Properties

Label 462.2
Level 462
Weight 2
Dimension 1353
Nonzero newspaces 16
Newform subspaces 61
Sturm bound 23040
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 61 \)
Sturm bound: \(23040\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(462))\).

Total New Old
Modular forms 6240 1353 4887
Cusp forms 5281 1353 3928
Eisenstein series 959 0 959

Trace form

\( 1353 q - 3 q^{2} + q^{3} + 5 q^{4} + 6 q^{5} + 19 q^{6} + 37 q^{7} - 3 q^{8} + 53 q^{9} + 46 q^{10} + 41 q^{11} + 21 q^{12} + 30 q^{13} + 5 q^{14} + 42 q^{15} - 3 q^{16} + 50 q^{17} - 17 q^{18} + 32 q^{19}+ \cdots - 83 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(462))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
462.2.a \(\chi_{462}(1, \cdot)\) 462.2.a.a 1 1
462.2.a.b 1
462.2.a.c 1
462.2.a.d 1
462.2.a.e 1
462.2.a.f 1
462.2.a.g 1
462.2.a.h 2
462.2.c \(\chi_{462}(197, \cdot)\) 462.2.c.a 12 1
462.2.c.b 12
462.2.e \(\chi_{462}(307, \cdot)\) 462.2.e.a 8 1
462.2.e.b 8
462.2.g \(\chi_{462}(419, \cdot)\) 462.2.g.a 4 1
462.2.g.b 4
462.2.g.c 4
462.2.g.d 4
462.2.g.e 8
462.2.i \(\chi_{462}(67, \cdot)\) 462.2.i.a 2 2
462.2.i.b 2
462.2.i.c 2
462.2.i.d 2
462.2.i.e 4
462.2.i.f 6
462.2.i.g 6
462.2.j \(\chi_{462}(169, \cdot)\) 462.2.j.a 4 4
462.2.j.b 4
462.2.j.c 4
462.2.j.d 4
462.2.j.e 8
462.2.j.f 8
462.2.j.g 8
462.2.j.h 8
462.2.k \(\chi_{462}(89, \cdot)\) 462.2.k.a 4 2
462.2.k.b 4
462.2.k.c 4
462.2.k.d 8
462.2.k.e 8
462.2.k.f 8
462.2.k.g 20
462.2.n \(\chi_{462}(65, \cdot)\) 462.2.n.a 4 2
462.2.n.b 4
462.2.n.c 4
462.2.n.d 4
462.2.n.e 24
462.2.n.f 24
462.2.p \(\chi_{462}(241, \cdot)\) 462.2.p.a 16 2
462.2.p.b 16
462.2.s \(\chi_{462}(125, \cdot)\) 462.2.s.a 128 4
462.2.u \(\chi_{462}(13, \cdot)\) 462.2.u.a 32 4
462.2.u.b 32
462.2.w \(\chi_{462}(29, \cdot)\) 462.2.w.a 48 4
462.2.w.b 48
462.2.y \(\chi_{462}(25, \cdot)\) 462.2.y.a 24 8
462.2.y.b 24
462.2.y.c 40
462.2.y.d 40
462.2.ba \(\chi_{462}(19, \cdot)\) 462.2.ba.a 64 8
462.2.ba.b 64
462.2.bc \(\chi_{462}(95, \cdot)\) 462.2.bc.a 128 8
462.2.bc.b 128
462.2.bf \(\chi_{462}(5, \cdot)\) 462.2.bf.a 256 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(462))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(462)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(231))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(462))\)\(^{\oplus 1}\)