Properties

Label 459.3.i.a.152.4
Level $459$
Weight $3$
Character 459.152
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.4
Character \(\chi\) \(=\) 459.152
Dual form 459.3.i.a.305.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.92590 + 1.68927i) q^{2} +(3.70725 - 6.42114i) q^{4} +(-1.55065 + 2.68581i) q^{5} +(5.43225 - 3.13631i) q^{7} +11.5360i q^{8} -10.4779i q^{10} +(1.87833 + 3.25336i) q^{11} +(1.73808 - 3.01044i) q^{13} +(-10.5961 + 18.3530i) q^{14} +(-4.65840 - 8.06858i) q^{16} +(-0.217614 - 16.9986i) q^{17} -18.1729 q^{19} +(11.4973 + 19.9139i) q^{20} +(-10.9916 - 6.34600i) q^{22} +(0.563797 - 0.976526i) q^{23} +(7.69097 + 13.3211i) q^{25} +11.7443i q^{26} -46.5083i q^{28} +(-22.3389 - 38.6921i) q^{29} +(-13.2930 - 7.67472i) q^{31} +(-12.7019 - 7.33345i) q^{32} +(29.3519 + 49.3686i) q^{34} +19.4533i q^{35} -18.6072i q^{37} +(53.1720 - 30.6989i) q^{38} +(-30.9835 - 17.8883i) q^{40} +(29.8151 - 51.6413i) q^{41} +(-16.0790 - 27.8497i) q^{43} +27.8537 q^{44} +3.80962i q^{46} +(38.0772 - 21.9839i) q^{47} +(-4.82711 + 8.36080i) q^{49} +(-45.0059 - 25.9842i) q^{50} +(-12.8870 - 22.3209i) q^{52} +89.1367i q^{53} -11.6505 q^{55} +(36.1805 + 62.6664i) q^{56} +(130.723 + 75.4728i) q^{58} +(-48.3462 - 27.9127i) q^{59} +(84.9883 - 49.0680i) q^{61} +51.8586 q^{62} +86.8198 q^{64} +(5.39030 + 9.33627i) q^{65} +(17.8439 - 30.9065i) q^{67} +(-109.957 - 61.6207i) q^{68} +(-32.8618 - 56.9183i) q^{70} +121.996 q^{71} +34.4286i q^{73} +(31.4325 + 54.4427i) q^{74} +(-67.3714 + 116.691i) q^{76} +(20.4071 + 11.7820i) q^{77} +(91.8612 - 53.0361i) q^{79} +28.8942 q^{80} +201.463i q^{82} +(85.2416 - 49.2143i) q^{83} +(45.9924 + 25.7744i) q^{85} +(94.0911 + 54.3235i) q^{86} +(-37.5308 + 21.6684i) q^{88} +59.2783i q^{89} -21.8046i q^{91} +(-4.18027 - 7.24045i) q^{92} +(-74.2733 + 128.645i) q^{94} +(28.1798 - 48.8088i) q^{95} +(-8.23298 + 4.75331i) q^{97} -32.6171i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.92590 + 1.68927i −1.46295 + 0.844634i −0.999147 0.0413052i \(-0.986848\pi\)
−0.463802 + 0.885939i \(0.653515\pi\)
\(3\) 0 0
\(4\) 3.70725 6.42114i 0.926812 1.60529i
\(5\) −1.55065 + 2.68581i −0.310130 + 0.537161i −0.978390 0.206767i \(-0.933706\pi\)
0.668260 + 0.743928i \(0.267039\pi\)
\(6\) 0 0
\(7\) 5.43225 3.13631i 0.776036 0.448044i −0.0589878 0.998259i \(-0.518787\pi\)
0.835023 + 0.550214i \(0.185454\pi\)
\(8\) 11.5360i 1.44200i
\(9\) 0 0
\(10\) 10.4779i 1.04779i
\(11\) 1.87833 + 3.25336i 0.170757 + 0.295760i 0.938685 0.344777i \(-0.112045\pi\)
−0.767928 + 0.640537i \(0.778712\pi\)
\(12\) 0 0
\(13\) 1.73808 3.01044i 0.133698 0.231572i −0.791401 0.611297i \(-0.790648\pi\)
0.925099 + 0.379725i \(0.123981\pi\)
\(14\) −10.5961 + 18.3530i −0.756867 + 1.31093i
\(15\) 0 0
\(16\) −4.65840 8.06858i −0.291150 0.504286i
\(17\) −0.217614 16.9986i −0.0128008 0.999918i
\(18\) 0 0
\(19\) −18.1729 −0.956467 −0.478234 0.878233i \(-0.658723\pi\)
−0.478234 + 0.878233i \(0.658723\pi\)
\(20\) 11.4973 + 19.9139i 0.574865 + 0.995695i
\(21\) 0 0
\(22\) −10.9916 6.34600i −0.499618 0.288454i
\(23\) 0.563797 0.976526i 0.0245129 0.0424576i −0.853509 0.521079i \(-0.825530\pi\)
0.878022 + 0.478621i \(0.158863\pi\)
\(24\) 0 0
\(25\) 7.69097 + 13.3211i 0.307639 + 0.532846i
\(26\) 11.7443i 0.451704i
\(27\) 0 0
\(28\) 46.5083i 1.66101i
\(29\) −22.3389 38.6921i −0.770307 1.33421i −0.937394 0.348269i \(-0.886769\pi\)
0.167087 0.985942i \(-0.446564\pi\)
\(30\) 0 0
\(31\) −13.2930 7.67472i −0.428807 0.247572i 0.270031 0.962852i \(-0.412966\pi\)
−0.698838 + 0.715280i \(0.746299\pi\)
\(32\) −12.7019 7.33345i −0.396934 0.229170i
\(33\) 0 0
\(34\) 29.3519 + 49.3686i 0.863292 + 1.45202i
\(35\) 19.4533i 0.555808i
\(36\) 0 0
\(37\) 18.6072i 0.502897i −0.967871 0.251448i \(-0.919093\pi\)
0.967871 0.251448i \(-0.0809069\pi\)
\(38\) 53.1720 30.6989i 1.39926 0.807865i
\(39\) 0 0
\(40\) −30.9835 17.8883i −0.774586 0.447208i
\(41\) 29.8151 51.6413i 0.727198 1.25954i −0.230865 0.972986i \(-0.574156\pi\)
0.958063 0.286558i \(-0.0925110\pi\)
\(42\) 0 0
\(43\) −16.0790 27.8497i −0.373931 0.647667i 0.616236 0.787562i \(-0.288657\pi\)
−0.990166 + 0.139895i \(0.955324\pi\)
\(44\) 27.8537 0.633039
\(45\) 0 0
\(46\) 3.80962i 0.0828178i
\(47\) 38.0772 21.9839i 0.810153 0.467742i −0.0368561 0.999321i \(-0.511734\pi\)
0.847009 + 0.531579i \(0.178401\pi\)
\(48\) 0 0
\(49\) −4.82711 + 8.36080i −0.0985125 + 0.170629i
\(50\) −45.0059 25.9842i −0.900119 0.519684i
\(51\) 0 0
\(52\) −12.8870 22.3209i −0.247826 0.429248i
\(53\) 89.1367i 1.68183i 0.541171 + 0.840913i \(0.317981\pi\)
−0.541171 + 0.840913i \(0.682019\pi\)
\(54\) 0 0
\(55\) −11.6505 −0.211828
\(56\) 36.1805 + 62.6664i 0.646080 + 1.11904i
\(57\) 0 0
\(58\) 130.723 + 75.4728i 2.25384 + 1.30126i
\(59\) −48.3462 27.9127i −0.819427 0.473097i 0.0307916 0.999526i \(-0.490197\pi\)
−0.850219 + 0.526429i \(0.823531\pi\)
\(60\) 0 0
\(61\) 84.9883 49.0680i 1.39325 0.804394i 0.399577 0.916699i \(-0.369157\pi\)
0.993674 + 0.112306i \(0.0358236\pi\)
\(62\) 51.8586 0.836429
\(63\) 0 0
\(64\) 86.8198 1.35656
\(65\) 5.39030 + 9.33627i 0.0829277 + 0.143635i
\(66\) 0 0
\(67\) 17.8439 30.9065i 0.266326 0.461291i −0.701584 0.712587i \(-0.747523\pi\)
0.967910 + 0.251296i \(0.0808567\pi\)
\(68\) −109.957 61.6207i −1.61702 0.906187i
\(69\) 0 0
\(70\) −32.8618 56.9183i −0.469454 0.813119i
\(71\) 121.996 1.71825 0.859124 0.511767i \(-0.171009\pi\)
0.859124 + 0.511767i \(0.171009\pi\)
\(72\) 0 0
\(73\) 34.4286i 0.471625i 0.971799 + 0.235812i \(0.0757751\pi\)
−0.971799 + 0.235812i \(0.924225\pi\)
\(74\) 31.4325 + 54.4427i 0.424764 + 0.735712i
\(75\) 0 0
\(76\) −67.3714 + 116.691i −0.886466 + 1.53540i
\(77\) 20.4071 + 11.7820i 0.265027 + 0.153014i
\(78\) 0 0
\(79\) 91.8612 53.0361i 1.16280 0.671343i 0.210827 0.977523i \(-0.432384\pi\)
0.951974 + 0.306180i \(0.0990510\pi\)
\(80\) 28.8942 0.361177
\(81\) 0 0
\(82\) 201.463i 2.45686i
\(83\) 85.2416 49.2143i 1.02701 0.592943i 0.110881 0.993834i \(-0.464633\pi\)
0.916126 + 0.400891i \(0.131299\pi\)
\(84\) 0 0
\(85\) 45.9924 + 25.7744i 0.541087 + 0.303229i
\(86\) 94.0911 + 54.3235i 1.09408 + 0.631669i
\(87\) 0 0
\(88\) −37.5308 + 21.6684i −0.426486 + 0.246232i
\(89\) 59.2783i 0.666048i 0.942918 + 0.333024i \(0.108069\pi\)
−0.942918 + 0.333024i \(0.891931\pi\)
\(90\) 0 0
\(91\) 21.8046i 0.239611i
\(92\) −4.18027 7.24045i −0.0454378 0.0787005i
\(93\) 0 0
\(94\) −74.2733 + 128.645i −0.790141 + 1.36856i
\(95\) 28.1798 48.8088i 0.296629 0.513777i
\(96\) 0 0
\(97\) −8.23298 + 4.75331i −0.0848761 + 0.0490032i −0.541837 0.840483i \(-0.682271\pi\)
0.456961 + 0.889487i \(0.348938\pi\)
\(98\) 32.6171i 0.332828i
\(99\) 0 0
\(100\) 114.049 1.14049
\(101\) −40.1218 + 23.1644i −0.397246 + 0.229350i −0.685295 0.728266i \(-0.740327\pi\)
0.288049 + 0.957616i \(0.406993\pi\)
\(102\) 0 0
\(103\) −24.2875 + 42.0672i −0.235801 + 0.408419i −0.959505 0.281691i \(-0.909105\pi\)
0.723704 + 0.690110i \(0.242438\pi\)
\(104\) 34.7284 + 20.0505i 0.333927 + 0.192793i
\(105\) 0 0
\(106\) −150.576 260.805i −1.42053 2.46042i
\(107\) −35.7990 −0.334570 −0.167285 0.985909i \(-0.553500\pi\)
−0.167285 + 0.985909i \(0.553500\pi\)
\(108\) 0 0
\(109\) 127.370i 1.16853i −0.811561 0.584267i \(-0.801382\pi\)
0.811561 0.584267i \(-0.198618\pi\)
\(110\) 34.0882 19.6808i 0.309893 0.178917i
\(111\) 0 0
\(112\) −50.6112 29.2204i −0.451885 0.260896i
\(113\) 94.1325 163.042i 0.833031 1.44285i −0.0625918 0.998039i \(-0.519937\pi\)
0.895623 0.444814i \(-0.146730\pi\)
\(114\) 0 0
\(115\) 1.74851 + 3.02850i 0.0152044 + 0.0263348i
\(116\) −331.264 −2.85572
\(117\) 0 0
\(118\) 188.608 1.59837
\(119\) −54.4950 91.6582i −0.457942 0.770237i
\(120\) 0 0
\(121\) 53.4438 92.5673i 0.441684 0.765019i
\(122\) −165.778 + 287.136i −1.35884 + 2.35357i
\(123\) 0 0
\(124\) −98.5610 + 56.9042i −0.794847 + 0.458905i
\(125\) −125.237 −1.00189
\(126\) 0 0
\(127\) −64.3461 −0.506662 −0.253331 0.967380i \(-0.581526\pi\)
−0.253331 + 0.967380i \(0.581526\pi\)
\(128\) −203.218 + 117.328i −1.58764 + 0.916626i
\(129\) 0 0
\(130\) −31.5429 18.2113i −0.242638 0.140087i
\(131\) 108.920 188.655i 0.831452 1.44012i −0.0654350 0.997857i \(-0.520843\pi\)
0.896887 0.442260i \(-0.145823\pi\)
\(132\) 0 0
\(133\) −98.7196 + 56.9958i −0.742253 + 0.428540i
\(134\) 120.572i 0.899793i
\(135\) 0 0
\(136\) 196.096 2.51040i 1.44188 0.0184588i
\(137\) −26.0269 + 15.0267i −0.189978 + 0.109684i −0.591972 0.805958i \(-0.701650\pi\)
0.401995 + 0.915642i \(0.368317\pi\)
\(138\) 0 0
\(139\) −162.976 94.0945i −1.17249 0.676939i −0.218227 0.975898i \(-0.570027\pi\)
−0.954266 + 0.298959i \(0.903361\pi\)
\(140\) 124.912 + 72.1182i 0.892231 + 0.515130i
\(141\) 0 0
\(142\) −356.947 + 206.083i −2.51371 + 1.45129i
\(143\) 13.0587 0.0913197
\(144\) 0 0
\(145\) 138.559 0.955582
\(146\) −58.1591 100.735i −0.398350 0.689963i
\(147\) 0 0
\(148\) −119.479 68.9815i −0.807293 0.466091i
\(149\) −132.226 76.3405i −0.887420 0.512352i −0.0143224 0.999897i \(-0.504559\pi\)
−0.873098 + 0.487545i \(0.837892\pi\)
\(150\) 0 0
\(151\) −81.9727 141.981i −0.542866 0.940271i −0.998738 0.0502257i \(-0.984006\pi\)
0.455872 0.890045i \(-0.349327\pi\)
\(152\) 209.642i 1.37923i
\(153\) 0 0
\(154\) −79.6121 −0.516962
\(155\) 41.2256 23.8016i 0.265972 0.153559i
\(156\) 0 0
\(157\) −67.7624 + 117.368i −0.431608 + 0.747567i −0.997012 0.0772472i \(-0.975387\pi\)
0.565404 + 0.824814i \(0.308720\pi\)
\(158\) −179.184 + 310.356i −1.13408 + 1.96428i
\(159\) 0 0
\(160\) 39.3924 22.7432i 0.246203 0.142145i
\(161\) 7.07297i 0.0439315i
\(162\) 0 0
\(163\) 27.3494i 0.167788i 0.996475 + 0.0838939i \(0.0267357\pi\)
−0.996475 + 0.0838939i \(0.973264\pi\)
\(164\) −221.064 382.894i −1.34795 2.33472i
\(165\) 0 0
\(166\) −166.272 + 287.992i −1.00164 + 1.73489i
\(167\) −129.894 + 224.983i −0.777810 + 1.34721i 0.155392 + 0.987853i \(0.450336\pi\)
−0.933202 + 0.359353i \(0.882997\pi\)
\(168\) 0 0
\(169\) 78.4582 + 135.894i 0.464250 + 0.804104i
\(170\) −178.109 + 2.28013i −1.04770 + 0.0134125i
\(171\) 0 0
\(172\) −238.436 −1.38625
\(173\) 36.9180 + 63.9438i 0.213399 + 0.369617i 0.952776 0.303674i \(-0.0982133\pi\)
−0.739377 + 0.673291i \(0.764880\pi\)
\(174\) 0 0
\(175\) 83.5585 + 48.2425i 0.477477 + 0.275672i
\(176\) 17.5000 30.3109i 0.0994318 0.172221i
\(177\) 0 0
\(178\) −100.137 173.442i −0.562567 0.974394i
\(179\) 45.6082i 0.254795i −0.991852 0.127397i \(-0.959338\pi\)
0.991852 0.127397i \(-0.0406623\pi\)
\(180\) 0 0
\(181\) 160.242i 0.885315i −0.896691 0.442657i \(-0.854036\pi\)
0.896691 0.442657i \(-0.145964\pi\)
\(182\) 36.8338 + 63.7980i 0.202383 + 0.350538i
\(183\) 0 0
\(184\) 11.2652 + 6.50397i 0.0612239 + 0.0353476i
\(185\) 49.9753 + 28.8532i 0.270137 + 0.155963i
\(186\) 0 0
\(187\) 54.8938 32.6369i 0.293550 0.174529i
\(188\) 325.999i 1.73404i
\(189\) 0 0
\(190\) 190.413i 1.00217i
\(191\) 198.771 114.761i 1.04069 0.600842i 0.120660 0.992694i \(-0.461499\pi\)
0.920028 + 0.391852i \(0.128166\pi\)
\(192\) 0 0
\(193\) −195.454 112.845i −1.01271 0.584690i −0.100728 0.994914i \(-0.532117\pi\)
−0.911985 + 0.410224i \(0.865450\pi\)
\(194\) 16.0592 27.8154i 0.0827796 0.143378i
\(195\) 0 0
\(196\) 35.7906 + 61.9911i 0.182605 + 0.316281i
\(197\) −21.3390 −0.108320 −0.0541598 0.998532i \(-0.517248\pi\)
−0.0541598 + 0.998532i \(0.517248\pi\)
\(198\) 0 0
\(199\) 226.404i 1.13771i −0.822438 0.568855i \(-0.807387\pi\)
0.822438 0.568855i \(-0.192613\pi\)
\(200\) −153.673 + 88.7230i −0.768364 + 0.443615i
\(201\) 0 0
\(202\) 78.2616 135.553i 0.387434 0.671055i
\(203\) −242.701 140.124i −1.19557 0.690264i
\(204\) 0 0
\(205\) 92.4656 + 160.155i 0.451052 + 0.781245i
\(206\) 164.112i 0.796662i
\(207\) 0 0
\(208\) −32.3866 −0.155705
\(209\) −34.1346 59.1229i −0.163324 0.282885i
\(210\) 0 0
\(211\) 278.389 + 160.728i 1.31938 + 0.761744i 0.983629 0.180206i \(-0.0576766\pi\)
0.335751 + 0.941951i \(0.391010\pi\)
\(212\) 572.360 + 330.452i 2.69981 + 1.55874i
\(213\) 0 0
\(214\) 104.744 60.4740i 0.489458 0.282589i
\(215\) 99.7317 0.463869
\(216\) 0 0
\(217\) −96.2812 −0.443692
\(218\) 215.162 + 372.672i 0.986983 + 1.70951i
\(219\) 0 0
\(220\) −43.1914 + 74.8097i −0.196325 + 0.340044i
\(221\) −51.5515 28.8898i −0.233265 0.130723i
\(222\) 0 0
\(223\) 214.036 + 370.721i 0.959803 + 1.66243i 0.722973 + 0.690877i \(0.242775\pi\)
0.236831 + 0.971551i \(0.423891\pi\)
\(224\) −91.9999 −0.410714
\(225\) 0 0
\(226\) 636.060i 2.81443i
\(227\) 97.0001 + 168.009i 0.427313 + 0.740128i 0.996633 0.0819880i \(-0.0261269\pi\)
−0.569320 + 0.822116i \(0.692794\pi\)
\(228\) 0 0
\(229\) 190.008 329.103i 0.829728 1.43713i −0.0685233 0.997650i \(-0.521829\pi\)
0.898251 0.439482i \(-0.144838\pi\)
\(230\) −10.2319 5.90739i −0.0444865 0.0256843i
\(231\) 0 0
\(232\) 446.353 257.702i 1.92393 1.11078i
\(233\) 320.365 1.37496 0.687478 0.726205i \(-0.258718\pi\)
0.687478 + 0.726205i \(0.258718\pi\)
\(234\) 0 0
\(235\) 136.357i 0.580243i
\(236\) −358.463 + 206.959i −1.51891 + 0.876944i
\(237\) 0 0
\(238\) 314.282 + 176.126i 1.32051 + 0.740024i
\(239\) 274.338 + 158.389i 1.14786 + 0.662716i 0.948364 0.317183i \(-0.102737\pi\)
0.199494 + 0.979899i \(0.436070\pi\)
\(240\) 0 0
\(241\) −343.500 + 198.320i −1.42531 + 0.822903i −0.996746 0.0806081i \(-0.974314\pi\)
−0.428564 + 0.903511i \(0.640980\pi\)
\(242\) 361.123i 1.49224i
\(243\) 0 0
\(244\) 727.630i 2.98209i
\(245\) −14.9703 25.9294i −0.0611034 0.105834i
\(246\) 0 0
\(247\) −31.5859 + 54.7083i −0.127878 + 0.221491i
\(248\) 88.5356 153.348i 0.356998 0.618339i
\(249\) 0 0
\(250\) 366.429 211.558i 1.46572 0.846232i
\(251\) 34.8071i 0.138674i 0.997593 + 0.0693369i \(0.0220883\pi\)
−0.997593 + 0.0693369i \(0.977912\pi\)
\(252\) 0 0
\(253\) 4.23599 0.0167430
\(254\) 188.270 108.698i 0.741221 0.427944i
\(255\) 0 0
\(256\) 222.757 385.827i 0.870146 1.50714i
\(257\) −186.465 107.655i −0.725544 0.418893i 0.0912460 0.995828i \(-0.470915\pi\)
−0.816790 + 0.576936i \(0.804248\pi\)
\(258\) 0 0
\(259\) −58.3579 101.079i −0.225320 0.390266i
\(260\) 79.9327 0.307434
\(261\) 0 0
\(262\) 735.981i 2.80909i
\(263\) −93.8398 + 54.1785i −0.356806 + 0.206002i −0.667679 0.744450i \(-0.732712\pi\)
0.310873 + 0.950451i \(0.399379\pi\)
\(264\) 0 0
\(265\) −239.404 138.220i −0.903411 0.521585i
\(266\) 192.562 333.528i 0.723918 1.25386i
\(267\) 0 0
\(268\) −132.303 229.156i −0.493669 0.855060i
\(269\) −16.9331 −0.0629482 −0.0314741 0.999505i \(-0.510020\pi\)
−0.0314741 + 0.999505i \(0.510020\pi\)
\(270\) 0 0
\(271\) 99.3182 0.366488 0.183244 0.983067i \(-0.441340\pi\)
0.183244 + 0.983067i \(0.441340\pi\)
\(272\) −136.141 + 80.9421i −0.500518 + 0.297581i
\(273\) 0 0
\(274\) 50.7681 87.9329i 0.185285 0.320923i
\(275\) −28.8923 + 50.0430i −0.105063 + 0.181974i
\(276\) 0 0
\(277\) −113.792 + 65.6978i −0.410801 + 0.237176i −0.691134 0.722727i \(-0.742888\pi\)
0.280333 + 0.959903i \(0.409555\pi\)
\(278\) 635.803 2.28706
\(279\) 0 0
\(280\) −224.413 −0.801476
\(281\) −225.418 + 130.145i −0.802201 + 0.463151i −0.844240 0.535965i \(-0.819948\pi\)
0.0420394 + 0.999116i \(0.486614\pi\)
\(282\) 0 0
\(283\) −133.186 76.8948i −0.470621 0.271713i 0.245879 0.969301i \(-0.420923\pi\)
−0.716500 + 0.697588i \(0.754257\pi\)
\(284\) 452.268 783.352i 1.59249 2.75828i
\(285\) 0 0
\(286\) −38.2085 + 22.0597i −0.133596 + 0.0771317i
\(287\) 374.038i 1.30327i
\(288\) 0 0
\(289\) −288.905 + 7.39828i −0.999672 + 0.0255996i
\(290\) −405.411 + 234.064i −1.39797 + 0.807117i
\(291\) 0 0
\(292\) 221.071 + 127.635i 0.757093 + 0.437108i
\(293\) −82.2824 47.5058i −0.280827 0.162136i 0.352971 0.935634i \(-0.385172\pi\)
−0.633798 + 0.773499i \(0.718505\pi\)
\(294\) 0 0
\(295\) 149.936 86.5657i 0.508258 0.293443i
\(296\) 214.653 0.725177
\(297\) 0 0
\(298\) 515.838 1.73100
\(299\) −1.95985 3.39455i −0.00655467 0.0113530i
\(300\) 0 0
\(301\) −174.690 100.858i −0.580367 0.335075i
\(302\) 479.687 + 276.948i 1.58837 + 0.917045i
\(303\) 0 0
\(304\) 84.6565 + 146.629i 0.278475 + 0.482333i
\(305\) 304.349i 0.997867i
\(306\) 0 0
\(307\) −471.076 −1.53445 −0.767224 0.641379i \(-0.778363\pi\)
−0.767224 + 0.641379i \(0.778363\pi\)
\(308\) 151.308 87.3579i 0.491261 0.283630i
\(309\) 0 0
\(310\) −80.4146 + 139.282i −0.259402 + 0.449297i
\(311\) −190.810 + 330.493i −0.613539 + 1.06268i 0.377101 + 0.926172i \(0.376921\pi\)
−0.990639 + 0.136508i \(0.956412\pi\)
\(312\) 0 0
\(313\) −10.4278 + 6.02047i −0.0333155 + 0.0192347i −0.516565 0.856248i \(-0.672790\pi\)
0.483250 + 0.875483i \(0.339456\pi\)
\(314\) 457.876i 1.45820i
\(315\) 0 0
\(316\) 786.472i 2.48884i
\(317\) −137.067 237.407i −0.432388 0.748919i 0.564690 0.825303i \(-0.308996\pi\)
−0.997078 + 0.0763844i \(0.975662\pi\)
\(318\) 0 0
\(319\) 83.9196 145.353i 0.263071 0.455652i
\(320\) −134.627 + 233.181i −0.420710 + 0.728691i
\(321\) 0 0
\(322\) 11.9481 + 20.6948i 0.0371060 + 0.0642695i
\(323\) 3.95468 + 308.914i 0.0122436 + 0.956389i
\(324\) 0 0
\(325\) 53.4700 0.164523
\(326\) −46.2005 80.0216i −0.141719 0.245465i
\(327\) 0 0
\(328\) 595.734 + 343.947i 1.81626 + 1.04862i
\(329\) 137.897 238.844i 0.419138 0.725969i
\(330\) 0 0
\(331\) 57.1777 + 99.0347i 0.172742 + 0.299199i 0.939378 0.342884i \(-0.111404\pi\)
−0.766635 + 0.642083i \(0.778071\pi\)
\(332\) 729.798i 2.19819i
\(333\) 0 0
\(334\) 877.704i 2.62786i
\(335\) 55.3392 + 95.8503i 0.165192 + 0.286120i
\(336\) 0 0
\(337\) 242.067 + 139.758i 0.718301 + 0.414711i 0.814127 0.580687i \(-0.197216\pi\)
−0.0958260 + 0.995398i \(0.530549\pi\)
\(338\) −459.121 265.074i −1.35835 0.784242i
\(339\) 0 0
\(340\) 336.007 199.772i 0.988255 0.587563i
\(341\) 57.6626i 0.169098i
\(342\) 0 0
\(343\) 367.916i 1.07264i
\(344\) 321.274 185.488i 0.933936 0.539208i
\(345\) 0 0
\(346\) −216.036 124.729i −0.624383 0.360488i
\(347\) −162.231 + 280.992i −0.467523 + 0.809774i −0.999311 0.0371034i \(-0.988187\pi\)
0.531788 + 0.846877i \(0.321520\pi\)
\(348\) 0 0
\(349\) −139.028 240.803i −0.398360 0.689980i 0.595164 0.803604i \(-0.297087\pi\)
−0.993524 + 0.113625i \(0.963754\pi\)
\(350\) −325.978 −0.931366
\(351\) 0 0
\(352\) 55.0985i 0.156530i
\(353\) 410.603 237.062i 1.16318 0.671563i 0.211117 0.977461i \(-0.432290\pi\)
0.952065 + 0.305897i \(0.0989564\pi\)
\(354\) 0 0
\(355\) −189.173 + 327.657i −0.532881 + 0.922976i
\(356\) 380.635 + 219.759i 1.06920 + 0.617302i
\(357\) 0 0
\(358\) 77.0445 + 133.445i 0.215208 + 0.372751i
\(359\) 486.308i 1.35462i 0.735699 + 0.677309i \(0.236854\pi\)
−0.735699 + 0.677309i \(0.763146\pi\)
\(360\) 0 0
\(361\) −30.7465 −0.0851704
\(362\) 270.692 + 468.851i 0.747767 + 1.29517i
\(363\) 0 0
\(364\) −140.010 80.8351i −0.384644 0.222074i
\(365\) −92.4686 53.3868i −0.253339 0.146265i
\(366\) 0 0
\(367\) −282.323 + 162.999i −0.769271 + 0.444139i −0.832615 0.553853i \(-0.813157\pi\)
0.0633433 + 0.997992i \(0.479824\pi\)
\(368\) −10.5056 −0.0285477
\(369\) 0 0
\(370\) −194.963 −0.526928
\(371\) 279.560 + 484.213i 0.753532 + 1.30516i
\(372\) 0 0
\(373\) 167.244 289.676i 0.448377 0.776611i −0.549904 0.835228i \(-0.685336\pi\)
0.998281 + 0.0586169i \(0.0186690\pi\)
\(374\) −105.481 + 188.223i −0.282035 + 0.503269i
\(375\) 0 0
\(376\) 253.606 + 439.259i 0.674484 + 1.16824i
\(377\) −155.307 −0.411955
\(378\) 0 0
\(379\) 56.3312i 0.148631i −0.997235 0.0743155i \(-0.976323\pi\)
0.997235 0.0743155i \(-0.0236772\pi\)
\(380\) −208.939 361.893i −0.549839 0.952350i
\(381\) 0 0
\(382\) −387.723 + 671.556i −1.01498 + 1.75800i
\(383\) 41.7301 + 24.0929i 0.108956 + 0.0629057i 0.553488 0.832857i \(-0.313297\pi\)
−0.444532 + 0.895763i \(0.646630\pi\)
\(384\) 0 0
\(385\) −63.2885 + 36.5397i −0.164386 + 0.0949082i
\(386\) 762.502 1.97539
\(387\) 0 0
\(388\) 70.4869i 0.181667i
\(389\) 30.8371 17.8038i 0.0792728 0.0457682i −0.459840 0.888002i \(-0.652093\pi\)
0.539112 + 0.842234i \(0.318760\pi\)
\(390\) 0 0
\(391\) −16.7223 9.37126i −0.0427679 0.0239674i
\(392\) −96.4502 55.6856i −0.246046 0.142055i
\(393\) 0 0
\(394\) 62.4356 36.0472i 0.158466 0.0914904i
\(395\) 328.962i 0.832815i
\(396\) 0 0
\(397\) 151.892i 0.382601i −0.981532 0.191300i \(-0.938730\pi\)
0.981532 0.191300i \(-0.0612704\pi\)
\(398\) 382.457 + 662.435i 0.960948 + 1.66441i
\(399\) 0 0
\(400\) 71.6551 124.110i 0.179138 0.310276i
\(401\) −132.184 + 228.950i −0.329636 + 0.570947i −0.982440 0.186580i \(-0.940259\pi\)
0.652803 + 0.757527i \(0.273593\pi\)
\(402\) 0 0
\(403\) −46.2085 + 26.6785i −0.114661 + 0.0661998i
\(404\) 343.504i 0.850258i
\(405\) 0 0
\(406\) 946.825 2.33208
\(407\) 60.5359 34.9504i 0.148737 0.0858732i
\(408\) 0 0
\(409\) 17.3829 30.1081i 0.0425011 0.0736140i −0.843992 0.536355i \(-0.819801\pi\)
0.886493 + 0.462741i \(0.153134\pi\)
\(410\) −541.090 312.398i −1.31973 0.761947i
\(411\) 0 0
\(412\) 180.080 + 311.907i 0.437086 + 0.757056i
\(413\) −350.172 −0.847873
\(414\) 0 0
\(415\) 305.256i 0.735558i
\(416\) −44.1538 + 25.4922i −0.106139 + 0.0612793i
\(417\) 0 0
\(418\) 199.749 + 115.325i 0.477868 + 0.275897i
\(419\) −45.5169 + 78.8375i −0.108632 + 0.188156i −0.915216 0.402963i \(-0.867980\pi\)
0.806584 + 0.591119i \(0.201314\pi\)
\(420\) 0 0
\(421\) −270.867 469.156i −0.643390 1.11438i −0.984671 0.174423i \(-0.944194\pi\)
0.341281 0.939961i \(-0.389139\pi\)
\(422\) −1086.05 −2.57358
\(423\) 0 0
\(424\) −1028.28 −2.42519
\(425\) 224.767 133.635i 0.528864 0.314434i
\(426\) 0 0
\(427\) 307.785 533.100i 0.720808 1.24848i
\(428\) −132.716 + 229.870i −0.310083 + 0.537080i
\(429\) 0 0
\(430\) −291.805 + 168.474i −0.678616 + 0.391799i
\(431\) 16.8736 0.0391498 0.0195749 0.999808i \(-0.493769\pi\)
0.0195749 + 0.999808i \(0.493769\pi\)
\(432\) 0 0
\(433\) 254.232 0.587141 0.293571 0.955937i \(-0.405156\pi\)
0.293571 + 0.955937i \(0.405156\pi\)
\(434\) 281.709 162.645i 0.649099 0.374758i
\(435\) 0 0
\(436\) −817.863 472.193i −1.87583 1.08301i
\(437\) −10.2458 + 17.7463i −0.0234458 + 0.0406093i
\(438\) 0 0
\(439\) 628.864 363.075i 1.43249 0.827049i 0.435181 0.900343i \(-0.356684\pi\)
0.997310 + 0.0732936i \(0.0233510\pi\)
\(440\) 134.400i 0.305456i
\(441\) 0 0
\(442\) 199.637 2.55573i 0.451667 0.00578220i
\(443\) 288.481 166.555i 0.651199 0.375970i −0.137716 0.990472i \(-0.543976\pi\)
0.788916 + 0.614502i \(0.210643\pi\)
\(444\) 0 0
\(445\) −159.210 91.9199i −0.357775 0.206562i
\(446\) −1252.50 723.128i −2.80829 1.62136i
\(447\) 0 0
\(448\) 471.627 272.294i 1.05274 0.607799i
\(449\) −229.219 −0.510509 −0.255254 0.966874i \(-0.582159\pi\)
−0.255254 + 0.966874i \(0.582159\pi\)
\(450\) 0 0
\(451\) 224.010 0.496697
\(452\) −697.946 1208.88i −1.54413 2.67451i
\(453\) 0 0
\(454\) −567.624 327.718i −1.25027 0.721846i
\(455\) 58.5629 + 33.8113i 0.128710 + 0.0743106i
\(456\) 0 0
\(457\) 284.894 + 493.451i 0.623401 + 1.07976i 0.988848 + 0.148930i \(0.0475828\pi\)
−0.365447 + 0.930832i \(0.619084\pi\)
\(458\) 1283.90i 2.80327i
\(459\) 0 0
\(460\) 25.9286 0.0563665
\(461\) −53.8225 + 31.0745i −0.116752 + 0.0674066i −0.557239 0.830352i \(-0.688139\pi\)
0.440487 + 0.897759i \(0.354806\pi\)
\(462\) 0 0
\(463\) −217.615 + 376.921i −0.470011 + 0.814084i −0.999412 0.0342882i \(-0.989084\pi\)
0.529400 + 0.848372i \(0.322417\pi\)
\(464\) −208.127 + 360.487i −0.448550 + 0.776911i
\(465\) 0 0
\(466\) −937.354 + 541.182i −2.01149 + 1.16133i
\(467\) 63.8071i 0.136632i −0.997664 0.0683159i \(-0.978237\pi\)
0.997664 0.0683159i \(-0.0217626\pi\)
\(468\) 0 0
\(469\) 223.856i 0.477304i
\(470\) −230.344 398.967i −0.490093 0.848866i
\(471\) 0 0
\(472\) 322.001 557.722i 0.682205 1.18161i
\(473\) 60.4033 104.622i 0.127703 0.221187i
\(474\) 0 0
\(475\) −139.767 242.084i −0.294246 0.509650i
\(476\) −790.577 + 10.1209i −1.66088 + 0.0212624i
\(477\) 0 0
\(478\) −1070.25 −2.23901
\(479\) −320.143 554.503i −0.668356 1.15763i −0.978364 0.206893i \(-0.933665\pi\)
0.310007 0.950734i \(-0.399669\pi\)
\(480\) 0 0
\(481\) −56.0158 32.3407i −0.116457 0.0672364i
\(482\) 670.030 1160.53i 1.39010 2.40773i
\(483\) 0 0
\(484\) −396.259 686.340i −0.818716 1.41806i
\(485\) 29.4829i 0.0607895i
\(486\) 0 0
\(487\) 140.676i 0.288863i 0.989515 + 0.144432i \(0.0461354\pi\)
−0.989515 + 0.144432i \(0.953865\pi\)
\(488\) 566.049 + 980.425i 1.15994 + 2.00907i
\(489\) 0 0
\(490\) 87.6033 + 50.5778i 0.178782 + 0.103220i
\(491\) 145.858 + 84.2113i 0.297064 + 0.171510i 0.641123 0.767438i \(-0.278469\pi\)
−0.344059 + 0.938948i \(0.611802\pi\)
\(492\) 0 0
\(493\) −652.851 + 388.150i −1.32424 + 0.787323i
\(494\) 213.428i 0.432040i
\(495\) 0 0
\(496\) 143.008i 0.288322i
\(497\) 662.711 382.616i 1.33342 0.769852i
\(498\) 0 0
\(499\) −101.189 58.4214i −0.202783 0.117077i 0.395170 0.918608i \(-0.370686\pi\)
−0.597953 + 0.801531i \(0.704019\pi\)
\(500\) −464.283 + 804.162i −0.928566 + 1.60832i
\(501\) 0 0
\(502\) −58.7986 101.842i −0.117129 0.202873i
\(503\) 572.958 1.13908 0.569541 0.821963i \(-0.307121\pi\)
0.569541 + 0.821963i \(0.307121\pi\)
\(504\) 0 0
\(505\) 143.679i 0.284513i
\(506\) −12.3941 + 7.15571i −0.0244942 + 0.0141417i
\(507\) 0 0
\(508\) −238.547 + 413.176i −0.469581 + 0.813338i
\(509\) −385.460 222.546i −0.757290 0.437221i 0.0710321 0.997474i \(-0.477371\pi\)
−0.828322 + 0.560253i \(0.810704\pi\)
\(510\) 0 0
\(511\) 107.979 + 187.025i 0.211309 + 0.365998i
\(512\) 566.563i 1.10657i
\(513\) 0 0
\(514\) 727.435 1.41524
\(515\) −75.3228 130.463i −0.146258 0.253326i
\(516\) 0 0
\(517\) 143.043 + 82.5859i 0.276679 + 0.159741i
\(518\) 341.498 + 197.164i 0.659263 + 0.380626i
\(519\) 0 0
\(520\) −107.703 + 62.1825i −0.207122 + 0.119582i
\(521\) −353.566 −0.678630 −0.339315 0.940673i \(-0.610195\pi\)
−0.339315 + 0.940673i \(0.610195\pi\)
\(522\) 0 0
\(523\) −606.215 −1.15911 −0.579556 0.814933i \(-0.696774\pi\)
−0.579556 + 0.814933i \(0.696774\pi\)
\(524\) −807.589 1398.78i −1.54120 2.66944i
\(525\) 0 0
\(526\) 183.044 317.041i 0.347992 0.602740i
\(527\) −127.567 + 227.633i −0.242062 + 0.431941i
\(528\) 0 0
\(529\) 263.864 + 457.026i 0.498798 + 0.863944i
\(530\) 933.962 1.76219
\(531\) 0 0
\(532\) 845.190i 1.58870i
\(533\) −103.642 179.513i −0.194450 0.336797i
\(534\) 0 0
\(535\) 55.5117 96.1491i 0.103760 0.179718i
\(536\) 356.537 + 205.847i 0.665182 + 0.384043i
\(537\) 0 0
\(538\) 49.5444 28.6045i 0.0920899 0.0531682i
\(539\) −36.2676 −0.0672868
\(540\) 0 0
\(541\) 973.359i 1.79918i 0.436731 + 0.899592i \(0.356136\pi\)
−0.436731 + 0.899592i \(0.643864\pi\)
\(542\) −290.595 + 167.775i −0.536153 + 0.309548i
\(543\) 0 0
\(544\) −121.894 + 217.511i −0.224070 + 0.399836i
\(545\) 342.092 + 197.507i 0.627691 + 0.362398i
\(546\) 0 0
\(547\) 939.697 542.534i 1.71791 0.991836i 0.795197 0.606351i \(-0.207368\pi\)
0.922714 0.385485i \(-0.125966\pi\)
\(548\) 222.830i 0.406624i
\(549\) 0 0
\(550\) 195.227i 0.354959i
\(551\) 405.962 + 703.147i 0.736774 + 1.27613i
\(552\) 0 0
\(553\) 332.675 576.211i 0.601583 1.04197i
\(554\) 221.962 384.450i 0.400654 0.693953i
\(555\) 0 0
\(556\) −1208.39 + 697.663i −2.17336 + 1.25479i
\(557\) 266.109i 0.477755i −0.971050 0.238877i \(-0.923221\pi\)
0.971050 0.238877i \(-0.0767794\pi\)
\(558\) 0 0
\(559\) −111.786 −0.199975
\(560\) 156.960 90.6211i 0.280286 0.161823i
\(561\) 0 0
\(562\) 439.701 761.584i 0.782386 1.35513i
\(563\) −95.8869 55.3603i −0.170314 0.0983310i 0.412420 0.910994i \(-0.364684\pi\)
−0.582734 + 0.812663i \(0.698017\pi\)
\(564\) 0 0
\(565\) 291.933 + 505.643i 0.516696 + 0.894944i
\(566\) 519.583 0.917992
\(567\) 0 0
\(568\) 1407.34i 2.47771i
\(569\) −820.458 + 473.692i −1.44193 + 0.832499i −0.997979 0.0635520i \(-0.979757\pi\)
−0.443952 + 0.896051i \(0.646424\pi\)
\(570\) 0 0
\(571\) 781.546 + 451.226i 1.36873 + 0.790238i 0.990766 0.135582i \(-0.0432903\pi\)
0.377966 + 0.925819i \(0.376624\pi\)
\(572\) 48.4119 83.8519i 0.0846362 0.146594i
\(573\) 0 0
\(574\) 631.850 + 1094.40i 1.10078 + 1.90661i
\(575\) 17.3446 0.0301645
\(576\) 0 0
\(577\) −770.496 −1.33535 −0.667674 0.744453i \(-0.732710\pi\)
−0.667674 + 0.744453i \(0.732710\pi\)
\(578\) 832.809 509.685i 1.44085 0.881808i
\(579\) 0 0
\(580\) 513.674 889.710i 0.885645 1.53398i
\(581\) 308.702 534.688i 0.531329 0.920290i
\(582\) 0 0
\(583\) −289.994 + 167.428i −0.497417 + 0.287184i
\(584\) −397.169 −0.680083
\(585\) 0 0
\(586\) 321.000 0.547781
\(587\) −749.343 + 432.633i −1.27656 + 0.737024i −0.976215 0.216805i \(-0.930436\pi\)
−0.300349 + 0.953829i \(0.597103\pi\)
\(588\) 0 0
\(589\) 241.572 + 139.472i 0.410140 + 0.236794i
\(590\) −292.465 + 506.565i −0.495704 + 0.858584i
\(591\) 0 0
\(592\) −150.134 + 86.6797i −0.253604 + 0.146418i
\(593\) 197.080i 0.332344i −0.986097 0.166172i \(-0.946859\pi\)
0.986097 0.166172i \(-0.0531406\pi\)
\(594\) 0 0
\(595\) 330.679 4.23332i 0.555763 0.00711482i
\(596\) −980.387 + 566.026i −1.64494 + 0.949709i
\(597\) 0 0
\(598\) 11.4686 + 6.62141i 0.0191783 + 0.0110726i
\(599\) −498.466 287.789i −0.832164 0.480450i 0.0224293 0.999748i \(-0.492860\pi\)
−0.854593 + 0.519299i \(0.826193\pi\)
\(600\) 0 0
\(601\) 603.473 348.416i 1.00412 0.579726i 0.0946521 0.995510i \(-0.469826\pi\)
0.909463 + 0.415784i \(0.136493\pi\)
\(602\) 681.502 1.13206
\(603\) 0 0
\(604\) −1215.57 −2.01254
\(605\) 165.745 + 287.079i 0.273959 + 0.474511i
\(606\) 0 0
\(607\) 383.777 + 221.574i 0.632252 + 0.365031i 0.781624 0.623750i \(-0.214392\pi\)
−0.149372 + 0.988781i \(0.547725\pi\)
\(608\) 230.830 + 133.270i 0.379655 + 0.219194i
\(609\) 0 0
\(610\) −514.128 890.495i −0.842832 1.45983i
\(611\) 152.839i 0.250145i
\(612\) 0 0
\(613\) −718.550 −1.17219 −0.586093 0.810244i \(-0.699335\pi\)
−0.586093 + 0.810244i \(0.699335\pi\)
\(614\) 1378.32 795.773i 2.24482 1.29605i
\(615\) 0 0
\(616\) −135.918 + 235.416i −0.220646 + 0.382169i
\(617\) 382.705 662.864i 0.620267 1.07433i −0.369169 0.929362i \(-0.620358\pi\)
0.989436 0.144971i \(-0.0463090\pi\)
\(618\) 0 0
\(619\) 74.0367 42.7451i 0.119607 0.0690551i −0.439003 0.898486i \(-0.644668\pi\)
0.558610 + 0.829430i \(0.311335\pi\)
\(620\) 352.954i 0.569281i
\(621\) 0 0
\(622\) 1289.32i 2.07286i
\(623\) 185.915 + 322.015i 0.298419 + 0.516877i
\(624\) 0 0
\(625\) 1.92394 3.33236i 0.00307830 0.00533177i
\(626\) 20.3404 35.2305i 0.0324926 0.0562788i
\(627\) 0 0
\(628\) 502.425 + 870.225i 0.800039 + 1.38571i
\(629\) −316.296 + 4.04919i −0.502856 + 0.00643751i
\(630\) 0 0
\(631\) 151.653 0.240338 0.120169 0.992753i \(-0.461656\pi\)
0.120169 + 0.992753i \(0.461656\pi\)
\(632\) 611.825 + 1059.71i 0.968077 + 1.67676i
\(633\) 0 0
\(634\) 802.089 + 463.086i 1.26512 + 0.730420i
\(635\) 99.7783 172.821i 0.157131 0.272159i
\(636\) 0 0
\(637\) 16.7798 + 29.0634i 0.0263419 + 0.0456255i
\(638\) 567.051i 0.888794i
\(639\) 0 0
\(640\) 727.739i 1.13709i
\(641\) −367.170 635.958i −0.572809 0.992134i −0.996276 0.0862224i \(-0.972520\pi\)
0.423467 0.905911i \(-0.360813\pi\)
\(642\) 0 0
\(643\) 1094.69 + 632.019i 1.70247 + 0.982922i 0.943246 + 0.332094i \(0.107755\pi\)
0.759225 + 0.650828i \(0.225578\pi\)
\(644\) −45.4166 26.2213i −0.0705226 0.0407163i
\(645\) 0 0
\(646\) −533.409 897.169i −0.825710 1.38881i
\(647\) 654.568i 1.01170i −0.862622 0.505849i \(-0.831179\pi\)
0.862622 0.505849i \(-0.168821\pi\)
\(648\) 0 0
\(649\) 209.717i 0.323138i
\(650\) −156.448 + 90.3251i −0.240689 + 0.138962i
\(651\) 0 0
\(652\) 175.615 + 101.391i 0.269348 + 0.155508i
\(653\) −351.643 + 609.064i −0.538504 + 0.932716i 0.460481 + 0.887670i \(0.347677\pi\)
−0.998985 + 0.0450465i \(0.985656\pi\)
\(654\) 0 0
\(655\) 337.794 + 585.077i 0.515717 + 0.893247i
\(656\) −555.562 −0.846894
\(657\) 0 0
\(658\) 931.776i 1.41607i
\(659\) −394.144 + 227.559i −0.598094 + 0.345310i −0.768292 0.640100i \(-0.778893\pi\)
0.170197 + 0.985410i \(0.445560\pi\)
\(660\) 0 0
\(661\) −134.035 + 232.155i −0.202776 + 0.351218i −0.949422 0.314004i \(-0.898330\pi\)
0.746646 + 0.665222i \(0.231663\pi\)
\(662\) −334.592 193.177i −0.505426 0.291808i
\(663\) 0 0
\(664\) 567.736 + 983.347i 0.855024 + 1.48094i
\(665\) 353.522i 0.531612i
\(666\) 0 0
\(667\) −50.3785 −0.0755300
\(668\) 963.100 + 1668.14i 1.44177 + 2.49721i
\(669\) 0 0
\(670\) −323.834 186.965i −0.483334 0.279053i
\(671\) 319.272 + 184.332i 0.475815 + 0.274712i
\(672\) 0 0
\(673\) 572.251 330.389i 0.850299 0.490920i −0.0104531 0.999945i \(-0.503327\pi\)
0.860752 + 0.509025i \(0.169994\pi\)
\(674\) −944.353 −1.40112
\(675\) 0 0
\(676\) 1163.46 1.72109
\(677\) −367.380 636.321i −0.542659 0.939913i −0.998750 0.0499797i \(-0.984084\pi\)
0.456091 0.889933i \(-0.349249\pi\)
\(678\) 0 0
\(679\) −29.8157 + 51.6424i −0.0439113 + 0.0760565i
\(680\) −297.334 + 530.568i −0.437256 + 0.780248i
\(681\) 0 0
\(682\) 97.4075 + 168.715i 0.142826 + 0.247382i
\(683\) 290.069 0.424699 0.212349 0.977194i \(-0.431889\pi\)
0.212349 + 0.977194i \(0.431889\pi\)
\(684\) 0 0
\(685\) 93.2043i 0.136065i
\(686\) −621.508 1076.48i −0.905988 1.56922i
\(687\) 0 0
\(688\) −149.805 + 259.470i −0.217740 + 0.377136i
\(689\) 268.341 + 154.926i 0.389464 + 0.224857i
\(690\) 0 0
\(691\) −141.683 + 81.8008i −0.205041 + 0.118380i −0.599004 0.800746i \(-0.704437\pi\)
0.393964 + 0.919126i \(0.371104\pi\)
\(692\) 547.457 0.791122
\(693\) 0 0
\(694\) 1096.20i 1.57954i
\(695\) 505.439 291.815i 0.727250 0.419878i
\(696\) 0 0
\(697\) −884.318 495.577i −1.26875 0.711015i
\(698\) 813.561 + 469.710i 1.16556 + 0.672936i
\(699\) 0 0
\(700\) 619.544 357.694i 0.885063 0.510992i
\(701\) 447.750i 0.638730i 0.947632 + 0.319365i \(0.103470\pi\)
−0.947632 + 0.319365i \(0.896530\pi\)
\(702\) 0 0
\(703\) 338.146i 0.481004i
\(704\) 163.076 + 282.456i 0.231642 + 0.401216i
\(705\) 0 0
\(706\) −800.922 + 1387.24i −1.13445 + 1.96493i
\(707\) −145.301 + 251.669i −0.205518 + 0.355968i
\(708\) 0 0
\(709\) −1029.74 + 594.519i −1.45238 + 0.838532i −0.998616 0.0525907i \(-0.983252\pi\)
−0.453763 + 0.891122i \(0.649919\pi\)
\(710\) 1278.25i 1.80036i
\(711\) 0 0
\(712\) −683.835 −0.960442
\(713\) −14.9891 + 8.65397i −0.0210226 + 0.0121374i
\(714\) 0 0
\(715\) −20.2495 + 35.0732i −0.0283210 + 0.0490534i
\(716\) −292.857 169.081i −0.409018 0.236147i
\(717\) 0 0
\(718\) −821.504 1422.89i −1.14416 1.98174i
\(719\) −746.256 −1.03791 −0.518954 0.854802i \(-0.673678\pi\)
−0.518954 + 0.854802i \(0.673678\pi\)
\(720\) 0 0
\(721\) 304.692i 0.422597i
\(722\) 89.9611 51.9391i 0.124600 0.0719378i
\(723\) 0 0
\(724\) −1028.94 594.057i −1.42118 0.820521i
\(725\) 343.616 595.160i 0.473953 0.820910i
\(726\) 0 0
\(727\) 195.358 + 338.371i 0.268719 + 0.465434i 0.968531 0.248892i \(-0.0800665\pi\)
−0.699813 + 0.714327i \(0.746733\pi\)
\(728\) 251.538 0.345519
\(729\) 0 0
\(730\) 360.738 0.494162
\(731\) −469.907 + 279.381i −0.642827 + 0.382191i
\(732\) 0 0
\(733\) −4.87965 + 8.45179i −0.00665709 + 0.0115304i −0.869335 0.494224i \(-0.835452\pi\)
0.862678 + 0.505754i \(0.168786\pi\)
\(734\) 550.698 953.837i 0.750270 1.29951i
\(735\) 0 0
\(736\) −14.3226 + 8.26916i −0.0194601 + 0.0112353i
\(737\) 134.067 0.181909
\(738\) 0 0
\(739\) 1168.07 1.58060 0.790302 0.612717i \(-0.209924\pi\)
0.790302 + 0.612717i \(0.209924\pi\)
\(740\) 370.542 213.932i 0.500732 0.289098i
\(741\) 0 0
\(742\) −1635.93 944.505i −2.20476 1.27292i
\(743\) −113.536 + 196.649i −0.152807 + 0.264670i −0.932258 0.361793i \(-0.882165\pi\)
0.779451 + 0.626463i \(0.215498\pi\)
\(744\) 0 0
\(745\) 410.071 236.755i 0.550431 0.317792i
\(746\) 1130.08i 1.51486i
\(747\) 0 0
\(748\) −6.06137 473.475i −0.00810344 0.632987i
\(749\) −194.469 + 112.277i −0.259638 + 0.149902i
\(750\) 0 0
\(751\) 123.140 + 71.0950i 0.163968 + 0.0946670i 0.579739 0.814803i \(-0.303155\pi\)
−0.415770 + 0.909470i \(0.636488\pi\)
\(752\) −354.757 204.819i −0.471752 0.272366i
\(753\) 0 0
\(754\) 454.412 262.355i 0.602669 0.347951i
\(755\) 508.444 0.673436
\(756\) 0 0
\(757\) −479.636 −0.633601 −0.316800 0.948492i \(-0.602609\pi\)
−0.316800 + 0.948492i \(0.602609\pi\)
\(758\) 95.1584 + 164.819i 0.125539 + 0.217440i
\(759\) 0 0
\(760\) 563.059 + 325.082i 0.740867 + 0.427740i
\(761\) 37.8559 + 21.8561i 0.0497449 + 0.0287202i 0.524666 0.851308i \(-0.324190\pi\)
−0.474921 + 0.880028i \(0.657523\pi\)
\(762\) 0 0
\(763\) −399.473 691.907i −0.523555 0.906824i
\(764\) 1701.79i 2.22747i
\(765\) 0 0
\(766\) −162.797 −0.212529
\(767\) −168.059 + 97.0288i −0.219112 + 0.126504i
\(768\) 0 0
\(769\) 475.251 823.159i 0.618012 1.07043i −0.371836 0.928298i \(-0.621272\pi\)
0.989848 0.142129i \(-0.0453949\pi\)
\(770\) 123.451 213.823i 0.160325 0.277692i
\(771\) 0 0
\(772\) −1449.19 + 836.690i −1.87719 + 1.08380i
\(773\) 416.660i 0.539017i 0.962998 + 0.269509i \(0.0868613\pi\)
−0.962998 + 0.269509i \(0.913139\pi\)
\(774\) 0 0
\(775\) 236.104i 0.304650i
\(776\) −54.8342 94.9757i −0.0706627 0.122391i
\(777\) 0 0
\(778\) −60.1508 + 104.184i −0.0773147 + 0.133913i
\(779\) −541.826 + 938.471i −0.695541 + 1.20471i
\(780\) 0 0
\(781\) 229.148 + 396.896i 0.293403 + 0.508189i
\(782\) 64.7582 0.829028i 0.0828110 0.00106014i
\(783\) 0 0
\(784\) 89.9464 0.114728
\(785\) −210.152 363.993i −0.267709 0.463686i
\(786\) 0 0
\(787\) −783.381 452.285i −0.995401 0.574695i −0.0885166 0.996075i \(-0.528213\pi\)
−0.906884 + 0.421380i \(0.861546\pi\)
\(788\) −79.1088 + 137.021i −0.100392 + 0.173884i
\(789\) 0 0
\(790\) −555.705 962.509i −0.703424 1.21837i
\(791\) 1180.92i 1.49294i
\(792\) 0 0
\(793\) 341.136i 0.430184i
\(794\) 256.587 + 444.422i 0.323157 + 0.559725i
\(795\) 0 0
\(796\) −1453.77 839.337i −1.82635 1.05444i
\(797\) 1150.83 + 664.429i 1.44395 + 0.833663i 0.998110 0.0614514i \(-0.0195729\pi\)
0.445837 + 0.895114i \(0.352906\pi\)
\(798\) 0 0
\(799\) −381.981 642.475i −0.478074 0.804099i
\(800\) 225.605i 0.282006i
\(801\) 0 0
\(802\) 893.178i 1.11369i
\(803\) −112.009 + 64.6682i −0.139488 + 0.0805333i
\(804\) 0 0
\(805\) 18.9966 + 10.9677i 0.0235983 + 0.0136245i
\(806\) 90.1343 156.117i 0.111829 0.193694i
\(807\) 0 0
\(808\) −267.224 462.846i −0.330723 0.572829i
\(809\) −807.379 −0.997996 −0.498998 0.866603i \(-0.666299\pi\)
−0.498998 + 0.866603i \(0.666299\pi\)
\(810\) 0 0
\(811\) 108.693i 0.134024i −0.997752 0.0670118i \(-0.978654\pi\)
0.997752 0.0670118i \(-0.0213465\pi\)
\(812\) −1799.51 + 1038.95i −2.21614 + 1.27949i
\(813\) 0 0
\(814\) −118.081 + 204.523i −0.145063 + 0.251256i
\(815\) −73.4552 42.4094i −0.0901291 0.0520361i
\(816\) 0 0
\(817\) 292.202 + 506.109i 0.357652 + 0.619472i
\(818\) 117.458i 0.143591i
\(819\) 0 0
\(820\) 1371.17 1.67216
\(821\) −465.360 806.027i −0.566821 0.981762i −0.996878 0.0789605i \(-0.974840\pi\)
0.430057 0.902802i \(-0.358493\pi\)
\(822\) 0 0
\(823\) 804.670 + 464.576i 0.977727 + 0.564491i 0.901583 0.432606i \(-0.142406\pi\)
0.0761441 + 0.997097i \(0.475739\pi\)
\(824\) −485.287 280.181i −0.588940 0.340025i
\(825\) 0 0
\(826\) 1024.57 591.533i 1.24039 0.716142i
\(827\) −309.018 −0.373661 −0.186830 0.982392i \(-0.559821\pi\)
−0.186830 + 0.982392i \(0.559821\pi\)
\(828\) 0 0
\(829\) −356.784 −0.430378 −0.215189 0.976572i \(-0.569037\pi\)
−0.215189 + 0.976572i \(0.569037\pi\)
\(830\) −515.660 893.149i −0.621277 1.07608i
\(831\) 0 0
\(832\) 150.899 261.366i 0.181370 0.314141i
\(833\) 143.172 + 80.2347i 0.171876 + 0.0963202i
\(834\) 0 0
\(835\) −402.841 697.741i −0.482444 0.835618i
\(836\) −506.182 −0.605481
\(837\) 0 0
\(838\) 307.561i 0.367017i
\(839\) 201.748 + 349.438i 0.240462 + 0.416493i 0.960846 0.277083i \(-0.0893676\pi\)
−0.720384 + 0.693576i \(0.756034\pi\)
\(840\) 0 0
\(841\) −577.554 + 1000.35i −0.686747 + 1.18948i
\(842\) 1585.06 + 915.134i 1.88249 + 1.08686i
\(843\) 0 0
\(844\) 2064.12 1191.72i 2.44563 1.41199i
\(845\) −486.645 −0.575911
\(846\) 0 0
\(847\) 670.465i 0.791576i
\(848\) 719.207 415.234i 0.848121 0.489663i
\(849\) 0 0
\(850\) −431.901 + 770.693i −0.508119 + 0.906698i
\(851\) −18.1704 10.4907i −0.0213518 0.0123275i
\(852\) 0 0
\(853\) −159.462 + 92.0654i −0.186943 + 0.107931i −0.590550 0.807001i \(-0.701089\pi\)
0.403608 + 0.914932i \(0.367756\pi\)
\(854\) 2079.73i 2.43528i
\(855\) 0 0
\(856\) 412.977i 0.482450i
\(857\) 488.567 + 846.222i 0.570090 + 0.987424i 0.996556 + 0.0829208i \(0.0264249\pi\)
−0.426467 + 0.904503i \(0.640242\pi\)
\(858\) 0 0
\(859\) 598.778 1037.11i 0.697064 1.20735i −0.272416 0.962180i \(-0.587823\pi\)
0.969480 0.245171i \(-0.0788440\pi\)
\(860\) 369.730 640.392i 0.429919 0.744642i
\(861\) 0 0
\(862\) −49.3703 + 28.5039i −0.0572741 + 0.0330672i
\(863\) 20.1789i 0.0233823i 0.999932 + 0.0116912i \(0.00372149\pi\)
−0.999932 + 0.0116912i \(0.996279\pi\)
\(864\) 0 0
\(865\) −228.988 −0.264725
\(866\) −743.857 + 429.466i −0.858958 + 0.495919i
\(867\) 0 0
\(868\) −356.939 + 618.236i −0.411220 + 0.712253i
\(869\) 345.091 + 199.238i 0.397113 + 0.229273i
\(870\) 0 0
\(871\) −62.0280 107.436i −0.0712147 0.123348i
\(872\) 1469.34 1.68503
\(873\) 0 0
\(874\) 69.2317i 0.0792125i
\(875\) −680.316 + 392.781i −0.777504 + 0.448892i
\(876\) 0 0
\(877\) −600.576 346.742i −0.684807 0.395373i 0.116857 0.993149i \(-0.462718\pi\)
−0.801664 + 0.597775i \(0.796051\pi\)
\(878\) −1226.66 + 2124.64i −1.39711 + 2.41986i
\(879\) 0 0
\(880\) 54.2728 + 94.0032i 0.0616736 + 0.106822i
\(881\) 1461.79 1.65925 0.829623 0.558325i \(-0.188556\pi\)
0.829623 + 0.558325i \(0.188556\pi\)
\(882\) 0 0
\(883\) 1331.57 1.50801 0.754006 0.656868i \(-0.228119\pi\)
0.754006 + 0.656868i \(0.228119\pi\)
\(884\) −376.620 + 223.918i −0.426040 + 0.253301i
\(885\) 0 0
\(886\) −562.711 + 974.644i −0.635114 + 1.10005i
\(887\) 159.590 276.418i 0.179921 0.311632i −0.761932 0.647657i \(-0.775749\pi\)
0.941853 + 0.336025i \(0.109083\pi\)
\(888\) 0 0
\(889\) −349.544 + 201.809i −0.393188 + 0.227007i
\(890\) 621.109 0.697876
\(891\) 0 0
\(892\) 3173.94 3.55823
\(893\) −691.972 + 399.510i −0.774885 + 0.447380i
\(894\) 0 0
\(895\) 122.495 + 70.7224i 0.136866 + 0.0790194i
\(896\) −735.955 + 1274.71i −0.821378 + 1.42267i
\(897\) 0 0
\(898\) 670.670 387.211i 0.746848 0.431193i
\(899\) 685.780i 0.762825i
\(900\) 0 0
\(901\) 1515.20 19.3974i 1.68169 0.0215288i
\(902\) −655.431 + 378.413i −0.726642 + 0.419527i
\(903\) 0 0
\(904\) 1880.86 + 1085.91i 2.08059 + 1.20123i
\(905\) 430.379 + 248.479i 0.475557 + 0.274563i
\(906\) 0 0
\(907\) −97.7878 + 56.4578i −0.107815 + 0.0622468i −0.552938 0.833223i \(-0.686493\pi\)
0.445123 + 0.895469i \(0.353160\pi\)
\(908\) 1438.41 1.58416
\(909\) 0 0
\(910\) −228.465 −0.251061
\(911\) 0.456798 + 0.791197i 0.000501424 + 0.000868493i 0.866276 0.499566i \(-0.166507\pi\)
−0.865775 + 0.500434i \(0.833174\pi\)
\(912\) 0 0
\(913\) 320.223 + 184.881i 0.350738 + 0.202498i
\(914\) −1667.14 962.525i −1.82401 1.05309i
\(915\) 0 0
\(916\) −1408.81 2440.13i −1.53800 2.66390i
\(917\) 1366.43i 1.49011i
\(918\) 0 0
\(919\) −211.594 −0.230244 −0.115122 0.993351i \(-0.536726\pi\)
−0.115122 + 0.993351i \(0.536726\pi\)
\(920\) −34.9368 + 20.1708i −0.0379748 + 0.0219247i
\(921\) 0 0
\(922\) 104.986 181.841i 0.113868 0.197225i
\(923\) 212.038 367.260i 0.229727 0.397898i
\(924\) 0 0
\(925\) 247.869 143.107i 0.267966 0.154711i
\(926\) 1470.44i 1.58795i
\(927\) 0 0
\(928\) 655.285i 0.706126i
\(929\) 205.464 + 355.873i 0.221166 + 0.383071i 0.955162 0.296082i \(-0.0956803\pi\)
−0.733996 + 0.679154i \(0.762347\pi\)
\(930\) 0 0
\(931\) 87.7225 151.940i 0.0942239 0.163201i
\(932\) 1187.67 2057.11i 1.27433 2.20720i
\(933\) 0 0
\(934\) 107.787 + 186.693i 0.115404 + 0.199885i
\(935\) 2.53532 + 198.043i 0.00271157 + 0.211810i
\(936\) 0 0
\(937\) −1139.43 −1.21604 −0.608018 0.793923i \(-0.708035\pi\)
−0.608018 + 0.793923i \(0.708035\pi\)
\(938\) 378.152 + 654.979i 0.403147 + 0.698272i
\(939\) 0 0
\(940\) 875.569 + 505.510i 0.931457 + 0.537777i
\(941\) −201.972 + 349.826i −0.214636 + 0.371760i −0.953160 0.302467i \(-0.902190\pi\)
0.738524 + 0.674227i \(0.235523\pi\)
\(942\) 0 0
\(943\) −33.6194 58.2304i −0.0356515 0.0617502i
\(944\) 520.114i 0.550968i
\(945\) 0 0
\(946\) 408.150i 0.431448i
\(947\) 869.969 + 1506.83i 0.918658 + 1.59116i 0.801456 + 0.598054i \(0.204059\pi\)
0.117201 + 0.993108i \(0.462608\pi\)
\(948\) 0 0
\(949\) 103.645 + 59.8396i 0.109215 + 0.0630554i
\(950\) 817.888 + 472.208i 0.860934 + 0.497061i
\(951\) 0 0
\(952\) 1057.37 628.655i 1.11068 0.660352i
\(953\) 1741.50i 1.82739i −0.406406 0.913693i \(-0.633218\pi\)
0.406406 0.913693i \(-0.366782\pi\)
\(954\) 0 0
\(955\) 711.815i 0.745356i
\(956\) 2034.08 1174.38i 2.12770 1.22843i
\(957\) 0 0
\(958\) 1873.41 + 1081.61i 1.95554 + 1.12903i
\(959\) −94.2565 + 163.257i −0.0982862 + 0.170237i
\(960\) 0 0
\(961\) −362.697 628.210i −0.377417 0.653705i
\(962\) 218.528 0.227161
\(963\) 0 0
\(964\) 2940.88i 3.05071i
\(965\) 606.160 349.967i 0.628145 0.362660i
\(966\) 0 0
\(967\) −914.968 + 1584.77i −0.946192 + 1.63885i −0.192845 + 0.981229i \(0.561771\pi\)
−0.753347 + 0.657623i \(0.771562\pi\)
\(968\) 1067.86 + 616.527i 1.10316 + 0.636908i
\(969\) 0 0
\(970\) 49.8045 + 86.2640i 0.0513449 + 0.0889319i
\(971\) 799.025i 0.822889i 0.911435 + 0.411445i \(0.134976\pi\)
−0.911435 + 0.411445i \(0.865024\pi\)
\(972\) 0 0
\(973\) −1180.44 −1.21319
\(974\) −237.640 411.605i −0.243984 0.422592i
\(975\) 0 0
\(976\) −791.819 457.157i −0.811290 0.468398i
\(977\) −51.3985 29.6749i −0.0526085 0.0303735i 0.473465 0.880813i \(-0.343003\pi\)
−0.526074 + 0.850439i \(0.676336\pi\)
\(978\) 0 0
\(979\) −192.854 + 111.344i −0.196990 + 0.113732i
\(980\) −221.995 −0.226525
\(981\) 0 0
\(982\) −569.022 −0.579452
\(983\) 586.501 + 1015.85i 0.596644 + 1.03342i 0.993313 + 0.115456i \(0.0368330\pi\)
−0.396668 + 0.917962i \(0.629834\pi\)
\(984\) 0 0
\(985\) 33.0893 57.3123i 0.0335932 0.0581851i
\(986\) 1254.49 2238.53i 1.27230 2.27031i
\(987\) 0 0
\(988\) 234.193 + 405.635i 0.237038 + 0.410561i
\(989\) −36.2612 −0.0366645
\(990\) 0 0
\(991\) 46.3789i 0.0468001i 0.999726 + 0.0234000i \(0.00744914\pi\)
−0.999726 + 0.0234000i \(0.992551\pi\)
\(992\) 112.564 + 194.967i 0.113472 + 0.196539i
\(993\) 0 0
\(994\) −1292.68 + 2238.99i −1.30049 + 2.25251i
\(995\) 608.078 + 351.074i 0.611133 + 0.352838i
\(996\) 0 0
\(997\) −1421.66 + 820.797i −1.42594 + 0.823267i −0.996797 0.0799703i \(-0.974517\pi\)
−0.429142 + 0.903237i \(0.641184\pi\)
\(998\) 394.758 0.395549
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.152.4 68
3.2 odd 2 153.3.i.a.50.31 68
9.2 odd 6 inner 459.3.i.a.305.3 68
9.7 even 3 153.3.i.a.101.32 yes 68
17.16 even 2 inner 459.3.i.a.152.3 68
51.50 odd 2 153.3.i.a.50.32 yes 68
153.16 even 6 153.3.i.a.101.31 yes 68
153.101 odd 6 inner 459.3.i.a.305.4 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.31 68 3.2 odd 2
153.3.i.a.50.32 yes 68 51.50 odd 2
153.3.i.a.101.31 yes 68 153.16 even 6
153.3.i.a.101.32 yes 68 9.7 even 3
459.3.i.a.152.3 68 17.16 even 2 inner
459.3.i.a.152.4 68 1.1 even 1 trivial
459.3.i.a.305.3 68 9.2 odd 6 inner
459.3.i.a.305.4 68 153.101 odd 6 inner