Properties

Label 153.3.j.a.86.19
Level $153$
Weight $3$
Character 153.86
Analytic conductor $4.169$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(86,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.86"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 86.19
Character \(\chi\) \(=\) 153.86
Dual form 153.3.j.a.137.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.700836 - 0.404628i) q^{2} +(0.807723 - 2.88922i) q^{3} +(-1.67255 + 2.89695i) q^{4} +(-6.73682 - 3.88950i) q^{5} +(-0.602977 - 2.35170i) q^{6} +(-1.30137 - 2.25403i) q^{7} +5.94407i q^{8} +(-7.69517 - 4.66738i) q^{9} -6.29521 q^{10} +(-15.0999 + 8.71794i) q^{11} +(7.01895 + 7.17230i) q^{12} +(11.9586 - 20.7129i) q^{13} +(-1.82409 - 1.05314i) q^{14} +(-16.6791 + 16.3225i) q^{15} +(-4.28507 - 7.42196i) q^{16} +4.12311i q^{17} +(-7.28161 - 0.157387i) q^{18} +8.89419 q^{19} +(22.5354 - 13.0108i) q^{20} +(-7.56354 + 1.93930i) q^{21} +(-7.05505 + 12.2197i) q^{22} +(-14.5631 - 8.40799i) q^{23} +(17.1737 + 4.80116i) q^{24} +(17.7565 + 30.7551i) q^{25} -19.3552i q^{26} +(-19.7006 + 18.4631i) q^{27} +8.70641 q^{28} +(28.3321 - 16.3576i) q^{29} +(-5.08479 + 18.1882i) q^{30} +(16.5527 - 28.6701i) q^{31} +(-26.5971 - 15.3559i) q^{32} +(12.9915 + 50.6686i) q^{33} +(1.66832 + 2.88962i) q^{34} +20.2467i q^{35} +(26.3917 - 14.4860i) q^{36} -45.9261 q^{37} +(6.23337 - 3.59884i) q^{38} +(-50.1850 - 51.2814i) q^{39} +(23.1195 - 40.0441i) q^{40} +(-31.3907 - 18.1234i) q^{41} +(-4.51611 + 4.41955i) q^{42} +(14.4282 + 24.9905i) q^{43} -58.3248i q^{44} +(33.6872 + 61.3737i) q^{45} -13.6084 q^{46} +(55.0612 - 31.7896i) q^{47} +(-24.9048 + 6.38562i) q^{48} +(21.1129 - 36.5686i) q^{49} +(24.8888 + 14.3696i) q^{50} +(11.9126 + 3.33033i) q^{51} +(40.0028 + 69.2870i) q^{52} +48.8363i q^{53} +(-6.33625 + 20.9110i) q^{54} +135.634 q^{55} +(13.3981 - 7.73542i) q^{56} +(7.18404 - 25.6973i) q^{57} +(13.2375 - 22.9279i) q^{58} +(-25.6105 - 14.7862i) q^{59} +(-19.3887 - 75.6187i) q^{60} +(19.2375 + 33.3204i) q^{61} -26.7907i q^{62} +(-0.506188 + 23.4191i) q^{63} +9.42690 q^{64} +(-161.126 + 93.0262i) q^{65} +(29.6069 + 30.2537i) q^{66} +(-28.8502 + 49.9700i) q^{67} +(-11.9444 - 6.89611i) q^{68} +(-36.0555 + 35.2846i) q^{69} +(8.19238 + 14.1896i) q^{70} -16.3591i q^{71} +(27.7432 - 45.7406i) q^{72} -1.61860 q^{73} +(-32.1867 + 18.5830i) q^{74} +(103.201 - 26.4607i) q^{75} +(-14.8760 + 25.7660i) q^{76} +(39.3011 + 22.6905i) q^{77} +(-55.9213 - 15.6336i) q^{78} +(-8.91008 - 15.4327i) q^{79} +66.6672i q^{80} +(37.4312 + 71.8325i) q^{81} -29.3330 q^{82} +(-42.2194 + 24.3754i) q^{83} +(7.03237 - 25.1547i) q^{84} +(16.0368 - 27.7766i) q^{85} +(20.2237 + 11.6762i) q^{86} +(-24.3760 - 95.0700i) q^{87} +(-51.8201 - 89.7550i) q^{88} -137.254i q^{89} +(48.4427 + 29.3821i) q^{90} -62.2502 q^{91} +(48.7150 - 28.1256i) q^{92} +(-69.4641 - 70.9818i) q^{93} +(25.7259 - 44.5586i) q^{94} +(-59.9186 - 34.5940i) q^{95} +(-65.8496 + 64.4417i) q^{96} +(-80.2196 - 138.945i) q^{97} -34.1715i q^{98} +(156.886 + 3.39099i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{3} + 64 q^{4} - 18 q^{5} - 22 q^{6} + 2 q^{7} - 6 q^{9} - 44 q^{12} - 10 q^{13} + 72 q^{14} - 36 q^{15} - 128 q^{16} - 38 q^{18} - 28 q^{19} - 18 q^{20} + 88 q^{21} + 144 q^{23} - 42 q^{24}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.700836 0.404628i 0.350418 0.202314i −0.314451 0.949274i \(-0.601820\pi\)
0.664869 + 0.746960i \(0.268487\pi\)
\(3\) 0.807723 2.88922i 0.269241 0.963073i
\(4\) −1.67255 + 2.89695i −0.418138 + 0.724236i
\(5\) −6.73682 3.88950i −1.34736 0.777901i −0.359488 0.933150i \(-0.617049\pi\)
−0.987875 + 0.155249i \(0.950382\pi\)
\(6\) −0.602977 2.35170i −0.100496 0.391950i
\(7\) −1.30137 2.25403i −0.185910 0.322005i 0.757973 0.652286i \(-0.226190\pi\)
−0.943883 + 0.330281i \(0.892856\pi\)
\(8\) 5.94407i 0.743009i
\(9\) −7.69517 4.66738i −0.855019 0.518597i
\(10\) −6.29521 −0.629521
\(11\) −15.0999 + 8.71794i −1.37272 + 0.792540i −0.991270 0.131849i \(-0.957908\pi\)
−0.381450 + 0.924390i \(0.624575\pi\)
\(12\) 7.01895 + 7.17230i 0.584912 + 0.597691i
\(13\) 11.9586 20.7129i 0.919894 1.59330i 0.120321 0.992735i \(-0.461608\pi\)
0.799574 0.600568i \(-0.205059\pi\)
\(14\) −1.82409 1.05314i −0.130292 0.0752242i
\(15\) −16.6791 + 16.3225i −1.11194 + 1.08817i
\(16\) −4.28507 7.42196i −0.267817 0.463872i
\(17\) 4.12311i 0.242536i
\(18\) −7.28161 0.157387i −0.404534 0.00874371i
\(19\) 8.89419 0.468115 0.234058 0.972223i \(-0.424800\pi\)
0.234058 + 0.972223i \(0.424800\pi\)
\(20\) 22.5354 13.0108i 1.12677 0.650540i
\(21\) −7.56354 + 1.93930i −0.360169 + 0.0923475i
\(22\) −7.05505 + 12.2197i −0.320684 + 0.555441i
\(23\) −14.5631 8.40799i −0.633177 0.365565i 0.148804 0.988867i \(-0.452458\pi\)
−0.781981 + 0.623302i \(0.785791\pi\)
\(24\) 17.1737 + 4.80116i 0.715572 + 0.200048i
\(25\) 17.7565 + 30.7551i 0.710260 + 1.23021i
\(26\) 19.3552i 0.744430i
\(27\) −19.7006 + 18.4631i −0.729653 + 0.683817i
\(28\) 8.70641 0.310943
\(29\) 28.3321 16.3576i 0.976969 0.564054i 0.0756157 0.997137i \(-0.475908\pi\)
0.901354 + 0.433083i \(0.142574\pi\)
\(30\) −5.08479 + 18.1882i −0.169493 + 0.606275i
\(31\) 16.5527 28.6701i 0.533957 0.924841i −0.465256 0.885176i \(-0.654038\pi\)
0.999213 0.0396646i \(-0.0126290\pi\)
\(32\) −26.5971 15.3559i −0.831160 0.479871i
\(33\) 12.9915 + 50.6686i 0.393681 + 1.53541i
\(34\) 1.66832 + 2.88962i 0.0490684 + 0.0849889i
\(35\) 20.2467i 0.578477i
\(36\) 26.3917 14.4860i 0.733103 0.402390i
\(37\) −45.9261 −1.24125 −0.620623 0.784109i \(-0.713120\pi\)
−0.620623 + 0.784109i \(0.713120\pi\)
\(38\) 6.23337 3.59884i 0.164036 0.0947063i
\(39\) −50.1850 51.2814i −1.28679 1.31491i
\(40\) 23.1195 40.0441i 0.577987 1.00110i
\(41\) −31.3907 18.1234i −0.765626 0.442035i 0.0656858 0.997840i \(-0.479076\pi\)
−0.831312 + 0.555806i \(0.812410\pi\)
\(42\) −4.51611 + 4.41955i −0.107526 + 0.105227i
\(43\) 14.4282 + 24.9905i 0.335541 + 0.581174i 0.983589 0.180426i \(-0.0577477\pi\)
−0.648048 + 0.761600i \(0.724414\pi\)
\(44\) 58.3248i 1.32556i
\(45\) 33.6872 + 61.3737i 0.748604 + 1.36386i
\(46\) −13.6084 −0.295836
\(47\) 55.0612 31.7896i 1.17152 0.676375i 0.217479 0.976065i \(-0.430217\pi\)
0.954037 + 0.299690i \(0.0968833\pi\)
\(48\) −24.9048 + 6.38562i −0.518850 + 0.133034i
\(49\) 21.1129 36.5686i 0.430875 0.746298i
\(50\) 24.8888 + 14.3696i 0.497776 + 0.287391i
\(51\) 11.9126 + 3.33033i 0.233579 + 0.0653005i
\(52\) 40.0028 + 69.2870i 0.769285 + 1.33244i
\(53\) 48.8363i 0.921440i 0.887545 + 0.460720i \(0.152409\pi\)
−0.887545 + 0.460720i \(0.847591\pi\)
\(54\) −6.33625 + 20.9110i −0.117338 + 0.387241i
\(55\) 135.634 2.46607
\(56\) 13.3981 7.73542i 0.239252 0.138132i
\(57\) 7.18404 25.6973i 0.126036 0.450829i
\(58\) 13.2375 22.9279i 0.228232 0.395309i
\(59\) −25.6105 14.7862i −0.434076 0.250614i 0.267005 0.963695i \(-0.413966\pi\)
−0.701082 + 0.713081i \(0.747299\pi\)
\(60\) −19.3887 75.6187i −0.323145 1.26031i
\(61\) 19.2375 + 33.3204i 0.315369 + 0.546236i 0.979516 0.201367i \(-0.0645383\pi\)
−0.664147 + 0.747602i \(0.731205\pi\)
\(62\) 26.7907i 0.432108i
\(63\) −0.506188 + 23.4191i −0.00803473 + 0.371732i
\(64\) 9.42690 0.147295
\(65\) −161.126 + 93.0262i −2.47886 + 1.43117i
\(66\) 29.6069 + 30.2537i 0.448589 + 0.458390i
\(67\) −28.8502 + 49.9700i −0.430600 + 0.745820i −0.996925 0.0783614i \(-0.975031\pi\)
0.566326 + 0.824182i \(0.308365\pi\)
\(68\) −11.9444 6.89611i −0.175653 0.101413i
\(69\) −36.0555 + 35.2846i −0.522543 + 0.511371i
\(70\) 8.19238 + 14.1896i 0.117034 + 0.202709i
\(71\) 16.3591i 0.230410i −0.993342 0.115205i \(-0.963248\pi\)
0.993342 0.115205i \(-0.0367525\pi\)
\(72\) 27.7432 45.7406i 0.385323 0.635286i
\(73\) −1.61860 −0.0221726 −0.0110863 0.999939i \(-0.503529\pi\)
−0.0110863 + 0.999939i \(0.503529\pi\)
\(74\) −32.1867 + 18.5830i −0.434955 + 0.251121i
\(75\) 103.201 26.4607i 1.37601 0.352810i
\(76\) −14.8760 + 25.7660i −0.195737 + 0.339026i
\(77\) 39.3011 + 22.6905i 0.510403 + 0.294682i
\(78\) −55.9213 15.6336i −0.716940 0.200431i
\(79\) −8.91008 15.4327i −0.112786 0.195351i 0.804107 0.594485i \(-0.202644\pi\)
−0.916892 + 0.399134i \(0.869311\pi\)
\(80\) 66.6672i 0.833340i
\(81\) 37.4312 + 71.8325i 0.462113 + 0.886821i
\(82\) −29.3330 −0.357719
\(83\) −42.2194 + 24.3754i −0.508667 + 0.293679i −0.732286 0.680998i \(-0.761546\pi\)
0.223618 + 0.974677i \(0.428213\pi\)
\(84\) 7.03237 25.1547i 0.0837187 0.299461i
\(85\) 16.0368 27.7766i 0.188669 0.326784i
\(86\) 20.2237 + 11.6762i 0.235159 + 0.135769i
\(87\) −24.3760 95.0700i −0.280184 1.09276i
\(88\) −51.8201 89.7550i −0.588864 1.01994i
\(89\) 137.254i 1.54218i −0.636728 0.771089i \(-0.719712\pi\)
0.636728 0.771089i \(-0.280288\pi\)
\(90\) 48.4427 + 29.3821i 0.538252 + 0.326468i
\(91\) −62.2502 −0.684068
\(92\) 48.7150 28.1256i 0.529511 0.305713i
\(93\) −69.4641 70.9818i −0.746926 0.763245i
\(94\) 25.7259 44.5586i 0.273680 0.474028i
\(95\) −59.9186 34.5940i −0.630722 0.364147i
\(96\) −65.8496 + 64.4417i −0.685933 + 0.671267i
\(97\) −80.2196 138.945i −0.827007 1.43242i −0.900376 0.435113i \(-0.856709\pi\)
0.0733693 0.997305i \(-0.476625\pi\)
\(98\) 34.1715i 0.348689i
\(99\) 156.886 + 3.39099i 1.58471 + 0.0342524i
\(100\) −118.795 −1.18795
\(101\) −68.9485 + 39.8074i −0.682658 + 0.394133i −0.800856 0.598857i \(-0.795622\pi\)
0.118198 + 0.992990i \(0.462288\pi\)
\(102\) 9.69630 2.48614i 0.0950617 0.0243739i
\(103\) −60.9085 + 105.497i −0.591345 + 1.02424i 0.402706 + 0.915329i \(0.368070\pi\)
−0.994052 + 0.108911i \(0.965264\pi\)
\(104\) 123.119 + 71.0829i 1.18384 + 0.683490i
\(105\) 58.4971 + 16.3537i 0.557115 + 0.155750i
\(106\) 19.7606 + 34.2263i 0.186420 + 0.322890i
\(107\) 36.7905i 0.343837i −0.985111 0.171918i \(-0.945003\pi\)
0.985111 0.171918i \(-0.0549966\pi\)
\(108\) −20.5362 87.9521i −0.190150 0.814371i
\(109\) −83.1756 −0.763078 −0.381539 0.924353i \(-0.624606\pi\)
−0.381539 + 0.924353i \(0.624606\pi\)
\(110\) 95.0572 54.8813i 0.864156 0.498921i
\(111\) −37.0955 + 132.690i −0.334194 + 1.19541i
\(112\) −11.1529 + 19.3174i −0.0995794 + 0.172477i
\(113\) 43.3330 + 25.0183i 0.383478 + 0.221401i 0.679330 0.733833i \(-0.262270\pi\)
−0.295853 + 0.955234i \(0.595604\pi\)
\(114\) −5.36300 20.9164i −0.0470438 0.183478i
\(115\) 65.4059 + 113.286i 0.568747 + 0.985098i
\(116\) 109.435i 0.943409i
\(117\) −188.699 + 103.574i −1.61281 + 0.885249i
\(118\) −23.9317 −0.202811
\(119\) 9.29362 5.36567i 0.0780976 0.0450897i
\(120\) −97.0221 99.1418i −0.808518 0.826182i
\(121\) 91.5050 158.491i 0.756240 1.30985i
\(122\) 26.9647 + 15.5681i 0.221022 + 0.127607i
\(123\) −77.7175 + 76.0558i −0.631850 + 0.618340i
\(124\) 55.3704 + 95.9044i 0.446536 + 0.773422i
\(125\) 81.7806i 0.654245i
\(126\) 9.12128 + 16.6178i 0.0723911 + 0.131887i
\(127\) −133.526 −1.05139 −0.525694 0.850674i \(-0.676194\pi\)
−0.525694 + 0.850674i \(0.676194\pi\)
\(128\) 112.995 65.2378i 0.882775 0.509671i
\(129\) 83.8569 21.5010i 0.650054 0.166674i
\(130\) −75.2821 + 130.392i −0.579093 + 1.00302i
\(131\) −114.524 66.1203i −0.874226 0.504735i −0.00547589 0.999985i \(-0.501743\pi\)
−0.868750 + 0.495250i \(0.835076\pi\)
\(132\) −168.513 47.1103i −1.27662 0.356896i
\(133\) −11.5746 20.0478i −0.0870271 0.150735i
\(134\) 46.6944i 0.348465i
\(135\) 204.532 47.7567i 1.51505 0.353753i
\(136\) −24.5080 −0.180206
\(137\) 74.6702 43.1108i 0.545038 0.314678i −0.202080 0.979369i \(-0.564770\pi\)
0.747118 + 0.664691i \(0.231437\pi\)
\(138\) −10.9919 + 39.3178i −0.0796511 + 0.284911i
\(139\) 5.93501 10.2797i 0.0426979 0.0739550i −0.843887 0.536522i \(-0.819738\pi\)
0.886585 + 0.462567i \(0.153071\pi\)
\(140\) −58.6535 33.8636i −0.418954 0.241883i
\(141\) −47.3729 184.761i −0.335978 1.31036i
\(142\) −6.61935 11.4651i −0.0466152 0.0807398i
\(143\) 417.018i 2.91621i
\(144\) −1.66675 + 77.1132i −0.0115746 + 0.535509i
\(145\) −254.491 −1.75511
\(146\) −1.13437 + 0.654930i −0.00776967 + 0.00448582i
\(147\) −88.6013 90.5370i −0.602730 0.615898i
\(148\) 76.8137 133.045i 0.519012 0.898955i
\(149\) 63.4767 + 36.6483i 0.426018 + 0.245962i 0.697649 0.716440i \(-0.254230\pi\)
−0.271631 + 0.962402i \(0.587563\pi\)
\(150\) 61.6200 60.3026i 0.410800 0.402017i
\(151\) 94.7149 + 164.051i 0.627251 + 1.08643i 0.988101 + 0.153807i \(0.0491533\pi\)
−0.360850 + 0.932624i \(0.617513\pi\)
\(152\) 52.8677i 0.347814i
\(153\) 19.2441 31.7280i 0.125778 0.207372i
\(154\) 36.7248 0.238473
\(155\) −223.025 + 128.763i −1.43887 + 0.830731i
\(156\) 232.496 59.6123i 1.49036 0.382130i
\(157\) 22.6267 39.1906i 0.144119 0.249621i −0.784925 0.619591i \(-0.787299\pi\)
0.929044 + 0.369970i \(0.120632\pi\)
\(158\) −12.4890 7.21054i −0.0790444 0.0456363i
\(159\) 141.099 + 39.4462i 0.887414 + 0.248090i
\(160\) 119.453 + 206.899i 0.746584 + 1.29312i
\(161\) 43.7675i 0.271848i
\(162\) 55.2986 + 35.1971i 0.341349 + 0.217266i
\(163\) 280.866 1.72310 0.861552 0.507670i \(-0.169493\pi\)
0.861552 + 0.507670i \(0.169493\pi\)
\(164\) 105.005 60.6247i 0.640275 0.369663i
\(165\) 109.555 391.876i 0.663967 2.37501i
\(166\) −19.7259 + 34.1663i −0.118831 + 0.205821i
\(167\) 97.4945 + 56.2885i 0.583800 + 0.337057i 0.762642 0.646821i \(-0.223902\pi\)
−0.178842 + 0.983878i \(0.557235\pi\)
\(168\) −11.5273 44.9582i −0.0686150 0.267608i
\(169\) −201.517 349.038i −1.19241 2.06532i
\(170\) 25.9558i 0.152681i
\(171\) −68.4423 41.5125i −0.400247 0.242763i
\(172\) −96.5280 −0.561209
\(173\) 108.216 62.4783i 0.625524 0.361146i −0.153493 0.988150i \(-0.549052\pi\)
0.779017 + 0.627003i \(0.215719\pi\)
\(174\) −55.5516 56.7653i −0.319262 0.326237i
\(175\) 46.2154 80.0475i 0.264088 0.457414i
\(176\) 129.408 + 74.7140i 0.735275 + 0.424511i
\(177\) −63.4068 + 62.0511i −0.358231 + 0.350571i
\(178\) −55.5368 96.1925i −0.312004 0.540407i
\(179\) 231.060i 1.29084i −0.763830 0.645418i \(-0.776683\pi\)
0.763830 0.645418i \(-0.223317\pi\)
\(180\) −234.140 5.06076i −1.30078 0.0281154i
\(181\) −21.6045 −0.119362 −0.0596808 0.998218i \(-0.519008\pi\)
−0.0596808 + 0.998218i \(0.519008\pi\)
\(182\) −43.6272 + 25.1882i −0.239710 + 0.138397i
\(183\) 111.808 28.6678i 0.610975 0.156655i
\(184\) 49.9777 86.5640i 0.271618 0.470456i
\(185\) 309.396 + 178.630i 1.67241 + 0.965566i
\(186\) −77.4042 21.6395i −0.416152 0.116341i
\(187\) −35.9450 62.2586i −0.192219 0.332933i
\(188\) 212.679i 1.13127i
\(189\) 67.2541 + 20.3787i 0.355842 + 0.107824i
\(190\) −55.9908 −0.294689
\(191\) 250.277 144.498i 1.31035 0.756533i 0.328198 0.944609i \(-0.393559\pi\)
0.982154 + 0.188076i \(0.0602252\pi\)
\(192\) 7.61433 27.2364i 0.0396579 0.141856i
\(193\) 7.41936 12.8507i 0.0384423 0.0665840i −0.846164 0.532922i \(-0.821094\pi\)
0.884606 + 0.466338i \(0.154427\pi\)
\(194\) −112.442 64.9183i −0.579596 0.334630i
\(195\) 138.628 + 540.668i 0.710912 + 2.77266i
\(196\) 70.6248 + 122.326i 0.360331 + 0.624111i
\(197\) 8.61853i 0.0437489i 0.999761 + 0.0218745i \(0.00696341\pi\)
−0.999761 + 0.0218745i \(0.993037\pi\)
\(198\) 111.324 61.1041i 0.562241 0.308606i
\(199\) 286.779 1.44110 0.720550 0.693403i \(-0.243889\pi\)
0.720550 + 0.693403i \(0.243889\pi\)
\(200\) −182.811 + 105.546i −0.914054 + 0.527729i
\(201\) 121.071 + 123.716i 0.602344 + 0.615504i
\(202\) −32.2144 + 55.7970i −0.159477 + 0.276223i
\(203\) −73.7409 42.5744i −0.363256 0.209726i
\(204\) −29.5721 + 28.9399i −0.144961 + 0.141862i
\(205\) 140.982 + 244.188i 0.687718 + 1.19116i
\(206\) 98.5813i 0.478550i
\(207\) 72.8220 + 132.672i 0.351797 + 0.640929i
\(208\) −204.974 −0.985453
\(209\) −134.302 + 77.5390i −0.642591 + 0.371000i
\(210\) 47.6141 12.2083i 0.226734 0.0581347i
\(211\) −48.9118 + 84.7177i −0.231809 + 0.401506i −0.958341 0.285628i \(-0.907798\pi\)
0.726531 + 0.687133i \(0.241131\pi\)
\(212\) −141.476 81.6813i −0.667341 0.385289i
\(213\) −47.2650 13.2136i −0.221902 0.0620358i
\(214\) −14.8865 25.7842i −0.0695630 0.120487i
\(215\) 224.475i 1.04407i
\(216\) −109.746 117.102i −0.508083 0.542139i
\(217\) −86.1644 −0.397071
\(218\) −58.2925 + 33.6552i −0.267397 + 0.154382i
\(219\) −1.30738 + 4.67648i −0.00596976 + 0.0213538i
\(220\) −226.855 + 392.924i −1.03116 + 1.78602i
\(221\) 85.4017 + 49.3067i 0.386433 + 0.223107i
\(222\) 27.6924 + 108.004i 0.124740 + 0.486505i
\(223\) −118.031 204.435i −0.529286 0.916750i −0.999417 0.0341533i \(-0.989127\pi\)
0.470131 0.882597i \(-0.344207\pi\)
\(224\) 79.9344i 0.356850i
\(225\) 6.90668 319.542i 0.0306963 1.42019i
\(226\) 40.4924 0.179170
\(227\) 185.599 107.156i 0.817616 0.472051i −0.0319778 0.999489i \(-0.510181\pi\)
0.849594 + 0.527438i \(0.176847\pi\)
\(228\) 62.4279 + 63.7918i 0.273806 + 0.279789i
\(229\) 141.310 244.755i 0.617072 1.06880i −0.372945 0.927854i \(-0.621652\pi\)
0.990017 0.140947i \(-0.0450147\pi\)
\(230\) 91.6776 + 52.9301i 0.398598 + 0.230131i
\(231\) 97.3021 95.2217i 0.421221 0.412215i
\(232\) 97.2305 + 168.408i 0.419097 + 0.725897i
\(233\) 59.8313i 0.256786i 0.991723 + 0.128393i \(0.0409820\pi\)
−0.991723 + 0.128393i \(0.959018\pi\)
\(234\) −90.3379 + 148.941i −0.386059 + 0.636502i
\(235\) −494.583 −2.10461
\(236\) 85.6698 49.4615i 0.363008 0.209582i
\(237\) −51.7854 + 13.2778i −0.218504 + 0.0560245i
\(238\) 4.34220 7.52092i 0.0182446 0.0316005i
\(239\) −69.7376 40.2630i −0.291789 0.168465i 0.346959 0.937880i \(-0.387214\pi\)
−0.638748 + 0.769416i \(0.720548\pi\)
\(240\) 192.616 + 53.8486i 0.802567 + 0.224369i
\(241\) −72.3297 125.279i −0.300123 0.519829i 0.676040 0.736865i \(-0.263695\pi\)
−0.976164 + 0.217036i \(0.930361\pi\)
\(242\) 148.102i 0.611992i
\(243\) 237.774 50.1261i 0.978493 0.206280i
\(244\) −128.703 −0.527472
\(245\) −284.467 + 164.237i −1.16109 + 0.670357i
\(246\) −23.6929 + 84.7494i −0.0963127 + 0.344510i
\(247\) 106.362 184.225i 0.430617 0.745850i
\(248\) 170.417 + 98.3903i 0.687165 + 0.396735i
\(249\) 36.3242 + 141.670i 0.145880 + 0.568954i
\(250\) −33.0907 57.3148i −0.132363 0.229259i
\(251\) 187.445i 0.746793i 0.927672 + 0.373397i \(0.121807\pi\)
−0.927672 + 0.373397i \(0.878193\pi\)
\(252\) −66.9973 40.6361i −0.265862 0.161254i
\(253\) 293.202 1.15890
\(254\) −93.5801 + 54.0285i −0.368425 + 0.212711i
\(255\) −67.2994 68.7697i −0.263919 0.269685i
\(256\) 33.9403 58.7864i 0.132579 0.229634i
\(257\) −181.025 104.515i −0.704377 0.406672i 0.104599 0.994515i \(-0.466644\pi\)
−0.808975 + 0.587842i \(0.799978\pi\)
\(258\) 50.0701 48.9996i 0.194070 0.189921i
\(259\) 59.7667 + 103.519i 0.230759 + 0.399687i
\(260\) 622.365i 2.39371i
\(261\) −294.367 6.36254i −1.12784 0.0243775i
\(262\) −107.016 −0.408460
\(263\) 111.963 64.6421i 0.425716 0.245787i −0.271804 0.962353i \(-0.587620\pi\)
0.697520 + 0.716565i \(0.254287\pi\)
\(264\) −301.178 + 77.2223i −1.14083 + 0.292509i
\(265\) 189.949 329.002i 0.716789 1.24152i
\(266\) −16.2238 9.36682i −0.0609918 0.0352136i
\(267\) −396.556 110.863i −1.48523 0.415217i
\(268\) −96.5068 167.155i −0.360100 0.623712i
\(269\) 151.018i 0.561405i −0.959795 0.280702i \(-0.909433\pi\)
0.959795 0.280702i \(-0.0905674\pi\)
\(270\) 124.020 116.229i 0.459332 0.430478i
\(271\) 402.721 1.48605 0.743027 0.669261i \(-0.233389\pi\)
0.743027 + 0.669261i \(0.233389\pi\)
\(272\) 30.6015 17.6678i 0.112506 0.0649551i
\(273\) −50.2809 + 179.854i −0.184179 + 0.658808i
\(274\) 34.8877 60.4273i 0.127327 0.220538i
\(275\) −536.243 309.600i −1.94997 1.12582i
\(276\) −41.9128 163.466i −0.151858 0.592268i
\(277\) 80.4259 + 139.302i 0.290346 + 0.502894i 0.973892 0.227014i \(-0.0728962\pi\)
−0.683545 + 0.729908i \(0.739563\pi\)
\(278\) 9.60589i 0.0345536i
\(279\) −261.190 + 143.363i −0.936163 + 0.513847i
\(280\) −120.348 −0.429813
\(281\) 70.3081 40.5924i 0.250207 0.144457i −0.369652 0.929170i \(-0.620523\pi\)
0.619859 + 0.784713i \(0.287190\pi\)
\(282\) −107.960 110.319i −0.382838 0.391202i
\(283\) −159.276 + 275.875i −0.562814 + 0.974823i 0.434435 + 0.900703i \(0.356948\pi\)
−0.997249 + 0.0741197i \(0.976385\pi\)
\(284\) 47.3914 + 27.3615i 0.166871 + 0.0963431i
\(285\) −148.347 + 145.175i −0.520517 + 0.509388i
\(286\) 168.737 + 292.262i 0.589991 + 1.02189i
\(287\) 94.3409i 0.328714i
\(288\) 132.998 + 242.305i 0.461798 + 0.841336i
\(289\) −17.0000 −0.0588235
\(290\) −178.357 + 102.974i −0.615023 + 0.355084i
\(291\) −466.236 + 119.543i −1.60219 + 0.410802i
\(292\) 2.70719 4.68899i 0.00927119 0.0160582i
\(293\) −387.823 223.910i −1.32363 0.764196i −0.339322 0.940670i \(-0.610197\pi\)
−0.984305 + 0.176474i \(0.943531\pi\)
\(294\) −98.7289 27.6011i −0.335812 0.0938813i
\(295\) 115.022 + 199.224i 0.389906 + 0.675337i
\(296\) 272.988i 0.922256i
\(297\) 136.518 450.540i 0.459656 1.51697i
\(298\) 59.3157 0.199046
\(299\) −348.309 + 201.096i −1.16491 + 0.672562i
\(300\) −95.9532 + 343.224i −0.319844 + 1.14408i
\(301\) 37.5529 65.0435i 0.124760 0.216091i
\(302\) 132.759 + 76.6486i 0.439600 + 0.253803i
\(303\) 59.3211 + 231.361i 0.195779 + 0.763566i
\(304\) −38.1122 66.0123i −0.125369 0.217146i
\(305\) 299.298i 0.981304i
\(306\) 0.648922 30.0228i 0.00212066 0.0981138i
\(307\) 306.100 0.997068 0.498534 0.866870i \(-0.333872\pi\)
0.498534 + 0.866870i \(0.333872\pi\)
\(308\) −131.466 + 75.9020i −0.426838 + 0.246435i
\(309\) 255.606 + 261.190i 0.827203 + 0.845276i
\(310\) −104.203 + 180.484i −0.336137 + 0.582207i
\(311\) 204.646 + 118.153i 0.658026 + 0.379912i 0.791524 0.611137i \(-0.209288\pi\)
−0.133498 + 0.991049i \(0.542621\pi\)
\(312\) 304.820 298.303i 0.976988 0.956099i
\(313\) −96.4374 167.035i −0.308107 0.533657i 0.669841 0.742504i \(-0.266362\pi\)
−0.977948 + 0.208848i \(0.933029\pi\)
\(314\) 36.6216i 0.116629i
\(315\) 94.4989 155.802i 0.299997 0.494608i
\(316\) 59.6103 0.188640
\(317\) −185.112 + 106.874i −0.583948 + 0.337143i −0.762701 0.646751i \(-0.776127\pi\)
0.178753 + 0.983894i \(0.442794\pi\)
\(318\) 114.848 29.4472i 0.361158 0.0926013i
\(319\) −285.208 + 493.995i −0.894070 + 1.54857i
\(320\) −63.5073 36.6660i −0.198460 0.114581i
\(321\) −106.296 29.7166i −0.331140 0.0925750i
\(322\) 17.7096 + 30.6739i 0.0549987 + 0.0952605i
\(323\) 36.6717i 0.113535i
\(324\) −270.700 11.7075i −0.835495 0.0361341i
\(325\) 849.373 2.61345
\(326\) 196.841 113.646i 0.603807 0.348608i
\(327\) −67.1828 + 240.312i −0.205452 + 0.734900i
\(328\) 107.727 186.588i 0.328436 0.568867i
\(329\) −143.310 82.7399i −0.435592 0.251489i
\(330\) −81.7842 318.970i −0.247831 0.966575i
\(331\) 257.827 + 446.570i 0.778934 + 1.34915i 0.932557 + 0.361023i \(0.117573\pi\)
−0.153623 + 0.988130i \(0.549094\pi\)
\(332\) 163.076i 0.491194i
\(333\) 353.409 + 214.354i 1.06129 + 0.643707i
\(334\) 91.1036 0.272765
\(335\) 388.717 224.426i 1.16035 0.669928i
\(336\) 46.8037 + 47.8262i 0.139297 + 0.142340i
\(337\) 139.812 242.161i 0.414871 0.718578i −0.580544 0.814229i \(-0.697160\pi\)
0.995415 + 0.0956509i \(0.0304932\pi\)
\(338\) −282.461 163.079i −0.835685 0.482483i
\(339\) 107.284 104.991i 0.316473 0.309707i
\(340\) 53.6449 + 92.9157i 0.157779 + 0.273281i
\(341\) 577.221i 1.69273i
\(342\) −64.7640 1.39983i −0.189368 0.00409306i
\(343\) −237.436 −0.692234
\(344\) −148.545 + 85.7626i −0.431817 + 0.249310i
\(345\) 380.139 97.4679i 1.10185 0.282516i
\(346\) 50.5610 87.5742i 0.146130 0.253105i
\(347\) 9.39562 + 5.42457i 0.0270767 + 0.0156328i 0.513477 0.858103i \(-0.328357\pi\)
−0.486401 + 0.873736i \(0.661690\pi\)
\(348\) 316.183 + 88.3935i 0.908572 + 0.254004i
\(349\) −220.265 381.511i −0.631133 1.09315i −0.987320 0.158740i \(-0.949257\pi\)
0.356187 0.934415i \(-0.384076\pi\)
\(350\) 74.8002i 0.213715i
\(351\) 146.832 + 628.851i 0.418325 + 1.79160i
\(352\) 535.486 1.52127
\(353\) −104.849 + 60.5347i −0.297023 + 0.171486i −0.641105 0.767453i \(-0.721524\pi\)
0.344082 + 0.938940i \(0.388190\pi\)
\(354\) −19.3302 + 69.1439i −0.0546050 + 0.195322i
\(355\) −63.6288 + 110.208i −0.179236 + 0.310446i
\(356\) 397.617 + 229.564i 1.11690 + 0.644843i
\(357\) −7.99593 31.1853i −0.0223976 0.0873537i
\(358\) −93.4932 161.935i −0.261154 0.452332i
\(359\) 447.022i 1.24519i 0.782546 + 0.622593i \(0.213921\pi\)
−0.782546 + 0.622593i \(0.786079\pi\)
\(360\) −364.809 + 200.239i −1.01336 + 0.556219i
\(361\) −281.893 −0.780868
\(362\) −15.1412 + 8.74177i −0.0418265 + 0.0241485i
\(363\) −384.005 392.395i −1.05787 1.08098i
\(364\) 104.117 180.335i 0.286035 0.495427i
\(365\) 10.9042 + 6.29554i 0.0298745 + 0.0172481i
\(366\) 66.7596 65.3323i 0.182403 0.178503i
\(367\) −203.580 352.610i −0.554713 0.960791i −0.997926 0.0643744i \(-0.979495\pi\)
0.443213 0.896416i \(-0.353839\pi\)
\(368\) 144.115i 0.391618i
\(369\) 156.968 + 285.975i 0.425387 + 0.775000i
\(370\) 289.114 0.781390
\(371\) 110.079 63.5540i 0.296708 0.171305i
\(372\) 321.813 82.5130i 0.865088 0.221809i
\(373\) −311.242 + 539.088i −0.834430 + 1.44528i 0.0600638 + 0.998195i \(0.480870\pi\)
−0.894494 + 0.447081i \(0.852464\pi\)
\(374\) −50.3831 29.0887i −0.134714 0.0777773i
\(375\) −236.282 66.0561i −0.630085 0.176150i
\(376\) 188.960 + 327.288i 0.502552 + 0.870446i
\(377\) 782.455i 2.07548i
\(378\) 55.3799 12.9308i 0.146508 0.0342085i
\(379\) −572.862 −1.51151 −0.755755 0.654855i \(-0.772730\pi\)
−0.755755 + 0.654855i \(0.772730\pi\)
\(380\) 200.434 115.721i 0.527457 0.304528i
\(381\) −107.852 + 385.786i −0.283077 + 1.01256i
\(382\) 116.936 202.539i 0.306114 0.530206i
\(383\) −68.2467 39.4023i −0.178190 0.102878i 0.408252 0.912869i \(-0.366138\pi\)
−0.586442 + 0.809991i \(0.699472\pi\)
\(384\) −97.2175 379.162i −0.253171 0.987401i
\(385\) −176.509 305.723i −0.458466 0.794086i
\(386\) 12.0083i 0.0311097i
\(387\) 5.61210 259.648i 0.0145016 0.670925i
\(388\) 536.686 1.38321
\(389\) −2.14950 + 1.24102i −0.00552572 + 0.00319027i −0.502760 0.864426i \(-0.667682\pi\)
0.497235 + 0.867616i \(0.334349\pi\)
\(390\) 315.925 + 322.827i 0.810064 + 0.827762i
\(391\) 34.6671 60.0451i 0.0886625 0.153568i
\(392\) 217.366 + 125.497i 0.554506 + 0.320144i
\(393\) −283.539 + 277.477i −0.721474 + 0.706048i
\(394\) 3.48730 + 6.04018i 0.00885102 + 0.0153304i
\(395\) 138.623i 0.350945i
\(396\) −272.224 + 448.819i −0.687434 + 1.13338i
\(397\) 242.224 0.610135 0.305067 0.952331i \(-0.401321\pi\)
0.305067 + 0.952331i \(0.401321\pi\)
\(398\) 200.985 116.039i 0.504988 0.291555i
\(399\) −67.2716 + 17.2485i −0.168600 + 0.0432293i
\(400\) 152.176 263.576i 0.380439 0.658940i
\(401\) 469.035 + 270.798i 1.16966 + 0.675306i 0.953601 0.301073i \(-0.0973449\pi\)
0.216063 + 0.976379i \(0.430678\pi\)
\(402\) 134.910 + 37.7161i 0.335598 + 0.0938212i
\(403\) −395.894 685.709i −0.982368 1.70151i
\(404\) 266.320i 0.659208i
\(405\) 27.2256 629.511i 0.0672237 1.55435i
\(406\) −68.9071 −0.169722
\(407\) 693.480 400.381i 1.70388 0.983737i
\(408\) −19.7957 + 70.8091i −0.0485189 + 0.173552i
\(409\) −212.264 + 367.652i −0.518984 + 0.898906i 0.480773 + 0.876845i \(0.340356\pi\)
−0.999757 + 0.0220608i \(0.992977\pi\)
\(410\) 197.611 + 114.091i 0.481978 + 0.278270i
\(411\) −64.2438 250.560i −0.156311 0.609635i
\(412\) −203.745 352.897i −0.494528 0.856547i
\(413\) 76.9692i 0.186366i
\(414\) 104.719 + 63.5157i 0.252945 + 0.153420i
\(415\) 379.233 0.913813
\(416\) −636.130 + 367.270i −1.52916 + 0.882860i
\(417\) −24.9066 25.4507i −0.0597280 0.0610329i
\(418\) −62.7489 + 108.684i −0.150117 + 0.260010i
\(419\) 107.238 + 61.9139i 0.255938 + 0.147766i 0.622480 0.782635i \(-0.286125\pi\)
−0.366542 + 0.930401i \(0.619458\pi\)
\(420\) −145.215 + 142.110i −0.345751 + 0.338358i
\(421\) −206.378 357.457i −0.490208 0.849065i 0.509728 0.860335i \(-0.329746\pi\)
−0.999936 + 0.0112700i \(0.996413\pi\)
\(422\) 79.1643i 0.187593i
\(423\) −572.079 12.3651i −1.35243 0.0292319i
\(424\) −290.287 −0.684638
\(425\) −126.807 + 73.2119i −0.298369 + 0.172263i
\(426\) −38.4717 + 9.86417i −0.0903091 + 0.0231553i
\(427\) 50.0702 86.7241i 0.117260 0.203101i
\(428\) 106.580 + 61.5341i 0.249019 + 0.143771i
\(429\) 1204.86 + 336.835i 2.80852 + 0.785164i
\(430\) −90.8289 157.320i −0.211230 0.365861i
\(431\) 360.015i 0.835303i −0.908607 0.417651i \(-0.862853\pi\)
0.908607 0.417651i \(-0.137147\pi\)
\(432\) 221.451 + 67.1017i 0.512617 + 0.155328i
\(433\) −299.670 −0.692078 −0.346039 0.938220i \(-0.612473\pi\)
−0.346039 + 0.938220i \(0.612473\pi\)
\(434\) −60.3871 + 34.8645i −0.139141 + 0.0803330i
\(435\) −205.558 + 735.280i −0.472548 + 1.69030i
\(436\) 139.115 240.955i 0.319072 0.552649i
\(437\) −129.527 74.7823i −0.296400 0.171127i
\(438\) 0.975978 + 3.80645i 0.00222826 + 0.00869053i
\(439\) 219.286 + 379.815i 0.499513 + 0.865183i 1.00000 0.000561671i \(-0.000178786\pi\)
−0.500486 + 0.865744i \(0.666845\pi\)
\(440\) 806.218i 1.83231i
\(441\) −333.147 + 182.860i −0.755435 + 0.414648i
\(442\) 79.8035 0.180551
\(443\) 271.723 156.879i 0.613370 0.354130i −0.160913 0.986969i \(-0.551444\pi\)
0.774283 + 0.632839i \(0.218111\pi\)
\(444\) −322.353 329.395i −0.726020 0.741882i
\(445\) −533.849 + 924.654i −1.19966 + 2.07787i
\(446\) −165.441 95.5171i −0.370943 0.214164i
\(447\) 157.157 153.796i 0.351581 0.344064i
\(448\) −12.2679 21.2485i −0.0273836 0.0474298i
\(449\) 575.345i 1.28139i −0.767795 0.640696i \(-0.778646\pi\)
0.767795 0.640696i \(-0.221354\pi\)
\(450\) −124.455 226.741i −0.276567 0.503870i
\(451\) 631.996 1.40132
\(452\) −144.953 + 83.6888i −0.320693 + 0.185152i
\(453\) 550.483 141.144i 1.21519 0.311577i
\(454\) 86.7163 150.197i 0.191005 0.330830i
\(455\) 419.368 + 242.123i 0.921689 + 0.532137i
\(456\) 152.746 + 42.7025i 0.334970 + 0.0936458i
\(457\) −220.299 381.569i −0.482054 0.834942i 0.517734 0.855542i \(-0.326776\pi\)
−0.999788 + 0.0205996i \(0.993442\pi\)
\(458\) 228.711i 0.499370i
\(459\) −76.1252 81.2278i −0.165850 0.176967i
\(460\) −437.579 −0.951258
\(461\) 93.3163 53.8762i 0.202421 0.116868i −0.395363 0.918525i \(-0.629381\pi\)
0.597784 + 0.801657i \(0.296048\pi\)
\(462\) 29.6635 106.106i 0.0642067 0.229667i
\(463\) 253.384 438.875i 0.547267 0.947894i −0.451194 0.892426i \(-0.649002\pi\)
0.998460 0.0554677i \(-0.0176650\pi\)
\(464\) −242.810 140.187i −0.523298 0.302126i
\(465\) 191.883 + 748.372i 0.412652 + 1.60940i
\(466\) 24.2094 + 41.9319i 0.0519515 + 0.0899827i
\(467\) 182.287i 0.390337i 0.980770 + 0.195169i \(0.0625254\pi\)
−0.980770 + 0.195169i \(0.937475\pi\)
\(468\) 15.5598 719.883i 0.0332474 1.53821i
\(469\) 150.179 0.320210
\(470\) −346.622 + 200.122i −0.737494 + 0.425792i
\(471\) −94.9540 97.0285i −0.201601 0.206005i
\(472\) 87.8904 152.231i 0.186208 0.322523i
\(473\) −435.731 251.569i −0.921207 0.531859i
\(474\) −30.9205 + 30.2594i −0.0652331 + 0.0638384i
\(475\) 157.930 + 273.542i 0.332483 + 0.575878i
\(476\) 35.8975i 0.0754148i
\(477\) 227.938 375.804i 0.477857 0.787849i
\(478\) −65.1662 −0.136331
\(479\) 21.7465 12.5553i 0.0453998 0.0262116i −0.477128 0.878834i \(-0.658322\pi\)
0.522528 + 0.852622i \(0.324989\pi\)
\(480\) 694.263 178.010i 1.44638 0.370853i
\(481\) −549.213 + 951.264i −1.14181 + 1.97768i
\(482\) −101.383 58.5333i −0.210337 0.121438i
\(483\) 126.454 + 35.3520i 0.261809 + 0.0731926i
\(484\) 306.094 + 530.170i 0.632425 + 1.09539i
\(485\) 1248.06i 2.57332i
\(486\) 146.358 131.340i 0.301148 0.270247i
\(487\) −374.163 −0.768302 −0.384151 0.923270i \(-0.625506\pi\)
−0.384151 + 0.923270i \(0.625506\pi\)
\(488\) −198.059 + 114.349i −0.405858 + 0.234322i
\(489\) 226.862 811.483i 0.463930 1.65947i
\(490\) −132.910 + 230.207i −0.271245 + 0.469810i
\(491\) −360.289 208.013i −0.733786 0.423652i 0.0860194 0.996293i \(-0.472585\pi\)
−0.819806 + 0.572642i \(0.805919\pi\)
\(492\) −90.3430 352.351i −0.183624 0.716160i
\(493\) 67.4439 + 116.816i 0.136803 + 0.236950i
\(494\) 172.149i 0.348479i
\(495\) −1043.73 633.054i −2.10854 1.27890i
\(496\) −283.717 −0.572011
\(497\) −36.8740 + 21.2892i −0.0741931 + 0.0428354i
\(498\) 82.7808 + 84.5894i 0.166227 + 0.169858i
\(499\) −175.883 + 304.638i −0.352470 + 0.610496i −0.986682 0.162663i \(-0.947992\pi\)
0.634211 + 0.773160i \(0.281325\pi\)
\(500\) 236.914 + 136.782i 0.473828 + 0.273565i
\(501\) 241.378 236.218i 0.481793 0.471492i
\(502\) 75.8456 + 131.368i 0.151087 + 0.261690i
\(503\) 262.131i 0.521134i 0.965456 + 0.260567i \(0.0839095\pi\)
−0.965456 + 0.260567i \(0.916090\pi\)
\(504\) −139.205 3.00882i −0.276200 0.00596988i
\(505\) 619.325 1.22639
\(506\) 205.486 118.638i 0.406100 0.234462i
\(507\) −1171.22 + 300.301i −2.31009 + 0.592310i
\(508\) 223.330 386.818i 0.439625 0.761453i
\(509\) −686.562 396.387i −1.34885 0.778756i −0.360760 0.932659i \(-0.617483\pi\)
−0.988086 + 0.153902i \(0.950816\pi\)
\(510\) −74.9920 20.9651i −0.147043 0.0411081i
\(511\) 2.10639 + 3.64837i 0.00412209 + 0.00713967i
\(512\) 466.970i 0.912051i
\(513\) −175.221 + 164.214i −0.341562 + 0.320105i
\(514\) −169.158 −0.329102
\(515\) 820.660 473.808i 1.59351 0.920016i
\(516\) −77.9679 + 278.890i −0.151101 + 0.540485i
\(517\) −554.280 + 960.041i −1.07211 + 1.85695i
\(518\) 83.7733 + 48.3665i 0.161725 + 0.0933717i
\(519\) −93.1053 363.124i −0.179394 0.699660i
\(520\) −552.955 957.746i −1.06337 1.84182i
\(521\) 113.473i 0.217798i 0.994053 + 0.108899i \(0.0347326\pi\)
−0.994053 + 0.108899i \(0.965267\pi\)
\(522\) −208.878 + 114.650i −0.400149 + 0.219636i
\(523\) 145.974 0.279108 0.139554 0.990214i \(-0.455433\pi\)
0.139554 + 0.990214i \(0.455433\pi\)
\(524\) 383.094 221.179i 0.731094 0.422098i
\(525\) −193.945 198.183i −0.369420 0.377491i
\(526\) 52.3120 90.6071i 0.0994525 0.172257i
\(527\) 118.210 + 68.2484i 0.224307 + 0.129504i
\(528\) 320.391 313.541i 0.606801 0.593828i
\(529\) −123.111 213.235i −0.232724 0.403091i
\(530\) 307.435i 0.580066i
\(531\) 128.064 + 233.316i 0.241175 + 0.439390i
\(532\) 77.4365 0.145557
\(533\) −750.779 + 433.462i −1.40859 + 0.813250i
\(534\) −322.779 + 82.7609i −0.604456 + 0.154983i
\(535\) −143.097 + 247.851i −0.267471 + 0.463273i
\(536\) −297.025 171.487i −0.554151 0.319939i
\(537\) −667.581 186.632i −1.24317 0.347546i
\(538\) −61.1061 105.839i −0.113580 0.196726i
\(539\) 736.244i 1.36594i
\(540\) −203.742 + 672.393i −0.377299 + 1.24517i
\(541\) −707.289 −1.30737 −0.653687 0.756765i \(-0.726779\pi\)
−0.653687 + 0.756765i \(0.726779\pi\)
\(542\) 282.241 162.952i 0.520741 0.300650i
\(543\) −17.4504 + 62.4200i −0.0321371 + 0.114954i
\(544\) 63.3138 109.663i 0.116386 0.201586i
\(545\) 560.339 + 323.512i 1.02814 + 0.593599i
\(546\) 37.5355 + 146.394i 0.0687463 + 0.268120i
\(547\) 395.340 + 684.749i 0.722742 + 1.25183i 0.959897 + 0.280354i \(0.0904517\pi\)
−0.237155 + 0.971472i \(0.576215\pi\)
\(548\) 288.421i 0.526315i
\(549\) 7.48275 346.195i 0.0136298 0.630591i
\(550\) −501.092 −0.911076
\(551\) 251.991 145.487i 0.457334 0.264042i
\(552\) −209.734 214.316i −0.379953 0.388254i
\(553\) −23.1906 + 40.1672i −0.0419359 + 0.0726351i
\(554\) 112.731 + 65.0851i 0.203485 + 0.117482i
\(555\) 766.006 749.628i 1.38019 1.35068i
\(556\) 19.8532 + 34.3868i 0.0357073 + 0.0618468i
\(557\) 669.172i 1.20139i 0.799480 + 0.600693i \(0.205109\pi\)
−0.799480 + 0.600693i \(0.794891\pi\)
\(558\) −125.042 + 206.159i −0.224090 + 0.369460i
\(559\) 690.168 1.23465
\(560\) 150.270 86.7585i 0.268339 0.154926i
\(561\) −208.912 + 53.5653i −0.372392 + 0.0954818i
\(562\) 32.8496 56.8973i 0.0584513 0.101241i
\(563\) 407.216 + 235.106i 0.723296 + 0.417595i 0.815965 0.578102i \(-0.196206\pi\)
−0.0926683 + 0.995697i \(0.529540\pi\)
\(564\) 614.477 + 171.786i 1.08950 + 0.304585i
\(565\) −194.618 337.088i −0.344456 0.596615i
\(566\) 257.791i 0.455461i
\(567\) 113.201 177.852i 0.199649 0.313671i
\(568\) 97.2397 0.171197
\(569\) 740.263 427.391i 1.30099 0.751126i 0.320415 0.947277i \(-0.396178\pi\)
0.980574 + 0.196151i \(0.0628443\pi\)
\(570\) −45.2251 + 161.770i −0.0793422 + 0.283807i
\(571\) −26.2338 + 45.4382i −0.0459435 + 0.0795765i −0.888083 0.459684i \(-0.847963\pi\)
0.842139 + 0.539260i \(0.181296\pi\)
\(572\) −1208.08 697.485i −2.11203 1.21938i
\(573\) −215.331 839.820i −0.375795 1.46565i
\(574\) 38.1730 + 66.1175i 0.0665034 + 0.115187i
\(575\) 597.186i 1.03858i
\(576\) −72.5416 43.9989i −0.125940 0.0763870i
\(577\) −116.156 −0.201310 −0.100655 0.994921i \(-0.532094\pi\)
−0.100655 + 0.994921i \(0.532094\pi\)
\(578\) −11.9142 + 6.87868i −0.0206128 + 0.0119008i
\(579\) −31.1357 31.8160i −0.0537750 0.0549499i
\(580\) 425.650 737.247i 0.733879 1.27112i
\(581\) 109.886 + 63.4426i 0.189132 + 0.109196i
\(582\) −278.385 + 272.433i −0.478324 + 0.468097i
\(583\) −425.752 737.425i −0.730278 1.26488i
\(584\) 9.62106i 0.0164744i
\(585\) 1674.08 + 36.1841i 2.86168 + 0.0618531i
\(586\) −362.400 −0.618431
\(587\) −102.248 + 59.0327i −0.174187 + 0.100567i −0.584559 0.811352i \(-0.698732\pi\)
0.410372 + 0.911918i \(0.365399\pi\)
\(588\) 410.471 105.245i 0.698080 0.178988i
\(589\) 147.223 254.997i 0.249954 0.432932i
\(590\) 161.223 + 93.0824i 0.273260 + 0.157767i
\(591\) 24.9008 + 6.96139i 0.0421334 + 0.0117790i
\(592\) 196.796 + 340.861i 0.332426 + 0.575779i
\(593\) 826.854i 1.39436i 0.716897 + 0.697179i \(0.245562\pi\)
−0.716897 + 0.697179i \(0.754438\pi\)
\(594\) −86.6243 370.994i −0.145832 0.624569i
\(595\) −83.4792 −0.140301
\(596\) −212.336 + 122.592i −0.356269 + 0.205692i
\(597\) 231.638 828.567i 0.388003 1.38788i
\(598\) −162.738 + 281.871i −0.272138 + 0.471356i
\(599\) 398.877 + 230.292i 0.665905 + 0.384460i 0.794523 0.607234i \(-0.207721\pi\)
−0.128618 + 0.991694i \(0.541054\pi\)
\(600\) 157.285 + 613.432i 0.262141 + 1.02239i
\(601\) 109.567 + 189.775i 0.182307 + 0.315765i 0.942666 0.333738i \(-0.108310\pi\)
−0.760359 + 0.649503i \(0.774977\pi\)
\(602\) 60.7798i 0.100963i
\(603\) 455.235 249.873i 0.754951 0.414382i
\(604\) −633.663 −1.04911
\(605\) −1232.91 + 711.818i −2.03786 + 1.17656i
\(606\) 135.189 + 138.143i 0.223085 + 0.227959i
\(607\) −317.333 + 549.637i −0.522789 + 0.905498i 0.476859 + 0.878980i \(0.341775\pi\)
−0.999648 + 0.0265179i \(0.991558\pi\)
\(608\) −236.560 136.578i −0.389079 0.224635i
\(609\) −182.569 + 178.665i −0.299785 + 0.293375i
\(610\) −121.104 209.759i −0.198532 0.343867i
\(611\) 1520.64i 2.48877i
\(612\) 59.7275 + 108.816i 0.0975940 + 0.177804i
\(613\) −536.095 −0.874543 −0.437272 0.899329i \(-0.644055\pi\)
−0.437272 + 0.899329i \(0.644055\pi\)
\(614\) 214.526 123.857i 0.349391 0.201721i
\(615\) 819.388 210.092i 1.33234 0.341613i
\(616\) −134.874 + 233.608i −0.218951 + 0.379234i
\(617\) −9.53178 5.50317i −0.0154486 0.00891924i 0.492256 0.870451i \(-0.336172\pi\)
−0.507704 + 0.861531i \(0.669506\pi\)
\(618\) 284.823 + 79.6263i 0.460878 + 0.128845i
\(619\) −334.758 579.817i −0.540804 0.936700i −0.998858 0.0477756i \(-0.984787\pi\)
0.458054 0.888924i \(-0.348547\pi\)
\(620\) 861.454i 1.38944i
\(621\) 442.139 103.236i 0.711979 0.166242i
\(622\) 191.231 0.307446
\(623\) −309.375 + 178.618i −0.496589 + 0.286706i
\(624\) −165.562 + 592.215i −0.265324 + 0.949063i
\(625\) 125.826 217.937i 0.201322 0.348700i
\(626\) −135.174 78.0426i −0.215932 0.124669i
\(627\) 115.549 + 450.657i 0.184288 + 0.718751i
\(628\) 75.6886 + 131.096i 0.120523 + 0.208752i
\(629\) 189.358i 0.301046i
\(630\) 3.18656 147.428i 0.00505803 0.234013i
\(631\) 571.390 0.905530 0.452765 0.891630i \(-0.350438\pi\)
0.452765 + 0.891630i \(0.350438\pi\)
\(632\) 91.7331 52.9622i 0.145147 0.0838009i
\(633\) 205.261 + 209.745i 0.324267 + 0.331351i
\(634\) −86.4886 + 149.803i −0.136417 + 0.236282i
\(635\) 899.542 + 519.351i 1.41660 + 0.817875i
\(636\) −350.269 + 342.780i −0.550737 + 0.538962i
\(637\) −504.962 874.620i −0.792719 1.37303i
\(638\) 461.613i 0.723532i
\(639\) −76.3541 + 125.886i −0.119490 + 0.197005i
\(640\) −1014.97 −1.58589
\(641\) −90.7482 + 52.3935i −0.141573 + 0.0817371i −0.569113 0.822259i \(-0.692713\pi\)
0.427541 + 0.903996i \(0.359380\pi\)
\(642\) −86.5202 + 22.1839i −0.134767 + 0.0345543i
\(643\) 338.509 586.314i 0.526452 0.911842i −0.473073 0.881023i \(-0.656855\pi\)
0.999525 0.0308184i \(-0.00981135\pi\)
\(644\) −126.792 73.2035i −0.196882 0.113670i
\(645\) −648.557 181.314i −1.00552 0.281106i
\(646\) 14.8384 + 25.7009i 0.0229697 + 0.0397846i
\(647\) 118.927i 0.183813i −0.995768 0.0919063i \(-0.970704\pi\)
0.995768 0.0919063i \(-0.0292960\pi\)
\(648\) −426.977 + 222.494i −0.658916 + 0.343354i
\(649\) 515.622 0.794487
\(650\) 595.271 343.680i 0.915802 0.528739i
\(651\) −69.5970 + 248.948i −0.106908 + 0.382408i
\(652\) −469.763 + 813.653i −0.720495 + 1.24793i
\(653\) 577.614 + 333.486i 0.884555 + 0.510698i 0.872158 0.489225i \(-0.162720\pi\)
0.0123973 + 0.999923i \(0.496054\pi\)
\(654\) 50.1530 + 195.604i 0.0766865 + 0.299088i
\(655\) 514.350 + 890.880i 0.785267 + 1.36012i
\(656\) 310.640i 0.473537i
\(657\) 12.4554 + 7.55460i 0.0189580 + 0.0114986i
\(658\) −133.916 −0.203519
\(659\) −459.361 + 265.212i −0.697057 + 0.402446i −0.806250 0.591574i \(-0.798507\pi\)
0.109193 + 0.994021i \(0.465173\pi\)
\(660\) 952.007 + 972.807i 1.44244 + 1.47395i
\(661\) 40.9369 70.9047i 0.0619317 0.107269i −0.833397 0.552675i \(-0.813607\pi\)
0.895329 + 0.445406i \(0.146941\pi\)
\(662\) 361.389 + 208.648i 0.545905 + 0.315179i
\(663\) 211.439 206.918i 0.318912 0.312093i
\(664\) −144.889 250.955i −0.218206 0.377944i
\(665\) 180.078i 0.270794i
\(666\) 334.416 + 7.22815i 0.502125 + 0.0108531i
\(667\) −550.137 −0.824793
\(668\) −326.129 + 188.291i −0.488218 + 0.281873i
\(669\) −685.994 + 175.890i −1.02540 + 0.262914i
\(670\) 181.618 314.571i 0.271072 0.469510i
\(671\) −580.970 335.423i −0.865827 0.499886i
\(672\) 230.948 + 64.5649i 0.343673 + 0.0960787i
\(673\) 469.151 + 812.594i 0.697104 + 1.20742i 0.969466 + 0.245225i \(0.0788618\pi\)
−0.272362 + 0.962195i \(0.587805\pi\)
\(674\) 226.287i 0.335737i
\(675\) −917.649 278.057i −1.35948 0.411936i
\(676\) 1348.19 1.99437
\(677\) 1115.11 643.808i 1.64713 0.950972i 0.668929 0.743327i \(-0.266753\pi\)
0.978204 0.207646i \(-0.0665801\pi\)
\(678\) 32.7067 116.991i 0.0482399 0.172554i
\(679\) −208.790 + 361.636i −0.307497 + 0.532600i
\(680\) 165.106 + 95.3241i 0.242803 + 0.140183i
\(681\) −159.683 622.787i −0.234483 0.914519i
\(682\) 233.560 + 404.537i 0.342463 + 0.593163i
\(683\) 37.8698i 0.0554463i −0.999616 0.0277231i \(-0.991174\pi\)
0.999616 0.0277231i \(-0.00882568\pi\)
\(684\) 234.733 128.842i 0.343177 0.188365i
\(685\) −670.719 −0.979152
\(686\) −166.404 + 96.0734i −0.242572 + 0.140049i
\(687\) −593.013 605.969i −0.863192 0.882051i
\(688\) 123.652 214.172i 0.179727 0.311296i
\(689\) 1011.54 + 584.015i 1.46813 + 0.847628i
\(690\) 226.977 222.124i 0.328952 0.321919i
\(691\) 151.336 + 262.121i 0.219010 + 0.379336i 0.954506 0.298193i \(-0.0963840\pi\)
−0.735496 + 0.677529i \(0.763051\pi\)
\(692\) 417.993i 0.604036i
\(693\) −196.523 358.040i −0.283583 0.516652i
\(694\) 8.77973 0.0126509
\(695\) −79.9662 + 46.1685i −0.115059 + 0.0664295i
\(696\) 565.103 144.893i 0.811930 0.208180i
\(697\) 74.7248 129.427i 0.107209 0.185692i
\(698\) −308.740 178.251i −0.442321 0.255374i
\(699\) 172.866 + 48.3271i 0.247304 + 0.0691375i
\(700\) 154.595 + 267.767i 0.220851 + 0.382524i
\(701\) 864.985i 1.23393i −0.786990 0.616965i \(-0.788362\pi\)
0.786990 0.616965i \(-0.211638\pi\)
\(702\) 357.356 + 381.309i 0.509054 + 0.543176i
\(703\) −408.475 −0.581046
\(704\) −142.345 + 82.1832i −0.202195 + 0.116737i
\(705\) −399.486 + 1428.96i −0.566647 + 2.02689i
\(706\) −48.9881 + 84.8499i −0.0693882 + 0.120184i
\(707\) 179.455 + 103.608i 0.253825 + 0.146546i
\(708\) −73.7075 287.470i −0.104107 0.406031i
\(709\) 556.871 + 964.529i 0.785432 + 1.36041i 0.928741 + 0.370729i \(0.120892\pi\)
−0.143309 + 0.989678i \(0.545774\pi\)
\(710\) 102.984i 0.145048i
\(711\) −3.46572 + 160.344i −0.00487443 + 0.225519i
\(712\) 815.846 1.14585
\(713\) −482.116 + 278.350i −0.676179 + 0.390392i
\(714\) −18.2223 18.6204i −0.0255214 0.0260790i
\(715\) 1621.99 2809.38i 2.26852 3.92920i
\(716\) 669.367 + 386.459i 0.934870 + 0.539747i
\(717\) −172.657 + 168.966i −0.240805 + 0.235657i
\(718\) 180.878 + 313.289i 0.251919 + 0.436336i
\(719\) 325.866i 0.453221i −0.973985 0.226610i \(-0.927236\pi\)
0.973985 0.226610i \(-0.0727644\pi\)
\(720\) 311.161 513.015i 0.432168 0.712521i
\(721\) 317.057 0.439747
\(722\) −197.561 + 114.062i −0.273630 + 0.157981i
\(723\) −420.380 + 107.786i −0.581439 + 0.149081i
\(724\) 36.1346 62.5869i 0.0499097 0.0864461i
\(725\) 1006.16 + 580.906i 1.38780 + 0.801249i
\(726\) −427.899 119.625i −0.589392 0.164773i
\(727\) 86.7563 + 150.266i 0.119335 + 0.206694i 0.919504 0.393080i \(-0.128591\pi\)
−0.800170 + 0.599774i \(0.795257\pi\)
\(728\) 370.020i 0.508269i
\(729\) 47.2300 727.468i 0.0647874 0.997899i
\(730\) 10.1894 0.0139581
\(731\) −103.038 + 59.4892i −0.140955 + 0.0813806i
\(732\) −103.956 + 371.851i −0.142017 + 0.507994i
\(733\) 607.986 1053.06i 0.829449 1.43665i −0.0690228 0.997615i \(-0.521988\pi\)
0.898471 0.439032i \(-0.144679\pi\)
\(734\) −285.352 164.748i −0.388763 0.224452i
\(735\) 244.747 + 954.547i 0.332989 + 1.29870i
\(736\) 258.224 + 447.257i 0.350848 + 0.607686i
\(737\) 1006.06i 1.36507i
\(738\) 225.722 + 136.908i 0.305857 + 0.185512i
\(739\) −555.714 −0.751981 −0.375991 0.926623i \(-0.622698\pi\)
−0.375991 + 0.926623i \(0.622698\pi\)
\(740\) −1034.96 + 597.535i −1.39860 + 0.807480i
\(741\) −446.355 456.107i −0.602368 0.615528i
\(742\) 51.4315 89.0819i 0.0693146 0.120056i
\(743\) 418.217 + 241.458i 0.562877 + 0.324977i 0.754299 0.656531i \(-0.227977\pi\)
−0.191423 + 0.981508i \(0.561310\pi\)
\(744\) 421.921 412.900i 0.567098 0.554973i
\(745\) −285.087 493.786i −0.382668 0.662800i
\(746\) 503.750i 0.675268i
\(747\) 438.654 + 9.48120i 0.587221 + 0.0126924i
\(748\) 240.479 0.321497
\(749\) −82.9271 + 47.8780i −0.110717 + 0.0639226i
\(750\) −192.323 + 49.3119i −0.256431 + 0.0657491i
\(751\) −44.9522 + 77.8596i −0.0598565 + 0.103675i −0.894401 0.447266i \(-0.852398\pi\)
0.834544 + 0.550941i \(0.185731\pi\)
\(752\) −471.882 272.441i −0.627503 0.362289i
\(753\) 541.570 + 151.404i 0.719216 + 0.201067i
\(754\) −316.603 548.373i −0.419898 0.727285i
\(755\) 1473.58i 1.95176i
\(756\) −171.522 + 160.747i −0.226881 + 0.212629i
\(757\) 647.421 0.855246 0.427623 0.903957i \(-0.359351\pi\)
0.427623 + 0.903957i \(0.359351\pi\)
\(758\) −401.483 + 231.796i −0.529661 + 0.305800i
\(759\) 236.826 847.124i 0.312023 1.11610i
\(760\) 205.629 356.160i 0.270565 0.468632i
\(761\) −889.297 513.436i −1.16859 0.674686i −0.215242 0.976561i \(-0.569054\pi\)
−0.953347 + 0.301875i \(0.902387\pi\)
\(762\) 80.5133 + 314.013i 0.105660 + 0.412091i
\(763\) 108.242 + 187.480i 0.141864 + 0.245715i
\(764\) 966.720i 1.26534i
\(765\) −253.050 + 138.896i −0.330784 + 0.181563i
\(766\) −63.7731 −0.0832547
\(767\) −612.533 + 353.646i −0.798608 + 0.461077i
\(768\) −142.432 145.544i −0.185459 0.189511i
\(769\) −731.569 + 1267.12i −0.951325 + 1.64774i −0.208764 + 0.977966i \(0.566944\pi\)
−0.742562 + 0.669778i \(0.766389\pi\)
\(770\) −247.408 142.841i −0.321310 0.185508i
\(771\) −448.184 + 438.601i −0.581302 + 0.568873i
\(772\) 24.8185 + 42.9870i 0.0321484 + 0.0556826i
\(773\) 808.771i 1.04628i 0.852248 + 0.523138i \(0.175239\pi\)
−0.852248 + 0.523138i \(0.824761\pi\)
\(774\) −101.128 184.242i −0.130656 0.238038i
\(775\) 1175.67 1.51699
\(776\) 825.896 476.831i 1.06430 0.614473i
\(777\) 347.364 89.0644i 0.447057 0.114626i
\(778\) −1.00430 + 1.73950i −0.00129087 + 0.00223586i
\(779\) −279.195 161.193i −0.358401 0.206923i
\(780\) −1798.15 502.698i −2.30532 0.644485i
\(781\) 142.618 + 247.021i 0.182609 + 0.316288i
\(782\) 56.1091i 0.0717507i
\(783\) −256.150 + 845.352i −0.327139 + 1.07963i
\(784\) −361.881 −0.461583
\(785\) −304.864 + 176.013i −0.388361 + 0.224221i
\(786\) −86.4397 + 309.194i −0.109974 + 0.393377i
\(787\) −610.354 + 1057.16i −0.775546 + 1.34328i 0.158942 + 0.987288i \(0.449192\pi\)
−0.934487 + 0.355996i \(0.884142\pi\)
\(788\) −24.9674 14.4149i −0.0316845 0.0182931i
\(789\) −96.3297 375.700i −0.122091 0.476172i
\(790\) 56.0908 + 97.1522i 0.0710011 + 0.122977i
\(791\) 130.232i 0.164642i
\(792\) −20.1563 + 932.543i −0.0254498 + 1.17745i
\(793\) 920.217 1.16043
\(794\) 169.759 98.0105i 0.213802 0.123439i
\(795\) −797.131 814.547i −1.00268 1.02459i
\(796\) −479.653 + 830.783i −0.602579 + 1.04370i
\(797\) −39.7449 22.9467i −0.0498681 0.0287914i 0.474859 0.880062i \(-0.342499\pi\)
−0.524727 + 0.851271i \(0.675833\pi\)
\(798\) −40.1671 + 39.3083i −0.0503348 + 0.0492586i
\(799\) 131.072 + 227.023i 0.164045 + 0.284134i
\(800\) 1090.67i 1.36333i
\(801\) −640.615 + 1056.19i −0.799769 + 1.31859i
\(802\) 438.289 0.546496
\(803\) 24.4407 14.1108i 0.0304367 0.0175726i
\(804\) −560.897 + 143.815i −0.697633 + 0.178874i
\(805\) 170.234 294.854i 0.211471 0.366278i
\(806\) −554.914 320.380i −0.688479 0.397494i
\(807\) −436.324 121.981i −0.540674 0.151153i
\(808\) −236.618 409.835i −0.292844 0.507221i
\(809\) 1333.69i 1.64856i −0.566181 0.824281i \(-0.691580\pi\)
0.566181 0.824281i \(-0.308420\pi\)
\(810\) −235.637 452.201i −0.290910 0.558273i
\(811\) 123.988 0.152883 0.0764413 0.997074i \(-0.475644\pi\)
0.0764413 + 0.997074i \(0.475644\pi\)
\(812\) 246.671 142.416i 0.303782 0.175389i
\(813\) 325.287 1163.55i 0.400107 1.43118i
\(814\) 324.011 561.203i 0.398047 0.689438i
\(815\) −1892.14 1092.43i −2.32165 1.34040i
\(816\) −26.3286 102.685i −0.0322654 0.125840i
\(817\) 128.328 + 222.270i 0.157072 + 0.272056i
\(818\) 343.552i 0.419991i
\(819\) 479.026 + 290.545i 0.584891 + 0.354756i
\(820\) −943.201 −1.15024
\(821\) 55.9299 32.2911i 0.0681241 0.0393315i −0.465551 0.885021i \(-0.654144\pi\)
0.533675 + 0.845690i \(0.320811\pi\)
\(822\) −146.408 149.607i −0.178112 0.182003i
\(823\) −319.130 + 552.749i −0.387764 + 0.671627i −0.992148 0.125066i \(-0.960086\pi\)
0.604384 + 0.796693i \(0.293419\pi\)
\(824\) −627.080 362.045i −0.761019 0.439375i
\(825\) −1327.64 + 1299.25i −1.60926 + 1.57485i
\(826\) 31.1439 + 53.9428i 0.0377045 + 0.0653061i
\(827\) 1439.50i 1.74063i −0.492499 0.870313i \(-0.663916\pi\)
0.492499 0.870313i \(-0.336084\pi\)
\(828\) −506.143 10.9399i −0.611284 0.0132125i
\(829\) 459.699 0.554522 0.277261 0.960795i \(-0.410573\pi\)
0.277261 + 0.960795i \(0.410573\pi\)
\(830\) 265.780 153.448i 0.320217 0.184877i
\(831\) 467.435 119.851i 0.562497 0.144225i
\(832\) 112.733 195.259i 0.135496 0.234686i
\(833\) 150.776 + 87.0507i 0.181004 + 0.104503i
\(834\) −27.7535 7.75890i −0.0332776 0.00930324i
\(835\) −437.869 758.411i −0.524394 0.908277i
\(836\) 518.752i 0.620517i
\(837\) 203.239 + 870.432i 0.242819 + 1.03994i
\(838\) 100.208 0.119581
\(839\) 1048.31 605.242i 1.24948 0.721385i 0.278471 0.960445i \(-0.410172\pi\)
0.971005 + 0.239059i \(0.0768390\pi\)
\(840\) −97.2077 + 347.711i −0.115723 + 0.413942i
\(841\) 114.639 198.561i 0.136313 0.236101i
\(842\) −289.274 167.012i −0.343556 0.198352i
\(843\) −60.4908 235.923i −0.0717566 0.279861i
\(844\) −163.615 283.390i −0.193857 0.335770i
\(845\) 3135.21i 3.71031i
\(846\) −405.937 + 222.814i −0.479831 + 0.263373i
\(847\) −476.326 −0.562369
\(848\) 362.461 209.267i 0.427431 0.246777i
\(849\) 668.412 + 683.015i 0.787293 + 0.804493i
\(850\) −59.2472 + 102.619i −0.0697026 + 0.120728i
\(851\) 668.825 + 386.146i 0.785928 + 0.453756i
\(852\) 117.332 114.824i 0.137714 0.134770i
\(853\) −577.517 1000.29i −0.677042 1.17267i −0.975867 0.218364i \(-0.929928\pi\)
0.298825 0.954308i \(-0.403405\pi\)
\(854\) 81.0392i 0.0948936i
\(855\) 299.620 + 545.869i 0.350433 + 0.638443i
\(856\) 218.686 0.255474
\(857\) −490.803 + 283.365i −0.572699 + 0.330648i −0.758226 0.651991i \(-0.773934\pi\)
0.185528 + 0.982639i \(0.440601\pi\)
\(858\) 980.701 251.453i 1.14301 0.293068i
\(859\) 39.6787 68.7256i 0.0461918 0.0800065i −0.842005 0.539470i \(-0.818625\pi\)
0.888197 + 0.459463i \(0.151958\pi\)
\(860\) 650.292 + 375.446i 0.756153 + 0.436565i
\(861\) 272.571 + 76.2013i 0.316575 + 0.0885032i
\(862\) −145.672 252.312i −0.168993 0.292705i
\(863\) 828.604i 0.960144i −0.877229 0.480072i \(-0.840611\pi\)
0.877229 0.480072i \(-0.159389\pi\)
\(864\) 807.497 188.545i 0.934603 0.218223i
\(865\) −972.039 −1.12374
\(866\) −210.019 + 121.255i −0.242517 + 0.140017i
\(867\) −13.7313 + 49.1167i −0.0158377 + 0.0566513i
\(868\) 144.114 249.613i 0.166030 0.287573i
\(869\) 269.083 + 155.355i 0.309647 + 0.178775i
\(870\) 153.452 + 598.486i 0.176382 + 0.687915i
\(871\) 690.017 + 1195.14i 0.792212 + 1.37215i
\(872\) 494.401i 0.566974i
\(873\) −31.2027 + 1443.62i −0.0357420 + 1.65363i
\(874\) −121.036 −0.138485
\(875\) −184.336 + 106.427i −0.210670 + 0.121630i
\(876\) −11.3609 11.6091i −0.0129690 0.0132524i
\(877\) 661.272 1145.36i 0.754016 1.30599i −0.191845 0.981425i \(-0.561447\pi\)
0.945862 0.324570i \(-0.105219\pi\)
\(878\) 307.368 + 177.459i 0.350077 + 0.202117i
\(879\) −960.177 + 939.648i −1.09235 + 1.06900i
\(880\) −581.201 1006.67i −0.660455 1.14394i
\(881\) 807.386i 0.916443i 0.888838 + 0.458221i \(0.151513\pi\)
−0.888838 + 0.458221i \(0.848487\pi\)
\(882\) −159.491 + 262.955i −0.180829 + 0.298135i
\(883\) −1103.04 −1.24919 −0.624597 0.780947i \(-0.714737\pi\)
−0.624597 + 0.780947i \(0.714737\pi\)
\(884\) −285.677 + 164.936i −0.323165 + 0.186579i
\(885\) 668.509 171.406i 0.755377 0.193679i
\(886\) 126.956 219.894i 0.143291 0.248187i
\(887\) −1173.09 677.283i −1.32253 0.763566i −0.338402 0.941002i \(-0.609886\pi\)
−0.984132 + 0.177436i \(0.943220\pi\)
\(888\) −788.722 220.499i −0.888200 0.248309i
\(889\) 173.767 + 300.973i 0.195463 + 0.338552i
\(890\) 864.042i 0.970833i
\(891\) −1191.44 758.342i −1.33719 0.851113i
\(892\) 789.650 0.885258
\(893\) 489.725 282.743i 0.548404 0.316621i
\(894\) 47.9107 171.376i 0.0535914 0.191696i
\(895\) −898.707 + 1556.61i −1.00414 + 1.73923i
\(896\) −294.097 169.797i −0.328233 0.189505i
\(897\) 299.674 + 1168.77i 0.334084 + 1.30298i
\(898\) −232.801 403.223i −0.259244 0.449023i
\(899\) 1083.04i 1.20472i
\(900\) 914.145 + 554.459i 1.01572 + 0.616066i
\(901\) −201.357 −0.223482
\(902\) 442.926 255.723i 0.491048 0.283507i
\(903\) −157.593 161.036i −0.174521 0.178334i
\(904\) −148.711 + 257.574i −0.164503 + 0.284927i
\(905\) 145.545 + 84.0307i 0.160824 + 0.0928515i
\(906\) 328.687 321.660i 0.362790 0.355033i
\(907\) 2.58101 + 4.47044i 0.00284565 + 0.00492882i 0.867445 0.497534i \(-0.165761\pi\)
−0.864599 + 0.502462i \(0.832428\pi\)
\(908\) 716.893i 0.789529i
\(909\) 716.366 + 15.4837i 0.788082 + 0.0170338i
\(910\) 391.878 0.430636
\(911\) 1259.49 727.164i 1.38253 0.798205i 0.390072 0.920784i \(-0.372450\pi\)
0.992459 + 0.122580i \(0.0391167\pi\)
\(912\) −221.508 + 56.7949i −0.242882 + 0.0622751i
\(913\) 425.006 736.132i 0.465505 0.806279i
\(914\) −308.787 178.278i −0.337841 0.195053i
\(915\) −864.737 241.750i −0.945067 0.264207i
\(916\) 472.695 + 818.732i 0.516043 + 0.893812i
\(917\) 344.187i 0.375340i
\(918\) −86.2184 26.1250i −0.0939198 0.0284586i
\(919\) 285.223 0.310362 0.155181 0.987886i \(-0.450404\pi\)
0.155181 + 0.987886i \(0.450404\pi\)
\(920\) −673.382 + 388.777i −0.731937 + 0.422584i
\(921\) 247.244 884.390i 0.268452 0.960249i
\(922\) 43.5996 75.5168i 0.0472881 0.0819054i
\(923\) −338.845 195.632i −0.367113 0.211953i
\(924\) 113.109 + 441.142i 0.122413 + 0.477427i
\(925\) −815.486 1412.46i −0.881606 1.52699i
\(926\) 410.106i 0.442879i
\(927\) 961.094 527.532i 1.03678 0.569074i
\(928\) −1004.74 −1.08269
\(929\) 748.901 432.378i 0.806137 0.465423i −0.0394759 0.999221i \(-0.512569\pi\)
0.845612 + 0.533797i \(0.179235\pi\)
\(930\) 437.291 + 446.845i 0.470206 + 0.480479i
\(931\) 187.782 325.248i 0.201699 0.349353i
\(932\) −173.328 100.071i −0.185974 0.107372i
\(933\) 506.666 495.833i 0.543050 0.531439i
\(934\) 73.7586 + 127.754i 0.0789707 + 0.136781i
\(935\) 559.233i 0.598110i
\(936\) −615.652 1121.64i −0.657748 1.19833i
\(937\) 468.142 0.499618 0.249809 0.968295i \(-0.419632\pi\)
0.249809 + 0.968295i \(0.419632\pi\)
\(938\) 105.251 60.7665i 0.112208 0.0647830i
\(939\) −560.494 + 143.711i −0.596905 + 0.153047i
\(940\) 827.216 1432.78i 0.880018 1.52424i
\(941\) −398.668 230.171i −0.423665 0.244603i 0.272979 0.962020i \(-0.411991\pi\)
−0.696644 + 0.717417i \(0.745324\pi\)
\(942\) −105.808 29.5801i −0.112322 0.0314014i
\(943\) 304.763 + 527.865i 0.323185 + 0.559772i
\(944\) 253.440i 0.268475i
\(945\) −373.816 398.873i −0.395573 0.422087i
\(946\) −407.168 −0.430410
\(947\) −1377.75 + 795.443i −1.45486 + 0.839961i −0.998751 0.0499655i \(-0.984089\pi\)
−0.456104 + 0.889926i \(0.650756\pi\)
\(948\) 48.1486 172.227i 0.0507897 0.181674i
\(949\) −19.3562 + 33.5259i −0.0203964 + 0.0353276i
\(950\) 221.366 + 127.806i 0.233017 + 0.134532i
\(951\) 159.264 + 621.153i 0.167470 + 0.653157i
\(952\) 31.8939 + 55.2419i 0.0335020 + 0.0580272i
\(953\) 1298.89i 1.36295i 0.731843 + 0.681474i \(0.238661\pi\)
−0.731843 + 0.681474i \(0.761339\pi\)
\(954\) 7.68619 355.607i 0.00805680 0.372754i
\(955\) −2248.10 −2.35403
\(956\) 233.280 134.684i 0.244016 0.140883i
\(957\) 1196.89 + 1223.04i 1.25067 + 1.27799i
\(958\) 10.1605 17.5985i 0.0106059 0.0183700i
\(959\) −194.347 112.206i −0.202655 0.117003i
\(960\) −157.232 + 153.871i −0.163784 + 0.160282i
\(961\) −67.4818 116.882i −0.0702204 0.121625i
\(962\) 888.907i 0.924020i
\(963\) −171.715 + 283.109i −0.178313 + 0.293987i
\(964\) 483.901 0.501972
\(965\) −99.9658 + 57.7153i −0.103591 + 0.0598086i
\(966\) 102.928 26.3908i 0.106551 0.0273197i
\(967\) 424.725 735.645i 0.439219 0.760750i −0.558410 0.829565i \(-0.688588\pi\)
0.997629 + 0.0688148i \(0.0219218\pi\)
\(968\) 942.084 + 543.912i 0.973227 + 0.561893i
\(969\) 105.953 + 29.6206i 0.109342 + 0.0305682i
\(970\) 505.000 + 874.685i 0.520618 + 0.901737i
\(971\) 620.233i 0.638757i −0.947627 0.319379i \(-0.896526\pi\)
0.947627 0.319379i \(-0.103474\pi\)
\(972\) −252.476 + 772.656i −0.259749 + 0.794914i
\(973\) −30.8945 −0.0317518
\(974\) −262.227 + 151.397i −0.269227 + 0.155438i
\(975\) 686.058 2454.02i 0.703649 2.51695i
\(976\) 164.868 285.560i 0.168922 0.292582i
\(977\) 543.231 + 313.635i 0.556020 + 0.321018i 0.751546 0.659680i \(-0.229308\pi\)
−0.195527 + 0.980698i \(0.562642\pi\)
\(978\) −169.356 660.511i −0.173165 0.675369i
\(979\) 1196.57 + 2072.52i 1.22224 + 2.11698i
\(980\) 1098.78i 1.12121i
\(981\) 640.050 + 388.212i 0.652446 + 0.395731i
\(982\) −336.672 −0.342843
\(983\) −1397.22 + 806.683i −1.42138 + 0.820634i −0.996417 0.0845766i \(-0.973046\pi\)
−0.424963 + 0.905211i \(0.639713\pi\)
\(984\) −452.081 461.958i −0.459432 0.469470i
\(985\) 33.5218 58.0615i 0.0340323 0.0589457i
\(986\) 94.5343 + 54.5794i 0.0958766 + 0.0553544i
\(987\) −354.808 + 347.222i −0.359481 + 0.351795i
\(988\) 355.793 + 616.251i 0.360114 + 0.623736i
\(989\) 485.251i 0.490648i
\(990\) −987.632 21.3470i −0.997609 0.0215626i
\(991\) 968.743 0.977541 0.488770 0.872412i \(-0.337446\pi\)
0.488770 + 0.872412i \(0.337446\pi\)
\(992\) −880.507 + 508.361i −0.887608 + 0.512461i
\(993\) 1498.49 384.214i 1.50905 0.386923i
\(994\) −17.2284 + 29.8405i −0.0173324 + 0.0300206i
\(995\) −1931.98 1115.43i −1.94169 1.12103i
\(996\) −471.163 131.721i −0.473055 0.132250i
\(997\) 886.595 + 1535.63i 0.889262 + 1.54025i 0.840749 + 0.541425i \(0.182115\pi\)
0.0485132 + 0.998823i \(0.484552\pi\)
\(998\) 284.668i 0.285239i
\(999\) 904.773 847.936i 0.905678 0.848785i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.j.a.86.19 64
3.2 odd 2 459.3.j.a.341.14 64
9.2 odd 6 inner 153.3.j.a.137.19 yes 64
9.7 even 3 459.3.j.a.35.14 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.j.a.86.19 64 1.1 even 1 trivial
153.3.j.a.137.19 yes 64 9.2 odd 6 inner
459.3.j.a.35.14 64 9.7 even 3
459.3.j.a.341.14 64 3.2 odd 2