Properties

Label 459.3.j.a.341.14
Level $459$
Weight $3$
Character 459.341
Analytic conductor $12.507$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(35,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.35"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 341.14
Character \(\chi\) \(=\) 459.341
Dual form 459.3.j.a.35.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.700836 + 0.404628i) q^{2} +(-1.67255 + 2.89695i) q^{4} +(6.73682 + 3.88950i) q^{5} +(-1.30137 - 2.25403i) q^{7} -5.94407i q^{8} -6.29521 q^{10} +(15.0999 - 8.71794i) q^{11} +(11.9586 - 20.7129i) q^{13} +(1.82409 + 1.05314i) q^{14} +(-4.28507 - 7.42196i) q^{16} -4.12311i q^{17} +8.89419 q^{19} +(-22.5354 + 13.0108i) q^{20} +(-7.05505 + 12.2197i) q^{22} +(14.5631 + 8.40799i) q^{23} +(17.7565 + 30.7551i) q^{25} +19.3552i q^{26} +8.70641 q^{28} +(-28.3321 + 16.3576i) q^{29} +(16.5527 - 28.6701i) q^{31} +(26.5971 + 15.3559i) q^{32} +(1.66832 + 2.88962i) q^{34} -20.2467i q^{35} -45.9261 q^{37} +(-6.23337 + 3.59884i) q^{38} +(23.1195 - 40.0441i) q^{40} +(31.3907 + 18.1234i) q^{41} +(14.4282 + 24.9905i) q^{43} +58.3248i q^{44} -13.6084 q^{46} +(-55.0612 + 31.7896i) q^{47} +(21.1129 - 36.5686i) q^{49} +(-24.8888 - 14.3696i) q^{50} +(40.0028 + 69.2870i) q^{52} -48.8363i q^{53} +135.634 q^{55} +(-13.3981 + 7.73542i) q^{56} +(13.2375 - 22.9279i) q^{58} +(25.6105 + 14.7862i) q^{59} +(19.2375 + 33.3204i) q^{61} +26.7907i q^{62} +9.42690 q^{64} +(161.126 - 93.0262i) q^{65} +(-28.8502 + 49.9700i) q^{67} +(11.9444 + 6.89611i) q^{68} +(8.19238 + 14.1896i) q^{70} +16.3591i q^{71} -1.61860 q^{73} +(32.1867 - 18.5830i) q^{74} +(-14.8760 + 25.7660i) q^{76} +(-39.3011 - 22.6905i) q^{77} +(-8.91008 - 15.4327i) q^{79} -66.6672i q^{80} -29.3330 q^{82} +(42.2194 - 24.3754i) q^{83} +(16.0368 - 27.7766i) q^{85} +(-20.2237 - 11.6762i) q^{86} +(-51.8201 - 89.7550i) q^{88} +137.254i q^{89} -62.2502 q^{91} +(-48.7150 + 28.1256i) q^{92} +(25.7259 - 44.5586i) q^{94} +(59.9186 + 34.5940i) q^{95} +(-80.2196 - 138.945i) q^{97} +34.1715i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 64 q^{4} + 18 q^{5} + 2 q^{7} - 10 q^{13} - 72 q^{14} - 128 q^{16} - 28 q^{19} + 18 q^{20} - 144 q^{23} + 154 q^{25} + 32 q^{28} + 162 q^{29} + 62 q^{31} - 126 q^{32} + 128 q^{37} + 36 q^{38} + 144 q^{41}+ \cdots + 140 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.700836 + 0.404628i −0.350418 + 0.202314i −0.664869 0.746960i \(-0.731513\pi\)
0.314451 + 0.949274i \(0.398180\pi\)
\(3\) 0 0
\(4\) −1.67255 + 2.89695i −0.418138 + 0.724236i
\(5\) 6.73682 + 3.88950i 1.34736 + 0.777901i 0.987875 0.155249i \(-0.0496179\pi\)
0.359488 + 0.933150i \(0.382951\pi\)
\(6\) 0 0
\(7\) −1.30137 2.25403i −0.185910 0.322005i 0.757973 0.652286i \(-0.226190\pi\)
−0.943883 + 0.330281i \(0.892856\pi\)
\(8\) 5.94407i 0.743009i
\(9\) 0 0
\(10\) −6.29521 −0.629521
\(11\) 15.0999 8.71794i 1.37272 0.792540i 0.381450 0.924390i \(-0.375425\pi\)
0.991270 + 0.131849i \(0.0420915\pi\)
\(12\) 0 0
\(13\) 11.9586 20.7129i 0.919894 1.59330i 0.120321 0.992735i \(-0.461608\pi\)
0.799574 0.600568i \(-0.205059\pi\)
\(14\) 1.82409 + 1.05314i 0.130292 + 0.0752242i
\(15\) 0 0
\(16\) −4.28507 7.42196i −0.267817 0.463872i
\(17\) 4.12311i 0.242536i
\(18\) 0 0
\(19\) 8.89419 0.468115 0.234058 0.972223i \(-0.424800\pi\)
0.234058 + 0.972223i \(0.424800\pi\)
\(20\) −22.5354 + 13.0108i −1.12677 + 0.650540i
\(21\) 0 0
\(22\) −7.05505 + 12.2197i −0.320684 + 0.555441i
\(23\) 14.5631 + 8.40799i 0.633177 + 0.365565i 0.781981 0.623302i \(-0.214209\pi\)
−0.148804 + 0.988867i \(0.547542\pi\)
\(24\) 0 0
\(25\) 17.7565 + 30.7551i 0.710260 + 1.23021i
\(26\) 19.3552i 0.744430i
\(27\) 0 0
\(28\) 8.70641 0.310943
\(29\) −28.3321 + 16.3576i −0.976969 + 0.564054i −0.901354 0.433083i \(-0.857426\pi\)
−0.0756157 + 0.997137i \(0.524092\pi\)
\(30\) 0 0
\(31\) 16.5527 28.6701i 0.533957 0.924841i −0.465256 0.885176i \(-0.654038\pi\)
0.999213 0.0396646i \(-0.0126290\pi\)
\(32\) 26.5971 + 15.3559i 0.831160 + 0.479871i
\(33\) 0 0
\(34\) 1.66832 + 2.88962i 0.0490684 + 0.0849889i
\(35\) 20.2467i 0.578477i
\(36\) 0 0
\(37\) −45.9261 −1.24125 −0.620623 0.784109i \(-0.713120\pi\)
−0.620623 + 0.784109i \(0.713120\pi\)
\(38\) −6.23337 + 3.59884i −0.164036 + 0.0947063i
\(39\) 0 0
\(40\) 23.1195 40.0441i 0.577987 1.00110i
\(41\) 31.3907 + 18.1234i 0.765626 + 0.442035i 0.831312 0.555806i \(-0.187590\pi\)
−0.0656858 + 0.997840i \(0.520924\pi\)
\(42\) 0 0
\(43\) 14.4282 + 24.9905i 0.335541 + 0.581174i 0.983589 0.180426i \(-0.0577477\pi\)
−0.648048 + 0.761600i \(0.724414\pi\)
\(44\) 58.3248i 1.32556i
\(45\) 0 0
\(46\) −13.6084 −0.295836
\(47\) −55.0612 + 31.7896i −1.17152 + 0.676375i −0.954037 0.299690i \(-0.903117\pi\)
−0.217479 + 0.976065i \(0.569783\pi\)
\(48\) 0 0
\(49\) 21.1129 36.5686i 0.430875 0.746298i
\(50\) −24.8888 14.3696i −0.497776 0.287391i
\(51\) 0 0
\(52\) 40.0028 + 69.2870i 0.769285 + 1.33244i
\(53\) 48.8363i 0.921440i −0.887545 0.460720i \(-0.847591\pi\)
0.887545 0.460720i \(-0.152409\pi\)
\(54\) 0 0
\(55\) 135.634 2.46607
\(56\) −13.3981 + 7.73542i −0.239252 + 0.138132i
\(57\) 0 0
\(58\) 13.2375 22.9279i 0.228232 0.395309i
\(59\) 25.6105 + 14.7862i 0.434076 + 0.250614i 0.701082 0.713081i \(-0.252701\pi\)
−0.267005 + 0.963695i \(0.586034\pi\)
\(60\) 0 0
\(61\) 19.2375 + 33.3204i 0.315369 + 0.546236i 0.979516 0.201367i \(-0.0645383\pi\)
−0.664147 + 0.747602i \(0.731205\pi\)
\(62\) 26.7907i 0.432108i
\(63\) 0 0
\(64\) 9.42690 0.147295
\(65\) 161.126 93.0262i 2.47886 1.43117i
\(66\) 0 0
\(67\) −28.8502 + 49.9700i −0.430600 + 0.745820i −0.996925 0.0783614i \(-0.975031\pi\)
0.566326 + 0.824182i \(0.308365\pi\)
\(68\) 11.9444 + 6.89611i 0.175653 + 0.101413i
\(69\) 0 0
\(70\) 8.19238 + 14.1896i 0.117034 + 0.202709i
\(71\) 16.3591i 0.230410i 0.993342 + 0.115205i \(0.0367525\pi\)
−0.993342 + 0.115205i \(0.963248\pi\)
\(72\) 0 0
\(73\) −1.61860 −0.0221726 −0.0110863 0.999939i \(-0.503529\pi\)
−0.0110863 + 0.999939i \(0.503529\pi\)
\(74\) 32.1867 18.5830i 0.434955 0.251121i
\(75\) 0 0
\(76\) −14.8760 + 25.7660i −0.195737 + 0.339026i
\(77\) −39.3011 22.6905i −0.510403 0.294682i
\(78\) 0 0
\(79\) −8.91008 15.4327i −0.112786 0.195351i 0.804107 0.594485i \(-0.202644\pi\)
−0.916892 + 0.399134i \(0.869311\pi\)
\(80\) 66.6672i 0.833340i
\(81\) 0 0
\(82\) −29.3330 −0.357719
\(83\) 42.2194 24.3754i 0.508667 0.293679i −0.223618 0.974677i \(-0.571787\pi\)
0.732286 + 0.680998i \(0.238454\pi\)
\(84\) 0 0
\(85\) 16.0368 27.7766i 0.188669 0.326784i
\(86\) −20.2237 11.6762i −0.235159 0.135769i
\(87\) 0 0
\(88\) −51.8201 89.7550i −0.588864 1.01994i
\(89\) 137.254i 1.54218i 0.636728 + 0.771089i \(0.280288\pi\)
−0.636728 + 0.771089i \(0.719712\pi\)
\(90\) 0 0
\(91\) −62.2502 −0.684068
\(92\) −48.7150 + 28.1256i −0.529511 + 0.305713i
\(93\) 0 0
\(94\) 25.7259 44.5586i 0.273680 0.474028i
\(95\) 59.9186 + 34.5940i 0.630722 + 0.364147i
\(96\) 0 0
\(97\) −80.2196 138.945i −0.827007 1.43242i −0.900376 0.435113i \(-0.856709\pi\)
0.0733693 0.997305i \(-0.476625\pi\)
\(98\) 34.1715i 0.348689i
\(99\) 0 0
\(100\) −118.795 −1.18795
\(101\) 68.9485 39.8074i 0.682658 0.394133i −0.118198 0.992990i \(-0.537712\pi\)
0.800856 + 0.598857i \(0.204378\pi\)
\(102\) 0 0
\(103\) −60.9085 + 105.497i −0.591345 + 1.02424i 0.402706 + 0.915329i \(0.368070\pi\)
−0.994052 + 0.108911i \(0.965264\pi\)
\(104\) −123.119 71.0829i −1.18384 0.683490i
\(105\) 0 0
\(106\) 19.7606 + 34.2263i 0.186420 + 0.322890i
\(107\) 36.7905i 0.343837i 0.985111 + 0.171918i \(0.0549966\pi\)
−0.985111 + 0.171918i \(0.945003\pi\)
\(108\) 0 0
\(109\) −83.1756 −0.763078 −0.381539 0.924353i \(-0.624606\pi\)
−0.381539 + 0.924353i \(0.624606\pi\)
\(110\) −95.0572 + 54.8813i −0.864156 + 0.498921i
\(111\) 0 0
\(112\) −11.1529 + 19.3174i −0.0995794 + 0.172477i
\(113\) −43.3330 25.0183i −0.383478 0.221401i 0.295853 0.955234i \(-0.404396\pi\)
−0.679330 + 0.733833i \(0.737730\pi\)
\(114\) 0 0
\(115\) 65.4059 + 113.286i 0.568747 + 0.985098i
\(116\) 109.435i 0.943409i
\(117\) 0 0
\(118\) −23.9317 −0.202811
\(119\) −9.29362 + 5.36567i −0.0780976 + 0.0450897i
\(120\) 0 0
\(121\) 91.5050 158.491i 0.756240 1.30985i
\(122\) −26.9647 15.5681i −0.221022 0.127607i
\(123\) 0 0
\(124\) 55.3704 + 95.9044i 0.446536 + 0.773422i
\(125\) 81.7806i 0.654245i
\(126\) 0 0
\(127\) −133.526 −1.05139 −0.525694 0.850674i \(-0.676194\pi\)
−0.525694 + 0.850674i \(0.676194\pi\)
\(128\) −112.995 + 65.2378i −0.882775 + 0.509671i
\(129\) 0 0
\(130\) −75.2821 + 130.392i −0.579093 + 1.00302i
\(131\) 114.524 + 66.1203i 0.874226 + 0.504735i 0.868750 0.495250i \(-0.164924\pi\)
0.00547589 + 0.999985i \(0.498257\pi\)
\(132\) 0 0
\(133\) −11.5746 20.0478i −0.0870271 0.150735i
\(134\) 46.6944i 0.348465i
\(135\) 0 0
\(136\) −24.5080 −0.180206
\(137\) −74.6702 + 43.1108i −0.545038 + 0.314678i −0.747118 0.664691i \(-0.768563\pi\)
0.202080 + 0.979369i \(0.435230\pi\)
\(138\) 0 0
\(139\) 5.93501 10.2797i 0.0426979 0.0739550i −0.843887 0.536522i \(-0.819738\pi\)
0.886585 + 0.462567i \(0.153071\pi\)
\(140\) 58.6535 + 33.8636i 0.418954 + 0.241883i
\(141\) 0 0
\(142\) −6.61935 11.4651i −0.0466152 0.0807398i
\(143\) 417.018i 2.91621i
\(144\) 0 0
\(145\) −254.491 −1.75511
\(146\) 1.13437 0.654930i 0.00776967 0.00448582i
\(147\) 0 0
\(148\) 76.8137 133.045i 0.519012 0.898955i
\(149\) −63.4767 36.6483i −0.426018 0.245962i 0.271631 0.962402i \(-0.412437\pi\)
−0.697649 + 0.716440i \(0.745770\pi\)
\(150\) 0 0
\(151\) 94.7149 + 164.051i 0.627251 + 1.08643i 0.988101 + 0.153807i \(0.0491533\pi\)
−0.360850 + 0.932624i \(0.617513\pi\)
\(152\) 52.8677i 0.347814i
\(153\) 0 0
\(154\) 36.7248 0.238473
\(155\) 223.025 128.763i 1.43887 0.830731i
\(156\) 0 0
\(157\) 22.6267 39.1906i 0.144119 0.249621i −0.784925 0.619591i \(-0.787299\pi\)
0.929044 + 0.369970i \(0.120632\pi\)
\(158\) 12.4890 + 7.21054i 0.0790444 + 0.0456363i
\(159\) 0 0
\(160\) 119.453 + 206.899i 0.746584 + 1.29312i
\(161\) 43.7675i 0.271848i
\(162\) 0 0
\(163\) 280.866 1.72310 0.861552 0.507670i \(-0.169493\pi\)
0.861552 + 0.507670i \(0.169493\pi\)
\(164\) −105.005 + 60.6247i −0.640275 + 0.369663i
\(165\) 0 0
\(166\) −19.7259 + 34.1663i −0.118831 + 0.205821i
\(167\) −97.4945 56.2885i −0.583800 0.337057i 0.178842 0.983878i \(-0.442765\pi\)
−0.762642 + 0.646821i \(0.776098\pi\)
\(168\) 0 0
\(169\) −201.517 349.038i −1.19241 2.06532i
\(170\) 25.9558i 0.152681i
\(171\) 0 0
\(172\) −96.5280 −0.561209
\(173\) −108.216 + 62.4783i −0.625524 + 0.361146i −0.779017 0.627003i \(-0.784281\pi\)
0.153493 + 0.988150i \(0.450948\pi\)
\(174\) 0 0
\(175\) 46.2154 80.0475i 0.264088 0.457414i
\(176\) −129.408 74.7140i −0.735275 0.424511i
\(177\) 0 0
\(178\) −55.5368 96.1925i −0.312004 0.540407i
\(179\) 231.060i 1.29084i 0.763830 + 0.645418i \(0.223317\pi\)
−0.763830 + 0.645418i \(0.776683\pi\)
\(180\) 0 0
\(181\) −21.6045 −0.119362 −0.0596808 0.998218i \(-0.519008\pi\)
−0.0596808 + 0.998218i \(0.519008\pi\)
\(182\) 43.6272 25.1882i 0.239710 0.138397i
\(183\) 0 0
\(184\) 49.9777 86.5640i 0.271618 0.470456i
\(185\) −309.396 178.630i −1.67241 0.965566i
\(186\) 0 0
\(187\) −35.9450 62.2586i −0.192219 0.332933i
\(188\) 212.679i 1.13127i
\(189\) 0 0
\(190\) −55.9908 −0.294689
\(191\) −250.277 + 144.498i −1.31035 + 0.756533i −0.982154 0.188076i \(-0.939775\pi\)
−0.328198 + 0.944609i \(0.606441\pi\)
\(192\) 0 0
\(193\) 7.41936 12.8507i 0.0384423 0.0665840i −0.846164 0.532922i \(-0.821094\pi\)
0.884606 + 0.466338i \(0.154427\pi\)
\(194\) 112.442 + 64.9183i 0.579596 + 0.334630i
\(195\) 0 0
\(196\) 70.6248 + 122.326i 0.360331 + 0.624111i
\(197\) 8.61853i 0.0437489i −0.999761 0.0218745i \(-0.993037\pi\)
0.999761 0.0218745i \(-0.00696341\pi\)
\(198\) 0 0
\(199\) 286.779 1.44110 0.720550 0.693403i \(-0.243889\pi\)
0.720550 + 0.693403i \(0.243889\pi\)
\(200\) 182.811 105.546i 0.914054 0.527729i
\(201\) 0 0
\(202\) −32.2144 + 55.7970i −0.159477 + 0.276223i
\(203\) 73.7409 + 42.5744i 0.363256 + 0.209726i
\(204\) 0 0
\(205\) 140.982 + 244.188i 0.687718 + 1.19116i
\(206\) 98.5813i 0.478550i
\(207\) 0 0
\(208\) −204.974 −0.985453
\(209\) 134.302 77.5390i 0.642591 0.371000i
\(210\) 0 0
\(211\) −48.9118 + 84.7177i −0.231809 + 0.401506i −0.958341 0.285628i \(-0.907798\pi\)
0.726531 + 0.687133i \(0.241131\pi\)
\(212\) 141.476 + 81.6813i 0.667341 + 0.385289i
\(213\) 0 0
\(214\) −14.8865 25.7842i −0.0695630 0.120487i
\(215\) 224.475i 1.04407i
\(216\) 0 0
\(217\) −86.1644 −0.397071
\(218\) 58.2925 33.6552i 0.267397 0.154382i
\(219\) 0 0
\(220\) −226.855 + 392.924i −1.03116 + 1.78602i
\(221\) −85.4017 49.3067i −0.386433 0.223107i
\(222\) 0 0
\(223\) −118.031 204.435i −0.529286 0.916750i −0.999417 0.0341533i \(-0.989127\pi\)
0.470131 0.882597i \(-0.344207\pi\)
\(224\) 79.9344i 0.356850i
\(225\) 0 0
\(226\) 40.4924 0.179170
\(227\) −185.599 + 107.156i −0.817616 + 0.472051i −0.849594 0.527438i \(-0.823153\pi\)
0.0319778 + 0.999489i \(0.489819\pi\)
\(228\) 0 0
\(229\) 141.310 244.755i 0.617072 1.06880i −0.372945 0.927854i \(-0.621652\pi\)
0.990017 0.140947i \(-0.0450147\pi\)
\(230\) −91.6776 52.9301i −0.398598 0.230131i
\(231\) 0 0
\(232\) 97.2305 + 168.408i 0.419097 + 0.725897i
\(233\) 59.8313i 0.256786i −0.991723 0.128393i \(-0.959018\pi\)
0.991723 0.128393i \(-0.0409820\pi\)
\(234\) 0 0
\(235\) −494.583 −2.10461
\(236\) −85.6698 + 49.4615i −0.363008 + 0.209582i
\(237\) 0 0
\(238\) 4.34220 7.52092i 0.0182446 0.0316005i
\(239\) 69.7376 + 40.2630i 0.291789 + 0.168465i 0.638748 0.769416i \(-0.279452\pi\)
−0.346959 + 0.937880i \(0.612786\pi\)
\(240\) 0 0
\(241\) −72.3297 125.279i −0.300123 0.519829i 0.676040 0.736865i \(-0.263695\pi\)
−0.976164 + 0.217036i \(0.930361\pi\)
\(242\) 148.102i 0.611992i
\(243\) 0 0
\(244\) −128.703 −0.527472
\(245\) 284.467 164.237i 1.16109 0.670357i
\(246\) 0 0
\(247\) 106.362 184.225i 0.430617 0.745850i
\(248\) −170.417 98.3903i −0.687165 0.396735i
\(249\) 0 0
\(250\) −33.0907 57.3148i −0.132363 0.229259i
\(251\) 187.445i 0.746793i −0.927672 0.373397i \(-0.878193\pi\)
0.927672 0.373397i \(-0.121807\pi\)
\(252\) 0 0
\(253\) 293.202 1.15890
\(254\) 93.5801 54.0285i 0.368425 0.212711i
\(255\) 0 0
\(256\) 33.9403 58.7864i 0.132579 0.229634i
\(257\) 181.025 + 104.515i 0.704377 + 0.406672i 0.808975 0.587842i \(-0.200022\pi\)
−0.104599 + 0.994515i \(0.533356\pi\)
\(258\) 0 0
\(259\) 59.7667 + 103.519i 0.230759 + 0.399687i
\(260\) 622.365i 2.39371i
\(261\) 0 0
\(262\) −107.016 −0.408460
\(263\) −111.963 + 64.6421i −0.425716 + 0.245787i −0.697520 0.716565i \(-0.745713\pi\)
0.271804 + 0.962353i \(0.412380\pi\)
\(264\) 0 0
\(265\) 189.949 329.002i 0.716789 1.24152i
\(266\) 16.2238 + 9.36682i 0.0609918 + 0.0352136i
\(267\) 0 0
\(268\) −96.5068 167.155i −0.360100 0.623712i
\(269\) 151.018i 0.561405i 0.959795 + 0.280702i \(0.0905674\pi\)
−0.959795 + 0.280702i \(0.909433\pi\)
\(270\) 0 0
\(271\) 402.721 1.48605 0.743027 0.669261i \(-0.233389\pi\)
0.743027 + 0.669261i \(0.233389\pi\)
\(272\) −30.6015 + 17.6678i −0.112506 + 0.0649551i
\(273\) 0 0
\(274\) 34.8877 60.4273i 0.127327 0.220538i
\(275\) 536.243 + 309.600i 1.94997 + 1.12582i
\(276\) 0 0
\(277\) 80.4259 + 139.302i 0.290346 + 0.502894i 0.973892 0.227014i \(-0.0728962\pi\)
−0.683545 + 0.729908i \(0.739563\pi\)
\(278\) 9.60589i 0.0345536i
\(279\) 0 0
\(280\) −120.348 −0.429813
\(281\) −70.3081 + 40.5924i −0.250207 + 0.144457i −0.619859 0.784713i \(-0.712810\pi\)
0.369652 + 0.929170i \(0.379477\pi\)
\(282\) 0 0
\(283\) −159.276 + 275.875i −0.562814 + 0.974823i 0.434435 + 0.900703i \(0.356948\pi\)
−0.997249 + 0.0741197i \(0.976385\pi\)
\(284\) −47.3914 27.3615i −0.166871 0.0963431i
\(285\) 0 0
\(286\) 168.737 + 292.262i 0.589991 + 1.02189i
\(287\) 94.3409i 0.328714i
\(288\) 0 0
\(289\) −17.0000 −0.0588235
\(290\) 178.357 102.974i 0.615023 0.355084i
\(291\) 0 0
\(292\) 2.70719 4.68899i 0.00927119 0.0160582i
\(293\) 387.823 + 223.910i 1.32363 + 0.764196i 0.984305 0.176474i \(-0.0564692\pi\)
0.339322 + 0.940670i \(0.389803\pi\)
\(294\) 0 0
\(295\) 115.022 + 199.224i 0.389906 + 0.675337i
\(296\) 272.988i 0.922256i
\(297\) 0 0
\(298\) 59.3157 0.199046
\(299\) 348.309 201.096i 1.16491 0.672562i
\(300\) 0 0
\(301\) 37.5529 65.0435i 0.124760 0.216091i
\(302\) −132.759 76.6486i −0.439600 0.253803i
\(303\) 0 0
\(304\) −38.1122 66.0123i −0.125369 0.217146i
\(305\) 299.298i 0.981304i
\(306\) 0 0
\(307\) 306.100 0.997068 0.498534 0.866870i \(-0.333872\pi\)
0.498534 + 0.866870i \(0.333872\pi\)
\(308\) 131.466 75.9020i 0.426838 0.246435i
\(309\) 0 0
\(310\) −104.203 + 180.484i −0.336137 + 0.582207i
\(311\) −204.646 118.153i −0.658026 0.379912i 0.133498 0.991049i \(-0.457379\pi\)
−0.791524 + 0.611137i \(0.790712\pi\)
\(312\) 0 0
\(313\) −96.4374 167.035i −0.308107 0.533657i 0.669841 0.742504i \(-0.266362\pi\)
−0.977948 + 0.208848i \(0.933029\pi\)
\(314\) 36.6216i 0.116629i
\(315\) 0 0
\(316\) 59.6103 0.188640
\(317\) 185.112 106.874i 0.583948 0.337143i −0.178753 0.983894i \(-0.557206\pi\)
0.762701 + 0.646751i \(0.223873\pi\)
\(318\) 0 0
\(319\) −285.208 + 493.995i −0.894070 + 1.54857i
\(320\) 63.5073 + 36.6660i 0.198460 + 0.114581i
\(321\) 0 0
\(322\) 17.7096 + 30.6739i 0.0549987 + 0.0952605i
\(323\) 36.6717i 0.113535i
\(324\) 0 0
\(325\) 849.373 2.61345
\(326\) −196.841 + 113.646i −0.603807 + 0.348608i
\(327\) 0 0
\(328\) 107.727 186.588i 0.328436 0.568867i
\(329\) 143.310 + 82.7399i 0.435592 + 0.251489i
\(330\) 0 0
\(331\) 257.827 + 446.570i 0.778934 + 1.34915i 0.932557 + 0.361023i \(0.117573\pi\)
−0.153623 + 0.988130i \(0.549094\pi\)
\(332\) 163.076i 0.491194i
\(333\) 0 0
\(334\) 91.1036 0.272765
\(335\) −388.717 + 224.426i −1.16035 + 0.669928i
\(336\) 0 0
\(337\) 139.812 242.161i 0.414871 0.718578i −0.580544 0.814229i \(-0.697160\pi\)
0.995415 + 0.0956509i \(0.0304932\pi\)
\(338\) 282.461 + 163.079i 0.835685 + 0.482483i
\(339\) 0 0
\(340\) 53.6449 + 92.9157i 0.157779 + 0.273281i
\(341\) 577.221i 1.69273i
\(342\) 0 0
\(343\) −237.436 −0.692234
\(344\) 148.545 85.7626i 0.431817 0.249310i
\(345\) 0 0
\(346\) 50.5610 87.5742i 0.146130 0.253105i
\(347\) −9.39562 5.42457i −0.0270767 0.0156328i 0.486401 0.873736i \(-0.338310\pi\)
−0.513477 + 0.858103i \(0.671643\pi\)
\(348\) 0 0
\(349\) −220.265 381.511i −0.631133 1.09315i −0.987320 0.158740i \(-0.949257\pi\)
0.356187 0.934415i \(-0.384076\pi\)
\(350\) 74.8002i 0.213715i
\(351\) 0 0
\(352\) 535.486 1.52127
\(353\) 104.849 60.5347i 0.297023 0.171486i −0.344082 0.938940i \(-0.611810\pi\)
0.641105 + 0.767453i \(0.278476\pi\)
\(354\) 0 0
\(355\) −63.6288 + 110.208i −0.179236 + 0.310446i
\(356\) −397.617 229.564i −1.11690 0.644843i
\(357\) 0 0
\(358\) −93.4932 161.935i −0.261154 0.452332i
\(359\) 447.022i 1.24519i −0.782546 0.622593i \(-0.786079\pi\)
0.782546 0.622593i \(-0.213921\pi\)
\(360\) 0 0
\(361\) −281.893 −0.780868
\(362\) 15.1412 8.74177i 0.0418265 0.0241485i
\(363\) 0 0
\(364\) 104.117 180.335i 0.286035 0.495427i
\(365\) −10.9042 6.29554i −0.0298745 0.0172481i
\(366\) 0 0
\(367\) −203.580 352.610i −0.554713 0.960791i −0.997926 0.0643744i \(-0.979495\pi\)
0.443213 0.896416i \(-0.353839\pi\)
\(368\) 144.115i 0.391618i
\(369\) 0 0
\(370\) 289.114 0.781390
\(371\) −110.079 + 63.5540i −0.296708 + 0.171305i
\(372\) 0 0
\(373\) −311.242 + 539.088i −0.834430 + 1.44528i 0.0600638 + 0.998195i \(0.480870\pi\)
−0.894494 + 0.447081i \(0.852464\pi\)
\(374\) 50.3831 + 29.0887i 0.134714 + 0.0777773i
\(375\) 0 0
\(376\) 188.960 + 327.288i 0.502552 + 0.870446i
\(377\) 782.455i 2.07548i
\(378\) 0 0
\(379\) −572.862 −1.51151 −0.755755 0.654855i \(-0.772730\pi\)
−0.755755 + 0.654855i \(0.772730\pi\)
\(380\) −200.434 + 115.721i −0.527457 + 0.304528i
\(381\) 0 0
\(382\) 116.936 202.539i 0.306114 0.530206i
\(383\) 68.2467 + 39.4023i 0.178190 + 0.102878i 0.586442 0.809991i \(-0.300528\pi\)
−0.408252 + 0.912869i \(0.633862\pi\)
\(384\) 0 0
\(385\) −176.509 305.723i −0.458466 0.794086i
\(386\) 12.0083i 0.0311097i
\(387\) 0 0
\(388\) 536.686 1.38321
\(389\) 2.14950 1.24102i 0.00552572 0.00319027i −0.497235 0.867616i \(-0.665651\pi\)
0.502760 + 0.864426i \(0.332318\pi\)
\(390\) 0 0
\(391\) 34.6671 60.0451i 0.0886625 0.153568i
\(392\) −217.366 125.497i −0.554506 0.320144i
\(393\) 0 0
\(394\) 3.48730 + 6.04018i 0.00885102 + 0.0153304i
\(395\) 138.623i 0.350945i
\(396\) 0 0
\(397\) 242.224 0.610135 0.305067 0.952331i \(-0.401321\pi\)
0.305067 + 0.952331i \(0.401321\pi\)
\(398\) −200.985 + 116.039i −0.504988 + 0.291555i
\(399\) 0 0
\(400\) 152.176 263.576i 0.380439 0.658940i
\(401\) −469.035 270.798i −1.16966 0.675306i −0.216063 0.976379i \(-0.569322\pi\)
−0.953601 + 0.301073i \(0.902655\pi\)
\(402\) 0 0
\(403\) −395.894 685.709i −0.982368 1.70151i
\(404\) 266.320i 0.659208i
\(405\) 0 0
\(406\) −68.9071 −0.169722
\(407\) −693.480 + 400.381i −1.70388 + 0.983737i
\(408\) 0 0
\(409\) −212.264 + 367.652i −0.518984 + 0.898906i 0.480773 + 0.876845i \(0.340356\pi\)
−0.999757 + 0.0220608i \(0.992977\pi\)
\(410\) −197.611 114.091i −0.481978 0.278270i
\(411\) 0 0
\(412\) −203.745 352.897i −0.494528 0.856547i
\(413\) 76.9692i 0.186366i
\(414\) 0 0
\(415\) 379.233 0.913813
\(416\) 636.130 367.270i 1.52916 0.882860i
\(417\) 0 0
\(418\) −62.7489 + 108.684i −0.150117 + 0.260010i
\(419\) −107.238 61.9139i −0.255938 0.147766i 0.366542 0.930401i \(-0.380542\pi\)
−0.622480 + 0.782635i \(0.713875\pi\)
\(420\) 0 0
\(421\) −206.378 357.457i −0.490208 0.849065i 0.509728 0.860335i \(-0.329746\pi\)
−0.999936 + 0.0112700i \(0.996413\pi\)
\(422\) 79.1643i 0.187593i
\(423\) 0 0
\(424\) −290.287 −0.684638
\(425\) 126.807 73.2119i 0.298369 0.172263i
\(426\) 0 0
\(427\) 50.0702 86.7241i 0.117260 0.203101i
\(428\) −106.580 61.5341i −0.249019 0.143771i
\(429\) 0 0
\(430\) −90.8289 157.320i −0.211230 0.365861i
\(431\) 360.015i 0.835303i 0.908607 + 0.417651i \(0.137147\pi\)
−0.908607 + 0.417651i \(0.862853\pi\)
\(432\) 0 0
\(433\) −299.670 −0.692078 −0.346039 0.938220i \(-0.612473\pi\)
−0.346039 + 0.938220i \(0.612473\pi\)
\(434\) 60.3871 34.8645i 0.139141 0.0803330i
\(435\) 0 0
\(436\) 139.115 240.955i 0.319072 0.552649i
\(437\) 129.527 + 74.7823i 0.296400 + 0.171127i
\(438\) 0 0
\(439\) 219.286 + 379.815i 0.499513 + 0.865183i 1.00000 0.000561671i \(-0.000178786\pi\)
−0.500486 + 0.865744i \(0.666845\pi\)
\(440\) 806.218i 1.83231i
\(441\) 0 0
\(442\) 79.8035 0.180551
\(443\) −271.723 + 156.879i −0.613370 + 0.354130i −0.774283 0.632839i \(-0.781889\pi\)
0.160913 + 0.986969i \(0.448556\pi\)
\(444\) 0 0
\(445\) −533.849 + 924.654i −1.19966 + 2.07787i
\(446\) 165.441 + 95.5171i 0.370943 + 0.214164i
\(447\) 0 0
\(448\) −12.2679 21.2485i −0.0273836 0.0474298i
\(449\) 575.345i 1.28139i 0.767795 + 0.640696i \(0.221354\pi\)
−0.767795 + 0.640696i \(0.778646\pi\)
\(450\) 0 0
\(451\) 631.996 1.40132
\(452\) 144.953 83.6888i 0.320693 0.185152i
\(453\) 0 0
\(454\) 86.7163 150.197i 0.191005 0.330830i
\(455\) −419.368 242.123i −0.921689 0.532137i
\(456\) 0 0
\(457\) −220.299 381.569i −0.482054 0.834942i 0.517734 0.855542i \(-0.326776\pi\)
−0.999788 + 0.0205996i \(0.993442\pi\)
\(458\) 228.711i 0.499370i
\(459\) 0 0
\(460\) −437.579 −0.951258
\(461\) −93.3163 + 53.8762i −0.202421 + 0.116868i −0.597784 0.801657i \(-0.703952\pi\)
0.395363 + 0.918525i \(0.370619\pi\)
\(462\) 0 0
\(463\) 253.384 438.875i 0.547267 0.947894i −0.451194 0.892426i \(-0.649002\pi\)
0.998460 0.0554677i \(-0.0176650\pi\)
\(464\) 242.810 + 140.187i 0.523298 + 0.302126i
\(465\) 0 0
\(466\) 24.2094 + 41.9319i 0.0519515 + 0.0899827i
\(467\) 182.287i 0.390337i −0.980770 0.195169i \(-0.937475\pi\)
0.980770 0.195169i \(-0.0625254\pi\)
\(468\) 0 0
\(469\) 150.179 0.320210
\(470\) 346.622 200.122i 0.737494 0.425792i
\(471\) 0 0
\(472\) 87.8904 152.231i 0.186208 0.322523i
\(473\) 435.731 + 251.569i 0.921207 + 0.531859i
\(474\) 0 0
\(475\) 157.930 + 273.542i 0.332483 + 0.575878i
\(476\) 35.8975i 0.0754148i
\(477\) 0 0
\(478\) −65.1662 −0.136331
\(479\) −21.7465 + 12.5553i −0.0453998 + 0.0262116i −0.522528 0.852622i \(-0.675011\pi\)
0.477128 + 0.878834i \(0.341678\pi\)
\(480\) 0 0
\(481\) −549.213 + 951.264i −1.14181 + 1.97768i
\(482\) 101.383 + 58.5333i 0.210337 + 0.121438i
\(483\) 0 0
\(484\) 306.094 + 530.170i 0.632425 + 1.09539i
\(485\) 1248.06i 2.57332i
\(486\) 0 0
\(487\) −374.163 −0.768302 −0.384151 0.923270i \(-0.625506\pi\)
−0.384151 + 0.923270i \(0.625506\pi\)
\(488\) 198.059 114.349i 0.405858 0.234322i
\(489\) 0 0
\(490\) −132.910 + 230.207i −0.271245 + 0.469810i
\(491\) 360.289 + 208.013i 0.733786 + 0.423652i 0.819806 0.572642i \(-0.194081\pi\)
−0.0860194 + 0.996293i \(0.527415\pi\)
\(492\) 0 0
\(493\) 67.4439 + 116.816i 0.136803 + 0.236950i
\(494\) 172.149i 0.348479i
\(495\) 0 0
\(496\) −283.717 −0.572011
\(497\) 36.8740 21.2892i 0.0741931 0.0428354i
\(498\) 0 0
\(499\) −175.883 + 304.638i −0.352470 + 0.610496i −0.986682 0.162663i \(-0.947992\pi\)
0.634211 + 0.773160i \(0.281325\pi\)
\(500\) −236.914 136.782i −0.473828 0.273565i
\(501\) 0 0
\(502\) 75.8456 + 131.368i 0.151087 + 0.261690i
\(503\) 262.131i 0.521134i −0.965456 0.260567i \(-0.916090\pi\)
0.965456 0.260567i \(-0.0839095\pi\)
\(504\) 0 0
\(505\) 619.325 1.22639
\(506\) −205.486 + 118.638i −0.406100 + 0.234462i
\(507\) 0 0
\(508\) 223.330 386.818i 0.439625 0.761453i
\(509\) 686.562 + 396.387i 1.34885 + 0.778756i 0.988086 0.153902i \(-0.0491842\pi\)
0.360760 + 0.932659i \(0.382517\pi\)
\(510\) 0 0
\(511\) 2.10639 + 3.64837i 0.00412209 + 0.00713967i
\(512\) 466.970i 0.912051i
\(513\) 0 0
\(514\) −169.158 −0.329102
\(515\) −820.660 + 473.808i −1.59351 + 0.920016i
\(516\) 0 0
\(517\) −554.280 + 960.041i −1.07211 + 1.85695i
\(518\) −83.7733 48.3665i −0.161725 0.0933717i
\(519\) 0 0
\(520\) −552.955 957.746i −1.06337 1.84182i
\(521\) 113.473i 0.217798i −0.994053 0.108899i \(-0.965267\pi\)
0.994053 0.108899i \(-0.0347326\pi\)
\(522\) 0 0
\(523\) 145.974 0.279108 0.139554 0.990214i \(-0.455433\pi\)
0.139554 + 0.990214i \(0.455433\pi\)
\(524\) −383.094 + 221.179i −0.731094 + 0.422098i
\(525\) 0 0
\(526\) 52.3120 90.6071i 0.0994525 0.172257i
\(527\) −118.210 68.2484i −0.224307 0.129504i
\(528\) 0 0
\(529\) −123.111 213.235i −0.232724 0.403091i
\(530\) 307.435i 0.580066i
\(531\) 0 0
\(532\) 77.4365 0.145557
\(533\) 750.779 433.462i 1.40859 0.813250i
\(534\) 0 0
\(535\) −143.097 + 247.851i −0.267471 + 0.463273i
\(536\) 297.025 + 171.487i 0.554151 + 0.319939i
\(537\) 0 0
\(538\) −61.1061 105.839i −0.113580 0.196726i
\(539\) 736.244i 1.36594i
\(540\) 0 0
\(541\) −707.289 −1.30737 −0.653687 0.756765i \(-0.726779\pi\)
−0.653687 + 0.756765i \(0.726779\pi\)
\(542\) −282.241 + 162.952i −0.520741 + 0.300650i
\(543\) 0 0
\(544\) 63.3138 109.663i 0.116386 0.201586i
\(545\) −560.339 323.512i −1.02814 0.593599i
\(546\) 0 0
\(547\) 395.340 + 684.749i 0.722742 + 1.25183i 0.959897 + 0.280354i \(0.0904517\pi\)
−0.237155 + 0.971472i \(0.576215\pi\)
\(548\) 288.421i 0.526315i
\(549\) 0 0
\(550\) −501.092 −0.911076
\(551\) −251.991 + 145.487i −0.457334 + 0.264042i
\(552\) 0 0
\(553\) −23.1906 + 40.1672i −0.0419359 + 0.0726351i
\(554\) −112.731 65.0851i −0.203485 0.117482i
\(555\) 0 0
\(556\) 19.8532 + 34.3868i 0.0357073 + 0.0618468i
\(557\) 669.172i 1.20139i −0.799480 0.600693i \(-0.794891\pi\)
0.799480 0.600693i \(-0.205109\pi\)
\(558\) 0 0
\(559\) 690.168 1.23465
\(560\) −150.270 + 86.7585i −0.268339 + 0.154926i
\(561\) 0 0
\(562\) 32.8496 56.8973i 0.0584513 0.101241i
\(563\) −407.216 235.106i −0.723296 0.417595i 0.0926683 0.995697i \(-0.470460\pi\)
−0.815965 + 0.578102i \(0.803794\pi\)
\(564\) 0 0
\(565\) −194.618 337.088i −0.344456 0.596615i
\(566\) 257.791i 0.455461i
\(567\) 0 0
\(568\) 97.2397 0.171197
\(569\) −740.263 + 427.391i −1.30099 + 0.751126i −0.980574 0.196151i \(-0.937156\pi\)
−0.320415 + 0.947277i \(0.603822\pi\)
\(570\) 0 0
\(571\) −26.2338 + 45.4382i −0.0459435 + 0.0795765i −0.888083 0.459684i \(-0.847963\pi\)
0.842139 + 0.539260i \(0.181296\pi\)
\(572\) 1208.08 + 697.485i 2.11203 + 1.21938i
\(573\) 0 0
\(574\) 38.1730 + 66.1175i 0.0665034 + 0.115187i
\(575\) 597.186i 1.03858i
\(576\) 0 0
\(577\) −116.156 −0.201310 −0.100655 0.994921i \(-0.532094\pi\)
−0.100655 + 0.994921i \(0.532094\pi\)
\(578\) 11.9142 6.87868i 0.0206128 0.0119008i
\(579\) 0 0
\(580\) 425.650 737.247i 0.733879 1.27112i
\(581\) −109.886 63.4426i −0.189132 0.109196i
\(582\) 0 0
\(583\) −425.752 737.425i −0.730278 1.26488i
\(584\) 9.62106i 0.0164744i
\(585\) 0 0
\(586\) −362.400 −0.618431
\(587\) 102.248 59.0327i 0.174187 0.100567i −0.410372 0.911918i \(-0.634601\pi\)
0.584559 + 0.811352i \(0.301268\pi\)
\(588\) 0 0
\(589\) 147.223 254.997i 0.249954 0.432932i
\(590\) −161.223 93.0824i −0.273260 0.157767i
\(591\) 0 0
\(592\) 196.796 + 340.861i 0.332426 + 0.575779i
\(593\) 826.854i 1.39436i −0.716897 0.697179i \(-0.754438\pi\)
0.716897 0.697179i \(-0.245562\pi\)
\(594\) 0 0
\(595\) −83.4792 −0.140301
\(596\) 212.336 122.592i 0.356269 0.205692i
\(597\) 0 0
\(598\) −162.738 + 281.871i −0.272138 + 0.471356i
\(599\) −398.877 230.292i −0.665905 0.384460i 0.128618 0.991694i \(-0.458946\pi\)
−0.794523 + 0.607234i \(0.792279\pi\)
\(600\) 0 0
\(601\) 109.567 + 189.775i 0.182307 + 0.315765i 0.942666 0.333738i \(-0.108310\pi\)
−0.760359 + 0.649503i \(0.774977\pi\)
\(602\) 60.7798i 0.100963i
\(603\) 0 0
\(604\) −633.663 −1.04911
\(605\) 1232.91 711.818i 2.03786 1.17656i
\(606\) 0 0
\(607\) −317.333 + 549.637i −0.522789 + 0.905498i 0.476859 + 0.878980i \(0.341775\pi\)
−0.999648 + 0.0265179i \(0.991558\pi\)
\(608\) 236.560 + 136.578i 0.389079 + 0.224635i
\(609\) 0 0
\(610\) −121.104 209.759i −0.198532 0.343867i
\(611\) 1520.64i 2.48877i
\(612\) 0 0
\(613\) −536.095 −0.874543 −0.437272 0.899329i \(-0.644055\pi\)
−0.437272 + 0.899329i \(0.644055\pi\)
\(614\) −214.526 + 123.857i −0.349391 + 0.201721i
\(615\) 0 0
\(616\) −134.874 + 233.608i −0.218951 + 0.379234i
\(617\) 9.53178 + 5.50317i 0.0154486 + 0.00891924i 0.507704 0.861531i \(-0.330494\pi\)
−0.492256 + 0.870451i \(0.663828\pi\)
\(618\) 0 0
\(619\) −334.758 579.817i −0.540804 0.936700i −0.998858 0.0477756i \(-0.984787\pi\)
0.458054 0.888924i \(-0.348547\pi\)
\(620\) 861.454i 1.38944i
\(621\) 0 0
\(622\) 191.231 0.307446
\(623\) 309.375 178.618i 0.496589 0.286706i
\(624\) 0 0
\(625\) 125.826 217.937i 0.201322 0.348700i
\(626\) 135.174 + 78.0426i 0.215932 + 0.124669i
\(627\) 0 0
\(628\) 75.6886 + 131.096i 0.120523 + 0.208752i
\(629\) 189.358i 0.301046i
\(630\) 0 0
\(631\) 571.390 0.905530 0.452765 0.891630i \(-0.350438\pi\)
0.452765 + 0.891630i \(0.350438\pi\)
\(632\) −91.7331 + 52.9622i −0.145147 + 0.0838009i
\(633\) 0 0
\(634\) −86.4886 + 149.803i −0.136417 + 0.236282i
\(635\) −899.542 519.351i −1.41660 0.817875i
\(636\) 0 0
\(637\) −504.962 874.620i −0.792719 1.37303i
\(638\) 461.613i 0.723532i
\(639\) 0 0
\(640\) −1014.97 −1.58589
\(641\) 90.7482 52.3935i 0.141573 0.0817371i −0.427541 0.903996i \(-0.640620\pi\)
0.569113 + 0.822259i \(0.307287\pi\)
\(642\) 0 0
\(643\) 338.509 586.314i 0.526452 0.911842i −0.473073 0.881023i \(-0.656855\pi\)
0.999525 0.0308184i \(-0.00981135\pi\)
\(644\) 126.792 + 73.2035i 0.196882 + 0.113670i
\(645\) 0 0
\(646\) 14.8384 + 25.7009i 0.0229697 + 0.0397846i
\(647\) 118.927i 0.183813i 0.995768 + 0.0919063i \(0.0292960\pi\)
−0.995768 + 0.0919063i \(0.970704\pi\)
\(648\) 0 0
\(649\) 515.622 0.794487
\(650\) −595.271 + 343.680i −0.915802 + 0.528739i
\(651\) 0 0
\(652\) −469.763 + 813.653i −0.720495 + 1.24793i
\(653\) −577.614 333.486i −0.884555 0.510698i −0.0123973 0.999923i \(-0.503946\pi\)
−0.872158 + 0.489225i \(0.837280\pi\)
\(654\) 0 0
\(655\) 514.350 + 890.880i 0.785267 + 1.36012i
\(656\) 310.640i 0.473537i
\(657\) 0 0
\(658\) −133.916 −0.203519
\(659\) 459.361 265.212i 0.697057 0.402446i −0.109193 0.994021i \(-0.534827\pi\)
0.806250 + 0.591574i \(0.201493\pi\)
\(660\) 0 0
\(661\) 40.9369 70.9047i 0.0619317 0.107269i −0.833397 0.552675i \(-0.813607\pi\)
0.895329 + 0.445406i \(0.146941\pi\)
\(662\) −361.389 208.648i −0.545905 0.315179i
\(663\) 0 0
\(664\) −144.889 250.955i −0.218206 0.377944i
\(665\) 180.078i 0.270794i
\(666\) 0 0
\(667\) −550.137 −0.824793
\(668\) 326.129 188.291i 0.488218 0.281873i
\(669\) 0 0
\(670\) 181.618 314.571i 0.271072 0.469510i
\(671\) 580.970 + 335.423i 0.865827 + 0.499886i
\(672\) 0 0
\(673\) 469.151 + 812.594i 0.697104 + 1.20742i 0.969466 + 0.245225i \(0.0788618\pi\)
−0.272362 + 0.962195i \(0.587805\pi\)
\(674\) 226.287i 0.335737i
\(675\) 0 0
\(676\) 1348.19 1.99437
\(677\) −1115.11 + 643.808i −1.64713 + 0.950972i −0.668929 + 0.743327i \(0.733247\pi\)
−0.978204 + 0.207646i \(0.933420\pi\)
\(678\) 0 0
\(679\) −208.790 + 361.636i −0.307497 + 0.532600i
\(680\) −165.106 95.3241i −0.242803 0.140183i
\(681\) 0 0
\(682\) 233.560 + 404.537i 0.342463 + 0.593163i
\(683\) 37.8698i 0.0554463i 0.999616 + 0.0277231i \(0.00882568\pi\)
−0.999616 + 0.0277231i \(0.991174\pi\)
\(684\) 0 0
\(685\) −670.719 −0.979152
\(686\) 166.404 96.0734i 0.242572 0.140049i
\(687\) 0 0
\(688\) 123.652 214.172i 0.179727 0.311296i
\(689\) −1011.54 584.015i −1.46813 0.847628i
\(690\) 0 0
\(691\) 151.336 + 262.121i 0.219010 + 0.379336i 0.954506 0.298193i \(-0.0963840\pi\)
−0.735496 + 0.677529i \(0.763051\pi\)
\(692\) 417.993i 0.604036i
\(693\) 0 0
\(694\) 8.77973 0.0126509
\(695\) 79.9662 46.1685i 0.115059 0.0664295i
\(696\) 0 0
\(697\) 74.7248 129.427i 0.107209 0.185692i
\(698\) 308.740 + 178.251i 0.442321 + 0.255374i
\(699\) 0 0
\(700\) 154.595 + 267.767i 0.220851 + 0.382524i
\(701\) 864.985i 1.23393i 0.786990 + 0.616965i \(0.211638\pi\)
−0.786990 + 0.616965i \(0.788362\pi\)
\(702\) 0 0
\(703\) −408.475 −0.581046
\(704\) 142.345 82.1832i 0.202195 0.116737i
\(705\) 0 0
\(706\) −48.9881 + 84.8499i −0.0693882 + 0.120184i
\(707\) −179.455 103.608i −0.253825 0.146546i
\(708\) 0 0
\(709\) 556.871 + 964.529i 0.785432 + 1.36041i 0.928741 + 0.370729i \(0.120892\pi\)
−0.143309 + 0.989678i \(0.545774\pi\)
\(710\) 102.984i 0.145048i
\(711\) 0 0
\(712\) 815.846 1.14585
\(713\) 482.116 278.350i 0.676179 0.390392i
\(714\) 0 0
\(715\) 1621.99 2809.38i 2.26852 3.92920i
\(716\) −669.367 386.459i −0.934870 0.539747i
\(717\) 0 0
\(718\) 180.878 + 313.289i 0.251919 + 0.436336i
\(719\) 325.866i 0.453221i 0.973985 + 0.226610i \(0.0727644\pi\)
−0.973985 + 0.226610i \(0.927236\pi\)
\(720\) 0 0
\(721\) 317.057 0.439747
\(722\) 197.561 114.062i 0.273630 0.157981i
\(723\) 0 0
\(724\) 36.1346 62.5869i 0.0499097 0.0864461i
\(725\) −1006.16 580.906i −1.38780 0.801249i
\(726\) 0 0
\(727\) 86.7563 + 150.266i 0.119335 + 0.206694i 0.919504 0.393080i \(-0.128591\pi\)
−0.800170 + 0.599774i \(0.795257\pi\)
\(728\) 370.020i 0.508269i
\(729\) 0 0
\(730\) 10.1894 0.0139581
\(731\) 103.038 59.4892i 0.140955 0.0813806i
\(732\) 0 0
\(733\) 607.986 1053.06i 0.829449 1.43665i −0.0690228 0.997615i \(-0.521988\pi\)
0.898471 0.439032i \(-0.144679\pi\)
\(734\) 285.352 + 164.748i 0.388763 + 0.224452i
\(735\) 0 0
\(736\) 258.224 + 447.257i 0.350848 + 0.607686i
\(737\) 1006.06i 1.36507i
\(738\) 0 0
\(739\) −555.714 −0.751981 −0.375991 0.926623i \(-0.622698\pi\)
−0.375991 + 0.926623i \(0.622698\pi\)
\(740\) 1034.96 597.535i 1.39860 0.807480i
\(741\) 0 0
\(742\) 51.4315 89.0819i 0.0693146 0.120056i
\(743\) −418.217 241.458i −0.562877 0.324977i 0.191423 0.981508i \(-0.438690\pi\)
−0.754299 + 0.656531i \(0.772023\pi\)
\(744\) 0 0
\(745\) −285.087 493.786i −0.382668 0.662800i
\(746\) 503.750i 0.675268i
\(747\) 0 0
\(748\) 240.479 0.321497
\(749\) 82.9271 47.8780i 0.110717 0.0639226i
\(750\) 0 0
\(751\) −44.9522 + 77.8596i −0.0598565 + 0.103675i −0.894401 0.447266i \(-0.852398\pi\)
0.834544 + 0.550941i \(0.185731\pi\)
\(752\) 471.882 + 272.441i 0.627503 + 0.362289i
\(753\) 0 0
\(754\) −316.603 548.373i −0.419898 0.727285i
\(755\) 1473.58i 1.95176i
\(756\) 0 0
\(757\) 647.421 0.855246 0.427623 0.903957i \(-0.359351\pi\)
0.427623 + 0.903957i \(0.359351\pi\)
\(758\) 401.483 231.796i 0.529661 0.305800i
\(759\) 0 0
\(760\) 205.629 356.160i 0.270565 0.468632i
\(761\) 889.297 + 513.436i 1.16859 + 0.674686i 0.953347 0.301875i \(-0.0976126\pi\)
0.215242 + 0.976561i \(0.430946\pi\)
\(762\) 0 0
\(763\) 108.242 + 187.480i 0.141864 + 0.245715i
\(764\) 966.720i 1.26534i
\(765\) 0 0
\(766\) −63.7731 −0.0832547
\(767\) 612.533 353.646i 0.798608 0.461077i
\(768\) 0 0
\(769\) −731.569 + 1267.12i −0.951325 + 1.64774i −0.208764 + 0.977966i \(0.566944\pi\)
−0.742562 + 0.669778i \(0.766389\pi\)
\(770\) 247.408 + 142.841i 0.321310 + 0.185508i
\(771\) 0 0
\(772\) 24.8185 + 42.9870i 0.0321484 + 0.0556826i
\(773\) 808.771i 1.04628i −0.852248 0.523138i \(-0.824761\pi\)
0.852248 0.523138i \(-0.175239\pi\)
\(774\) 0 0
\(775\) 1175.67 1.51699
\(776\) −825.896 + 476.831i −1.06430 + 0.614473i
\(777\) 0 0
\(778\) −1.00430 + 1.73950i −0.00129087 + 0.00223586i
\(779\) 279.195 + 161.193i 0.358401 + 0.206923i
\(780\) 0 0
\(781\) 142.618 + 247.021i 0.182609 + 0.316288i
\(782\) 56.1091i 0.0717507i
\(783\) 0 0
\(784\) −361.881 −0.461583
\(785\) 304.864 176.013i 0.388361 0.224221i
\(786\) 0 0
\(787\) −610.354 + 1057.16i −0.775546 + 1.34328i 0.158942 + 0.987288i \(0.449192\pi\)
−0.934487 + 0.355996i \(0.884142\pi\)
\(788\) 24.9674 + 14.4149i 0.0316845 + 0.0182931i
\(789\) 0 0
\(790\) 56.0908 + 97.1522i 0.0710011 + 0.122977i
\(791\) 130.232i 0.164642i
\(792\) 0 0
\(793\) 920.217 1.16043
\(794\) −169.759 + 98.0105i −0.213802 + 0.123439i
\(795\) 0 0
\(796\) −479.653 + 830.783i −0.602579 + 1.04370i
\(797\) 39.7449 + 22.9467i 0.0498681 + 0.0287914i 0.524727 0.851271i \(-0.324167\pi\)
−0.474859 + 0.880062i \(0.657501\pi\)
\(798\) 0 0
\(799\) 131.072 + 227.023i 0.164045 + 0.284134i
\(800\) 1090.67i 1.36333i
\(801\) 0 0
\(802\) 438.289 0.546496
\(803\) −24.4407 + 14.1108i −0.0304367 + 0.0175726i
\(804\) 0 0
\(805\) 170.234 294.854i 0.211471 0.366278i
\(806\) 554.914 + 320.380i 0.688479 + 0.397494i
\(807\) 0 0
\(808\) −236.618 409.835i −0.292844 0.507221i
\(809\) 1333.69i 1.64856i 0.566181 + 0.824281i \(0.308420\pi\)
−0.566181 + 0.824281i \(0.691580\pi\)
\(810\) 0 0
\(811\) 123.988 0.152883 0.0764413 0.997074i \(-0.475644\pi\)
0.0764413 + 0.997074i \(0.475644\pi\)
\(812\) −246.671 + 142.416i −0.303782 + 0.175389i
\(813\) 0 0
\(814\) 324.011 561.203i 0.398047 0.689438i
\(815\) 1892.14 + 1092.43i 2.32165 + 1.34040i
\(816\) 0 0
\(817\) 128.328 + 222.270i 0.157072 + 0.272056i
\(818\) 343.552i 0.419991i
\(819\) 0 0
\(820\) −943.201 −1.15024
\(821\) −55.9299 + 32.2911i −0.0681241 + 0.0393315i −0.533675 0.845690i \(-0.679189\pi\)
0.465551 + 0.885021i \(0.345856\pi\)
\(822\) 0 0
\(823\) −319.130 + 552.749i −0.387764 + 0.671627i −0.992148 0.125066i \(-0.960086\pi\)
0.604384 + 0.796693i \(0.293419\pi\)
\(824\) 627.080 + 362.045i 0.761019 + 0.439375i
\(825\) 0 0
\(826\) 31.1439 + 53.9428i 0.0377045 + 0.0653061i
\(827\) 1439.50i 1.74063i 0.492499 + 0.870313i \(0.336084\pi\)
−0.492499 + 0.870313i \(0.663916\pi\)
\(828\) 0 0
\(829\) 459.699 0.554522 0.277261 0.960795i \(-0.410573\pi\)
0.277261 + 0.960795i \(0.410573\pi\)
\(830\) −265.780 + 153.448i −0.320217 + 0.184877i
\(831\) 0 0
\(832\) 112.733 195.259i 0.135496 0.234686i
\(833\) −150.776 87.0507i −0.181004 0.104503i
\(834\) 0 0
\(835\) −437.869 758.411i −0.524394 0.908277i
\(836\) 518.752i 0.620517i
\(837\) 0 0
\(838\) 100.208 0.119581
\(839\) −1048.31 + 605.242i −1.24948 + 0.721385i −0.971005 0.239059i \(-0.923161\pi\)
−0.278471 + 0.960445i \(0.589828\pi\)
\(840\) 0 0
\(841\) 114.639 198.561i 0.136313 0.236101i
\(842\) 289.274 + 167.012i 0.343556 + 0.198352i
\(843\) 0 0
\(844\) −163.615 283.390i −0.193857 0.335770i
\(845\) 3135.21i 3.71031i
\(846\) 0 0
\(847\) −476.326 −0.562369
\(848\) −362.461 + 209.267i −0.427431 + 0.246777i
\(849\) 0 0
\(850\) −59.2472 + 102.619i −0.0697026 + 0.120728i
\(851\) −668.825 386.146i −0.785928 0.453756i
\(852\) 0 0
\(853\) −577.517 1000.29i −0.677042 1.17267i −0.975867 0.218364i \(-0.929928\pi\)
0.298825 0.954308i \(-0.403405\pi\)
\(854\) 81.0392i 0.0948936i
\(855\) 0 0
\(856\) 218.686 0.255474
\(857\) 490.803 283.365i 0.572699 0.330648i −0.185528 0.982639i \(-0.559399\pi\)
0.758226 + 0.651991i \(0.226066\pi\)
\(858\) 0 0
\(859\) 39.6787 68.7256i 0.0461918 0.0800065i −0.842005 0.539470i \(-0.818625\pi\)
0.888197 + 0.459463i \(0.151958\pi\)
\(860\) −650.292 375.446i −0.756153 0.436565i
\(861\) 0 0
\(862\) −145.672 252.312i −0.168993 0.292705i
\(863\) 828.604i 0.960144i 0.877229 + 0.480072i \(0.159389\pi\)
−0.877229 + 0.480072i \(0.840611\pi\)
\(864\) 0 0
\(865\) −972.039 −1.12374
\(866\) 210.019 121.255i 0.242517 0.140017i
\(867\) 0 0
\(868\) 144.114 249.613i 0.166030 0.287573i
\(869\) −269.083 155.355i −0.309647 0.178775i
\(870\) 0 0
\(871\) 690.017 + 1195.14i 0.792212 + 1.37215i
\(872\) 494.401i 0.566974i
\(873\) 0 0
\(874\) −121.036 −0.138485
\(875\) 184.336 106.427i 0.210670 0.121630i
\(876\) 0 0
\(877\) 661.272 1145.36i 0.754016 1.30599i −0.191845 0.981425i \(-0.561447\pi\)
0.945862 0.324570i \(-0.105219\pi\)
\(878\) −307.368 177.459i −0.350077 0.202117i
\(879\) 0 0
\(880\) −581.201 1006.67i −0.660455 1.14394i
\(881\) 807.386i 0.916443i −0.888838 0.458221i \(-0.848487\pi\)
0.888838 0.458221i \(-0.151513\pi\)
\(882\) 0 0
\(883\) −1103.04 −1.24919 −0.624597 0.780947i \(-0.714737\pi\)
−0.624597 + 0.780947i \(0.714737\pi\)
\(884\) 285.677 164.936i 0.323165 0.186579i
\(885\) 0 0
\(886\) 126.956 219.894i 0.143291 0.248187i
\(887\) 1173.09 + 677.283i 1.32253 + 0.763566i 0.984132 0.177436i \(-0.0567802\pi\)
0.338402 + 0.941002i \(0.390114\pi\)
\(888\) 0 0
\(889\) 173.767 + 300.973i 0.195463 + 0.338552i
\(890\) 864.042i 0.970833i
\(891\) 0 0
\(892\) 789.650 0.885258
\(893\) −489.725 + 282.743i −0.548404 + 0.316621i
\(894\) 0 0
\(895\) −898.707 + 1556.61i −1.00414 + 1.73923i
\(896\) 294.097 + 169.797i 0.328233 + 0.189505i
\(897\) 0 0
\(898\) −232.801 403.223i −0.259244 0.449023i
\(899\) 1083.04i 1.20472i
\(900\) 0 0
\(901\) −201.357 −0.223482
\(902\) −442.926 + 255.723i −0.491048 + 0.283507i
\(903\) 0 0
\(904\) −148.711 + 257.574i −0.164503 + 0.284927i
\(905\) −145.545 84.0307i −0.160824 0.0928515i
\(906\) 0 0
\(907\) 2.58101 + 4.47044i 0.00284565 + 0.00492882i 0.867445 0.497534i \(-0.165761\pi\)
−0.864599 + 0.502462i \(0.832428\pi\)
\(908\) 716.893i 0.789529i
\(909\) 0 0
\(910\) 391.878 0.430636
\(911\) −1259.49 + 727.164i −1.38253 + 0.798205i −0.992459 0.122580i \(-0.960883\pi\)
−0.390072 + 0.920784i \(0.627550\pi\)
\(912\) 0 0
\(913\) 425.006 736.132i 0.465505 0.806279i
\(914\) 308.787 + 178.278i 0.337841 + 0.195053i
\(915\) 0 0
\(916\) 472.695 + 818.732i 0.516043 + 0.893812i
\(917\) 344.187i 0.375340i
\(918\) 0 0
\(919\) 285.223 0.310362 0.155181 0.987886i \(-0.450404\pi\)
0.155181 + 0.987886i \(0.450404\pi\)
\(920\) 673.382 388.777i 0.731937 0.422584i
\(921\) 0 0
\(922\) 43.5996 75.5168i 0.0472881 0.0819054i
\(923\) 338.845 + 195.632i 0.367113 + 0.211953i
\(924\) 0 0
\(925\) −815.486 1412.46i −0.881606 1.52699i
\(926\) 410.106i 0.442879i
\(927\) 0 0
\(928\) −1004.74 −1.08269
\(929\) −748.901 + 432.378i −0.806137 + 0.465423i −0.845612 0.533797i \(-0.820765\pi\)
0.0394759 + 0.999221i \(0.487431\pi\)
\(930\) 0 0
\(931\) 187.782 325.248i 0.201699 0.349353i
\(932\) 173.328 + 100.071i 0.185974 + 0.107372i
\(933\) 0 0
\(934\) 73.7586 + 127.754i 0.0789707 + 0.136781i
\(935\) 559.233i 0.598110i
\(936\) 0 0
\(937\) 468.142 0.499618 0.249809 0.968295i \(-0.419632\pi\)
0.249809 + 0.968295i \(0.419632\pi\)
\(938\) −105.251 + 60.7665i −0.112208 + 0.0647830i
\(939\) 0 0
\(940\) 827.216 1432.78i 0.880018 1.52424i
\(941\) 398.668 + 230.171i 0.423665 + 0.244603i 0.696644 0.717417i \(-0.254676\pi\)
−0.272979 + 0.962020i \(0.588009\pi\)
\(942\) 0 0
\(943\) 304.763 + 527.865i 0.323185 + 0.559772i
\(944\) 253.440i 0.268475i
\(945\) 0 0
\(946\) −407.168 −0.430410
\(947\) 1377.75 795.443i 1.45486 0.839961i 0.456104 0.889926i \(-0.349244\pi\)
0.998751 + 0.0499655i \(0.0159111\pi\)
\(948\) 0 0
\(949\) −19.3562 + 33.5259i −0.0203964 + 0.0353276i
\(950\) −221.366 127.806i −0.233017 0.134532i
\(951\) 0 0
\(952\) 31.8939 + 55.2419i 0.0335020 + 0.0580272i
\(953\) 1298.89i 1.36295i −0.731843 0.681474i \(-0.761339\pi\)
0.731843 0.681474i \(-0.238661\pi\)
\(954\) 0 0
\(955\) −2248.10 −2.35403
\(956\) −233.280 + 134.684i −0.244016 + 0.140883i
\(957\) 0 0
\(958\) 10.1605 17.5985i 0.0106059 0.0183700i
\(959\) 194.347 + 112.206i 0.202655 + 0.117003i
\(960\) 0 0
\(961\) −67.4818 116.882i −0.0702204 0.121625i
\(962\) 888.907i 0.924020i
\(963\) 0 0
\(964\) 483.901 0.501972
\(965\) 99.9658 57.7153i 0.103591 0.0598086i
\(966\) 0 0
\(967\) 424.725 735.645i 0.439219 0.760750i −0.558410 0.829565i \(-0.688588\pi\)
0.997629 + 0.0688148i \(0.0219218\pi\)
\(968\) −942.084 543.912i −0.973227 0.561893i
\(969\) 0 0
\(970\) 505.000 + 874.685i 0.520618 + 0.901737i
\(971\) 620.233i 0.638757i 0.947627 + 0.319379i \(0.103474\pi\)
−0.947627 + 0.319379i \(0.896526\pi\)
\(972\) 0 0
\(973\) −30.8945 −0.0317518
\(974\) 262.227 151.397i 0.269227 0.155438i
\(975\) 0 0
\(976\) 164.868 285.560i 0.168922 0.292582i
\(977\) −543.231 313.635i −0.556020 0.321018i 0.195527 0.980698i \(-0.437358\pi\)
−0.751546 + 0.659680i \(0.770692\pi\)
\(978\) 0 0
\(979\) 1196.57 + 2072.52i 1.22224 + 2.11698i
\(980\) 1098.78i 1.12121i
\(981\) 0 0
\(982\) −336.672 −0.342843
\(983\) 1397.22 806.683i 1.42138 0.820634i 0.424963 0.905211i \(-0.360287\pi\)
0.996417 + 0.0845766i \(0.0269538\pi\)
\(984\) 0 0
\(985\) 33.5218 58.0615i 0.0340323 0.0589457i
\(986\) −94.5343 54.5794i −0.0958766 0.0553544i
\(987\) 0 0
\(988\) 355.793 + 616.251i 0.360114 + 0.623736i
\(989\) 485.251i 0.490648i
\(990\) 0 0
\(991\) 968.743 0.977541 0.488770 0.872412i \(-0.337446\pi\)
0.488770 + 0.872412i \(0.337446\pi\)
\(992\) 880.507 508.361i 0.887608 0.512461i
\(993\) 0 0
\(994\) −17.2284 + 29.8405i −0.0173324 + 0.0300206i
\(995\) 1931.98 + 1115.43i 1.94169 + 1.12103i
\(996\) 0 0
\(997\) 886.595 + 1535.63i 0.889262 + 1.54025i 0.840749 + 0.541425i \(0.182115\pi\)
0.0485132 + 0.998823i \(0.484552\pi\)
\(998\) 284.668i 0.285239i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.j.a.341.14 64
3.2 odd 2 153.3.j.a.86.19 64
9.2 odd 6 inner 459.3.j.a.35.14 64
9.7 even 3 153.3.j.a.137.19 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.j.a.86.19 64 3.2 odd 2
153.3.j.a.137.19 yes 64 9.7 even 3
459.3.j.a.35.14 64 9.2 odd 6 inner
459.3.j.a.341.14 64 1.1 even 1 trivial