Properties

Label 465.2.a.h
Level $465$
Weight $2$
Character orbit 465.a
Self dual yes
Analytic conductor $3.713$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(1,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{3} + ( - \beta_1 + 2) q^{4} + q^{5} + \beta_{2} q^{6} + (\beta_{3} - \beta_1 + 1) q^{7} + ( - \beta_{3} - 2 \beta_{2} - 1) q^{8} + q^{9} - \beta_{2} q^{10} + ( - \beta_{3} + \beta_{2} + \beta_1 + 2) q^{11}+ \cdots + ( - \beta_{3} + \beta_{2} + \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 8 q^{4} + 4 q^{5} - 2 q^{6} + 4 q^{7} + 4 q^{9} + 2 q^{10} + 6 q^{11} - 8 q^{12} + 2 q^{13} + 4 q^{14} - 4 q^{15} + 12 q^{16} - 10 q^{17} + 2 q^{18} + 16 q^{19} + 8 q^{20} - 4 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} - \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} - 3\beta_{2} + 5\beta _1 + 2 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.89122
2.27841
−0.704624
1.31743
−2.46793 −1.00000 4.09069 1.00000 2.46793 2.31451 −5.15968 1.00000 −2.46793
1.2 0.0872450 −1.00000 −1.99239 1.00000 −0.0872450 −3.46958 −0.348316 1.00000 0.0872450
1.3 1.79888 −1.00000 1.23597 1.00000 −1.79888 4.20813 −1.37440 1.00000 1.79888
1.4 2.58181 −1.00000 4.66573 1.00000 −2.58181 0.946946 6.88240 1.00000 2.58181
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.a.h 4
3.b odd 2 1 1395.2.a.k 4
4.b odd 2 1 7440.2.a.bz 4
5.b even 2 1 2325.2.a.v 4
5.c odd 4 2 2325.2.c.p 8
15.d odd 2 1 6975.2.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.a.h 4 1.a even 1 1 trivial
1395.2.a.k 4 3.b odd 2 1
2325.2.a.v 4 5.b even 2 1
2325.2.c.p 8 5.c odd 4 2
6975.2.a.bo 4 15.d odd 2 1
7440.2.a.bz 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 2T_{2}^{3} - 6T_{2}^{2} + 12T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(465))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{4} - 6 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{4} + 10 T^{3} + \cdots - 136 \) Copy content Toggle raw display
$19$ \( (T - 4)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 2048 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 388 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots - 704 \) Copy content Toggle raw display
$43$ \( T^{4} - 2 T^{3} + \cdots + 928 \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots - 736 \) Copy content Toggle raw display
$53$ \( T^{4} + 6 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots - 808 \) Copy content Toggle raw display
$61$ \( T^{4} - 168 T^{2} + \cdots + 848 \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$71$ \( T^{4} - 22 T^{3} + \cdots - 1808 \) Copy content Toggle raw display
$73$ \( T^{4} + 32 T^{3} + \cdots + 788 \) Copy content Toggle raw display
$79$ \( T^{4} - 24 T^{3} + \cdots - 24064 \) Copy content Toggle raw display
$83$ \( T^{4} + 6 T^{3} + \cdots - 464 \) Copy content Toggle raw display
$89$ \( T^{4} + 14 T^{3} + \cdots - 92 \) Copy content Toggle raw display
$97$ \( T^{4} + 14 T^{3} + \cdots - 64 \) Copy content Toggle raw display
show more
show less