Properties

Label 462.2.j.c.169.1
Level $462$
Weight $2$
Character 462.169
Analytic conductor $3.689$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 169.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 462.169
Dual form 462.2.j.c.421.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(2.92705 - 2.12663i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(2.92705 - 2.12663i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +3.61803 q^{10} +(0.809017 - 3.21644i) q^{11} +1.00000 q^{12} +(-2.61803 - 1.90211i) q^{13} +(0.309017 - 0.951057i) q^{14} +(-1.11803 - 3.44095i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-4.35410 + 3.16344i) q^{17} +(-0.309017 - 0.951057i) q^{18} +(-2.19098 + 6.74315i) q^{19} +(2.92705 + 2.12663i) q^{20} -1.00000 q^{21} +(2.54508 - 2.12663i) q^{22} +6.32624 q^{23} +(0.809017 + 0.587785i) q^{24} +(2.50000 - 7.69421i) q^{25} +(-1.00000 - 3.07768i) q^{26} +(-0.809017 + 0.587785i) q^{27} +(0.809017 - 0.587785i) q^{28} +(1.00000 + 3.07768i) q^{29} +(1.11803 - 3.44095i) q^{30} +(8.16312 + 5.93085i) q^{31} -1.00000 q^{32} +(-2.80902 - 1.76336i) q^{33} -5.38197 q^{34} +(-2.92705 - 2.12663i) q^{35} +(0.309017 - 0.951057i) q^{36} +(-1.97214 - 6.06961i) q^{37} +(-5.73607 + 4.16750i) q^{38} +(-2.61803 + 1.90211i) q^{39} +(1.11803 + 3.44095i) q^{40} +(1.59017 - 4.89404i) q^{41} +(-0.809017 - 0.587785i) q^{42} +0.763932 q^{43} +(3.30902 - 0.224514i) q^{44} -3.61803 q^{45} +(5.11803 + 3.71847i) q^{46} +(-3.76393 + 11.5842i) q^{47} +(0.309017 + 0.951057i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(6.54508 - 4.75528i) q^{50} +(1.66312 + 5.11855i) q^{51} +(1.00000 - 3.07768i) q^{52} +(7.23607 + 5.25731i) q^{53} -1.00000 q^{54} +(-4.47214 - 11.1352i) q^{55} +1.00000 q^{56} +(5.73607 + 4.16750i) q^{57} +(-1.00000 + 3.07768i) q^{58} +(2.76393 + 8.50651i) q^{59} +(2.92705 - 2.12663i) q^{60} +(3.85410 - 2.80017i) q^{61} +(3.11803 + 9.59632i) q^{62} +(-0.309017 + 0.951057i) q^{63} +(-0.809017 - 0.587785i) q^{64} -11.7082 q^{65} +(-1.23607 - 3.07768i) q^{66} +3.23607 q^{67} +(-4.35410 - 3.16344i) q^{68} +(1.95492 - 6.01661i) q^{69} +(-1.11803 - 3.44095i) q^{70} +(-8.47214 + 6.15537i) q^{71} +(0.809017 - 0.587785i) q^{72} +(-2.47214 - 7.60845i) q^{73} +(1.97214 - 6.06961i) q^{74} +(-6.54508 - 4.75528i) q^{75} -7.09017 q^{76} +(-3.30902 + 0.224514i) q^{77} -3.23607 q^{78} +(-4.61803 - 3.35520i) q^{79} +(-1.11803 + 3.44095i) q^{80} +(0.309017 + 0.951057i) q^{81} +(4.16312 - 3.02468i) q^{82} +(-8.70820 + 6.32688i) q^{83} +(-0.309017 - 0.951057i) q^{84} +(-6.01722 + 18.5191i) q^{85} +(0.618034 + 0.449028i) q^{86} +3.23607 q^{87} +(2.80902 + 1.76336i) q^{88} -11.8541 q^{89} +(-2.92705 - 2.12663i) q^{90} +(-1.00000 + 3.07768i) q^{91} +(1.95492 + 6.01661i) q^{92} +(8.16312 - 5.93085i) q^{93} +(-9.85410 + 7.15942i) q^{94} +(7.92705 + 24.3970i) q^{95} +(-0.309017 + 0.951057i) q^{96} +(-5.47214 - 3.97574i) q^{97} -1.00000 q^{98} +(-2.54508 + 2.12663i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{3} - q^{4} + 5 q^{5} + q^{6} + q^{7} + q^{8} - q^{9} + O(q^{10}) \) \( 4 q + q^{2} - q^{3} - q^{4} + 5 q^{5} + q^{6} + q^{7} + q^{8} - q^{9} + 10 q^{10} + q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - q^{16} - 4 q^{17} + q^{18} - 11 q^{19} + 5 q^{20} - 4 q^{21} - q^{22} - 6 q^{23} + q^{24} + 10 q^{25} - 4 q^{26} - q^{27} + q^{28} + 4 q^{29} + 17 q^{31} - 4 q^{32} - 9 q^{33} - 26 q^{34} - 5 q^{35} - q^{36} + 10 q^{37} - 14 q^{38} - 6 q^{39} - 16 q^{41} - q^{42} + 12 q^{43} + 11 q^{44} - 10 q^{45} + 16 q^{46} - 24 q^{47} - q^{48} - q^{49} + 15 q^{50} - 9 q^{51} + 4 q^{52} + 20 q^{53} - 4 q^{54} + 4 q^{56} + 14 q^{57} - 4 q^{58} + 20 q^{59} + 5 q^{60} + 2 q^{61} + 8 q^{62} + q^{63} - q^{64} - 20 q^{65} + 4 q^{66} + 4 q^{67} - 4 q^{68} + 19 q^{69} - 16 q^{71} + q^{72} + 8 q^{73} - 10 q^{74} - 15 q^{75} - 6 q^{76} - 11 q^{77} - 4 q^{78} - 14 q^{79} - q^{81} + q^{82} - 8 q^{83} + q^{84} + 5 q^{85} - 2 q^{86} + 4 q^{87} + 9 q^{88} - 34 q^{89} - 5 q^{90} - 4 q^{91} + 19 q^{92} + 17 q^{93} - 26 q^{94} + 25 q^{95} + q^{96} - 4 q^{97} - 4 q^{98} + q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 2.92705 2.12663i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) −0.309017 0.951057i −0.116797 0.359466i
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 3.61803 1.14412
\(11\) 0.809017 3.21644i 0.243928 0.969793i
\(12\) 1.00000 0.288675
\(13\) −2.61803 1.90211i −0.726112 0.527551i 0.162219 0.986755i \(-0.448135\pi\)
−0.888331 + 0.459204i \(0.848135\pi\)
\(14\) 0.309017 0.951057i 0.0825883 0.254181i
\(15\) −1.11803 3.44095i −0.288675 0.888451i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −4.35410 + 3.16344i −1.05602 + 0.767247i −0.973349 0.229330i \(-0.926347\pi\)
−0.0826760 + 0.996576i \(0.526347\pi\)
\(18\) −0.309017 0.951057i −0.0728360 0.224166i
\(19\) −2.19098 + 6.74315i −0.502646 + 1.54699i 0.302046 + 0.953293i \(0.402330\pi\)
−0.804692 + 0.593692i \(0.797670\pi\)
\(20\) 2.92705 + 2.12663i 0.654508 + 0.475528i
\(21\) −1.00000 −0.218218
\(22\) 2.54508 2.12663i 0.542614 0.453398i
\(23\) 6.32624 1.31911 0.659556 0.751656i \(-0.270744\pi\)
0.659556 + 0.751656i \(0.270744\pi\)
\(24\) 0.809017 + 0.587785i 0.165140 + 0.119981i
\(25\) 2.50000 7.69421i 0.500000 1.53884i
\(26\) −1.00000 3.07768i −0.196116 0.603583i
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 0.809017 0.587785i 0.152890 0.111081i
\(29\) 1.00000 + 3.07768i 0.185695 + 0.571511i 0.999960 0.00898281i \(-0.00285936\pi\)
−0.814264 + 0.580494i \(0.802859\pi\)
\(30\) 1.11803 3.44095i 0.204124 0.628230i
\(31\) 8.16312 + 5.93085i 1.46614 + 1.06521i 0.981710 + 0.190382i \(0.0609728\pi\)
0.484429 + 0.874830i \(0.339027\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.80902 1.76336i −0.488987 0.306961i
\(34\) −5.38197 −0.923000
\(35\) −2.92705 2.12663i −0.494762 0.359466i
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −1.97214 6.06961i −0.324217 0.997838i −0.971793 0.235837i \(-0.924217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(38\) −5.73607 + 4.16750i −0.930513 + 0.676057i
\(39\) −2.61803 + 1.90211i −0.419221 + 0.304582i
\(40\) 1.11803 + 3.44095i 0.176777 + 0.544063i
\(41\) 1.59017 4.89404i 0.248343 0.764321i −0.746726 0.665132i \(-0.768375\pi\)
0.995069 0.0991886i \(-0.0316247\pi\)
\(42\) −0.809017 0.587785i −0.124834 0.0906972i
\(43\) 0.763932 0.116499 0.0582493 0.998302i \(-0.481448\pi\)
0.0582493 + 0.998302i \(0.481448\pi\)
\(44\) 3.30902 0.224514i 0.498853 0.0338468i
\(45\) −3.61803 −0.539345
\(46\) 5.11803 + 3.71847i 0.754613 + 0.548258i
\(47\) −3.76393 + 11.5842i −0.549026 + 1.68973i 0.162194 + 0.986759i \(0.448143\pi\)
−0.711220 + 0.702969i \(0.751857\pi\)
\(48\) 0.309017 + 0.951057i 0.0446028 + 0.137273i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) 6.54508 4.75528i 0.925615 0.672499i
\(51\) 1.66312 + 5.11855i 0.232883 + 0.716741i
\(52\) 1.00000 3.07768i 0.138675 0.426798i
\(53\) 7.23607 + 5.25731i 0.993950 + 0.722147i 0.960783 0.277303i \(-0.0894404\pi\)
0.0331677 + 0.999450i \(0.489440\pi\)
\(54\) −1.00000 −0.136083
\(55\) −4.47214 11.1352i −0.603023 1.50147i
\(56\) 1.00000 0.133631
\(57\) 5.73607 + 4.16750i 0.759761 + 0.551999i
\(58\) −1.00000 + 3.07768i −0.131306 + 0.404120i
\(59\) 2.76393 + 8.50651i 0.359833 + 1.10745i 0.953154 + 0.302487i \(0.0978167\pi\)
−0.593320 + 0.804966i \(0.702183\pi\)
\(60\) 2.92705 2.12663i 0.377881 0.274546i
\(61\) 3.85410 2.80017i 0.493467 0.358525i −0.313049 0.949737i \(-0.601350\pi\)
0.806516 + 0.591212i \(0.201350\pi\)
\(62\) 3.11803 + 9.59632i 0.395991 + 1.21873i
\(63\) −0.309017 + 0.951057i −0.0389325 + 0.119822i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −11.7082 −1.45222
\(66\) −1.23607 3.07768i −0.152149 0.378837i
\(67\) 3.23607 0.395349 0.197674 0.980268i \(-0.436661\pi\)
0.197674 + 0.980268i \(0.436661\pi\)
\(68\) −4.35410 3.16344i −0.528012 0.383623i
\(69\) 1.95492 6.01661i 0.235344 0.724315i
\(70\) −1.11803 3.44095i −0.133631 0.411273i
\(71\) −8.47214 + 6.15537i −1.00546 + 0.730508i −0.963251 0.268601i \(-0.913439\pi\)
−0.0422061 + 0.999109i \(0.513439\pi\)
\(72\) 0.809017 0.587785i 0.0953436 0.0692712i
\(73\) −2.47214 7.60845i −0.289342 0.890502i −0.985064 0.172191i \(-0.944915\pi\)
0.695722 0.718311i \(-0.255085\pi\)
\(74\) 1.97214 6.06961i 0.229256 0.705578i
\(75\) −6.54508 4.75528i −0.755761 0.549093i
\(76\) −7.09017 −0.813298
\(77\) −3.30902 + 0.224514i −0.377097 + 0.0255857i
\(78\) −3.23607 −0.366413
\(79\) −4.61803 3.35520i −0.519569 0.377489i 0.296872 0.954917i \(-0.404056\pi\)
−0.816442 + 0.577428i \(0.804056\pi\)
\(80\) −1.11803 + 3.44095i −0.125000 + 0.384710i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 4.16312 3.02468i 0.459740 0.334020i
\(83\) −8.70820 + 6.32688i −0.955850 + 0.694465i −0.952183 0.305528i \(-0.901167\pi\)
−0.00366644 + 0.999993i \(0.501167\pi\)
\(84\) −0.309017 0.951057i −0.0337165 0.103769i
\(85\) −6.01722 + 18.5191i −0.652659 + 2.00868i
\(86\) 0.618034 + 0.449028i 0.0666443 + 0.0484199i
\(87\) 3.23607 0.346943
\(88\) 2.80902 + 1.76336i 0.299442 + 0.187974i
\(89\) −11.8541 −1.25653 −0.628266 0.777998i \(-0.716235\pi\)
−0.628266 + 0.777998i \(0.716235\pi\)
\(90\) −2.92705 2.12663i −0.308538 0.224166i
\(91\) −1.00000 + 3.07768i −0.104828 + 0.322629i
\(92\) 1.95492 + 6.01661i 0.203814 + 0.627275i
\(93\) 8.16312 5.93085i 0.846476 0.615001i
\(94\) −9.85410 + 7.15942i −1.01637 + 0.738438i
\(95\) 7.92705 + 24.3970i 0.813298 + 2.50307i
\(96\) −0.309017 + 0.951057i −0.0315389 + 0.0970668i
\(97\) −5.47214 3.97574i −0.555611 0.403675i 0.274239 0.961662i \(-0.411574\pi\)
−0.829850 + 0.557986i \(0.811574\pi\)
\(98\) −1.00000 −0.101015
\(99\) −2.54508 + 2.12663i −0.255791 + 0.213734i
\(100\) 8.09017 0.809017
\(101\) −4.16312 3.02468i −0.414246 0.300967i 0.361073 0.932538i \(-0.382411\pi\)
−0.775318 + 0.631570i \(0.782411\pi\)
\(102\) −1.66312 + 5.11855i −0.164673 + 0.506812i
\(103\) −5.80902 17.8783i −0.572379 1.76160i −0.644934 0.764238i \(-0.723115\pi\)
0.0725544 0.997364i \(-0.476885\pi\)
\(104\) 2.61803 1.90211i 0.256719 0.186518i
\(105\) −2.92705 + 2.12663i −0.285651 + 0.207538i
\(106\) 2.76393 + 8.50651i 0.268457 + 0.826225i
\(107\) 3.10081 9.54332i 0.299767 0.922588i −0.681811 0.731528i \(-0.738808\pi\)
0.981578 0.191060i \(-0.0611924\pi\)
\(108\) −0.809017 0.587785i −0.0778477 0.0565597i
\(109\) 2.38197 0.228151 0.114075 0.993472i \(-0.463609\pi\)
0.114075 + 0.993472i \(0.463609\pi\)
\(110\) 2.92705 11.6372i 0.279083 1.10956i
\(111\) −6.38197 −0.605749
\(112\) 0.809017 + 0.587785i 0.0764449 + 0.0555405i
\(113\) 0.763932 2.35114i 0.0718647 0.221177i −0.908673 0.417509i \(-0.862903\pi\)
0.980537 + 0.196332i \(0.0629032\pi\)
\(114\) 2.19098 + 6.74315i 0.205204 + 0.631554i
\(115\) 18.5172 13.4535i 1.72674 1.25455i
\(116\) −2.61803 + 1.90211i −0.243078 + 0.176607i
\(117\) 1.00000 + 3.07768i 0.0924500 + 0.284532i
\(118\) −2.76393 + 8.50651i −0.254441 + 0.783088i
\(119\) 4.35410 + 3.16344i 0.399140 + 0.289992i
\(120\) 3.61803 0.330280
\(121\) −9.69098 5.20431i −0.880998 0.473119i
\(122\) 4.76393 0.431306
\(123\) −4.16312 3.02468i −0.375376 0.272726i
\(124\) −3.11803 + 9.59632i −0.280008 + 0.861775i
\(125\) −3.45492 10.6331i −0.309017 0.951057i
\(126\) −0.809017 + 0.587785i −0.0720730 + 0.0523641i
\(127\) −5.47214 + 3.97574i −0.485574 + 0.352790i −0.803480 0.595332i \(-0.797020\pi\)
0.317906 + 0.948122i \(0.397020\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) 0.236068 0.726543i 0.0207846 0.0639685i
\(130\) −9.47214 6.88191i −0.830761 0.603583i
\(131\) 10.7639 0.940449 0.470225 0.882547i \(-0.344173\pi\)
0.470225 + 0.882547i \(0.344173\pi\)
\(132\) 0.809017 3.21644i 0.0704159 0.279955i
\(133\) 7.09017 0.614796
\(134\) 2.61803 + 1.90211i 0.226164 + 0.164318i
\(135\) −1.11803 + 3.44095i −0.0962250 + 0.296150i
\(136\) −1.66312 5.11855i −0.142611 0.438912i
\(137\) 2.00000 1.45309i 0.170872 0.124145i −0.499063 0.866566i \(-0.666322\pi\)
0.669934 + 0.742420i \(0.266322\pi\)
\(138\) 5.11803 3.71847i 0.435676 0.316537i
\(139\) 3.13525 + 9.64932i 0.265929 + 0.818445i 0.991478 + 0.130274i \(0.0415858\pi\)
−0.725549 + 0.688170i \(0.758414\pi\)
\(140\) 1.11803 3.44095i 0.0944911 0.290814i
\(141\) 9.85410 + 7.15942i 0.829865 + 0.602932i
\(142\) −10.4721 −0.878802
\(143\) −8.23607 + 6.88191i −0.688735 + 0.575494i
\(144\) 1.00000 0.0833333
\(145\) 9.47214 + 6.88191i 0.786618 + 0.571511i
\(146\) 2.47214 7.60845i 0.204595 0.629680i
\(147\) 0.309017 + 0.951057i 0.0254873 + 0.0784418i
\(148\) 5.16312 3.75123i 0.424406 0.308349i
\(149\) −6.00000 + 4.35926i −0.491539 + 0.357124i −0.805776 0.592221i \(-0.798251\pi\)
0.314237 + 0.949345i \(0.398251\pi\)
\(150\) −2.50000 7.69421i −0.204124 0.628230i
\(151\) 2.76393 8.50651i 0.224926 0.692250i −0.773374 0.633951i \(-0.781432\pi\)
0.998299 0.0582992i \(-0.0185677\pi\)
\(152\) −5.73607 4.16750i −0.465257 0.338029i
\(153\) 5.38197 0.435106
\(154\) −2.80902 1.76336i −0.226357 0.142095i
\(155\) 36.5066 2.93228
\(156\) −2.61803 1.90211i −0.209610 0.152291i
\(157\) −3.00000 + 9.23305i −0.239426 + 0.736878i 0.757077 + 0.653325i \(0.226627\pi\)
−0.996503 + 0.0835524i \(0.973373\pi\)
\(158\) −1.76393 5.42882i −0.140331 0.431894i
\(159\) 7.23607 5.25731i 0.573858 0.416932i
\(160\) −2.92705 + 2.12663i −0.231404 + 0.168125i
\(161\) −1.95492 6.01661i −0.154069 0.474175i
\(162\) −0.309017 + 0.951057i −0.0242787 + 0.0747221i
\(163\) −9.32624 6.77591i −0.730487 0.530730i 0.159230 0.987241i \(-0.449099\pi\)
−0.889718 + 0.456511i \(0.849099\pi\)
\(164\) 5.14590 0.401827
\(165\) −11.9721 + 0.812299i −0.932030 + 0.0632374i
\(166\) −10.7639 −0.835443
\(167\) −13.3262 9.68208i −1.03122 0.749222i −0.0626637 0.998035i \(-0.519960\pi\)
−0.968552 + 0.248813i \(0.919960\pi\)
\(168\) 0.309017 0.951057i 0.0238412 0.0733756i
\(169\) −0.781153 2.40414i −0.0600887 0.184934i
\(170\) −15.7533 + 11.4454i −1.20822 + 0.877825i
\(171\) 5.73607 4.16750i 0.438648 0.318696i
\(172\) 0.236068 + 0.726543i 0.0180000 + 0.0553983i
\(173\) 0.0450850 0.138757i 0.00342775 0.0105495i −0.949328 0.314287i \(-0.898235\pi\)
0.952756 + 0.303737i \(0.0982346\pi\)
\(174\) 2.61803 + 1.90211i 0.198473 + 0.144199i
\(175\) −8.09017 −0.611559
\(176\) 1.23607 + 3.07768i 0.0931721 + 0.231989i
\(177\) 8.94427 0.672293
\(178\) −9.59017 6.96767i −0.718814 0.522249i
\(179\) 0.444272 1.36733i 0.0332064 0.102199i −0.933080 0.359670i \(-0.882889\pi\)
0.966286 + 0.257471i \(0.0828892\pi\)
\(180\) −1.11803 3.44095i −0.0833333 0.256474i
\(181\) −6.47214 + 4.70228i −0.481070 + 0.349518i −0.801740 0.597673i \(-0.796092\pi\)
0.320670 + 0.947191i \(0.396092\pi\)
\(182\) −2.61803 + 1.90211i −0.194062 + 0.140994i
\(183\) −1.47214 4.53077i −0.108823 0.334924i
\(184\) −1.95492 + 6.01661i −0.144118 + 0.443550i
\(185\) −18.6803 13.5721i −1.37341 0.997838i
\(186\) 10.0902 0.739847
\(187\) 6.65248 + 16.5640i 0.486477 + 1.21128i
\(188\) −12.1803 −0.888343
\(189\) 0.809017 + 0.587785i 0.0588473 + 0.0427551i
\(190\) −7.92705 + 24.3970i −0.575089 + 1.76994i
\(191\) −0.0278640 0.0857567i −0.00201617 0.00620514i 0.950043 0.312118i \(-0.101038\pi\)
−0.952060 + 0.305913i \(0.901038\pi\)
\(192\) −0.809017 + 0.587785i −0.0583858 + 0.0424197i
\(193\) −3.92705 + 2.85317i −0.282675 + 0.205376i −0.720083 0.693887i \(-0.755897\pi\)
0.437408 + 0.899263i \(0.355897\pi\)
\(194\) −2.09017 6.43288i −0.150065 0.461854i
\(195\) −3.61803 + 11.1352i −0.259093 + 0.797406i
\(196\) −0.809017 0.587785i −0.0577869 0.0419847i
\(197\) 23.2361 1.65550 0.827751 0.561096i \(-0.189620\pi\)
0.827751 + 0.561096i \(0.189620\pi\)
\(198\) −3.30902 + 0.224514i −0.235162 + 0.0159555i
\(199\) 25.2705 1.79138 0.895689 0.444680i \(-0.146683\pi\)
0.895689 + 0.444680i \(0.146683\pi\)
\(200\) 6.54508 + 4.75528i 0.462807 + 0.336249i
\(201\) 1.00000 3.07768i 0.0705346 0.217083i
\(202\) −1.59017 4.89404i −0.111884 0.344343i
\(203\) 2.61803 1.90211i 0.183750 0.133502i
\(204\) −4.35410 + 3.16344i −0.304848 + 0.221485i
\(205\) −5.75329 17.7068i −0.401827 1.23670i
\(206\) 5.80902 17.8783i 0.404733 1.24564i
\(207\) −5.11803 3.71847i −0.355728 0.258451i
\(208\) 3.23607 0.224381
\(209\) 19.9164 + 12.5025i 1.37765 + 0.864815i
\(210\) −3.61803 −0.249668
\(211\) −4.23607 3.07768i −0.291623 0.211876i 0.432348 0.901707i \(-0.357685\pi\)
−0.723971 + 0.689830i \(0.757685\pi\)
\(212\) −2.76393 + 8.50651i −0.189828 + 0.584229i
\(213\) 3.23607 + 9.95959i 0.221732 + 0.682420i
\(214\) 8.11803 5.89810i 0.554937 0.403186i
\(215\) 2.23607 1.62460i 0.152499 0.110797i
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) 3.11803 9.59632i 0.211666 0.651441i
\(218\) 1.92705 + 1.40008i 0.130516 + 0.0948257i
\(219\) −8.00000 −0.540590
\(220\) 9.20820 7.69421i 0.620817 0.518743i
\(221\) 17.4164 1.17155
\(222\) −5.16312 3.75123i −0.346526 0.251766i
\(223\) 3.04508 9.37181i 0.203914 0.627583i −0.795842 0.605504i \(-0.792972\pi\)
0.999756 0.0220787i \(-0.00702843\pi\)
\(224\) 0.309017 + 0.951057i 0.0206471 + 0.0635451i
\(225\) −6.54508 + 4.75528i −0.436339 + 0.317019i
\(226\) 2.00000 1.45309i 0.133038 0.0966578i
\(227\) 6.94427 + 21.3723i 0.460908 + 1.41853i 0.864057 + 0.503393i \(0.167915\pi\)
−0.403150 + 0.915134i \(0.632085\pi\)
\(228\) −2.19098 + 6.74315i −0.145101 + 0.446576i
\(229\) −20.0902 14.5964i −1.32760 0.964555i −0.999804 0.0198049i \(-0.993696\pi\)
−0.327792 0.944750i \(-0.606304\pi\)
\(230\) 22.8885 1.50923
\(231\) −0.809017 + 3.21644i −0.0532294 + 0.211626i
\(232\) −3.23607 −0.212458
\(233\) 12.8541 + 9.33905i 0.842100 + 0.611822i 0.922957 0.384904i \(-0.125765\pi\)
−0.0808563 + 0.996726i \(0.525765\pi\)
\(234\) −1.00000 + 3.07768i −0.0653720 + 0.201194i
\(235\) 13.6180 + 41.9120i 0.888343 + 2.73404i
\(236\) −7.23607 + 5.25731i −0.471028 + 0.342222i
\(237\) −4.61803 + 3.35520i −0.299974 + 0.217944i
\(238\) 1.66312 + 5.11855i 0.107804 + 0.331787i
\(239\) 2.89919 8.92278i 0.187533 0.577167i −0.812450 0.583031i \(-0.801867\pi\)
0.999983 + 0.00586423i \(0.00186665\pi\)
\(240\) 2.92705 + 2.12663i 0.188940 + 0.137273i
\(241\) 16.1803 1.04227 0.521134 0.853475i \(-0.325509\pi\)
0.521134 + 0.853475i \(0.325509\pi\)
\(242\) −4.78115 9.90659i −0.307344 0.636820i
\(243\) 1.00000 0.0641500
\(244\) 3.85410 + 2.80017i 0.246734 + 0.179262i
\(245\) −1.11803 + 3.44095i −0.0714286 + 0.219835i
\(246\) −1.59017 4.89404i −0.101386 0.312033i
\(247\) 18.5623 13.4863i 1.18109 0.858113i
\(248\) −8.16312 + 5.93085i −0.518359 + 0.376610i
\(249\) 3.32624 + 10.2371i 0.210792 + 0.648750i
\(250\) 3.45492 10.6331i 0.218508 0.672499i
\(251\) −7.23607 5.25731i −0.456737 0.331839i 0.335513 0.942036i \(-0.391090\pi\)
−0.792250 + 0.610197i \(0.791090\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 5.11803 20.3480i 0.321768 1.27927i
\(254\) −6.76393 −0.424407
\(255\) 15.7533 + 11.4454i 0.986509 + 0.716741i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −4.89919 15.0781i −0.305603 0.940549i −0.979452 0.201680i \(-0.935360\pi\)
0.673849 0.738869i \(-0.264640\pi\)
\(258\) 0.618034 0.449028i 0.0384771 0.0279553i
\(259\) −5.16312 + 3.75123i −0.320821 + 0.233090i
\(260\) −3.61803 11.1352i −0.224381 0.690574i
\(261\) 1.00000 3.07768i 0.0618984 0.190504i
\(262\) 8.70820 + 6.32688i 0.537995 + 0.390876i
\(263\) −22.0344 −1.35870 −0.679351 0.733814i \(-0.737739\pi\)
−0.679351 + 0.733814i \(0.737739\pi\)
\(264\) 2.54508 2.12663i 0.156639 0.130885i
\(265\) 32.3607 1.98790
\(266\) 5.73607 + 4.16750i 0.351701 + 0.255526i
\(267\) −3.66312 + 11.2739i −0.224179 + 0.689953i
\(268\) 1.00000 + 3.07768i 0.0610847 + 0.187999i
\(269\) −4.85410 + 3.52671i −0.295960 + 0.215027i −0.725849 0.687854i \(-0.758553\pi\)
0.429889 + 0.902882i \(0.358553\pi\)
\(270\) −2.92705 + 2.12663i −0.178135 + 0.129422i
\(271\) −1.88197 5.79210i −0.114321 0.351845i 0.877484 0.479607i \(-0.159221\pi\)
−0.991805 + 0.127762i \(0.959221\pi\)
\(272\) 1.66312 5.11855i 0.100841 0.310358i
\(273\) 2.61803 + 1.90211i 0.158451 + 0.115121i
\(274\) 2.47214 0.149347
\(275\) −22.7254 14.2658i −1.37039 0.860263i
\(276\) 6.32624 0.380795
\(277\) −7.97214 5.79210i −0.478999 0.348013i 0.321939 0.946760i \(-0.395665\pi\)
−0.800938 + 0.598747i \(0.795665\pi\)
\(278\) −3.13525 + 9.64932i −0.188040 + 0.578728i
\(279\) −3.11803 9.59632i −0.186672 0.574517i
\(280\) 2.92705 2.12663i 0.174925 0.127090i
\(281\) 13.4721 9.78808i 0.803680 0.583908i −0.108311 0.994117i \(-0.534544\pi\)
0.911991 + 0.410209i \(0.134544\pi\)
\(282\) 3.76393 + 11.5842i 0.224139 + 0.689829i
\(283\) −3.11803 + 9.59632i −0.185348 + 0.570442i −0.999954 0.00957216i \(-0.996953\pi\)
0.814606 + 0.580014i \(0.196953\pi\)
\(284\) −8.47214 6.15537i −0.502729 0.365254i
\(285\) 25.6525 1.51952
\(286\) −10.7082 + 0.726543i −0.633189 + 0.0429614i
\(287\) −5.14590 −0.303753
\(288\) 0.809017 + 0.587785i 0.0476718 + 0.0346356i
\(289\) 3.69756 11.3799i 0.217504 0.669407i
\(290\) 3.61803 + 11.1352i 0.212458 + 0.653879i
\(291\) −5.47214 + 3.97574i −0.320782 + 0.233062i
\(292\) 6.47214 4.70228i 0.378753 0.275180i
\(293\) −4.88197 15.0251i −0.285207 0.877778i −0.986336 0.164744i \(-0.947320\pi\)
0.701129 0.713035i \(-0.252680\pi\)
\(294\) −0.309017 + 0.951057i −0.0180222 + 0.0554667i
\(295\) 26.1803 + 19.0211i 1.52428 + 1.10745i
\(296\) 6.38197 0.370944
\(297\) 1.23607 + 3.07768i 0.0717239 + 0.178585i
\(298\) −7.41641 −0.429621
\(299\) −16.5623 12.0332i −0.957823 0.695899i
\(300\) 2.50000 7.69421i 0.144338 0.444225i
\(301\) −0.236068 0.726543i −0.0136067 0.0418772i
\(302\) 7.23607 5.25731i 0.416389 0.302524i
\(303\) −4.16312 + 3.02468i −0.239165 + 0.173763i
\(304\) −2.19098 6.74315i −0.125661 0.386746i
\(305\) 5.32624 16.3925i 0.304979 0.938630i
\(306\) 4.35410 + 3.16344i 0.248907 + 0.180842i
\(307\) 9.14590 0.521984 0.260992 0.965341i \(-0.415950\pi\)
0.260992 + 0.965341i \(0.415950\pi\)
\(308\) −1.23607 3.07768i −0.0704315 0.175367i
\(309\) −18.7984 −1.06940
\(310\) 29.5344 + 21.4580i 1.67744 + 1.21873i
\(311\) −6.94427 + 21.3723i −0.393774 + 1.21191i 0.536139 + 0.844130i \(0.319882\pi\)
−0.929913 + 0.367781i \(0.880118\pi\)
\(312\) −1.00000 3.07768i −0.0566139 0.174240i
\(313\) −22.4164 + 16.2865i −1.26705 + 0.920566i −0.999081 0.0428615i \(-0.986353\pi\)
−0.267969 + 0.963427i \(0.586353\pi\)
\(314\) −7.85410 + 5.70634i −0.443233 + 0.322027i
\(315\) 1.11803 + 3.44095i 0.0629941 + 0.193876i
\(316\) 1.76393 5.42882i 0.0992289 0.305395i
\(317\) −9.70820 7.05342i −0.545267 0.396160i 0.280770 0.959775i \(-0.409410\pi\)
−0.826037 + 0.563615i \(0.809410\pi\)
\(318\) 8.94427 0.501570
\(319\) 10.7082 0.726543i 0.599544 0.0406786i
\(320\) −3.61803 −0.202254
\(321\) −8.11803 5.89810i −0.453104 0.329200i
\(322\) 1.95492 6.01661i 0.108943 0.335293i
\(323\) −11.7918 36.2914i −0.656113 2.01931i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) −21.1803 + 15.3884i −1.17487 + 0.853596i
\(326\) −3.56231 10.9637i −0.197298 0.607220i
\(327\) 0.736068 2.26538i 0.0407047 0.125276i
\(328\) 4.16312 + 3.02468i 0.229870 + 0.167010i
\(329\) 12.1803 0.671524
\(330\) −10.1631 6.37988i −0.559461 0.351201i
\(331\) 22.1803 1.21914 0.609571 0.792732i \(-0.291342\pi\)
0.609571 + 0.792732i \(0.291342\pi\)
\(332\) −8.70820 6.32688i −0.477925 0.347233i
\(333\) −1.97214 + 6.06961i −0.108072 + 0.332613i
\(334\) −5.09017 15.6659i −0.278522 0.857202i
\(335\) 9.47214 6.88191i 0.517518 0.375999i
\(336\) 0.809017 0.587785i 0.0441355 0.0320663i
\(337\) 2.26393 + 6.96767i 0.123324 + 0.379553i 0.993592 0.113026i \(-0.0360543\pi\)
−0.870268 + 0.492579i \(0.836054\pi\)
\(338\) 0.781153 2.40414i 0.0424891 0.130768i
\(339\) −2.00000 1.45309i −0.108625 0.0789207i
\(340\) −19.4721 −1.05602
\(341\) 25.6803 21.4580i 1.39067 1.16202i
\(342\) 7.09017 0.383392
\(343\) 0.809017 + 0.587785i 0.0436828 + 0.0317374i
\(344\) −0.236068 + 0.726543i −0.0127279 + 0.0391725i
\(345\) −7.07295 21.7683i −0.380795 1.17197i
\(346\) 0.118034 0.0857567i 0.00634555 0.00461031i
\(347\) 11.1631 8.11048i 0.599268 0.435393i −0.246351 0.969181i \(-0.579232\pi\)
0.845619 + 0.533787i \(0.179232\pi\)
\(348\) 1.00000 + 3.07768i 0.0536056 + 0.164981i
\(349\) −5.70820 + 17.5680i −0.305553 + 0.940396i 0.673917 + 0.738807i \(0.264610\pi\)
−0.979470 + 0.201589i \(0.935390\pi\)
\(350\) −6.54508 4.75528i −0.349850 0.254181i
\(351\) 3.23607 0.172729
\(352\) −0.809017 + 3.21644i −0.0431208 + 0.171437i
\(353\) 5.05573 0.269089 0.134545 0.990908i \(-0.457043\pi\)
0.134545 + 0.990908i \(0.457043\pi\)
\(354\) 7.23607 + 5.25731i 0.384593 + 0.279423i
\(355\) −11.7082 + 36.0341i −0.621407 + 1.91249i
\(356\) −3.66312 11.2739i −0.194145 0.597517i
\(357\) 4.35410 3.16344i 0.230444 0.167427i
\(358\) 1.16312 0.845055i 0.0614727 0.0446626i
\(359\) 6.55573 + 20.1765i 0.345998 + 1.06487i 0.961047 + 0.276384i \(0.0891361\pi\)
−0.615049 + 0.788489i \(0.710864\pi\)
\(360\) 1.11803 3.44095i 0.0589256 0.181354i
\(361\) −25.2984 18.3803i −1.33149 0.967387i
\(362\) −8.00000 −0.420471
\(363\) −7.94427 + 7.60845i −0.416966 + 0.399340i
\(364\) −3.23607 −0.169616
\(365\) −23.4164 17.0130i −1.22567 0.890502i
\(366\) 1.47214 4.53077i 0.0769498 0.236827i
\(367\) 0.173762 + 0.534785i 0.00907031 + 0.0279155i 0.955489 0.295026i \(-0.0953283\pi\)
−0.946419 + 0.322941i \(0.895328\pi\)
\(368\) −5.11803 + 3.71847i −0.266796 + 0.193839i
\(369\) −4.16312 + 3.02468i −0.216723 + 0.157459i
\(370\) −7.13525 21.9601i −0.370944 1.14165i
\(371\) 2.76393 8.50651i 0.143496 0.441636i
\(372\) 8.16312 + 5.93085i 0.423238 + 0.307500i
\(373\) −11.5066 −0.595788 −0.297894 0.954599i \(-0.596284\pi\)
−0.297894 + 0.954599i \(0.596284\pi\)
\(374\) −4.35410 + 17.3108i −0.225145 + 0.895119i
\(375\) −11.1803 −0.577350
\(376\) −9.85410 7.15942i −0.508187 0.369219i
\(377\) 3.23607 9.95959i 0.166666 0.512945i
\(378\) 0.309017 + 0.951057i 0.0158941 + 0.0489171i
\(379\) −6.70820 + 4.87380i −0.344577 + 0.250350i −0.746591 0.665284i \(-0.768311\pi\)
0.402013 + 0.915634i \(0.368311\pi\)
\(380\) −20.7533 + 15.0781i −1.06462 + 0.773493i
\(381\) 2.09017 + 6.43288i 0.107083 + 0.329567i
\(382\) 0.0278640 0.0857567i 0.00142565 0.00438770i
\(383\) −4.85410 3.52671i −0.248033 0.180207i 0.456822 0.889558i \(-0.348988\pi\)
−0.704855 + 0.709352i \(0.748988\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −9.20820 + 7.69421i −0.469294 + 0.392133i
\(386\) −4.85410 −0.247067
\(387\) −0.618034 0.449028i −0.0314164 0.0228254i
\(388\) 2.09017 6.43288i 0.106112 0.326580i
\(389\) 1.18034 + 3.63271i 0.0598456 + 0.184186i 0.976510 0.215472i \(-0.0691290\pi\)
−0.916664 + 0.399658i \(0.869129\pi\)
\(390\) −9.47214 + 6.88191i −0.479640 + 0.348479i
\(391\) −27.5451 + 20.0127i −1.39301 + 1.01208i
\(392\) −0.309017 0.951057i −0.0156077 0.0480356i
\(393\) 3.32624 10.2371i 0.167787 0.516394i
\(394\) 18.7984 + 13.6578i 0.947048 + 0.688071i
\(395\) −20.6525 −1.03914
\(396\) −2.80902 1.76336i −0.141158 0.0886120i
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 20.4443 + 14.8536i 1.02478 + 0.744545i
\(399\) 2.19098 6.74315i 0.109686 0.337580i
\(400\) 2.50000 + 7.69421i 0.125000 + 0.384710i
\(401\) −1.38197 + 1.00406i −0.0690121 + 0.0501402i −0.621756 0.783211i \(-0.713581\pi\)
0.552744 + 0.833351i \(0.313581\pi\)
\(402\) 2.61803 1.90211i 0.130576 0.0948688i
\(403\) −10.0902 31.0543i −0.502627 1.54693i
\(404\) 1.59017 4.89404i 0.0791139 0.243488i
\(405\) 2.92705 + 2.12663i 0.145446 + 0.105673i
\(406\) 3.23607 0.160603
\(407\) −21.1180 + 1.43284i −1.04678 + 0.0710233i
\(408\) −5.38197 −0.266447
\(409\) 18.0344 + 13.1028i 0.891746 + 0.647891i 0.936333 0.351114i \(-0.114197\pi\)
−0.0445868 + 0.999006i \(0.514197\pi\)
\(410\) 5.75329 17.7068i 0.284135 0.874477i
\(411\) −0.763932 2.35114i −0.0376820 0.115973i
\(412\) 15.2082 11.0494i 0.749254 0.544365i
\(413\) 7.23607 5.25731i 0.356064 0.258695i
\(414\) −1.95492 6.01661i −0.0960788 0.295700i
\(415\) −12.0344 + 37.0382i −0.590748 + 1.81813i
\(416\) 2.61803 + 1.90211i 0.128360 + 0.0932588i
\(417\) 10.1459 0.496847
\(418\) 8.76393 + 21.8213i 0.428658 + 1.06731i
\(419\) −14.9443 −0.730075 −0.365038 0.930993i \(-0.618944\pi\)
−0.365038 + 0.930993i \(0.618944\pi\)
\(420\) −2.92705 2.12663i −0.142825 0.103769i
\(421\) 0.100813 0.310271i 0.00491333 0.0151217i −0.948570 0.316568i \(-0.897469\pi\)
0.953483 + 0.301446i \(0.0974694\pi\)
\(422\) −1.61803 4.97980i −0.0787647 0.242413i
\(423\) 9.85410 7.15942i 0.479123 0.348103i
\(424\) −7.23607 + 5.25731i −0.351415 + 0.255318i
\(425\) 13.4549 + 41.4100i 0.652659 + 2.00868i
\(426\) −3.23607 + 9.95959i −0.156788 + 0.482544i
\(427\) −3.85410 2.80017i −0.186513 0.135510i
\(428\) 10.0344 0.485033
\(429\) 4.00000 + 9.95959i 0.193122 + 0.480854i
\(430\) 2.76393 0.133289
\(431\) 19.6353 + 14.2658i 0.945797 + 0.687162i 0.949809 0.312830i \(-0.101277\pi\)
−0.00401210 + 0.999992i \(0.501277\pi\)
\(432\) 0.309017 0.951057i 0.0148676 0.0457577i
\(433\) −10.7082 32.9565i −0.514603 1.58379i −0.784002 0.620758i \(-0.786825\pi\)
0.269399 0.963029i \(-0.413175\pi\)
\(434\) 8.16312 5.93085i 0.391842 0.284690i
\(435\) 9.47214 6.88191i 0.454154 0.329962i
\(436\) 0.736068 + 2.26538i 0.0352513 + 0.108492i
\(437\) −13.8607 + 42.6588i −0.663046 + 2.04065i
\(438\) −6.47214 4.70228i −0.309251 0.224684i
\(439\) −7.03444 −0.335736 −0.167868 0.985810i \(-0.553688\pi\)
−0.167868 + 0.985810i \(0.553688\pi\)
\(440\) 11.9721 0.812299i 0.570749 0.0387248i
\(441\) 1.00000 0.0476190
\(442\) 14.0902 + 10.2371i 0.670201 + 0.486930i
\(443\) 8.33688 25.6583i 0.396097 1.21906i −0.532007 0.846740i \(-0.678562\pi\)
0.928104 0.372322i \(-0.121438\pi\)
\(444\) −1.97214 6.06961i −0.0935934 0.288051i
\(445\) −34.6976 + 25.2093i −1.64482 + 1.19503i
\(446\) 7.97214 5.79210i 0.377492 0.274264i
\(447\) 2.29180 + 7.05342i 0.108398 + 0.333615i
\(448\) −0.309017 + 0.951057i −0.0145997 + 0.0449332i
\(449\) 8.23607 + 5.98385i 0.388684 + 0.282396i 0.764916 0.644130i \(-0.222780\pi\)
−0.376232 + 0.926526i \(0.622780\pi\)
\(450\) −8.09017 −0.381374
\(451\) −14.4549 9.07405i −0.680655 0.427280i
\(452\) 2.47214 0.116279
\(453\) −7.23607 5.25731i −0.339980 0.247010i
\(454\) −6.94427 + 21.3723i −0.325911 + 1.00305i
\(455\) 3.61803 + 11.1352i 0.169616 + 0.522025i
\(456\) −5.73607 + 4.16750i −0.268616 + 0.195161i
\(457\) 27.0344 19.6417i 1.26462 0.918799i 0.265643 0.964071i \(-0.414416\pi\)
0.998975 + 0.0452728i \(0.0144157\pi\)
\(458\) −7.67376 23.6174i −0.358571 1.10357i
\(459\) 1.66312 5.11855i 0.0776277 0.238914i
\(460\) 18.5172 + 13.4535i 0.863370 + 0.627275i
\(461\) −15.8885 −0.740003 −0.370002 0.929031i \(-0.620643\pi\)
−0.370002 + 0.929031i \(0.620643\pi\)
\(462\) −2.54508 + 2.12663i −0.118408 + 0.0989396i
\(463\) −10.5836 −0.491861 −0.245931 0.969287i \(-0.579094\pi\)
−0.245931 + 0.969287i \(0.579094\pi\)
\(464\) −2.61803 1.90211i −0.121539 0.0883034i
\(465\) 11.2812 34.7198i 0.523151 1.61009i
\(466\) 4.90983 + 15.1109i 0.227443 + 0.699999i
\(467\) −6.47214 + 4.70228i −0.299495 + 0.217596i −0.727376 0.686239i \(-0.759260\pi\)
0.427881 + 0.903835i \(0.359260\pi\)
\(468\) −2.61803 + 1.90211i −0.121019 + 0.0879252i
\(469\) −1.00000 3.07768i −0.0461757 0.142114i
\(470\) −13.6180 + 41.9120i −0.628153 + 1.93326i
\(471\) 7.85410 + 5.70634i 0.361898 + 0.262934i
\(472\) −8.94427 −0.411693
\(473\) 0.618034 2.45714i 0.0284172 0.112980i
\(474\) −5.70820 −0.262186
\(475\) 46.4058 + 33.7158i 2.12924 + 1.54699i
\(476\) −1.66312 + 5.11855i −0.0762289 + 0.234609i
\(477\) −2.76393 8.50651i −0.126552 0.389486i
\(478\) 7.59017 5.51458i 0.347166 0.252231i
\(479\) 10.4721 7.60845i 0.478484 0.347639i −0.322254 0.946653i \(-0.604441\pi\)
0.800739 + 0.599014i \(0.204441\pi\)
\(480\) 1.11803 + 3.44095i 0.0510310 + 0.157057i
\(481\) −6.38197 + 19.6417i −0.290993 + 0.895583i
\(482\) 13.0902 + 9.51057i 0.596241 + 0.433194i
\(483\) −6.32624 −0.287854
\(484\) 1.95492 10.8249i 0.0888598 0.492041i
\(485\) −24.4721 −1.11122
\(486\) 0.809017 + 0.587785i 0.0366978 + 0.0266625i
\(487\) −3.81966 + 11.7557i −0.173085 + 0.532702i −0.999541 0.0303002i \(-0.990354\pi\)
0.826456 + 0.563002i \(0.190354\pi\)
\(488\) 1.47214 + 4.53077i 0.0666405 + 0.205098i
\(489\) −9.32624 + 6.77591i −0.421747 + 0.306417i
\(490\) −2.92705 + 2.12663i −0.132231 + 0.0960712i
\(491\) 12.4271 + 38.2465i 0.560825 + 1.72604i 0.680042 + 0.733173i \(0.261962\pi\)
−0.119217 + 0.992868i \(0.538038\pi\)
\(492\) 1.59017 4.89404i 0.0716904 0.220640i
\(493\) −14.0902 10.2371i −0.634589 0.461056i
\(494\) 22.9443 1.03231
\(495\) −2.92705 + 11.6372i −0.131561 + 0.523053i
\(496\) −10.0902 −0.453062
\(497\) 8.47214 + 6.15537i 0.380027 + 0.276106i
\(498\) −3.32624 + 10.2371i −0.149052 + 0.458736i
\(499\) 2.70820 + 8.33499i 0.121236 + 0.373126i 0.993197 0.116450i \(-0.0371516\pi\)
−0.871961 + 0.489576i \(0.837152\pi\)
\(500\) 9.04508 6.57164i 0.404508 0.293893i
\(501\) −13.3262 + 9.68208i −0.595372 + 0.432563i
\(502\) −2.76393 8.50651i −0.123360 0.379664i
\(503\) 11.4721 35.3076i 0.511517 1.57429i −0.278013 0.960577i \(-0.589676\pi\)
0.789531 0.613711i \(-0.210324\pi\)
\(504\) −0.809017 0.587785i −0.0360365 0.0261820i
\(505\) −18.6180 −0.828492
\(506\) 16.1008 13.4535i 0.715768 0.598083i
\(507\) −2.52786 −0.112266
\(508\) −5.47214 3.97574i −0.242787 0.176395i
\(509\) −6.06231 + 18.6579i −0.268707 + 0.826995i 0.722109 + 0.691779i \(0.243173\pi\)
−0.990816 + 0.135216i \(0.956827\pi\)
\(510\) 6.01722 + 18.5191i 0.266447 + 0.820040i
\(511\) −6.47214 + 4.70228i −0.286310 + 0.208017i
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) −2.19098 6.74315i −0.0967343 0.297717i
\(514\) 4.89919 15.0781i 0.216094 0.665069i
\(515\) −55.0238 39.9771i −2.42464 1.76160i
\(516\) 0.763932 0.0336302
\(517\) 34.2148 + 21.4783i 1.50476 + 0.944613i
\(518\) −6.38197 −0.280407
\(519\) −0.118034 0.0857567i −0.00518112 0.00376430i
\(520\) 3.61803 11.1352i 0.158661 0.488309i
\(521\) −2.93769 9.04129i −0.128703 0.396106i 0.865855 0.500295i \(-0.166775\pi\)
−0.994557 + 0.104189i \(0.966775\pi\)
\(522\) 2.61803 1.90211i 0.114588 0.0832532i
\(523\) −5.73607 + 4.16750i −0.250821 + 0.182232i −0.706090 0.708122i \(-0.749543\pi\)
0.455270 + 0.890354i \(0.349543\pi\)
\(524\) 3.32624 + 10.2371i 0.145307 + 0.447210i
\(525\) −2.50000 + 7.69421i −0.109109 + 0.335803i
\(526\) −17.8262 12.9515i −0.777261 0.564713i
\(527\) −54.3050 −2.36556
\(528\) 3.30902 0.224514i 0.144006 0.00977072i
\(529\) 17.0213 0.740056
\(530\) 26.1803 + 19.0211i 1.13720 + 0.826225i
\(531\) 2.76393 8.50651i 0.119944 0.369151i
\(532\) 2.19098 + 6.74315i 0.0949912 + 0.292353i
\(533\) −13.4721 + 9.78808i −0.583543 + 0.423969i
\(534\) −9.59017 + 6.96767i −0.415007 + 0.301520i
\(535\) −11.2188 34.5281i −0.485033 1.49278i
\(536\) −1.00000 + 3.07768i −0.0431934 + 0.132936i
\(537\) −1.16312 0.845055i −0.0501923 0.0364668i
\(538\) −6.00000 −0.258678
\(539\) 1.23607 + 3.07768i 0.0532412 + 0.132565i
\(540\) −3.61803 −0.155695
\(541\) −13.7812 10.0126i −0.592498 0.430475i 0.250710 0.968062i \(-0.419336\pi\)
−0.843208 + 0.537587i \(0.819336\pi\)
\(542\) 1.88197 5.79210i 0.0808374 0.248792i
\(543\) 2.47214 + 7.60845i 0.106090 + 0.326510i
\(544\) 4.35410 3.16344i 0.186681 0.135631i
\(545\) 6.97214 5.06555i 0.298653 0.216984i
\(546\) 1.00000 + 3.07768i 0.0427960 + 0.131713i
\(547\) 8.18034 25.1765i 0.349766 1.07647i −0.609216 0.793004i \(-0.708516\pi\)
0.958982 0.283465i \(-0.0914841\pi\)
\(548\) 2.00000 + 1.45309i 0.0854358 + 0.0620727i
\(549\) −4.76393 −0.203320
\(550\) −10.0000 24.8990i −0.426401 1.06170i
\(551\) −22.9443 −0.977459
\(552\) 5.11803 + 3.71847i 0.217838 + 0.158269i
\(553\) −1.76393 + 5.42882i −0.0750100 + 0.230857i
\(554\) −3.04508 9.37181i −0.129373 0.398170i
\(555\) −18.6803 + 13.5721i −0.792936 + 0.576102i
\(556\) −8.20820 + 5.96361i −0.348105 + 0.252913i
\(557\) 7.67376 + 23.6174i 0.325148 + 1.00070i 0.971374 + 0.237556i \(0.0763463\pi\)
−0.646226 + 0.763146i \(0.723654\pi\)
\(558\) 3.11803 9.59632i 0.131997 0.406245i
\(559\) −2.00000 1.45309i −0.0845910 0.0614589i
\(560\) 3.61803 0.152890
\(561\) 17.8090 1.20833i 0.751897 0.0510156i
\(562\) 16.6525 0.702442
\(563\) −2.85410 2.07363i −0.120286 0.0873929i 0.526016 0.850475i \(-0.323685\pi\)
−0.646302 + 0.763082i \(0.723685\pi\)
\(564\) −3.76393 + 11.5842i −0.158490 + 0.487782i
\(565\) −2.76393 8.50651i −0.116279 0.357871i
\(566\) −8.16312 + 5.93085i −0.343121 + 0.249292i
\(567\) 0.809017 0.587785i 0.0339755 0.0246847i
\(568\) −3.23607 9.95959i −0.135782 0.417895i
\(569\) −5.29180 + 16.2865i −0.221844 + 0.682764i 0.776753 + 0.629805i \(0.216865\pi\)
−0.998597 + 0.0529592i \(0.983135\pi\)
\(570\) 20.7533 + 15.0781i 0.869260 + 0.631554i
\(571\) −6.29180 −0.263303 −0.131652 0.991296i \(-0.542028\pi\)
−0.131652 + 0.991296i \(0.542028\pi\)
\(572\) −9.09017 5.70634i −0.380079 0.238594i
\(573\) −0.0901699 −0.00376690
\(574\) −4.16312 3.02468i −0.173765 0.126248i
\(575\) 15.8156 48.6754i 0.659556 2.02990i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) −8.47214 + 6.15537i −0.352700 + 0.256251i −0.750001 0.661437i \(-0.769947\pi\)
0.397301 + 0.917688i \(0.369947\pi\)
\(578\) 9.68034 7.03318i 0.402649 0.292542i
\(579\) 1.50000 + 4.61653i 0.0623379 + 0.191856i
\(580\) −3.61803 + 11.1352i −0.150231 + 0.462363i
\(581\) 8.70820 + 6.32688i 0.361277 + 0.262483i
\(582\) −6.76393 −0.280374
\(583\) 22.7639 19.0211i 0.942786 0.787775i
\(584\) 8.00000 0.331042
\(585\) 9.47214 + 6.88191i 0.391625 + 0.284532i
\(586\) 4.88197 15.0251i 0.201672 0.620683i
\(587\) 3.67376 + 11.3067i 0.151632 + 0.466677i 0.997804 0.0662338i \(-0.0210983\pi\)
−0.846172 + 0.532910i \(0.821098\pi\)
\(588\) −0.809017 + 0.587785i −0.0333633 + 0.0242399i
\(589\) −57.8779 + 42.0508i −2.38482 + 1.73267i
\(590\) 10.0000 + 30.7768i 0.411693 + 1.26706i
\(591\) 7.18034 22.0988i 0.295360 0.909024i
\(592\) 5.16312 + 3.75123i 0.212203 + 0.154174i
\(593\) 28.7426 1.18032 0.590159 0.807287i \(-0.299065\pi\)
0.590159 + 0.807287i \(0.299065\pi\)
\(594\) −0.809017 + 3.21644i −0.0331944 + 0.131972i
\(595\) 19.4721 0.798280
\(596\) −6.00000 4.35926i −0.245770 0.178562i
\(597\) 7.80902 24.0337i 0.319602 0.983633i
\(598\) −6.32624 19.4702i −0.258699 0.796194i
\(599\) −12.8262 + 9.31881i −0.524066 + 0.380756i −0.818133 0.575029i \(-0.804991\pi\)
0.294067 + 0.955785i \(0.404991\pi\)
\(600\) 6.54508 4.75528i 0.267202 0.194134i
\(601\) −5.09017 15.6659i −0.207632 0.639027i −0.999595 0.0284572i \(-0.990941\pi\)
0.791963 0.610570i \(-0.209059\pi\)
\(602\) 0.236068 0.726543i 0.00962141 0.0296117i
\(603\) −2.61803 1.90211i −0.106615 0.0774600i
\(604\) 8.94427 0.363937
\(605\) −39.4336 + 5.37582i −1.60320 + 0.218558i
\(606\) −5.14590 −0.209038
\(607\) −26.3885 19.1724i −1.07108 0.778184i −0.0949722 0.995480i \(-0.530276\pi\)
−0.976106 + 0.217296i \(0.930276\pi\)
\(608\) 2.19098 6.74315i 0.0888561 0.273471i
\(609\) −1.00000 3.07768i −0.0405220 0.124714i
\(610\) 13.9443 10.1311i 0.564587 0.410197i
\(611\) 31.8885 23.1684i 1.29007 0.937292i
\(612\) 1.66312 + 5.11855i 0.0672276 + 0.206905i
\(613\) 7.51722 23.1356i 0.303618 0.934439i −0.676572 0.736377i \(-0.736535\pi\)
0.980189 0.198062i \(-0.0634649\pi\)
\(614\) 7.39919 + 5.37582i 0.298607 + 0.216951i
\(615\) −18.6180 −0.750752
\(616\) 0.809017 3.21644i 0.0325962 0.129594i
\(617\) −6.58359 −0.265045 −0.132523 0.991180i \(-0.542308\pi\)
−0.132523 + 0.991180i \(0.542308\pi\)
\(618\) −15.2082 11.0494i −0.611764 0.444472i
\(619\) 10.1180 31.1401i 0.406678 1.25163i −0.512808 0.858503i \(-0.671395\pi\)
0.919486 0.393123i \(-0.128605\pi\)
\(620\) 11.2812 + 34.7198i 0.453062 + 1.39438i
\(621\) −5.11803 + 3.71847i −0.205380 + 0.149217i
\(622\) −18.1803 + 13.2088i −0.728965 + 0.529624i
\(623\) 3.66312 + 11.2739i 0.146760 + 0.451680i
\(624\) 1.00000 3.07768i 0.0400320 0.123206i
\(625\) 0 0
\(626\) −27.7082 −1.10744
\(627\) 18.0451 15.0781i 0.720651 0.602163i
\(628\) −9.70820 −0.387400
\(629\) 27.7877 + 20.1890i 1.10797 + 0.804987i
\(630\) −1.11803 + 3.44095i −0.0445435 + 0.137091i
\(631\) −9.94427 30.6053i −0.395875 1.21838i −0.928278 0.371887i \(-0.878711\pi\)
0.532403 0.846491i \(-0.321289\pi\)
\(632\) 4.61803 3.35520i 0.183696 0.133463i
\(633\) −4.23607 + 3.07768i −0.168369 + 0.122327i
\(634\) −3.70820 11.4127i −0.147272 0.453255i
\(635\) −7.56231 + 23.2744i −0.300101 + 0.923616i
\(636\) 7.23607 + 5.25731i 0.286929 + 0.208466i
\(637\) 3.23607 0.128218
\(638\) 9.09017 + 5.70634i 0.359883 + 0.225916i
\(639\) 10.4721 0.414271
\(640\) −2.92705 2.12663i −0.115702 0.0840623i
\(641\) 3.88854 11.9677i 0.153588 0.472696i −0.844427 0.535671i \(-0.820059\pi\)
0.998015 + 0.0629748i \(0.0200588\pi\)
\(642\) −3.10081 9.54332i −0.122379 0.376645i
\(643\) 29.1525 21.1805i 1.14966 0.835278i 0.161226 0.986918i \(-0.448455\pi\)
0.988436 + 0.151640i \(0.0484553\pi\)
\(644\) 5.11803 3.71847i 0.201679 0.146528i
\(645\) −0.854102 2.62866i −0.0336302 0.103503i
\(646\) 11.7918 36.2914i 0.463942 1.42787i
\(647\) −2.61803 1.90211i −0.102926 0.0747798i 0.535132 0.844768i \(-0.320262\pi\)
−0.638058 + 0.769989i \(0.720262\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 29.5967 2.00811i 1.16177 0.0788254i
\(650\) −26.1803 −1.02688
\(651\) −8.16312 5.93085i −0.319938 0.232448i
\(652\) 3.56231 10.9637i 0.139511 0.429370i
\(653\) 10.9098 + 33.5770i 0.426935 + 1.31397i 0.901130 + 0.433550i \(0.142739\pi\)
−0.474195 + 0.880420i \(0.657261\pi\)
\(654\) 1.92705 1.40008i 0.0753537 0.0547476i
\(655\) 31.5066 22.8909i 1.23106 0.894420i
\(656\) 1.59017 + 4.89404i 0.0620857 + 0.191080i
\(657\) −2.47214 + 7.60845i −0.0964472 + 0.296834i
\(658\) 9.85410 + 7.15942i 0.384153 + 0.279103i
\(659\) 38.1591 1.48647 0.743233 0.669033i \(-0.233291\pi\)
0.743233 + 0.669033i \(0.233291\pi\)
\(660\) −4.47214 11.1352i −0.174078 0.433436i
\(661\) −19.8885 −0.773575 −0.386787 0.922169i \(-0.626415\pi\)
−0.386787 + 0.922169i \(0.626415\pi\)
\(662\) 17.9443 + 13.0373i 0.697424 + 0.506708i
\(663\) 5.38197 16.5640i 0.209018 0.643292i
\(664\) −3.32624 10.2371i −0.129083 0.397277i
\(665\) 20.7533 15.0781i 0.804778 0.584705i
\(666\) −5.16312 + 3.75123i −0.200067 + 0.145357i
\(667\) 6.32624 + 19.4702i 0.244953 + 0.753888i
\(668\) 5.09017 15.6659i 0.196945 0.606133i
\(669\) −7.97214 5.79210i −0.308221 0.223935i
\(670\) 11.7082 0.452327
\(671\) −5.88854 14.6619i −0.227325 0.566015i
\(672\) 1.00000 0.0385758
\(673\) −28.5623 20.7517i −1.10100 0.799920i −0.119774 0.992801i \(-0.538217\pi\)
−0.981222 + 0.192881i \(0.938217\pi\)
\(674\) −2.26393 + 6.96767i −0.0872034 + 0.268384i
\(675\) 2.50000 + 7.69421i 0.0962250 + 0.296150i
\(676\) 2.04508 1.48584i 0.0786571 0.0571477i
\(677\) 10.8541 7.88597i 0.417157 0.303082i −0.359336 0.933208i \(-0.616997\pi\)
0.776493 + 0.630126i \(0.216997\pi\)
\(678\) −0.763932 2.35114i −0.0293386 0.0902950i
\(679\) −2.09017 + 6.43288i −0.0802134 + 0.246871i
\(680\) −15.7533 11.4454i −0.604111 0.438912i
\(681\) 22.4721 0.861134
\(682\) 33.3885 2.26538i 1.27851 0.0867460i
\(683\) 38.5623 1.47555 0.737773 0.675049i \(-0.235878\pi\)
0.737773 + 0.675049i \(0.235878\pi\)
\(684\) 5.73607 + 4.16750i 0.219324 + 0.159348i
\(685\) 2.76393 8.50651i 0.105604 0.325017i
\(686\) 0.309017 + 0.951057i 0.0117983 + 0.0363115i
\(687\) −20.0902 + 14.5964i −0.766488 + 0.556886i
\(688\) −0.618034 + 0.449028i −0.0235623 + 0.0171190i
\(689\) −8.94427 27.5276i −0.340750 1.04872i
\(690\) 7.07295 21.7683i 0.269263 0.828705i
\(691\) −7.50000 5.44907i −0.285313 0.207292i 0.435918 0.899986i \(-0.356424\pi\)
−0.721232 + 0.692694i \(0.756424\pi\)
\(692\) 0.145898 0.00554621
\(693\) 2.80902 + 1.76336i 0.106706 + 0.0669843i
\(694\) 13.7984 0.523779
\(695\) 29.6976 + 21.5765i 1.12649 + 0.818445i
\(696\) −1.00000 + 3.07768i −0.0379049 + 0.116659i
\(697\) 8.55824 + 26.3396i 0.324166 + 0.997682i
\(698\) −14.9443 + 10.8576i −0.565649 + 0.410968i
\(699\) 12.8541 9.33905i 0.486187 0.353235i
\(700\) −2.50000 7.69421i −0.0944911 0.290814i
\(701\) −12.9098 + 39.7324i −0.487598 + 1.50067i 0.340586 + 0.940213i \(0.389375\pi\)
−0.828183 + 0.560457i \(0.810625\pi\)
\(702\) 2.61803 + 1.90211i 0.0988113 + 0.0717906i
\(703\) 45.2492 1.70661
\(704\) −2.54508 + 2.12663i −0.0959215 + 0.0801503i
\(705\) 44.0689 1.65973
\(706\) 4.09017 + 2.97168i 0.153936 + 0.111841i
\(707\) −1.59017 + 4.89404i −0.0598045 + 0.184059i
\(708\) 2.76393 + 8.50651i 0.103875 + 0.319694i
\(709\) −16.3992 + 11.9147i −0.615884 + 0.447466i −0.851482 0.524385i \(-0.824295\pi\)
0.235597 + 0.971851i \(0.424295\pi\)
\(710\) −30.6525 + 22.2703i −1.15037 + 0.835790i
\(711\) 1.76393 + 5.42882i 0.0661526 + 0.203597i
\(712\) 3.66312 11.2739i 0.137281 0.422508i
\(713\) 51.6418 + 37.5200i 1.93400 + 1.40513i
\(714\) 5.38197 0.201415
\(715\) −9.47214 + 37.6587i −0.354238 + 1.40836i
\(716\) 1.43769 0.0537292
\(717\) −7.59017 5.51458i −0.283460 0.205946i
\(718\) −6.55573 + 20.1765i −0.244658 + 0.752979i
\(719\) 13.0902 + 40.2874i 0.488181 + 1.50247i 0.827320 + 0.561730i \(0.189864\pi\)
−0.339139 + 0.940736i \(0.610136\pi\)
\(720\) 2.92705 2.12663i 0.109085 0.0792547i
\(721\) −15.2082 + 11.0494i −0.566383 + 0.411501i
\(722\) −9.66312 29.7400i −0.359624 1.10681i
\(723\) 5.00000 15.3884i 0.185952 0.572301i
\(724\) −6.47214 4.70228i −0.240535 0.174759i
\(725\) 26.1803 0.972313
\(726\) −10.8992 + 1.48584i −0.404507 + 0.0551447i
\(727\) −14.5066 −0.538019 −0.269010 0.963137i \(-0.586696\pi\)
−0.269010 + 0.963137i \(0.586696\pi\)
\(728\) −2.61803 1.90211i −0.0970308 0.0704970i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) −8.94427 27.5276i −0.331042 1.01884i
\(731\) −3.32624 + 2.41665i −0.123025 + 0.0893832i
\(732\) 3.85410 2.80017i 0.142452 0.103497i
\(733\) 10.4721 + 32.2299i 0.386797 + 1.19044i 0.935168 + 0.354204i \(0.115248\pi\)
−0.548371 + 0.836235i \(0.684752\pi\)
\(734\) −0.173762 + 0.534785i −0.00641368 + 0.0197393i
\(735\) 2.92705 + 2.12663i 0.107966 + 0.0784418i
\(736\) −6.32624 −0.233188
\(737\) 2.61803 10.4086i 0.0964365 0.383406i
\(738\) −5.14590 −0.189423
\(739\) −4.23607 3.07768i −0.155826 0.113214i 0.507140 0.861864i \(-0.330703\pi\)
−0.662966 + 0.748649i \(0.730703\pi\)
\(740\) 7.13525 21.9601i 0.262297 0.807268i
\(741\) −7.09017 21.8213i −0.260464 0.801625i
\(742\) 7.23607 5.25731i 0.265644 0.193002i
\(743\) 32.8713 23.8824i 1.20593 0.876161i 0.211077 0.977469i \(-0.432303\pi\)
0.994855 + 0.101309i \(0.0323030\pi\)
\(744\) 3.11803 + 9.59632i 0.114313 + 0.351818i
\(745\) −8.29180 + 25.5195i −0.303788 + 0.934963i
\(746\) −9.30902 6.76340i −0.340827 0.247626i
\(747\) 10.7639 0.393832
\(748\) −13.6976 + 11.4454i −0.500832 + 0.418487i
\(749\) −10.0344 −0.366651
\(750\) −9.04508 6.57164i −0.330280 0.239962i
\(751\) −2.32624 + 7.15942i −0.0848856 + 0.261251i −0.984486 0.175463i \(-0.943858\pi\)
0.899600 + 0.436714i \(0.143858\pi\)
\(752\) −3.76393 11.5842i −0.137256 0.422432i
\(753\) −7.23607 + 5.25731i −0.263697 + 0.191587i
\(754\) 8.47214 6.15537i 0.308537 0.224165i
\(755\) −10.0000 30.7768i −0.363937 1.12008i
\(756\) −0.309017 + 0.951057i −0.0112388 + 0.0345896i
\(757\) −10.9721 7.97172i −0.398789 0.289737i 0.370259 0.928929i \(-0.379269\pi\)
−0.769048 + 0.639192i \(0.779269\pi\)
\(758\) −8.29180 −0.301172
\(759\) −17.7705 11.1554i −0.645029 0.404916i
\(760\) −25.6525 −0.930513
\(761\) 23.3262 + 16.9475i 0.845575 + 0.614347i 0.923923 0.382580i \(-0.124964\pi\)
−0.0783471 + 0.996926i \(0.524964\pi\)
\(762\) −2.09017 + 6.43288i −0.0757189 + 0.233039i
\(763\) −0.736068 2.26538i −0.0266474 0.0820124i
\(764\) 0.0729490 0.0530006i 0.00263920 0.00191749i
\(765\) 15.7533 11.4454i 0.569561 0.413811i
\(766\) −1.85410 5.70634i −0.0669914 0.206178i
\(767\) 8.94427 27.5276i 0.322959 0.993965i
\(768\) −0.809017 0.587785i −0.0291929 0.0212099i
\(769\) 1.52786 0.0550962 0.0275481 0.999620i \(-0.491230\pi\)
0.0275481 + 0.999620i \(0.491230\pi\)
\(770\) −11.9721 + 0.812299i −0.431446 + 0.0292732i
\(771\) −15.8541 −0.570972
\(772\) −3.92705 2.85317i −0.141338 0.102688i
\(773\) 12.4377 38.2793i 0.447353 1.37681i −0.432530 0.901620i \(-0.642379\pi\)