Properties

Label 462.2.j.c
Level $462$
Weight $2$
Character orbit 462.j
Analytic conductor $3.689$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{2} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{5} + \zeta_{10} q^{6} + \zeta_{10}^{3} q^{7} -\zeta_{10}^{2} q^{8} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} + \zeta_{10}^{2} q^{3} -\zeta_{10}^{3} q^{4} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{5} + \zeta_{10} q^{6} + \zeta_{10}^{3} q^{7} -\zeta_{10}^{2} q^{8} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{9} + ( 3 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{10} + ( 1 - \zeta_{10} + 3 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{11} + q^{12} + ( -2 + 2 \zeta_{10}^{3} ) q^{13} + \zeta_{10}^{2} q^{14} + ( -1 + \zeta_{10} + 3 \zeta_{10}^{3} ) q^{15} -\zeta_{10} q^{16} + ( 1 - 7 \zeta_{10} + \zeta_{10}^{2} ) q^{17} + \zeta_{10}^{3} q^{18} + ( -5 \zeta_{10} + \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{19} + ( 3 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{20} - q^{21} + ( 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{22} + ( 2 + 7 \zeta_{10}^{2} - 7 \zeta_{10}^{3} ) q^{23} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{24} + ( 5 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{25} + ( -2 + 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{26} -\zeta_{10} q^{27} + \zeta_{10} q^{28} + ( 2 - 2 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{29} + ( \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{30} + ( 7 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 7 \zeta_{10}^{3} ) q^{31} - q^{32} + ( -4 + 3 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{33} + ( -6 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{34} + ( -3 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{35} + \zeta_{10}^{2} q^{36} + ( 1 - \zeta_{10} + 7 \zeta_{10}^{3} ) q^{37} + ( -5 + \zeta_{10} - 5 \zeta_{10}^{2} ) q^{38} + ( -2 - 2 \zeta_{10}^{2} ) q^{39} + ( 1 - \zeta_{10} - 3 \zeta_{10}^{3} ) q^{40} + ( -3 \zeta_{10} + 10 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{41} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{42} + ( 2 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{43} + ( 2 + 2 \zeta_{10} - \zeta_{10}^{2} ) q^{44} + ( -3 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{45} + ( 2 + 5 \zeta_{10} - 5 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{46} + ( -10 \zeta_{10} + 4 \zeta_{10}^{2} - 10 \zeta_{10}^{3} ) q^{47} -\zeta_{10}^{3} q^{48} -\zeta_{10} q^{49} + ( 5 + 5 \zeta_{10}^{2} ) q^{50} + ( -1 + \zeta_{10} - 6 \zeta_{10}^{3} ) q^{51} + ( 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{52} + ( 4 + 4 \zeta_{10} - 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{53} - q^{54} + ( -5 + 6 \zeta_{10} - 3 \zeta_{10}^{2} + 11 \zeta_{10}^{3} ) q^{55} + q^{56} + ( 4 + \zeta_{10} - \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{57} + ( -2 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{58} + ( 8 - 8 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{59} + ( 1 + 2 \zeta_{10} + \zeta_{10}^{2} ) q^{60} + ( -2 + 8 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{61} + ( 5 - 5 \zeta_{10} - 7 \zeta_{10}^{3} ) q^{62} -\zeta_{10}^{2} q^{63} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{64} + ( -8 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{65} + ( -1 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{66} + ( 2 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{67} + ( -6 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{68} + ( 7 \zeta_{10} - 5 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{69} + ( -1 + \zeta_{10} + 3 \zeta_{10}^{3} ) q^{70} + ( -4 - 4 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{71} + \zeta_{10} q^{72} + 8 \zeta_{10}^{3} q^{73} + ( -\zeta_{10} + 8 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{74} + ( -5 + 5 \zeta_{10}^{3} ) q^{75} + ( -4 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{76} + ( -2 - 2 \zeta_{10} + \zeta_{10}^{2} ) q^{77} + ( -2 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{78} + ( -2 - 4 \zeta_{10} + 4 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{79} + ( -\zeta_{10} - 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{80} -\zeta_{10}^{3} q^{81} + ( -3 + 10 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{82} + ( 2 - 14 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{83} + \zeta_{10}^{3} q^{84} + ( -4 \zeta_{10} - 13 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{85} + ( 2 - 4 \zeta_{10} + 4 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{86} + ( 2 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{87} + ( 4 - 3 \zeta_{10} + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{88} + ( -10 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{89} + ( -3 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{90} + ( -2 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{91} + ( 7 - 7 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{92} + ( 5 + 2 \zeta_{10} + 5 \zeta_{10}^{2} ) q^{93} + ( -10 + 4 \zeta_{10} - 10 \zeta_{10}^{2} ) q^{94} + ( 14 - 14 \zeta_{10} - 17 \zeta_{10}^{3} ) q^{95} -\zeta_{10}^{2} q^{96} + ( -8 + 10 \zeta_{10} - 10 \zeta_{10}^{2} + 8 \zeta_{10}^{3} ) q^{97} - q^{98} + ( -2 \zeta_{10} - 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + q^{2} - q^{3} - q^{4} + 5q^{5} + q^{6} + q^{7} + q^{8} - q^{9} + O(q^{10}) \) \( 4q + q^{2} - q^{3} - q^{4} + 5q^{5} + q^{6} + q^{7} + q^{8} - q^{9} + 10q^{10} + q^{11} + 4q^{12} - 6q^{13} - q^{14} - q^{16} - 4q^{17} + q^{18} - 11q^{19} + 5q^{20} - 4q^{21} - q^{22} - 6q^{23} + q^{24} + 10q^{25} - 4q^{26} - q^{27} + q^{28} + 4q^{29} + 17q^{31} - 4q^{32} - 9q^{33} - 26q^{34} - 5q^{35} - q^{36} + 10q^{37} - 14q^{38} - 6q^{39} - 16q^{41} - q^{42} + 12q^{43} + 11q^{44} - 10q^{45} + 16q^{46} - 24q^{47} - q^{48} - q^{49} + 15q^{50} - 9q^{51} + 4q^{52} + 20q^{53} - 4q^{54} + 4q^{56} + 14q^{57} - 4q^{58} + 20q^{59} + 5q^{60} + 2q^{61} + 8q^{62} + q^{63} - q^{64} - 20q^{65} + 4q^{66} + 4q^{67} - 4q^{68} + 19q^{69} - 16q^{71} + q^{72} + 8q^{73} - 10q^{74} - 15q^{75} - 6q^{76} - 11q^{77} - 4q^{78} - 14q^{79} - q^{81} + q^{82} - 8q^{83} + q^{84} + 5q^{85} - 2q^{86} + 4q^{87} + 9q^{88} - 34q^{89} - 5q^{90} - 4q^{91} + 19q^{92} + 17q^{93} - 26q^{94} + 25q^{95} + q^{96} - 4q^{97} - 4q^{98} + q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 + 0.587785i 0.309017 0.951057i 0.309017 + 0.951057i 2.92705 2.12663i 0.809017 0.587785i −0.309017 0.951057i −0.309017 + 0.951057i −0.809017 0.587785i 3.61803
295.1 −0.309017 + 0.951057i −0.809017 + 0.587785i −0.809017 0.587785i −0.427051 1.31433i −0.309017 0.951057i 0.809017 + 0.587785i 0.809017 0.587785i 0.309017 0.951057i 1.38197
379.1 −0.309017 0.951057i −0.809017 0.587785i −0.809017 + 0.587785i −0.427051 + 1.31433i −0.309017 + 0.951057i 0.809017 0.587785i 0.809017 + 0.587785i 0.309017 + 0.951057i 1.38197
421.1 0.809017 0.587785i 0.309017 + 0.951057i 0.309017 0.951057i 2.92705 + 2.12663i 0.809017 + 0.587785i −0.309017 + 0.951057i −0.309017 0.951057i −0.809017 + 0.587785i 3.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 462.2.j.c 4
11.c even 5 1 inner 462.2.j.c 4
11.c even 5 1 5082.2.a.bh 2
11.d odd 10 1 5082.2.a.br 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.j.c 4 1.a even 1 1 trivial
462.2.j.c 4 11.c even 5 1 inner
5082.2.a.bh 2 11.c even 5 1
5082.2.a.br 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 5 T_{5}^{3} + 10 T_{5}^{2} + 25 \) acting on \(S_{2}^{\mathrm{new}}(462, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$3$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$5$ \( 25 + 10 T^{2} - 5 T^{3} + T^{4} \)
$7$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$11$ \( 121 - 11 T + 21 T^{2} - T^{3} + T^{4} \)
$13$ \( 16 + 16 T + 16 T^{2} + 6 T^{3} + T^{4} \)
$17$ \( 1681 + 369 T + 46 T^{2} + 4 T^{3} + T^{4} \)
$19$ \( 841 + 406 T + 96 T^{2} + 11 T^{3} + T^{4} \)
$23$ \( ( -59 + 3 T + T^{2} )^{2} \)
$29$ \( 16 - 24 T + 16 T^{2} - 4 T^{3} + T^{4} \)
$31$ \( 121 - 88 T + 114 T^{2} - 17 T^{3} + T^{4} \)
$37$ \( 3025 - 275 T + 60 T^{2} - 10 T^{3} + T^{4} \)
$41$ \( 3721 + 61 T + 106 T^{2} + 16 T^{3} + T^{4} \)
$43$ \( ( 4 - 6 T + T^{2} )^{2} \)
$47$ \( 15376 + 3224 T + 376 T^{2} + 24 T^{3} + T^{4} \)
$53$ \( 6400 - 1600 T + 240 T^{2} - 20 T^{3} + T^{4} \)
$59$ \( 6400 - 1600 T + 240 T^{2} - 20 T^{3} + T^{4} \)
$61$ \( 1936 - 528 T + 64 T^{2} - 2 T^{3} + T^{4} \)
$67$ \( ( -4 - 2 T + T^{2} )^{2} \)
$71$ \( 256 - 64 T + 96 T^{2} + 16 T^{3} + T^{4} \)
$73$ \( 4096 - 512 T + 64 T^{2} - 8 T^{3} + T^{4} \)
$79$ \( 1936 + 704 T + 136 T^{2} + 14 T^{3} + T^{4} \)
$83$ \( 26896 + 2952 T + 184 T^{2} + 8 T^{3} + T^{4} \)
$89$ \( ( 61 + 17 T + T^{2} )^{2} \)
$97$ \( 5776 + 1064 T + 96 T^{2} + 4 T^{3} + T^{4} \)
show more
show less