Newspace parameters
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.16894804471\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
86.1 | −3.46043 | + | 1.99788i | −0.0213833 | + | 2.99992i | 5.98304 | − | 10.3629i | 2.66319 | + | 1.53759i | −5.91949 | − | 10.4237i | −0.00954207 | − | 0.0165273i | 31.8305i | −8.99909 | − | 0.128297i | −12.2877 | ||||
86.2 | −3.17876 | + | 1.83526i | −2.03325 | − | 2.20588i | 4.73636 | − | 8.20362i | −7.30066 | − | 4.21504i | 10.5116 | + | 3.28044i | −6.34017 | − | 10.9815i | 20.0878i | −0.731824 | + | 8.97020i | 30.9428 | ||||
86.3 | −3.03806 | + | 1.75403i | 1.37044 | − | 2.66869i | 4.15322 | − | 7.19358i | 5.76358 | + | 3.32760i | 0.517471 | + | 10.5114i | −1.13321 | − | 1.96277i | 15.1072i | −5.24380 | − | 7.31455i | −23.3468 | ||||
86.4 | −2.91390 | + | 1.68234i | 2.99174 | + | 0.222513i | 3.66053 | − | 6.34022i | −4.65913 | − | 2.68995i | −9.09195 | + | 4.38474i | 2.01660 | + | 3.49286i | 11.1743i | 8.90098 | + | 1.33140i | 18.1016 | ||||
86.5 | −2.78989 | + | 1.61074i | −2.97400 | − | 0.394134i | 3.18897 | − | 5.52346i | 0.946468 | + | 0.546443i | 8.93196 | − | 3.69075i | 5.45492 | + | 9.44819i | 7.66050i | 8.68932 | + | 2.34431i | −3.52072 | ||||
86.6 | −2.39630 | + | 1.38350i | −2.93584 | + | 0.617116i | 1.82816 | − | 3.16647i | 5.03797 | + | 2.90867i | 6.18137 | − | 5.54054i | −4.07760 | − | 7.06261i | − | 0.950959i | 8.23834 | − | 3.62351i | −16.0966 | |||
86.7 | −2.19452 | + | 1.26701i | 1.16546 | − | 2.76436i | 1.21061 | − | 2.09685i | −3.87953 | − | 2.23985i | 0.944846 | + | 7.54310i | 2.72279 | + | 4.71600i | − | 4.00063i | −6.28341 | − | 6.44350i | 11.3516 | |||
86.8 | −2.16313 | + | 1.24888i | −1.46489 | + | 2.61804i | 1.11942 | − | 1.93890i | −4.93053 | − | 2.84664i | −0.100885 | − | 7.49263i | 1.17060 | + | 2.02753i | − | 4.39895i | −4.70822 | − | 7.67024i | 14.2205 | |||
86.9 | −2.08063 | + | 1.20125i | 2.00274 | + | 2.23361i | 0.886009 | − | 1.53461i | 4.81128 | + | 2.77779i | −6.85009 | − | 2.24153i | 3.83640 | + | 6.64484i | − | 5.35273i | −0.978063 | + | 8.94670i | −13.3473 | |||
86.10 | −1.99799 | + | 1.15354i | 1.41704 | + | 2.64424i | 0.661304 | − | 1.14541i | −1.02022 | − | 0.589023i | −5.88146 | − | 3.64854i | −6.78276 | − | 11.7481i | − | 6.17695i | −4.98399 | + | 7.49399i | 2.71784 | |||
86.11 | −1.07474 | + | 0.620503i | 2.92558 | − | 0.664084i | −1.22995 | + | 2.13034i | 6.36425 | + | 3.67440i | −2.73217 | + | 2.52905i | 0.856563 | + | 1.48361i | − | 8.01678i | 8.11798 | − | 3.88566i | −9.11990 | |||
86.12 | −0.910309 | + | 0.525567i | 2.55415 | − | 1.57363i | −1.44756 | + | 2.50724i | −2.56865 | − | 1.48301i | −1.49802 | + | 2.77487i | −4.96653 | − | 8.60228i | − | 7.24770i | 4.04736 | − | 8.03859i | 3.11769 | |||
86.13 | −0.759776 | + | 0.438657i | −2.72733 | − | 1.24967i | −1.61516 | + | 2.79754i | −6.70632 | − | 3.87189i | 2.62034 | − | 0.246889i | 4.09746 | + | 7.09700i | − | 6.34326i | 5.87663 | + | 6.81654i | 6.79373 | |||
86.14 | −0.510714 | + | 0.294861i | −1.38625 | + | 2.66051i | −1.82611 | + | 3.16292i | 4.01198 | + | 2.31632i | −0.0765013 | − | 1.76751i | 2.98103 | + | 5.16330i | − | 4.51269i | −5.15661 | − | 7.37627i | −2.73197 | |||
86.15 | −0.393387 | + | 0.227122i | 2.39344 | + | 1.80872i | −1.89683 | + | 3.28541i | −5.60074 | − | 3.23359i | −1.35235 | − | 0.167922i | 2.18449 | + | 3.78365i | − | 3.54022i | 2.45709 | + | 8.65810i | 2.93768 | |||
86.16 | −0.0918678 | + | 0.0530399i | −2.79064 | + | 1.10106i | −1.99437 | + | 3.45436i | −0.368715 | − | 0.212878i | 0.197970 | − | 0.249167i | −3.49077 | − | 6.04619i | − | 0.847445i | 6.57534 | − | 6.14532i | 0.0451640 | |||
86.17 | 0.424981 | − | 0.245363i | 0.705860 | − | 2.91578i | −1.87959 | + | 3.25555i | 3.47947 | + | 2.00887i | −0.415447 | − | 1.41234i | 6.36001 | + | 11.0159i | 3.80764i | −8.00352 | − | 4.11626i | 1.97161 | ||||
86.18 | 0.656590 | − | 0.379082i | −2.05010 | − | 2.19023i | −1.71259 | + | 2.96630i | −0.533620 | − | 0.308086i | −2.17635 | − | 0.660923i | −2.18450 | − | 3.78366i | 5.62951i | −0.594178 | + | 8.98036i | −0.467159 | ||||
86.19 | 0.700836 | − | 0.404628i | 0.807723 | − | 2.88922i | −1.67255 | + | 2.89695i | −6.73682 | − | 3.88950i | −0.602977 | − | 2.35170i | −1.30137 | − | 2.25403i | 5.94407i | −7.69517 | − | 4.66738i | −6.29521 | ||||
86.20 | 0.784435 | − | 0.452894i | 1.03612 | + | 2.81540i | −1.58977 | + | 2.75357i | 6.71259 | + | 3.87552i | 2.08785 | + | 1.73924i | −5.18495 | − | 8.98060i | 6.50315i | −6.85291 | + | 5.83418i | 7.02079 | ||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.3.j.a | ✓ | 64 |
3.b | odd | 2 | 1 | 459.3.j.a | 64 | ||
9.c | even | 3 | 1 | 459.3.j.a | 64 | ||
9.d | odd | 6 | 1 | inner | 153.3.j.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.3.j.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
153.3.j.a | ✓ | 64 | 9.d | odd | 6 | 1 | inner |
459.3.j.a | 64 | 3.b | odd | 2 | 1 | ||
459.3.j.a | 64 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(153, [\chi])\).