.347739\pi\)
0.460309 + 0.887759i \(0.347739\pi\)
\(510\) 0 0
\(511\) −31.0965 −1.37563
\(512\) 16.7941 0.742200
\(513\) 0 0
\(514\) −19.4464 −0.857743
\(515\) 0 0
\(516\) 0 0
\(517\) −5.87131 −0.258220
\(518\) −28.8103 −1.26585
\(519\) 0 0
\(520\) 0 0
\(521\) 15.6357 0.685011 0.342506 0.939516i \(-0.388724\pi\)
0.342506 + 0.939516i \(0.388724\pi\)
\(522\) 0 0
\(523\) 29.9583 1.30999 0.654993 0.755635i \(-0.272671\pi\)
0.654993 + 0.755635i \(0.272671\pi\)
\(524\) −14.3001 −0.624701
\(525\) 0 0
\(526\) 11.7440 0.512062
\(527\) 5.17328 0.225352
\(528\) 0 0
\(529\) 45.8751 1.99457
\(530\) 0 0
\(531\) 0 0
\(532\) −20.8045 −0.901989
\(533\) −15.6379 −0.677352
\(534\) 0 0
\(535\) 0 0
\(536\) −6.04274 −0.261007
\(537\) 0 0
\(538\) −4.35128 −0.187597
\(539\) 32.2001 1.38696
\(540\) 0 0
\(541\) 36.1919 1.55601 0.778005 0.628258i \(-0.216232\pi\)
0.778005 + 0.628258i \(0.216232\pi\)
\(542\) 34.4007 1.47764
\(543\) 0 0
\(544\) 31.7921 1.36307
\(545\) 0 0
\(546\) 0 0
\(547\) 6.88260 0.294279 0.147139 0.989116i \(-0.452993\pi\)
0.147139 + 0.989116i \(0.452993\pi\)
\(548\) 1.45014 0.0619468
\(549\) 0 0
\(550\) 0 0
\(551\) 15.8886 0.676879
\(552\) 0 0
\(553\) −61.2590 −2.60500
\(554\) −19.7902 −0.840806
\(555\) 0 0
\(556\) 16.5127 0.700296
\(557\) −18.9810 −0.804252 −0.402126 0.915584i \(-0.631729\pi\)
−0.402126 + 0.915584i \(0.631729\pi\)
\(558\) 0 0
\(559\) −66.8353 −2.82683
\(560\) 0 0
\(561\) 0 0
\(562\) 2.22118 0.0936947
\(563\) −17.6428 −0.743555 −0.371777 0.928322i \(-0.621252\pi\)
−0.371777 + 0.928322i \(0.621252\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 52.8187 2.22014
\(567\) 0 0
\(568\) −6.19473 −0.259925
\(569\) 20.7045 0.867978 0.433989 0.900918i \(-0.357106\pi\)
0.433989 + 0.900918i \(0.357106\pi\)
\(570\) 0 0
\(571\) −20.0392 −0.838616 −0.419308 0.907844i \(-0.637727\pi\)
−0.419308 + 0.907844i \(0.637727\pi\)
\(572\) −26.5565 −1.11038
\(573\) 0 0
\(574\) −16.5669 −0.691487
\(575\) 0 0
\(576\) 0 0
\(577\) −31.1585 −1.29714 −0.648572 0.761153i \(-0.724634\pi\)
−0.648572 + 0.761153i \(0.724634\pi\)
\(578\) 17.5621 0.730489
\(579\) 0 0
\(580\) 0 0
\(581\) 22.0631 0.915333
\(582\) 0 0
\(583\) −20.3606 −0.843249
\(584\) −10.1563 −0.420271
\(585\) 0 0
\(586\) −23.2697 −0.961262
\(587\) 22.1927 0.915989 0.457994 0.888955i \(-0.348568\pi\)
0.457994 + 0.888955i \(0.348568\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) −18.8175 −0.773396
\(593\) −15.3601 −0.630765 −0.315383 0.948965i \(-0.602133\pi\)
−0.315383 + 0.948965i \(0.602133\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.07234 −0.0439247
\(597\) 0 0
\(598\) −106.675 −4.36226
\(599\) −14.9487 −0.610787 −0.305394 0.952226i \(-0.598788\pi\)
−0.305394 + 0.952226i \(0.598788\pi\)
\(600\) 0 0
\(601\) 13.6118 0.555236 0.277618 0.960692i \(-0.410455\pi\)
0.277618 + 0.960692i \(0.410455\pi\)
\(602\) −70.8057 −2.88583
\(603\) 0 0
\(604\) 20.9615 0.852911
\(605\) 0 0
\(606\) 0 0
\(607\) −5.24560 −0.212912 −0.106456 0.994317i \(-0.533950\pi\)
−0.106456 + 0.994317i \(0.533950\pi\)
\(608\) −24.5818 −0.996922
\(609\) 0 0
\(610\) 0 0
\(611\) 13.9518 0.564428
\(612\) 0 0
\(613\) 12.8434 0.518739 0.259369 0.965778i \(-0.416485\pi\)
0.259369 + 0.965778i \(0.416485\pi\)
\(614\) 32.5287 1.31275
\(615\) 0 0
\(616\) 17.3915 0.700723
\(617\) 32.5677 1.31113 0.655564 0.755140i \(-0.272431\pi\)
0.655564 + 0.755140i \(0.272431\pi\)
\(618\) 0 0
\(619\) −35.8991 −1.44291 −0.721453 0.692464i \(-0.756525\pi\)
−0.721453 + 0.692464i \(0.756525\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −48.8083 −1.95703
\(623\) −18.9080 −0.757533
\(624\) 0 0
\(625\) 0 0
\(626\) 14.7284 0.588665
\(627\) 0 0
\(628\) −3.58193 −0.142935
\(629\) −19.6889 −0.785049
\(630\) 0 0
\(631\) −1.69792 −0.0675933 −0.0337967 0.999429i \(-0.510760\pi\)
−0.0337967 + 0.999429i \(0.510760\pi\)
\(632\) −20.0076 −0.795858
\(633\) 0 0
\(634\) −34.8631 −1.38459
\(635\) 0 0
\(636\) 0 0
\(637\) −76.5158 −3.03167
\(638\) 21.4864 0.850655
\(639\) 0 0
\(640\) 0 0
\(641\) −31.7659 −1.25468 −0.627338 0.778747i \(-0.715856\pi\)
−0.627338 + 0.778747i \(0.715856\pi\)
\(642\) 0 0
\(643\) −32.2100 −1.27024 −0.635119 0.772414i \(-0.719049\pi\)
−0.635119 + 0.772414i \(0.719049\pi\)
\(644\) −43.1646 −1.70092
\(645\) 0 0
\(646\) −37.2244 −1.46458
\(647\) −30.5140 −1.19963 −0.599814 0.800139i \(-0.704759\pi\)
−0.599814 + 0.800139i \(0.704759\pi\)
\(648\) 0 0
\(649\) −11.7347 −0.460628
\(650\) 0 0
\(651\) 0 0
\(652\) −17.7423 −0.694843
\(653\) −20.4786 −0.801390 −0.400695 0.916211i \(-0.631231\pi\)
−0.400695 + 0.916211i \(0.631231\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −10.8207 −0.422477
\(657\) 0 0
\(658\) 14.7806 0.576207
\(659\) −22.1442 −0.862616 −0.431308 0.902205i \(-0.641948\pi\)
−0.431308 + 0.902205i \(0.641948\pi\)
\(660\) 0 0
\(661\) 28.2744 1.09975 0.549874 0.835248i \(-0.314676\pi\)
0.549874 + 0.835248i \(0.314676\pi\)
\(662\) 28.5334 1.10898
\(663\) 0 0
\(664\) 7.20594 0.279645
\(665\) 0 0
\(666\) 0 0
\(667\) 32.9653 1.27642
\(668\) 7.32967 0.283594
\(669\) 0 0
\(670\) 0 0
\(671\) −43.1824 −1.66704
\(672\) 0 0
\(673\) −20.7857 −0.801231 −0.400616 0.916246i \(-0.631204\pi\)
−0.400616 + 0.916246i \(0.631204\pi\)
\(674\) 3.90158 0.150283
\(675\) 0 0
\(676\) 47.0377 1.80914
\(677\) 30.6432 1.17771 0.588857 0.808237i \(-0.299578\pi\)
0.588857 + 0.808237i \(0.299578\pi\)
\(678\) 0 0
\(679\) 4.23762 0.162625
\(680\) 0 0
\(681\) 0 0
\(682\) −5.40925 −0.207131
\(683\) −6.24585 −0.238991 −0.119495 0.992835i \(-0.538128\pi\)
−0.119495 + 0.992835i \(0.538128\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −28.0719 −1.07179
\(687\) 0 0
\(688\) −46.2470 −1.76315
\(689\) 48.3820 1.84321
\(690\) 0 0
\(691\) −7.39060 −0.281152 −0.140576 0.990070i \(-0.544895\pi\)
−0.140576 + 0.990070i \(0.544895\pi\)
\(692\) 11.1243 0.422881
\(693\) 0 0
\(694\) 48.6210 1.84563
\(695\) 0 0
\(696\) 0 0
\(697\) −11.3218 −0.428843
\(698\) −26.4593 −1.00150
\(699\) 0 0
\(700\) 0 0
\(701\) −4.36802 −0.164978 −0.0824890 0.996592i \(-0.526287\pi\)
−0.0824890 + 0.996592i \(0.526287\pi\)
\(702\) 0 0
\(703\) 15.2236 0.574167
\(704\) −3.50698 −0.132174
\(705\) 0 0
\(706\) 41.4308 1.55927
\(707\) 2.25164 0.0846817
\(708\) 0 0
\(709\) 22.8325 0.857493 0.428747 0.903425i \(-0.358955\pi\)
0.428747 + 0.903425i \(0.358955\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.17546 −0.231435
\(713\) −8.29910 −0.310804
\(714\) 0 0
\(715\) 0 0
\(716\) 9.30445 0.347724
\(717\) 0 0
\(718\) −18.3602 −0.685198
\(719\) −21.8404 −0.814510 −0.407255 0.913315i \(-0.633514\pi\)
−0.407255 + 0.913315i \(0.633514\pi\)
\(720\) 0 0
\(721\) −59.8210 −2.22785
\(722\) −5.39664 −0.200842
\(723\) 0 0
\(724\) −30.4200 −1.13055
\(725\) 0 0
\(726\) 0 0
\(727\) 13.6566 0.506496 0.253248 0.967401i \(-0.418501\pi\)
0.253248 + 0.967401i \(0.418501\pi\)
\(728\) −41.3267 −1.53167
\(729\) 0 0
\(730\) 0 0
\(731\) −48.3886 −1.78972
\(732\) 0 0
\(733\) 7.14861 0.264040 0.132020 0.991247i \(-0.457854\pi\)
0.132020 + 0.991247i \(0.457854\pi\)
\(734\) 2.89432 0.106831
\(735\) 0 0
\(736\) −51.0016 −1.87994
\(737\) 13.2207 0.486992
\(738\) 0 0
\(739\) −0.221952 −0.00816463 −0.00408231 0.999992i \(-0.501299\pi\)
−0.00408231 + 0.999992i \(0.501299\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 51.2562 1.88168
\(743\) 38.5285 1.41347 0.706737 0.707477i \(-0.250167\pi\)
0.706737 + 0.707477i \(0.250167\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.125381 −0.00459054
\(747\) 0 0
\(748\) −19.2269 −0.703004
\(749\) −58.8792 −2.15140
\(750\) 0 0
\(751\) −15.5508 −0.567459 −0.283729 0.958904i \(-0.591572\pi\)
−0.283729 + 0.958904i \(0.591572\pi\)
\(752\) 9.65399 0.352045
\(753\) 0 0
\(754\) −51.0573 −1.85940
\(755\) 0 0
\(756\) 0 0
\(757\) −40.9532 −1.48847 −0.744234 0.667919i \(-0.767185\pi\)
−0.744234 + 0.667919i \(0.767185\pi\)
\(758\) 53.5405 1.94468
\(759\) 0 0
\(760\) 0 0
\(761\) 32.3308 1.17199 0.585995 0.810315i \(-0.300704\pi\)
0.585995 + 0.810315i \(0.300704\pi\)
\(762\) 0 0
\(763\) −29.2867 −1.06025
\(764\) 16.0337 0.580080
\(765\) 0 0
\(766\) 47.9828 1.73369
\(767\) 27.8848 1.00686
\(768\) 0 0
\(769\) 51.7592 1.86648 0.933242 0.359249i \(-0.116967\pi\)
0.933242 + 0.359249i \(0.116967\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.06551 0.254293
\(773\) −34.8383 −1.25305 −0.626523 0.779403i \(-0.715523\pi\)
−0.626523 + 0.779403i \(0.715523\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.38403 0.0496839
\(777\) 0 0
\(778\) −37.4133 −1.34133
\(779\) 8.75405 0.313646
\(780\) 0 0
\(781\) 13.5533 0.484974
\(782\) −77.2323 −2.76182
\(783\) 0 0
\(784\) −52.9455 −1.89091
\(785\) 0 0
\(786\) 0 0
\(787\) −42.1782 −1.50349 −0.751745 0.659454i \(-0.770788\pi\)
−0.751745 + 0.659454i \(0.770788\pi\)
\(788\) −29.1248 −1.03753
\(789\) 0 0
\(790\) 0 0
\(791\) −30.5730 −1.08705
\(792\) 0 0
\(793\) 102.613 3.64388
\(794\) 12.1201 0.430127
\(795\) 0 0
\(796\) −12.0477 −0.427020
\(797\) −9.01743 −0.319414 −0.159707 0.987164i \(-0.551055\pi\)
−0.159707 + 0.987164i \(0.551055\pi\)
\(798\) 0 0
\(799\) 10.1010 0.357349
\(800\) 0 0
\(801\) 0 0
\(802\) −39.0911 −1.38035
\(803\) 22.2207 0.784151
\(804\) 0 0
\(805\) 0 0
\(806\) 12.8538 0.452755
\(807\) 0 0
\(808\) 0.735399 0.0258712
\(809\) −8.91472 −0.313425 −0.156712 0.987644i \(-0.550090\pi\)
−0.156712 + 0.987644i \(0.550090\pi\)
\(810\) 0 0
\(811\) 10.1515 0.356467 0.178233 0.983988i \(-0.442962\pi\)
0.178233 + 0.983988i \(0.442962\pi\)
\(812\) −20.6597 −0.725012
\(813\) 0 0
\(814\) 20.5870 0.721574
\(815\) 0 0
\(816\) 0 0
\(817\) 37.4143 1.30896
\(818\) −29.4559 −1.02990
\(819\) 0 0
\(820\) 0 0
\(821\) 16.2720 0.567898 0.283949 0.958839i \(-0.408355\pi\)
0.283949 + 0.958839i \(0.408355\pi\)
\(822\) 0 0
\(823\) 10.4682 0.364898 0.182449 0.983215i \(-0.441598\pi\)
0.182449 + 0.983215i \(0.441598\pi\)
\(824\) −19.5379 −0.680634
\(825\) 0 0
\(826\) 29.5413 1.02787
\(827\) 0.407155 0.0141582 0.00707909 0.999975i \(-0.497747\pi\)
0.00707909 + 0.999975i \(0.497747\pi\)
\(828\) 0 0
\(829\) 3.66464 0.127278 0.0636391 0.997973i \(-0.479729\pi\)
0.0636391 + 0.997973i \(0.479729\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.33351 0.288912
\(833\) −55.3973 −1.91940
\(834\) 0 0
\(835\) 0 0
\(836\) 14.8663 0.514161
\(837\) 0 0
\(838\) 59.2254 2.04591
\(839\) −20.0811 −0.693276 −0.346638 0.937999i \(-0.612677\pi\)
−0.346638 + 0.937999i \(0.612677\pi\)
\(840\) 0 0
\(841\) −13.2220 −0.455929
\(842\) −23.8596 −0.822255
\(843\) 0 0
\(844\) −5.04735 −0.173737
\(845\) 0 0
\(846\) 0 0
\(847\) 8.23908 0.283098
\(848\) 33.4782 1.14965
\(849\) 0 0
\(850\) 0 0
\(851\) 31.5855 1.08274
\(852\) 0 0
\(853\) 20.0074 0.685042 0.342521 0.939510i \(-0.388719\pi\)
0.342521 + 0.939510i \(0.388719\pi\)
\(854\) 108.708 3.71992
\(855\) 0 0
\(856\) −19.2303 −0.657278
\(857\) 9.62823 0.328894 0.164447 0.986386i \(-0.447416\pi\)
0.164447 + 0.986386i \(0.447416\pi\)
\(858\) 0 0
\(859\) 0.804479 0.0274485 0.0137242 0.999906i \(-0.495631\pi\)
0.0137242 + 0.999906i \(0.495631\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 22.5696 0.768723
\(863\) 17.8746 0.608459 0.304230 0.952599i \(-0.401601\pi\)
0.304230 + 0.952599i \(0.401601\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −50.3207 −1.70997
\(867\) 0 0
\(868\) 5.20112 0.176538
\(869\) 43.7740 1.48493
\(870\) 0 0
\(871\) −31.4159 −1.06449
\(872\) −9.56520 −0.323919
\(873\) 0 0
\(874\) 59.7163 2.01994
\(875\) 0 0
\(876\) 0 0
\(877\) 24.0041 0.810562 0.405281 0.914192i \(-0.367174\pi\)
0.405281 + 0.914192i \(0.367174\pi\)
\(878\) 49.9176 1.68464
\(879\) 0 0
\(880\) 0 0
\(881\) −10.6727 −0.359573 −0.179787 0.983706i \(-0.557541\pi\)
−0.179787 + 0.983706i \(0.557541\pi\)
\(882\) 0 0
\(883\) 9.92567 0.334025 0.167013 0.985955i \(-0.446588\pi\)
0.167013 + 0.985955i \(0.446588\pi\)
\(884\) 45.6880 1.53666
\(885\) 0 0
\(886\) −4.63226 −0.155624
\(887\) 24.4352 0.820453 0.410227 0.911984i \(-0.365450\pi\)
0.410227 + 0.911984i \(0.365450\pi\)
\(888\) 0 0
\(889\) −23.0875 −0.774329
\(890\) 0 0
\(891\) 0 0
\(892\) 7.26897 0.243383
\(893\) −7.81017 −0.261357
\(894\) 0 0
\(895\) 0 0
\(896\) −42.8930 −1.43296
\(897\) 0 0
\(898\) 20.9265 0.698325
\(899\) −3.97216 −0.132479
\(900\) 0 0
\(901\) 35.0285 1.16697
\(902\) 11.8382 0.394169
\(903\) 0 0
\(904\) −9.98531 −0.332106
\(905\) 0 0
\(906\) 0 0
\(907\) −8.66887 −0.287845 −0.143923 0.989589i \(-0.545972\pi\)
−0.143923 + 0.989589i \(0.545972\pi\)
\(908\) −28.6761 −0.951651
\(909\) 0 0
\(910\) 0 0
\(911\) −42.8676 −1.42027 −0.710134 0.704067i \(-0.751365\pi\)
−0.710134 + 0.704067i \(0.751365\pi\)
\(912\) 0 0
\(913\) −15.7657 −0.521768
\(914\) 10.1420 0.335468
\(915\) 0 0
\(916\) 5.32372 0.175901
\(917\) 48.6877 1.60781
\(918\) 0 0
\(919\) −47.4316 −1.56462 −0.782312 0.622887i \(-0.785960\pi\)
−0.782312 + 0.622887i \(0.785960\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 66.7348 2.19779
\(923\) −32.2061 −1.06008
\(924\) 0 0
\(925\) 0 0
\(926\) 6.51492 0.214094
\(927\) 0 0
\(928\) −24.4107 −0.801319
\(929\) −50.0568 −1.64231 −0.821154 0.570706i \(-0.806670\pi\)
−0.821154 + 0.570706i \(0.806670\pi\)
\(930\) 0 0
\(931\) 42.8334 1.40381
\(932\) 15.9881 0.523707
\(933\) 0 0
\(934\) 41.4655 1.35679
\(935\) 0 0
\(936\) 0 0
\(937\) 25.5888 0.835948 0.417974 0.908459i \(-0.362740\pi\)
0.417974 + 0.908459i \(0.362740\pi\)
\(938\) −33.2822 −1.08670
\(939\) 0 0
\(940\) 0 0
\(941\) −26.3029 −0.857450 −0.428725 0.903435i \(-0.641037\pi\)
−0.428725 + 0.903435i \(0.641037\pi\)
\(942\) 0 0
\(943\) 18.1627 0.591458
\(944\) 19.2950 0.627999
\(945\) 0 0
\(946\) 50.5958 1.64501
\(947\) −47.1292 −1.53149 −0.765746 0.643143i \(-0.777630\pi\)
−0.765746 + 0.643143i \(0.777630\pi\)
\(948\) 0 0
\(949\) −52.8022 −1.71403
\(950\) 0 0
\(951\) 0 0
\(952\) −29.9204 −0.969726
\(953\) 39.0091 1.26363 0.631814 0.775120i \(-0.282311\pi\)
0.631814 + 0.775120i \(0.282311\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −30.3904 −0.982896
\(957\) 0 0
\(958\) 33.2375 1.07385
\(959\) −4.93731 −0.159434
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −48.9201 −1.57725
\(963\) 0 0
\(964\) 7.75801 0.249869
\(965\) 0 0
\(966\) 0 0
\(967\) 61.6585 1.98280 0.991401 0.130857i \(-0.0417730\pi\)
0.991401 + 0.130857i \(0.0417730\pi\)
\(968\) 2.69093 0.0864898
\(969\) 0 0
\(970\) 0 0
\(971\) 39.4375 1.26561 0.632804 0.774312i \(-0.281904\pi\)
0.632804 + 0.774312i \(0.281904\pi\)
\(972\) 0 0
\(973\) −56.2212 −1.80237
\(974\) −29.6109 −0.948794
\(975\) 0 0
\(976\) 71.0033 2.27276
\(977\) 40.7549 1.30387 0.651933 0.758277i \(-0.273958\pi\)
0.651933 + 0.758277i \(0.273958\pi\)
\(978\) 0 0
\(979\) 13.5111 0.431817
\(980\) 0 0
\(981\) 0 0
\(982\) 62.1927 1.98465
\(983\) 31.8349 1.01538 0.507688 0.861541i \(-0.330500\pi\)
0.507688 + 0.861541i \(0.330500\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −36.9653 −1.17722
\(987\) 0 0
\(988\) −35.3262 −1.12388
\(989\) 77.6262 2.46837
\(990\) 0 0
\(991\) −14.9055 −0.473490 −0.236745 0.971572i \(-0.576081\pi\)
−0.236745 + 0.971572i \(0.576081\pi\)
\(992\) 6.14544 0.195118
\(993\) 0 0
\(994\) −34.1194 −1.08220
\(995\) 0 0
\(996\) 0 0
\(997\) −26.6001 −0.842435 −0.421217 0.906960i \(-0.638397\pi\)
−0.421217 + 0.906960i \(0.638397\pi\)
\(998\) 12.4424 0.393856
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.bo.1.3 4
3.2 odd 2 2325.2.a.v.1.2 4
5.4 even 2 1395.2.a.k.1.2 4
15.2 even 4 2325.2.c.p.1024.3 8
15.8 even 4 2325.2.c.p.1024.6 8
15.14 odd 2 465.2.a.h.1.3 4
60.59 even 2 7440.2.a.bz.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.h.1.3 4 15.14 odd 2
1395.2.a.k.1.2 4 5.4 even 2
2325.2.a.v.1.2 4 3.2 odd 2
2325.2.c.p.1024.3 8 15.2 even 4
2325.2.c.p.1024.6 8 15.8 even 4
6975.2.a.bo.1.3 4 1.1 even 1 trivial
7440.2.a.bz.1.1 4 60.59 even 2