Properties

Label 153.3.i.a.50.31
Level $153$
Weight $3$
Character 153.50
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.31
Character \(\chi\) \(=\) 153.50
Dual form 153.3.i.a.101.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.92590 - 1.68927i) q^{2} +(-2.55367 + 1.57441i) q^{3} +(3.70725 - 6.42114i) q^{4} +(1.55065 - 2.68581i) q^{5} +(-4.81216 + 8.92040i) q^{6} +(5.43225 - 3.13631i) q^{7} -11.5360i q^{8} +(4.04244 - 8.04106i) q^{9} -10.4779i q^{10} +(-1.87833 - 3.25336i) q^{11} +(0.642462 + 22.2342i) q^{12} +(1.73808 - 3.01044i) q^{13} +(10.5961 - 18.3530i) q^{14} +(0.268726 + 9.30002i) q^{15} +(-4.65840 - 8.06858i) q^{16} +(0.217614 + 16.9986i) q^{17} +(-1.75576 - 30.3561i) q^{18} -18.1729 q^{19} +(-11.4973 - 19.9139i) q^{20} +(-8.93431 + 16.5617i) q^{21} +(-10.9916 - 6.34600i) q^{22} +(-0.563797 + 0.976526i) q^{23} +(18.1625 + 29.4591i) q^{24} +(7.69097 + 13.3211i) q^{25} -11.7443i q^{26} +(2.33693 + 26.8987i) q^{27} -46.5083i q^{28} +(22.3389 + 38.6921i) q^{29} +(16.4965 + 26.7570i) q^{30} +(-13.2930 - 7.67472i) q^{31} +(12.7019 + 7.33345i) q^{32} +(9.91876 + 5.35073i) q^{33} +(29.3519 + 49.3686i) q^{34} -19.4533i q^{35} +(-36.6465 - 55.7673i) q^{36} -18.6072i q^{37} +(-53.1720 + 30.6989i) q^{38} +(0.301207 + 10.4241i) q^{39} +(-30.9835 - 17.8883i) q^{40} +(-29.8151 + 51.6413i) q^{41} +(1.83630 + 63.5503i) q^{42} +(-16.0790 - 27.8497i) q^{43} -27.8537 q^{44} +(-15.3283 - 23.3261i) q^{45} +3.80962i q^{46} +(-38.0772 + 21.9839i) q^{47} +(24.5993 + 13.2702i) q^{48} +(-4.82711 + 8.36080i) q^{49} +(45.0059 + 25.9842i) q^{50} +(-27.3186 - 43.0662i) q^{51} +(-12.8870 - 22.3209i) q^{52} -89.1367i q^{53} +(52.2767 + 74.7551i) q^{54} -11.6505 q^{55} +(-36.1805 - 62.6664i) q^{56} +(46.4075 - 28.6116i) q^{57} +(130.723 + 75.4728i) q^{58} +(48.3462 + 27.9127i) q^{59} +(60.7130 + 32.7520i) q^{60} +(84.9883 - 49.0680i) q^{61} -51.8586 q^{62} +(-3.25975 - 56.3594i) q^{63} +86.8198 q^{64} +(-5.39030 - 9.33627i) q^{65} +(38.0601 - 1.09975i) q^{66} +(17.8439 - 30.9065i) q^{67} +(109.957 + 61.6207i) q^{68} +(-0.0977055 - 3.38137i) q^{69} +(-32.8618 - 56.9183i) q^{70} -121.996 q^{71} +(-92.7617 - 46.6336i) q^{72} +34.4286i q^{73} +(-31.4325 - 54.4427i) q^{74} +(-40.6132 - 21.9090i) q^{75} +(-67.3714 + 116.691i) q^{76} +(-20.4071 - 11.7820i) q^{77} +(18.4904 + 29.9911i) q^{78} +(91.8612 - 53.0361i) q^{79} -28.8942 q^{80} +(-48.3174 - 65.0110i) q^{81} +201.463i q^{82} +(-85.2416 + 49.2143i) q^{83} +(73.2234 + 118.767i) q^{84} +(45.9924 + 25.7744i) q^{85} +(-94.0911 - 54.3235i) q^{86} +(-117.964 - 63.6361i) q^{87} +(-37.5308 + 21.6684i) q^{88} -59.2783i q^{89} +(-84.2531 - 42.3561i) q^{90} -21.8046i q^{91} +(4.18027 + 7.24045i) q^{92} +(46.0291 - 1.33002i) q^{93} +(-74.2733 + 128.645i) q^{94} +(-28.1798 + 48.8088i) q^{95} +(-43.9823 + 1.27088i) q^{96} +(-8.23298 + 4.75331i) q^{97} +32.6171i q^{98} +(-33.7535 + 1.95226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.92590 1.68927i 1.46295 0.844634i 0.463802 0.885939i \(-0.346485\pi\)
0.999147 + 0.0413052i \(0.0131516\pi\)
\(3\) −2.55367 + 1.57441i −0.851223 + 0.524805i
\(4\) 3.70725 6.42114i 0.926812 1.60529i
\(5\) 1.55065 2.68581i 0.310130 0.537161i −0.668260 0.743928i \(-0.732961\pi\)
0.978390 + 0.206767i \(0.0662940\pi\)
\(6\) −4.81216 + 8.92040i −0.802027 + 1.48673i
\(7\) 5.43225 3.13631i 0.776036 0.448044i −0.0589878 0.998259i \(-0.518787\pi\)
0.835023 + 0.550214i \(0.185454\pi\)
\(8\) 11.5360i 1.44200i
\(9\) 4.04244 8.04106i 0.449160 0.893452i
\(10\) 10.4779i 1.04779i
\(11\) −1.87833 3.25336i −0.170757 0.295760i 0.767928 0.640537i \(-0.221288\pi\)
−0.938685 + 0.344777i \(0.887955\pi\)
\(12\) 0.642462 + 22.2342i 0.0535385 + 1.85285i
\(13\) 1.73808 3.01044i 0.133698 0.231572i −0.791401 0.611297i \(-0.790648\pi\)
0.925099 + 0.379725i \(0.123981\pi\)
\(14\) 10.5961 18.3530i 0.756867 1.31093i
\(15\) 0.268726 + 9.30002i 0.0179151 + 0.620001i
\(16\) −4.65840 8.06858i −0.291150 0.504286i
\(17\) 0.217614 + 16.9986i 0.0128008 + 0.999918i
\(18\) −1.75576 30.3561i −0.0975420 1.68645i
\(19\) −18.1729 −0.956467 −0.478234 0.878233i \(-0.658723\pi\)
−0.478234 + 0.878233i \(0.658723\pi\)
\(20\) −11.4973 19.9139i −0.574865 0.995695i
\(21\) −8.93431 + 16.5617i −0.425443 + 0.788653i
\(22\) −10.9916 6.34600i −0.499618 0.288454i
\(23\) −0.563797 + 0.976526i −0.0245129 + 0.0424576i −0.878022 0.478621i \(-0.841137\pi\)
0.853509 + 0.521079i \(0.174470\pi\)
\(24\) 18.1625 + 29.4591i 0.756769 + 1.22746i
\(25\) 7.69097 + 13.3211i 0.307639 + 0.532846i
\(26\) 11.7443i 0.451704i
\(27\) 2.33693 + 26.8987i 0.0865531 + 0.996247i
\(28\) 46.5083i 1.66101i
\(29\) 22.3389 + 38.6921i 0.770307 + 1.33421i 0.937394 + 0.348269i \(0.113231\pi\)
−0.167087 + 0.985942i \(0.553436\pi\)
\(30\) 16.4965 + 26.7570i 0.549883 + 0.891899i
\(31\) −13.2930 7.67472i −0.428807 0.247572i 0.270031 0.962852i \(-0.412966\pi\)
−0.698838 + 0.715280i \(0.746299\pi\)
\(32\) 12.7019 + 7.33345i 0.396934 + 0.229170i
\(33\) 9.91876 + 5.35073i 0.300569 + 0.162143i
\(34\) 29.3519 + 49.3686i 0.863292 + 1.45202i
\(35\) 19.4533i 0.555808i
\(36\) −36.6465 55.7673i −1.01796 1.54909i
\(37\) 18.6072i 0.502897i −0.967871 0.251448i \(-0.919093\pi\)
0.967871 0.251448i \(-0.0809069\pi\)
\(38\) −53.1720 + 30.6989i −1.39926 + 0.807865i
\(39\) 0.301207 + 10.4241i 0.00772325 + 0.267285i
\(40\) −30.9835 17.8883i −0.774586 0.447208i
\(41\) −29.8151 + 51.6413i −0.727198 + 1.25954i 0.230865 + 0.972986i \(0.425844\pi\)
−0.958063 + 0.286558i \(0.907489\pi\)
\(42\) 1.83630 + 63.5503i 0.0437214 + 1.51310i
\(43\) −16.0790 27.8497i −0.373931 0.647667i 0.616236 0.787562i \(-0.288657\pi\)
−0.990166 + 0.139895i \(0.955324\pi\)
\(44\) −27.8537 −0.633039
\(45\) −15.3283 23.3261i −0.340630 0.518357i
\(46\) 3.80962i 0.0828178i
\(47\) −38.0772 + 21.9839i −0.810153 + 0.467742i −0.847009 0.531579i \(-0.821599\pi\)
0.0368561 + 0.999321i \(0.488266\pi\)
\(48\) 24.5993 + 13.2702i 0.512485 + 0.276463i
\(49\) −4.82711 + 8.36080i −0.0985125 + 0.170629i
\(50\) 45.0059 + 25.9842i 0.900119 + 0.519684i
\(51\) −27.3186 43.0662i −0.535658 0.844435i
\(52\) −12.8870 22.3209i −0.247826 0.429248i
\(53\) 89.1367i 1.68183i −0.541171 0.840913i \(-0.682019\pi\)
0.541171 0.840913i \(-0.317981\pi\)
\(54\) 52.2767 + 74.7551i 0.968087 + 1.38435i
\(55\) −11.6505 −0.211828
\(56\) −36.1805 62.6664i −0.646080 1.11904i
\(57\) 46.4075 28.6116i 0.814166 0.501959i
\(58\) 130.723 + 75.4728i 2.25384 + 1.30126i
\(59\) 48.3462 + 27.9127i 0.819427 + 0.473097i 0.850219 0.526429i \(-0.176469\pi\)
−0.0307916 + 0.999526i \(0.509803\pi\)
\(60\) 60.7130 + 32.7520i 1.01188 + 0.545866i
\(61\) 84.9883 49.0680i 1.39325 0.804394i 0.399577 0.916699i \(-0.369157\pi\)
0.993674 + 0.112306i \(0.0358236\pi\)
\(62\) −51.8586 −0.836429
\(63\) −3.25975 56.3594i −0.0517421 0.894594i
\(64\) 86.8198 1.35656
\(65\) −5.39030 9.33627i −0.0829277 0.143635i
\(66\) 38.0601 1.09975i 0.576668 0.0166629i
\(67\) 17.8439 30.9065i 0.266326 0.461291i −0.701584 0.712587i \(-0.747523\pi\)
0.967910 + 0.251296i \(0.0808567\pi\)
\(68\) 109.957 + 61.6207i 1.61702 + 0.906187i
\(69\) −0.0977055 3.38137i −0.00141602 0.0490054i
\(70\) −32.8618 56.9183i −0.469454 0.813119i
\(71\) −121.996 −1.71825 −0.859124 0.511767i \(-0.828991\pi\)
−0.859124 + 0.511767i \(0.828991\pi\)
\(72\) −92.7617 46.6336i −1.28836 0.647688i
\(73\) 34.4286i 0.471625i 0.971799 + 0.235812i \(0.0757751\pi\)
−0.971799 + 0.235812i \(0.924225\pi\)
\(74\) −31.4325 54.4427i −0.424764 0.735712i
\(75\) −40.6132 21.9090i −0.541509 0.292120i
\(76\) −67.3714 + 116.691i −0.886466 + 1.53540i
\(77\) −20.4071 11.7820i −0.265027 0.153014i
\(78\) 18.4904 + 29.9911i 0.237057 + 0.384501i
\(79\) 91.8612 53.0361i 1.16280 0.671343i 0.210827 0.977523i \(-0.432384\pi\)
0.951974 + 0.306180i \(0.0990510\pi\)
\(80\) −28.8942 −0.361177
\(81\) −48.3174 65.0110i −0.596511 0.802605i
\(82\) 201.463i 2.45686i
\(83\) −85.2416 + 49.2143i −1.02701 + 0.592943i −0.916126 0.400891i \(-0.868701\pi\)
−0.110881 + 0.993834i \(0.535367\pi\)
\(84\) 73.2234 + 118.767i 0.871707 + 1.41389i
\(85\) 45.9924 + 25.7744i 0.541087 + 0.303229i
\(86\) −94.0911 54.3235i −1.09408 0.631669i
\(87\) −117.964 63.6361i −1.35590 0.731450i
\(88\) −37.5308 + 21.6684i −0.426486 + 0.246232i
\(89\) 59.2783i 0.666048i −0.942918 0.333024i \(-0.891931\pi\)
0.942918 0.333024i \(-0.108069\pi\)
\(90\) −84.2531 42.3561i −0.936146 0.470623i
\(91\) 21.8046i 0.239611i
\(92\) 4.18027 + 7.24045i 0.0454378 + 0.0787005i
\(93\) 46.0291 1.33002i 0.494937 0.0143013i
\(94\) −74.2733 + 128.645i −0.790141 + 1.36856i
\(95\) −28.1798 + 48.8088i −0.296629 + 0.513777i
\(96\) −43.9823 + 1.27088i −0.458149 + 0.0132383i
\(97\) −8.23298 + 4.75331i −0.0848761 + 0.0490032i −0.541837 0.840483i \(-0.682271\pi\)
0.456961 + 0.889487i \(0.348938\pi\)
\(98\) 32.6171i 0.332828i
\(99\) −33.7535 + 1.95226i −0.340944 + 0.0197198i
\(100\) 114.049 1.14049
\(101\) 40.1218 23.1644i 0.397246 0.229350i −0.288049 0.957616i \(-0.593007\pi\)
0.685295 + 0.728266i \(0.259673\pi\)
\(102\) −152.682 79.8588i −1.49688 0.782930i
\(103\) −24.2875 + 42.0672i −0.235801 + 0.408419i −0.959505 0.281691i \(-0.909105\pi\)
0.723704 + 0.690110i \(0.242438\pi\)
\(104\) −34.7284 20.0505i −0.333927 0.192793i
\(105\) 30.6275 + 49.6772i 0.291691 + 0.473116i
\(106\) −150.576 260.805i −1.42053 2.46042i
\(107\) 35.7990 0.334570 0.167285 0.985909i \(-0.446500\pi\)
0.167285 + 0.985909i \(0.446500\pi\)
\(108\) 181.384 + 84.7143i 1.67948 + 0.784392i
\(109\) 127.370i 1.16853i −0.811561 0.584267i \(-0.801382\pi\)
0.811561 0.584267i \(-0.198618\pi\)
\(110\) −34.0882 + 19.6808i −0.309893 + 0.178917i
\(111\) 29.2954 + 47.5166i 0.263923 + 0.428077i
\(112\) −50.6112 29.2204i −0.451885 0.260896i
\(113\) −94.1325 + 163.042i −0.833031 + 1.44285i 0.0625918 + 0.998039i \(0.480063\pi\)
−0.895623 + 0.444814i \(0.853270\pi\)
\(114\) 87.4508 162.109i 0.767112 1.42201i
\(115\) 1.74851 + 3.02850i 0.0152044 + 0.0263348i
\(116\) 331.264 2.85572
\(117\) −17.1811 26.1455i −0.146847 0.223466i
\(118\) 188.608 1.59837
\(119\) 54.4950 + 91.6582i 0.457942 + 0.770237i
\(120\) 107.285 3.10002i 0.894042 0.0258335i
\(121\) 53.4438 92.5673i 0.441684 0.765019i
\(122\) 165.778 287.136i 1.35884 2.35357i
\(123\) −5.16693 178.816i −0.0420075 1.45379i
\(124\) −98.5610 + 56.9042i −0.794847 + 0.458905i
\(125\) 125.237 1.00189
\(126\) −104.744 159.395i −0.831300 1.26504i
\(127\) −64.3461 −0.506662 −0.253331 0.967380i \(-0.581526\pi\)
−0.253331 + 0.967380i \(0.581526\pi\)
\(128\) 203.218 117.328i 1.58764 0.916626i
\(129\) 84.9074 + 45.8038i 0.658197 + 0.355068i
\(130\) −31.5429 18.2113i −0.242638 0.140087i
\(131\) −108.920 + 188.655i −0.831452 + 1.44012i 0.0654350 + 0.997857i \(0.479157\pi\)
−0.896887 + 0.442260i \(0.854177\pi\)
\(132\) 71.1292 43.8533i 0.538857 0.332222i
\(133\) −98.7196 + 56.9958i −0.742253 + 0.428540i
\(134\) 120.572i 0.899793i
\(135\) 75.8684 + 35.4339i 0.561988 + 0.262473i
\(136\) 196.096 2.51040i 1.44188 0.0184588i
\(137\) 26.0269 15.0267i 0.189978 0.109684i −0.401995 0.915642i \(-0.631683\pi\)
0.591972 + 0.805958i \(0.298350\pi\)
\(138\) −5.99792 9.72850i −0.0434632 0.0704964i
\(139\) −162.976 94.0945i −1.17249 0.676939i −0.218227 0.975898i \(-0.570027\pi\)
−0.954266 + 0.298959i \(0.903361\pi\)
\(140\) −124.912 72.1182i −0.892231 0.515130i
\(141\) 62.6247 116.089i 0.444147 0.823325i
\(142\) −356.947 + 206.083i −2.51371 + 1.45129i
\(143\) −13.0587 −0.0913197
\(144\) −83.7112 + 4.84175i −0.581328 + 0.0336233i
\(145\) 138.559 0.955582
\(146\) 58.1591 + 100.735i 0.398350 + 0.689963i
\(147\) −0.836533 28.9506i −0.00569070 0.196943i
\(148\) −119.479 68.9815i −0.807293 0.466091i
\(149\) 132.226 + 76.3405i 0.887420 + 0.512352i 0.873098 0.487545i \(-0.162108\pi\)
0.0143224 + 0.999897i \(0.495441\pi\)
\(150\) −155.840 + 4.50303i −1.03893 + 0.0300202i
\(151\) −81.9727 141.981i −0.542866 0.940271i −0.998738 0.0502257i \(-0.984006\pi\)
0.455872 0.890045i \(-0.349327\pi\)
\(152\) 209.642i 1.37923i
\(153\) 137.567 + 66.9659i 0.899128 + 0.437686i
\(154\) −79.6121 −0.516962
\(155\) −41.2256 + 23.8016i −0.265972 + 0.153559i
\(156\) 68.0514 + 36.7107i 0.436227 + 0.235325i
\(157\) −67.7624 + 117.368i −0.431608 + 0.747567i −0.997012 0.0772472i \(-0.975387\pi\)
0.565404 + 0.824814i \(0.308720\pi\)
\(158\) 179.184 310.356i 1.13408 1.96428i
\(159\) 140.338 + 227.626i 0.882630 + 1.43161i
\(160\) 39.3924 22.7432i 0.246203 0.142145i
\(161\) 7.07297i 0.0439315i
\(162\) −251.193 108.594i −1.55057 0.670336i
\(163\) 27.3494i 0.167788i 0.996475 + 0.0838939i \(0.0267357\pi\)
−0.996475 + 0.0838939i \(0.973264\pi\)
\(164\) 221.064 + 382.894i 1.34795 + 2.33472i
\(165\) 29.7516 18.3428i 0.180312 0.111168i
\(166\) −166.272 + 287.992i −1.00164 + 1.73489i
\(167\) 129.894 224.983i 0.777810 1.34721i −0.155392 0.987853i \(-0.549664\pi\)
0.933202 0.359353i \(-0.117003\pi\)
\(168\) 191.056 + 103.066i 1.13724 + 0.613489i
\(169\) 78.4582 + 135.894i 0.464250 + 0.804104i
\(170\) 178.109 2.28013i 1.04770 0.0134125i
\(171\) −73.4627 + 146.129i −0.429606 + 0.854557i
\(172\) −238.436 −1.38625
\(173\) −36.9180 63.9438i −0.213399 0.369617i 0.739377 0.673291i \(-0.235120\pi\)
−0.952776 + 0.303674i \(0.901787\pi\)
\(174\) −452.648 + 13.0794i −2.60142 + 0.0751687i
\(175\) 83.5585 + 48.2425i 0.477477 + 0.275672i
\(176\) −17.5000 + 30.3109i −0.0994318 + 0.172221i
\(177\) −167.406 + 4.83724i −0.945798 + 0.0273290i
\(178\) −100.137 173.442i −0.562567 0.974394i
\(179\) 45.6082i 0.254795i 0.991852 + 0.127397i \(0.0406623\pi\)
−0.991852 + 0.127397i \(0.959338\pi\)
\(180\) −206.606 + 11.9498i −1.14781 + 0.0663879i
\(181\) 160.242i 0.885315i −0.896691 0.442657i \(-0.854036\pi\)
0.896691 0.442657i \(-0.145964\pi\)
\(182\) −36.8338 63.7980i −0.202383 0.350538i
\(183\) −139.778 + 259.110i −0.763817 + 1.41590i
\(184\) 11.2652 + 6.50397i 0.0612239 + 0.0353476i
\(185\) −49.9753 28.8532i −0.270137 0.155963i
\(186\) 132.430 81.6470i 0.711988 0.438962i
\(187\) 54.8938 32.6369i 0.293550 0.174529i
\(188\) 325.999i 1.73404i
\(189\) 97.0574 + 138.791i 0.513531 + 0.734344i
\(190\) 190.413i 1.00217i
\(191\) −198.771 + 114.761i −1.04069 + 0.600842i −0.920028 0.391852i \(-0.871834\pi\)
−0.120660 + 0.992694i \(0.538501\pi\)
\(192\) −221.709 + 136.690i −1.15473 + 0.711929i
\(193\) −195.454 112.845i −1.01271 0.584690i −0.100728 0.994914i \(-0.532117\pi\)
−0.911985 + 0.410224i \(0.865450\pi\)
\(194\) −16.0592 + 27.8154i −0.0827796 + 0.143378i
\(195\) 28.4642 + 15.3552i 0.145970 + 0.0787445i
\(196\) 35.7906 + 61.9911i 0.182605 + 0.316281i
\(197\) 21.3390 0.108320 0.0541598 0.998532i \(-0.482752\pi\)
0.0541598 + 0.998532i \(0.482752\pi\)
\(198\) −95.4614 + 62.7308i −0.482128 + 0.316822i
\(199\) 226.404i 1.13771i −0.822438 0.568855i \(-0.807387\pi\)
0.822438 0.568855i \(-0.192613\pi\)
\(200\) 153.673 88.7230i 0.768364 0.443615i
\(201\) 3.09232 + 107.019i 0.0153847 + 0.532431i
\(202\) 78.2616 135.553i 0.387434 0.671055i
\(203\) 242.701 + 140.124i 1.19557 + 0.690264i
\(204\) −377.811 + 15.7594i −1.85201 + 0.0772522i
\(205\) 92.4656 + 160.155i 0.451052 + 0.781245i
\(206\) 164.112i 0.796662i
\(207\) 5.57319 + 8.48107i 0.0269236 + 0.0409714i
\(208\) −32.3866 −0.155705
\(209\) 34.1346 + 59.1229i 0.163324 + 0.282885i
\(210\) 173.531 + 93.6123i 0.826339 + 0.445773i
\(211\) 278.389 + 160.728i 1.31938 + 0.761744i 0.983629 0.180206i \(-0.0576766\pi\)
0.335751 + 0.941951i \(0.391010\pi\)
\(212\) −572.360 330.452i −2.69981 1.55874i
\(213\) 311.536 192.072i 1.46261 0.901745i
\(214\) 104.744 60.4740i 0.489458 0.282589i
\(215\) −99.7317 −0.463869
\(216\) 310.303 26.9589i 1.43659 0.124810i
\(217\) −96.2812 −0.443692
\(218\) −215.162 372.672i −0.986983 1.70951i
\(219\) −54.2049 87.9192i −0.247511 0.401458i
\(220\) −43.1914 + 74.8097i −0.196325 + 0.340044i
\(221\) 51.5515 + 28.8898i 0.233265 + 0.130723i
\(222\) 165.984 + 89.5408i 0.747674 + 0.403337i
\(223\) 214.036 + 370.721i 0.959803 + 1.66243i 0.722973 + 0.690877i \(0.242775\pi\)
0.236831 + 0.971551i \(0.423891\pi\)
\(224\) 91.9999 0.410714
\(225\) 138.206 7.99368i 0.614251 0.0355275i
\(226\) 636.060i 2.81443i
\(227\) −97.0001 168.009i −0.427313 0.740128i 0.569320 0.822116i \(-0.307206\pi\)
−0.996633 + 0.0819880i \(0.973873\pi\)
\(228\) −11.6754 404.060i −0.0512078 1.77219i
\(229\) 190.008 329.103i 0.829728 1.43713i −0.0685233 0.997650i \(-0.521829\pi\)
0.898251 0.439482i \(-0.144838\pi\)
\(230\) 10.2319 + 5.90739i 0.0444865 + 0.0256843i
\(231\) 70.6628 2.04181i 0.305899 0.00883903i
\(232\) 446.353 257.702i 1.92393 1.11078i
\(233\) −320.365 −1.37496 −0.687478 0.726205i \(-0.741282\pi\)
−0.687478 + 0.726205i \(0.741282\pi\)
\(234\) −94.4367 47.4756i −0.403576 0.202887i
\(235\) 136.357i 0.580243i
\(236\) 358.463 206.959i 1.51891 0.876944i
\(237\) −151.082 + 280.064i −0.637478 + 1.18171i
\(238\) 314.282 + 176.126i 1.32051 + 0.740024i
\(239\) −274.338 158.389i −1.14786 0.662716i −0.199494 0.979899i \(-0.563930\pi\)
−0.948364 + 0.317183i \(0.897263\pi\)
\(240\) 73.7861 45.4914i 0.307442 0.189548i
\(241\) −343.500 + 198.320i −1.42531 + 0.822903i −0.996746 0.0806081i \(-0.974314\pi\)
−0.428564 + 0.903511i \(0.640980\pi\)
\(242\) 361.123i 1.49224i
\(243\) 225.741 + 89.9447i 0.928975 + 0.370143i
\(244\) 727.630i 2.98209i
\(245\) 14.9703 + 25.9294i 0.0611034 + 0.105834i
\(246\) −317.186 514.469i −1.28937 2.09134i
\(247\) −31.5859 + 54.7083i −0.127878 + 0.221491i
\(248\) −88.5356 + 153.348i −0.356998 + 0.618339i
\(249\) 140.195 259.882i 0.563032 1.04370i
\(250\) 366.429 211.558i 1.46572 0.846232i
\(251\) 34.8071i 0.138674i −0.997593 0.0693369i \(-0.977912\pi\)
0.997593 0.0693369i \(-0.0220883\pi\)
\(252\) −373.977 188.007i −1.48403 0.746059i
\(253\) 4.23599 0.0167430
\(254\) −188.270 + 108.698i −0.741221 + 0.427944i
\(255\) −158.029 + 6.59179i −0.619721 + 0.0258501i
\(256\) 222.757 385.827i 0.870146 1.50714i
\(257\) 186.465 + 107.655i 0.725544 + 0.418893i 0.816790 0.576936i \(-0.195752\pi\)
−0.0912460 + 0.995828i \(0.529085\pi\)
\(258\) 325.805 9.41421i 1.26281 0.0364892i
\(259\) −58.3579 101.079i −0.225320 0.390266i
\(260\) −79.9327 −0.307434
\(261\) 401.430 23.2182i 1.53804 0.0889585i
\(262\) 735.981i 2.80909i
\(263\) 93.8398 54.1785i 0.356806 0.206002i −0.310873 0.950451i \(-0.600621\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(264\) 61.7261 114.423i 0.233811 0.433420i
\(265\) −239.404 138.220i −0.903411 0.521585i
\(266\) −192.562 + 333.528i −0.723918 + 1.25386i
\(267\) 93.3286 + 151.377i 0.349545 + 0.566955i
\(268\) −132.303 229.156i −0.493669 0.855060i
\(269\) 16.9331 0.0629482 0.0314741 0.999505i \(-0.489980\pi\)
0.0314741 + 0.999505i \(0.489980\pi\)
\(270\) 281.840 24.4860i 1.04385 0.0906890i
\(271\) 99.3182 0.366488 0.183244 0.983067i \(-0.441340\pi\)
0.183244 + 0.983067i \(0.441340\pi\)
\(272\) 136.141 80.9421i 0.500518 0.297581i
\(273\) 34.3295 + 55.6817i 0.125749 + 0.203962i
\(274\) 50.7681 87.9329i 0.185285 0.320923i
\(275\) 28.8923 50.0430i 0.105063 0.181974i
\(276\) −22.0745 11.9082i −0.0799801 0.0431457i
\(277\) −113.792 + 65.6978i −0.410801 + 0.237176i −0.691134 0.722727i \(-0.742888\pi\)
0.280333 + 0.959903i \(0.409555\pi\)
\(278\) −635.803 −2.28706
\(279\) −115.449 + 75.8654i −0.413796 + 0.271919i
\(280\) −224.413 −0.801476
\(281\) 225.418 130.145i 0.802201 0.463151i −0.0420394 0.999116i \(-0.513386\pi\)
0.844240 + 0.535965i \(0.180052\pi\)
\(282\) −12.8715 445.454i −0.0456435 1.57962i
\(283\) −133.186 76.8948i −0.470621 0.271713i 0.245879 0.969301i \(-0.420923\pi\)
−0.716500 + 0.697588i \(0.754257\pi\)
\(284\) −452.268 + 783.352i −1.59249 + 2.75828i
\(285\) −4.88353 169.008i −0.0171352 0.593011i
\(286\) −38.2085 + 22.0597i −0.133596 + 0.0771317i
\(287\) 374.038i 1.30327i
\(288\) 110.315 72.4918i 0.383039 0.251708i
\(289\) −288.905 + 7.39828i −0.999672 + 0.0255996i
\(290\) 405.411 234.064i 1.39797 0.807117i
\(291\) 13.5406 25.1005i 0.0465313 0.0862561i
\(292\) 221.071 + 127.635i 0.757093 + 0.437108i
\(293\) 82.2824 + 47.5058i 0.280827 + 0.162136i 0.633798 0.773499i \(-0.281495\pi\)
−0.352971 + 0.935634i \(0.614828\pi\)
\(294\) −51.3529 83.2933i −0.174670 0.283311i
\(295\) 149.936 86.5657i 0.508258 0.293443i
\(296\) −214.653 −0.725177
\(297\) 83.1215 58.1274i 0.279871 0.195715i
\(298\) 515.838 1.73100
\(299\) 1.95985 + 3.39455i 0.00655467 + 0.0113530i
\(300\) −291.244 + 179.561i −0.970813 + 0.598536i
\(301\) −174.690 100.858i −0.580367 0.335075i
\(302\) −479.687 276.948i −1.58837 0.917045i
\(303\) −65.9875 + 122.322i −0.217781 + 0.403704i
\(304\) 84.6565 + 146.629i 0.278475 + 0.482333i
\(305\) 304.349i 0.997867i
\(306\) 515.629 36.4513i 1.68506 0.119122i
\(307\) −471.076 −1.53445 −0.767224 0.641379i \(-0.778363\pi\)
−0.767224 + 0.641379i \(0.778363\pi\)
\(308\) −151.308 + 87.3579i −0.491261 + 0.283630i
\(309\) −4.20900 145.664i −0.0136213 0.471405i
\(310\) −80.4146 + 139.282i −0.259402 + 0.449297i
\(311\) 190.810 330.493i 0.613539 1.06268i −0.377101 0.926172i \(-0.623079\pi\)
0.990639 0.136508i \(-0.0435878\pi\)
\(312\) 120.253 3.47472i 0.385425 0.0111369i
\(313\) −10.4278 + 6.02047i −0.0333155 + 0.0192347i −0.516565 0.856248i \(-0.672790\pi\)
0.483250 + 0.875483i \(0.339456\pi\)
\(314\) 457.876i 1.45820i
\(315\) −156.425 78.6387i −0.496588 0.249647i
\(316\) 786.472i 2.48884i
\(317\) 137.067 + 237.407i 0.432388 + 0.748919i 0.997078 0.0763844i \(-0.0243376\pi\)
−0.564690 + 0.825303i \(0.691004\pi\)
\(318\) 795.136 + 428.940i 2.50043 + 1.34887i
\(319\) 83.9196 145.353i 0.263071 0.455652i
\(320\) 134.627 233.181i 0.420710 0.728691i
\(321\) −91.4187 + 56.3624i −0.284793 + 0.175584i
\(322\) 11.9481 + 20.6948i 0.0371060 + 0.0642695i
\(323\) −3.95468 308.914i −0.0122436 0.956389i
\(324\) −596.570 + 69.2413i −1.84126 + 0.213708i
\(325\) 53.4700 0.164523
\(326\) 46.2005 + 80.0216i 0.141719 + 0.245465i
\(327\) 200.534 + 325.261i 0.613252 + 0.994683i
\(328\) 595.734 + 343.947i 1.81626 + 1.04862i
\(329\) −137.897 + 238.844i −0.419138 + 0.725969i
\(330\) 56.0642 103.927i 0.169891 0.314931i
\(331\) 57.1777 + 99.0347i 0.172742 + 0.299199i 0.939378 0.342884i \(-0.111404\pi\)
−0.766635 + 0.642083i \(0.778071\pi\)
\(332\) 729.798i 2.19819i
\(333\) −149.622 75.2184i −0.449314 0.225881i
\(334\) 877.704i 2.62786i
\(335\) −55.3392 95.8503i −0.165192 0.286120i
\(336\) 175.249 5.06386i 0.521574 0.0150710i
\(337\) 242.067 + 139.758i 0.718301 + 0.414711i 0.814127 0.580687i \(-0.197216\pi\)
−0.0958260 + 0.995398i \(0.530549\pi\)
\(338\) 459.121 + 265.074i 1.35835 + 0.784242i
\(339\) −16.3131 564.560i −0.0481211 1.66537i
\(340\) 336.007 199.772i 0.988255 0.587563i
\(341\) 57.6626i 0.169098i
\(342\) 31.9071 + 551.657i 0.0932958 + 1.61303i
\(343\) 367.916i 1.07264i
\(344\) −321.274 + 185.488i −0.933936 + 0.539208i
\(345\) −9.23322 4.98091i −0.0267629 0.0144374i
\(346\) −216.036 124.729i −0.624383 0.360488i
\(347\) 162.231 280.992i 0.467523 0.809774i −0.531788 0.846877i \(-0.678480\pi\)
0.999311 + 0.0371034i \(0.0118131\pi\)
\(348\) −845.937 + 521.547i −2.43085 + 1.49870i
\(349\) −139.028 240.803i −0.398360 0.689980i 0.595164 0.803604i \(-0.297087\pi\)
−0.993524 + 0.113625i \(0.963754\pi\)
\(350\) 325.978 0.931366
\(351\) 85.0385 + 39.7168i 0.242275 + 0.113153i
\(352\) 55.0985i 0.156530i
\(353\) −410.603 + 237.062i −1.16318 + 0.671563i −0.952065 0.305897i \(-0.901044\pi\)
−0.211117 + 0.977461i \(0.567710\pi\)
\(354\) −481.642 + 296.947i −1.36057 + 0.838834i
\(355\) −189.173 + 327.657i −0.532881 + 0.922976i
\(356\) −380.635 219.759i −1.06920 0.617302i
\(357\) −283.470 148.267i −0.794034 0.415313i
\(358\) 77.0445 + 133.445i 0.215208 + 0.372751i
\(359\) 486.308i 1.35462i −0.735699 0.677309i \(-0.763146\pi\)
0.735699 0.677309i \(-0.236854\pi\)
\(360\) −269.090 + 176.828i −0.747471 + 0.491188i
\(361\) −30.7465 −0.0851704
\(362\) −270.692 468.851i −0.747767 1.29517i
\(363\) 9.26175 + 320.529i 0.0255145 + 0.882999i
\(364\) −140.010 80.8351i −0.384644 0.222074i
\(365\) 92.4686 + 53.3868i 0.253339 + 0.146265i
\(366\) 28.7292 + 994.253i 0.0784950 + 2.71654i
\(367\) −282.323 + 162.999i −0.769271 + 0.444139i −0.832615 0.553853i \(-0.813157\pi\)
0.0633433 + 0.997992i \(0.479824\pi\)
\(368\) 10.5056 0.0285477
\(369\) 294.725 + 448.502i 0.798713 + 1.21545i
\(370\) −194.963 −0.526928
\(371\) −279.560 484.213i −0.753532 1.30516i
\(372\) 162.101 300.490i 0.435756 0.807770i
\(373\) 167.244 289.676i 0.448377 0.776611i −0.549904 0.835228i \(-0.685336\pi\)
0.998281 + 0.0586169i \(0.0186690\pi\)
\(374\) 105.481 188.223i 0.282035 0.503269i
\(375\) −319.812 + 197.174i −0.852833 + 0.525798i
\(376\) 253.606 + 439.259i 0.674484 + 1.16824i
\(377\) 155.307 0.411955
\(378\) 518.435 + 242.132i 1.37152 + 0.640561i
\(379\) 56.3312i 0.148631i −0.997235 0.0743155i \(-0.976323\pi\)
0.997235 0.0743155i \(-0.0236772\pi\)
\(380\) 208.939 + 361.893i 0.549839 + 0.952350i
\(381\) 164.319 101.307i 0.431282 0.265899i
\(382\) −387.723 + 671.556i −1.01498 + 1.75800i
\(383\) −41.7301 24.0929i −0.108956 0.0629057i 0.444532 0.895763i \(-0.353370\pi\)
−0.553488 + 0.832857i \(0.686703\pi\)
\(384\) −334.229 + 619.567i −0.870387 + 1.61345i
\(385\) −63.2885 + 36.5397i −0.164386 + 0.0949082i
\(386\) −762.502 −1.97539
\(387\) −288.939 + 16.7119i −0.746613 + 0.0431832i
\(388\) 70.4869i 0.181667i
\(389\) −30.8371 + 17.8038i −0.0792728 + 0.0457682i −0.539112 0.842234i \(-0.681240\pi\)
0.459840 + 0.888002i \(0.347907\pi\)
\(390\) 109.222 3.15600i 0.280057 0.00809231i
\(391\) −16.7223 9.37126i −0.0427679 0.0239674i
\(392\) 96.4502 + 55.6856i 0.246046 + 0.142055i
\(393\) −18.8758 653.249i −0.0480299 1.66221i
\(394\) 62.4356 36.0472i 0.158466 0.0914904i
\(395\) 328.962i 0.832815i
\(396\) −112.597 + 223.974i −0.284336 + 0.565590i
\(397\) 151.892i 0.382601i −0.981532 0.191300i \(-0.938730\pi\)
0.981532 0.191300i \(-0.0612704\pi\)
\(398\) −382.457 662.435i −0.960948 1.66441i
\(399\) 162.362 300.974i 0.406922 0.754321i
\(400\) 71.6551 124.110i 0.179138 0.310276i
\(401\) 132.184 228.950i 0.329636 0.570947i −0.652803 0.757527i \(-0.726407\pi\)
0.982440 + 0.186580i \(0.0597405\pi\)
\(402\) 189.831 + 307.902i 0.472216 + 0.765924i
\(403\) −46.2085 + 26.6785i −0.114661 + 0.0661998i
\(404\) 343.504i 0.850258i
\(405\) −249.530 + 28.9619i −0.616124 + 0.0715109i
\(406\) 946.825 2.33208
\(407\) −60.5359 + 34.9504i −0.148737 + 0.0858732i
\(408\) −496.812 + 315.147i −1.21768 + 0.772419i
\(409\) 17.3829 30.1081i 0.0425011 0.0736140i −0.843992 0.536355i \(-0.819801\pi\)
0.886493 + 0.462741i \(0.153134\pi\)
\(410\) 541.090 + 312.398i 1.31973 + 0.761947i
\(411\) −42.8059 + 79.3502i −0.104151 + 0.193066i
\(412\) 180.080 + 311.907i 0.437086 + 0.757056i
\(413\) 350.172 0.847873
\(414\) 30.6334 + 15.4001i 0.0739937 + 0.0371984i
\(415\) 305.256i 0.735558i
\(416\) 44.1538 25.4922i 0.106139 0.0612793i
\(417\) 564.331 16.3065i 1.35331 0.0391043i
\(418\) 199.749 + 115.325i 0.477868 + 0.275897i
\(419\) 45.5169 78.8375i 0.108632 0.188156i −0.806584 0.591119i \(-0.798686\pi\)
0.915216 + 0.402963i \(0.132020\pi\)
\(420\) 432.529 12.4980i 1.02983 0.0297571i
\(421\) −270.867 469.156i −0.643390 1.11438i −0.984671 0.174423i \(-0.944194\pi\)
0.341281 0.939961i \(-0.389139\pi\)
\(422\) 1086.05 2.57358
\(423\) 22.8492 + 395.049i 0.0540169 + 0.933923i
\(424\) −1028.28 −2.42519
\(425\) −224.767 + 133.635i −0.528864 + 0.314434i
\(426\) 587.063 1088.25i 1.37808 2.55458i
\(427\) 307.785 533.100i 0.720808 1.24848i
\(428\) 132.716 229.870i 0.310083 0.537080i
\(429\) 33.3476 20.5598i 0.0777334 0.0479250i
\(430\) −291.805 + 168.474i −0.678616 + 0.391799i
\(431\) −16.8736 −0.0391498 −0.0195749 0.999808i \(-0.506231\pi\)
−0.0195749 + 0.999808i \(0.506231\pi\)
\(432\) 206.148 144.160i 0.477194 0.333705i
\(433\) 254.232 0.587141 0.293571 0.955937i \(-0.405156\pi\)
0.293571 + 0.955937i \(0.405156\pi\)
\(434\) −281.709 + 162.645i −0.649099 + 0.374758i
\(435\) −353.835 + 218.150i −0.813413 + 0.501494i
\(436\) −817.863 472.193i −1.87583 1.08301i
\(437\) 10.2458 17.7463i 0.0234458 0.0406093i
\(438\) −307.117 165.676i −0.701181 0.378256i
\(439\) 628.864 363.075i 1.43249 0.827049i 0.435181 0.900343i \(-0.356684\pi\)
0.997310 + 0.0732936i \(0.0233510\pi\)
\(440\) 134.400i 0.305456i
\(441\) 47.7165 + 72.6131i 0.108201 + 0.164656i
\(442\) 199.637 2.55573i 0.451667 0.00578220i
\(443\) −288.481 + 166.555i −0.651199 + 0.375970i −0.788916 0.614502i \(-0.789357\pi\)
0.137716 + 0.990472i \(0.456024\pi\)
\(444\) 413.716 11.9544i 0.931793 0.0269244i
\(445\) −159.210 91.9199i −0.357775 0.206562i
\(446\) 1252.50 + 723.128i 2.80829 + 1.62136i
\(447\) −457.852 + 13.2297i −1.02428 + 0.0295967i
\(448\) 471.627 272.294i 1.05274 0.607799i
\(449\) 229.219 0.510509 0.255254 0.966874i \(-0.417841\pi\)
0.255254 + 0.966874i \(0.417841\pi\)
\(450\) 390.874 256.856i 0.868609 0.570792i
\(451\) 224.010 0.496697
\(452\) 697.946 + 1208.88i 1.54413 + 2.67451i
\(453\) 432.868 + 233.513i 0.955558 + 0.515481i
\(454\) −567.624 327.718i −1.25027 0.721846i
\(455\) −58.5629 33.8113i −0.128710 0.0743106i
\(456\) −330.064 535.357i −0.723825 1.17403i
\(457\) 284.894 + 493.451i 0.623401 + 1.07976i 0.988848 + 0.148930i \(0.0475828\pi\)
−0.365447 + 0.930832i \(0.619084\pi\)
\(458\) 1283.90i 2.80327i
\(459\) −456.731 + 45.5781i −0.995058 + 0.0992988i
\(460\) 25.9286 0.0563665
\(461\) 53.8225 31.0745i 0.116752 0.0674066i −0.440487 0.897759i \(-0.645194\pi\)
0.557239 + 0.830352i \(0.311861\pi\)
\(462\) 203.303 125.342i 0.440049 0.271304i
\(463\) −217.615 + 376.921i −0.470011 + 0.814084i −0.999412 0.0342882i \(-0.989084\pi\)
0.529400 + 0.848372i \(0.322417\pi\)
\(464\) 208.127 360.487i 0.448550 0.776911i
\(465\) 67.8029 125.688i 0.145813 0.270296i
\(466\) −937.354 + 541.182i −2.01149 + 1.16133i
\(467\) 63.8071i 0.136632i 0.997664 + 0.0683159i \(0.0217626\pi\)
−0.997664 + 0.0683159i \(0.978237\pi\)
\(468\) −231.578 + 13.3942i −0.494826 + 0.0286201i
\(469\) 223.856i 0.477304i
\(470\) 230.344 + 398.967i 0.490093 + 0.848866i
\(471\) −11.7432 406.405i −0.0249324 0.862856i
\(472\) 322.001 557.722i 0.682205 1.18161i
\(473\) −60.4033 + 104.622i −0.127703 + 0.221187i
\(474\) 31.0525 + 1074.66i 0.0655115 + 2.26721i
\(475\) −139.767 242.084i −0.294246 0.509650i
\(476\) 790.577 10.1209i 1.66088 0.0212624i
\(477\) −716.754 360.330i −1.50263 0.755408i
\(478\) −1070.25 −2.23901
\(479\) 320.143 + 554.503i 0.668356 + 1.15763i 0.978364 + 0.206893i \(0.0663352\pi\)
−0.310007 + 0.950734i \(0.600331\pi\)
\(480\) −64.7879 + 120.099i −0.134975 + 0.250206i
\(481\) −56.0158 32.3407i −0.116457 0.0672364i
\(482\) −670.030 + 1160.53i −1.39010 + 2.40773i
\(483\) −11.1358 18.0620i −0.0230555 0.0373955i
\(484\) −396.259 686.340i −0.818716 1.41806i
\(485\) 29.4829i 0.0607895i
\(486\) 812.435 118.168i 1.67168 0.243143i
\(487\) 140.676i 0.288863i 0.989515 + 0.144432i \(0.0461354\pi\)
−0.989515 + 0.144432i \(0.953865\pi\)
\(488\) −566.049 980.425i −1.15994 2.00907i
\(489\) −43.0593 69.8413i −0.0880559 0.142825i
\(490\) 87.6033 + 50.5778i 0.178782 + 0.103220i
\(491\) −145.858 84.2113i −0.297064 0.171510i 0.344059 0.938948i \(-0.388198\pi\)
−0.641123 + 0.767438i \(0.721531\pi\)
\(492\) −1167.36 629.738i −2.37268 1.27996i
\(493\) −652.851 + 388.150i −1.32424 + 0.787323i
\(494\) 213.428i 0.432040i
\(495\) −47.0965 + 93.6826i −0.0951444 + 0.189258i
\(496\) 143.008i 0.288322i
\(497\) −662.711 + 382.616i −1.33342 + 0.769852i
\(498\) −28.8148 997.216i −0.0578610 2.00244i
\(499\) −101.189 58.4214i −0.202783 0.117077i 0.395170 0.918608i \(-0.370686\pi\)
−0.597953 + 0.801531i \(0.704019\pi\)
\(500\) 464.283 804.162i 0.928566 1.60832i
\(501\) 22.5105 + 779.040i 0.0449312 + 1.55497i
\(502\) −58.7986 101.842i −0.117129 0.202873i
\(503\) −572.958 −1.13908 −0.569541 0.821963i \(-0.692879\pi\)
−0.569541 + 0.821963i \(0.692879\pi\)
\(504\) −650.162 + 37.6045i −1.29000 + 0.0746122i
\(505\) 143.679i 0.284513i
\(506\) 12.3941 7.15571i 0.0244942 0.0141417i
\(507\) −414.309 223.501i −0.817177 0.440831i
\(508\) −238.547 + 413.176i −0.469581 + 0.813338i
\(509\) 385.460 + 222.546i 0.757290 + 0.437221i 0.828322 0.560253i \(-0.189296\pi\)
−0.0710321 + 0.997474i \(0.522629\pi\)
\(510\) −451.241 + 286.240i −0.884786 + 0.561255i
\(511\) 107.979 + 187.025i 0.211309 + 0.365998i
\(512\) 566.563i 1.10657i
\(513\) −42.4688 488.826i −0.0827852 0.952878i
\(514\) 727.435 1.41524
\(515\) 75.3228 + 130.463i 0.146258 + 0.253326i
\(516\) 608.885 375.397i 1.18001 0.727513i
\(517\) 143.043 + 82.5859i 0.276679 + 0.159741i
\(518\) −341.498 197.164i −0.659263 0.380626i
\(519\) 194.950 + 105.167i 0.375627 + 0.202634i
\(520\) −107.703 + 62.1825i −0.207122 + 0.119582i
\(521\) 353.566 0.678630 0.339315 0.940673i \(-0.389805\pi\)
0.339315 + 0.940673i \(0.389805\pi\)
\(522\) 1135.32 746.056i 2.17494 1.42923i
\(523\) −606.215 −1.15911 −0.579556 0.814933i \(-0.696774\pi\)
−0.579556 + 0.814933i \(0.696774\pi\)
\(524\) 807.589 + 1398.78i 1.54120 + 2.66944i
\(525\) −289.334 + 8.36038i −0.551113 + 0.0159245i
\(526\) 183.044 317.041i 0.347992 0.602740i
\(527\) 127.567 227.633i 0.242062 0.431941i
\(528\) −3.03273 104.956i −0.00574381 0.198781i
\(529\) 263.864 + 457.026i 0.498798 + 0.863944i
\(530\) −933.962 −1.76219
\(531\) 419.884 275.920i 0.790743 0.519623i
\(532\) 845.190i 1.58870i
\(533\) 103.642 + 179.513i 0.194450 + 0.336797i
\(534\) 528.786 + 285.257i 0.990237 + 0.534189i
\(535\) 55.5117 96.1491i 0.103760 0.179718i
\(536\) −356.537 205.847i −0.665182 0.384043i
\(537\) −71.8063 116.468i −0.133717 0.216887i
\(538\) 49.5444 28.6045i 0.0920899 0.0531682i
\(539\) 36.2676 0.0672868
\(540\) 508.789 355.799i 0.942202 0.658888i
\(541\) 973.359i 1.79918i 0.436731 + 0.899592i \(0.356136\pi\)
−0.436731 + 0.899592i \(0.643864\pi\)
\(542\) 290.595 167.775i 0.536153 0.309548i
\(543\) 252.287 + 409.205i 0.464618 + 0.753600i
\(544\) −121.894 + 217.511i −0.224070 + 0.399836i
\(545\) −342.092 197.507i −0.627691 0.362398i
\(546\) 194.506 + 104.927i 0.356238 + 0.192174i
\(547\) 939.697 542.534i 1.71791 0.991836i 0.795197 0.606351i \(-0.207368\pi\)
0.922714 0.385485i \(-0.125966\pi\)
\(548\) 222.830i 0.406624i
\(549\) −50.9993 881.751i −0.0928949 1.60610i
\(550\) 195.227i 0.354959i
\(551\) −405.962 703.147i −0.736774 1.27613i
\(552\) −39.0075 + 1.12713i −0.0706658 + 0.00204190i
\(553\) 332.675 576.211i 0.601583 1.04197i
\(554\) −221.962 + 384.450i −0.400654 + 0.693953i
\(555\) 173.047 5.00023i 0.311797 0.00900943i
\(556\) −1208.39 + 697.663i −2.17336 + 1.25479i
\(557\) 266.109i 0.477755i 0.971050 + 0.238877i \(0.0767794\pi\)
−0.971050 + 0.238877i \(0.923221\pi\)
\(558\) −209.635 + 416.999i −0.375690 + 0.747309i
\(559\) −111.786 −0.199975
\(560\) −156.960 + 90.6211i −0.280286 + 0.161823i
\(561\) −88.7965 + 169.770i −0.158283 + 0.302620i
\(562\) 439.701 761.584i 0.782386 1.35513i
\(563\) 95.8869 + 55.3603i 0.170314 + 0.0983310i 0.582734 0.812663i \(-0.301983\pi\)
−0.412420 + 0.910994i \(0.635316\pi\)
\(564\) −513.257 832.493i −0.910031 1.47605i
\(565\) 291.933 + 505.643i 0.516696 + 0.894944i
\(566\) −519.583 −0.917992
\(567\) −466.367 201.617i −0.822517 0.355586i
\(568\) 1407.34i 2.47771i
\(569\) 820.458 473.692i 1.44193 0.832499i 0.443952 0.896051i \(-0.353576\pi\)
0.997979 + 0.0635520i \(0.0202429\pi\)
\(570\) −299.789 486.251i −0.525945 0.853072i
\(571\) 781.546 + 451.226i 1.36873 + 0.790238i 0.990766 0.135582i \(-0.0432903\pi\)
0.377966 + 0.925819i \(0.376624\pi\)
\(572\) −48.4119 + 83.8519i −0.0846362 + 0.146594i
\(573\) 326.915 606.009i 0.570532 1.05761i
\(574\) 631.850 + 1094.40i 1.10078 + 1.90661i
\(575\) −17.3446 −0.0301645
\(576\) 350.963 698.124i 0.609312 1.21202i
\(577\) −770.496 −1.33535 −0.667674 0.744453i \(-0.732710\pi\)
−0.667674 + 0.744453i \(0.732710\pi\)
\(578\) −832.809 + 509.685i −1.44085 + 0.881808i
\(579\) 676.788 19.5559i 1.16889 0.0337754i
\(580\) 513.674 889.710i 0.885645 1.53398i
\(581\) −308.702 + 534.688i −0.531329 + 0.920290i
\(582\) −2.78305 96.3152i −0.00478187 0.165490i
\(583\) −289.994 + 167.428i −0.497417 + 0.287184i
\(584\) 397.169 0.680083
\(585\) −96.8635 + 5.60246i −0.165579 + 0.00957685i
\(586\) 321.000 0.547781
\(587\) 749.343 432.633i 1.27656 0.737024i 0.300349 0.953829i \(-0.402897\pi\)
0.976215 + 0.216805i \(0.0695636\pi\)
\(588\) −188.997 101.956i −0.321424 0.173394i
\(589\) 241.572 + 139.472i 0.410140 + 0.236794i
\(590\) 292.465 506.565i 0.495704 0.858584i
\(591\) −54.4926 + 33.5964i −0.0922041 + 0.0568467i
\(592\) −150.134 + 86.6797i −0.253604 + 0.146418i
\(593\) 197.080i 0.332344i 0.986097 + 0.166172i \(0.0531406\pi\)
−0.986097 + 0.166172i \(0.946859\pi\)
\(594\) 145.012 310.489i 0.244128 0.522709i
\(595\) 330.679 4.23332i 0.555763 0.00711482i
\(596\) 980.387 566.026i 1.64494 0.949709i
\(597\) 356.454 + 578.161i 0.597075 + 0.968444i
\(598\) 11.4686 + 6.62141i 0.0191783 + 0.0110726i
\(599\) 498.466 + 287.789i 0.832164 + 0.480450i 0.854593 0.519299i \(-0.173807\pi\)
−0.0224293 + 0.999748i \(0.507140\pi\)
\(600\) −252.742 + 468.514i −0.421237 + 0.780856i
\(601\) 603.473 348.416i 1.00412 0.579726i 0.0946521 0.995510i \(-0.469826\pi\)
0.909463 + 0.415784i \(0.136493\pi\)
\(602\) −681.502 −1.13206
\(603\) −176.388 268.421i −0.292518 0.445143i
\(604\) −1215.57 −2.01254
\(605\) −165.745 287.079i −0.273959 0.474511i
\(606\) 13.5626 + 469.374i 0.0223806 + 0.774544i
\(607\) 383.777 + 221.574i 0.632252 + 0.365031i 0.781624 0.623750i \(-0.214392\pi\)
−0.149372 + 0.988781i \(0.547725\pi\)
\(608\) −230.830 133.270i −0.379655 0.219194i
\(609\) −840.391 + 24.2833i −1.37995 + 0.0398740i
\(610\) −514.128 890.495i −0.842832 1.45983i
\(611\) 152.839i 0.250145i
\(612\) 939.991 635.075i 1.53593 1.03770i
\(613\) −718.550 −1.17219 −0.586093 0.810244i \(-0.699335\pi\)
−0.586093 + 0.810244i \(0.699335\pi\)
\(614\) −1378.32 + 795.773i −2.24482 + 1.29605i
\(615\) −488.277 263.404i −0.793947 0.428299i
\(616\) −135.918 + 235.416i −0.220646 + 0.382169i
\(617\) −382.705 + 662.864i −0.620267 + 1.07433i 0.369169 + 0.929362i \(0.379642\pi\)
−0.989436 + 0.144971i \(0.953691\pi\)
\(618\) −258.381 419.088i −0.418092 0.678136i
\(619\) 74.0367 42.7451i 0.119607 0.0690551i −0.439003 0.898486i \(-0.644668\pi\)
0.558610 + 0.829430i \(0.311335\pi\)
\(620\) 352.954i 0.569281i
\(621\) −27.5848 12.8833i −0.0444200 0.0207461i
\(622\) 1289.32i 2.07286i
\(623\) −185.915 322.015i −0.298419 0.516877i
\(624\) 82.7046 50.9900i 0.132539 0.0817147i
\(625\) 1.92394 3.33236i 0.00307830 0.00533177i
\(626\) −20.3404 + 35.2305i −0.0324926 + 0.0562788i
\(627\) −180.252 97.2382i −0.287484 0.155085i
\(628\) 502.425 + 870.225i 0.800039 + 1.38571i
\(629\) 316.296 4.04919i 0.502856 0.00643751i
\(630\) −590.526 + 34.1552i −0.937342 + 0.0542147i
\(631\) 151.653 0.240338 0.120169 0.992753i \(-0.461656\pi\)
0.120169 + 0.992753i \(0.461656\pi\)
\(632\) −611.825 1059.71i −0.968077 1.67676i
\(633\) −963.966 + 27.8540i −1.52285 + 0.0440032i
\(634\) 802.089 + 463.086i 1.26512 + 0.730420i
\(635\) −99.7783 + 172.821i −0.157131 + 0.272159i
\(636\) 1981.89 57.2670i 3.11617 0.0900424i
\(637\) 16.7798 + 29.0634i 0.0263419 + 0.0456255i
\(638\) 567.051i 0.888794i
\(639\) −493.160 + 980.975i −0.771768 + 1.53517i
\(640\) 727.739i 1.13709i
\(641\) 367.170 + 635.958i 0.572809 + 0.992134i 0.996276 + 0.0862224i \(0.0274796\pi\)
−0.423467 + 0.905911i \(0.639187\pi\)
\(642\) −172.270 + 319.341i −0.268334 + 0.497416i
\(643\) 1094.69 + 632.019i 1.70247 + 0.982922i 0.943246 + 0.332094i \(0.107755\pi\)
0.759225 + 0.650828i \(0.225578\pi\)
\(644\) 45.4166 + 26.2213i 0.0705226 + 0.0407163i
\(645\) 254.682 157.019i 0.394855 0.243441i
\(646\) −533.409 897.169i −0.825710 1.38881i
\(647\) 654.568i 1.01170i 0.862622 + 0.505849i \(0.168821\pi\)
−0.862622 + 0.505849i \(0.831179\pi\)
\(648\) −749.967 + 557.390i −1.15736 + 0.860170i
\(649\) 209.717i 0.323138i
\(650\) 156.448 90.3251i 0.240689 0.138962i
\(651\) 245.870 151.587i 0.377681 0.232852i
\(652\) 175.615 + 101.391i 0.269348 + 0.155508i
\(653\) 351.643 609.064i 0.538504 0.932716i −0.460481 0.887670i \(-0.652323\pi\)
0.998985 0.0450465i \(-0.0143436\pi\)
\(654\) 1136.19 + 612.926i 1.73730 + 0.937196i
\(655\) 337.794 + 585.077i 0.515717 + 0.893247i
\(656\) 555.562 0.846894
\(657\) 276.843 + 139.175i 0.421374 + 0.211835i
\(658\) 931.776i 1.41607i
\(659\) 394.144 227.559i 0.598094 0.345310i −0.170197 0.985410i \(-0.554440\pi\)
0.768292 + 0.640100i \(0.221107\pi\)
\(660\) −7.48502 259.040i −0.0113409 0.392485i
\(661\) −134.035 + 232.155i −0.202776 + 0.351218i −0.949422 0.314004i \(-0.898330\pi\)
0.746646 + 0.665222i \(0.231663\pi\)
\(662\) 334.592 + 193.177i 0.505426 + 0.291808i
\(663\) −177.130 + 7.38853i −0.267164 + 0.0111441i
\(664\) 567.736 + 983.347i 0.855024 + 1.48094i
\(665\) 353.522i 0.531612i
\(666\) −564.841 + 32.6697i −0.848110 + 0.0490536i
\(667\) −50.3785 −0.0755300
\(668\) −963.100 1668.14i −1.44177 2.49721i
\(669\) −1130.25 609.718i −1.68946 0.911387i
\(670\) −323.834 186.965i −0.483334 0.279053i
\(671\) −319.272 184.332i −0.475815 0.274712i
\(672\) −234.937 + 144.846i −0.349609 + 0.215545i
\(673\) 572.251 330.389i 0.850299 0.490920i −0.0104531 0.999945i \(-0.503327\pi\)
0.860752 + 0.509025i \(0.169994\pi\)
\(674\) 944.353 1.40112
\(675\) −340.348 + 238.007i −0.504219 + 0.352604i
\(676\) 1163.46 1.72109
\(677\) 367.380 + 636.321i 0.542659 + 0.939913i 0.998750 + 0.0499797i \(0.0159157\pi\)
−0.456091 + 0.889933i \(0.650751\pi\)
\(678\) −1001.42 1624.29i −1.47702 2.39570i
\(679\) −29.8157 + 51.6424i −0.0439113 + 0.0760565i
\(680\) 297.334 530.568i 0.437256 0.780248i
\(681\) 512.222 + 276.321i 0.752161 + 0.405758i
\(682\) 97.4075 + 168.715i 0.142826 + 0.247382i
\(683\) −290.069 −0.424699 −0.212349 0.977194i \(-0.568111\pi\)
−0.212349 + 0.977194i \(0.568111\pi\)
\(684\) 665.973 + 1013.45i 0.973644 + 1.48166i
\(685\) 93.2043i 0.136065i
\(686\) 621.508 + 1076.48i 0.905988 + 1.56922i
\(687\) 32.9281 + 1139.57i 0.0479303 + 1.65876i
\(688\) −149.805 + 259.470i −0.217740 + 0.377136i
\(689\) −268.341 154.926i −0.389464 0.224857i
\(690\) −35.4295 + 1.02374i −0.0513471 + 0.00148369i
\(691\) −141.683 + 81.8008i −0.205041 + 0.118380i −0.599004 0.800746i \(-0.704437\pi\)
0.393964 + 0.919126i \(0.371104\pi\)
\(692\) −547.457 −0.791122
\(693\) −177.235 + 116.467i −0.255750 + 0.168061i
\(694\) 1096.20i 1.57954i
\(695\) −505.439 + 291.815i −0.727250 + 0.419878i
\(696\) −734.107 + 1360.83i −1.05475 + 1.95521i
\(697\) −884.318 495.577i −1.26875 0.711015i
\(698\) −813.561 469.710i −1.16556 0.672936i
\(699\) 818.105 504.387i 1.17039 0.721583i
\(700\) 619.544 357.694i 0.885063 0.510992i
\(701\) 447.750i 0.638730i −0.947632 0.319365i \(-0.896530\pi\)
0.947632 0.319365i \(-0.103470\pi\)
\(702\) 315.906 27.4457i 0.450009 0.0390964i
\(703\) 338.146i 0.481004i
\(704\) −163.076 282.456i −0.231642 0.401216i
\(705\) −214.683 348.211i −0.304515 0.493916i
\(706\) −800.922 + 1387.24i −1.13445 + 1.96493i
\(707\) 145.301 251.669i 0.205518 0.355968i
\(708\) −589.556 + 1092.87i −0.832707 + 1.54361i
\(709\) −1029.74 + 594.519i −1.45238 + 0.838532i −0.998616 0.0525907i \(-0.983252\pi\)
−0.453763 + 0.891122i \(0.649919\pi\)
\(710\) 1278.25i 1.80036i
\(711\) −55.1236 953.057i −0.0775297 1.34045i
\(712\) −683.835 −0.960442
\(713\) 14.9891 8.65397i 0.0210226 0.0121374i
\(714\) −1079.87 + 45.0440i −1.51242 + 0.0630868i
\(715\) −20.2495 + 35.0732i −0.0283210 + 0.0490534i
\(716\) 292.857 + 169.081i 0.409018 + 0.236147i
\(717\) 949.939 27.4487i 1.32488 0.0382827i
\(718\) −821.504 1422.89i −1.14416 1.98174i
\(719\) 746.256 1.03791 0.518954 0.854802i \(-0.326322\pi\)
0.518954 + 0.854802i \(0.326322\pi\)
\(720\) −116.803 + 232.340i −0.162226 + 0.322694i
\(721\) 304.692i 0.422597i
\(722\) −89.9611 + 51.9391i −0.124600 + 0.0719378i
\(723\) 564.947 1047.25i 0.781392 1.44848i
\(724\) −1028.94 594.057i −1.42118 0.820521i
\(725\) −343.616 + 595.160i −0.473953 + 0.820910i
\(726\) 568.558 + 922.189i 0.783137 + 1.27023i
\(727\) 195.358 + 338.371i 0.268719 + 0.465434i 0.968531 0.248892i \(-0.0800665\pi\)
−0.699813 + 0.714327i \(0.746733\pi\)
\(728\) −251.538 −0.345519
\(729\) −718.077 + 125.721i −0.985017 + 0.172457i
\(730\) 360.738 0.494162
\(731\) 469.907 279.381i 0.642827 0.382191i
\(732\) 1145.59 + 1858.12i 1.56501 + 2.53842i
\(733\) −4.87965 + 8.45179i −0.00665709 + 0.0115304i −0.869335 0.494224i \(-0.835452\pi\)
0.862678 + 0.505754i \(0.168786\pi\)
\(734\) −550.698 + 953.837i −0.750270 + 1.29951i
\(735\) −79.0528 42.6455i −0.107555 0.0580210i
\(736\) −14.3226 + 8.26916i −0.0194601 + 0.0112353i
\(737\) −134.067 −0.181909
\(738\) 1619.97 + 814.400i 2.19509 + 1.10352i
\(739\) 1168.07 1.58060 0.790302 0.612717i \(-0.209924\pi\)
0.790302 + 0.612717i \(0.209924\pi\)
\(740\) −370.542 + 213.932i −0.500732 + 0.289098i
\(741\) −5.47379 189.436i −0.00738704 0.255649i
\(742\) −1635.93 944.505i −2.20476 1.27292i
\(743\) 113.536 196.649i 0.152807 0.264670i −0.779451 0.626463i \(-0.784502\pi\)
0.932258 + 0.361793i \(0.117835\pi\)
\(744\) −15.3431 530.992i −0.0206225 0.713699i
\(745\) 410.071 236.755i 0.550431 0.317792i
\(746\) 1130.08i 1.51486i
\(747\) 51.1513 + 884.379i 0.0684757 + 1.18391i
\(748\) −6.06137 473.475i −0.00810344 0.632987i
\(749\) 194.469 112.277i 0.259638 0.149902i
\(750\) −602.658 + 1117.16i −0.803544 + 1.48955i
\(751\) 123.140 + 71.0950i 0.163968 + 0.0946670i 0.579739 0.814803i \(-0.303155\pi\)
−0.415770 + 0.909470i \(0.636488\pi\)
\(752\) 354.757 + 204.819i 0.471752 + 0.272366i
\(753\) 54.8009 + 88.8858i 0.0727767 + 0.118042i
\(754\) 454.412 262.355i 0.602669 0.347951i
\(755\) −508.444 −0.673436
\(756\) 1251.01 108.687i 1.65478 0.143766i
\(757\) −479.636 −0.633601 −0.316800 0.948492i \(-0.602609\pi\)
−0.316800 + 0.948492i \(0.602609\pi\)
\(758\) −95.1584 164.819i −0.125539 0.217440i
\(759\) −10.8173 + 6.66920i −0.0142520 + 0.00878682i
\(760\) 563.059 + 325.082i 0.740867 + 0.427740i
\(761\) −37.8559 21.8561i −0.0497449 0.0287202i 0.474921 0.880028i \(-0.342477\pi\)
−0.524666 + 0.851308i \(0.675810\pi\)
\(762\) 309.644 573.993i 0.406357 0.753272i
\(763\) −399.473 691.907i −0.523555 0.906824i
\(764\) 1701.79i 2.22747i
\(765\) 393.175 265.636i 0.513954 0.347237i
\(766\) −162.797 −0.212529
\(767\) 168.059 97.0288i 0.219112 0.126504i
\(768\) 38.6036 + 1335.99i 0.0502651 + 1.73957i
\(769\) 475.251 823.159i 0.618012 1.07043i −0.371836 0.928298i \(-0.621272\pi\)
0.989848 0.142129i \(-0.0453949\pi\)
\(770\) −123.451 + 213.823i −0.160325 + 0.277692i
\(771\) −645.663 + 18.6566i −0.837436 + 0.0241979i
\(772\) −1449.19 + 836.690i −1.87719 + 1.08380i
\(773\) 416.660i 0.539017i −0.962998 0.269509i \(-0.913139\pi\)
0.962998 0.269509i \(-0.0868613\pi\)
\(774\) −817.176 + 536.993i −1.05578 + 0.693790i
\(775\) 236.104i 0.304650i
\(776\) 54.8342 + 94.9757i 0.0706627 + 0.122391i
\(777\) 308.167 + 166.242i 0.396611 + 0.213954i
\(778\) −60.1508 + 104.184i −0.0773147 + 0.133913i
\(779\) 541.826 938.471i 0.695541 1.20471i
\(780\) 204.122 125.847i 0.261694 0.161343i
\(781\) 229.148 + 396.896i 0.293403 + 0.508189i
\(782\) −64.7582 + 0.829028i −0.0828110 + 0.00106014i
\(783\) −988.563 + 691.308i −1.26253 + 0.882897i
\(784\) 89.9464 0.114728
\(785\) 210.152 + 363.993i 0.267709 + 0.463686i
\(786\) −1158.74 1879.45i −1.47422 2.39116i
\(787\) −783.381 452.285i −0.995401 0.574695i −0.0885166 0.996075i \(-0.528213\pi\)
−0.906884 + 0.421380i \(0.861546\pi\)
\(788\) 79.1088 137.021i 0.100392 0.173884i
\(789\) −154.336 + 286.097i −0.195610 + 0.362607i
\(790\) −555.705 962.509i −0.703424 1.21837i
\(791\) 1180.92i 1.49294i
\(792\) 22.5213 + 389.380i 0.0284359 + 0.491642i
\(793\) 341.136i 0.430184i
\(794\) −256.587 444.422i −0.323157 0.559725i
\(795\) 828.973 23.9534i 1.04273 0.0301300i
\(796\) −1453.77 839.337i −1.82635 1.05444i
\(797\) −1150.83 664.429i −1.44395 0.833663i −0.445837 0.895114i \(-0.647094\pi\)
−0.998110 + 0.0614514i \(0.980427\pi\)
\(798\) −33.3708 1154.89i −0.0418181 1.44723i
\(799\) −381.981 642.475i −0.478074 0.804099i
\(800\) 225.605i 0.282006i
\(801\) −476.661 239.629i −0.595082 0.299162i
\(802\) 893.178i 1.11369i
\(803\) 112.009 64.6682i 0.139488 0.0805333i
\(804\) 698.646 + 376.888i 0.868962 + 0.468766i
\(805\) 18.9966 + 10.9677i 0.0235983 + 0.0136245i
\(806\) −90.1343 + 156.117i −0.111829 + 0.193694i
\(807\) −43.2414 + 26.6597i −0.0535829 + 0.0330355i
\(808\) −267.224 462.846i −0.330723 0.572829i
\(809\) 807.379 0.997996 0.498998 0.866603i \(-0.333701\pi\)
0.498998 + 0.866603i \(0.333701\pi\)
\(810\) −681.175 + 506.263i −0.840957 + 0.625016i
\(811\) 108.693i 0.134024i −0.997752 0.0670118i \(-0.978654\pi\)
0.997752 0.0670118i \(-0.0213465\pi\)
\(812\) 1799.51 1038.95i 2.21614 1.27949i
\(813\) −253.626 + 156.368i −0.311963 + 0.192335i
\(814\) −118.081 + 204.523i −0.145063 + 0.251256i
\(815\) 73.4552 + 42.4094i 0.0901291 + 0.0520361i
\(816\) −220.222 + 421.041i −0.269880 + 0.515982i
\(817\) 292.202 + 506.109i 0.357652 + 0.619472i
\(818\) 117.458i 0.143591i
\(819\) −175.332 88.1437i −0.214081 0.107624i
\(820\) 1371.17 1.67216
\(821\) 465.360 + 806.027i 0.566821 + 0.981762i 0.996878 + 0.0789605i \(0.0251601\pi\)
−0.430057 + 0.902802i \(0.641507\pi\)
\(822\) 8.79805 + 304.481i 0.0107032 + 0.370415i
\(823\) 804.670 + 464.576i 0.977727 + 0.564491i 0.901583 0.432606i \(-0.142406\pi\)
0.0761441 + 0.997097i \(0.475739\pi\)
\(824\) 485.287 + 280.181i 0.588940 + 0.340025i
\(825\) 5.00701 + 173.282i 0.00606910 + 0.210038i
\(826\) 1024.57 591.533i 1.24039 0.716142i
\(827\) 309.018 0.373661 0.186830 0.982392i \(-0.440179\pi\)
0.186830 + 0.982392i \(0.440179\pi\)
\(828\) 75.1194 4.34481i 0.0907239 0.00524735i
\(829\) −356.784 −0.430378 −0.215189 0.976572i \(-0.569037\pi\)
−0.215189 + 0.976572i \(0.569037\pi\)
\(830\) 515.660 + 893.149i 0.621277 + 1.07608i
\(831\) 187.151 346.926i 0.225212 0.417480i
\(832\) 150.899 261.366i 0.181370 0.314141i
\(833\) −143.172 80.2347i −0.171876 0.0963202i
\(834\) 1623.63 1001.02i 1.94680 1.20026i
\(835\) −402.841 697.741i −0.482444 0.835618i
\(836\) 506.182 0.605481
\(837\) 175.375 375.500i 0.209528 0.448626i
\(838\) 307.561i 0.367017i
\(839\) −201.748 349.438i −0.240462 0.416493i 0.720384 0.693576i \(-0.243966\pi\)
−0.960846 + 0.277083i \(0.910632\pi\)
\(840\) 573.077 353.319i 0.682234 0.420618i
\(841\) −577.554 + 1000.35i −0.686747 + 1.18948i
\(842\) −1585.06 915.134i −1.88249 1.08686i
\(843\) −370.741 + 687.250i −0.439787 + 0.815243i
\(844\) 2064.12 1191.72i 2.44563 1.41199i
\(845\) 486.645 0.575911
\(846\) 734.199 + 1117.28i 0.867847 + 1.32066i
\(847\) 670.465i 0.791576i
\(848\) −719.207 + 415.234i −0.848121 + 0.489663i
\(849\) 461.176 13.3258i 0.543199 0.0156959i
\(850\) −431.901 + 770.693i −0.508119 + 0.906698i
\(851\) 18.1704 + 10.4907i 0.0213518 + 0.0123275i
\(852\) −78.3776 2712.48i −0.0919925 3.18366i
\(853\) −159.462 + 92.0654i −0.186943 + 0.107931i −0.590550 0.807001i \(-0.701089\pi\)
0.403608 + 0.914932i \(0.367756\pi\)
\(854\) 2079.73i 2.43528i
\(855\) 278.560 + 423.902i 0.325801 + 0.495792i
\(856\) 412.977i 0.482450i
\(857\) −488.567 846.222i −0.570090 0.987424i −0.996556 0.0829208i \(-0.973575\pi\)
0.426467 0.904503i \(-0.359758\pi\)
\(858\) 62.8406 116.489i 0.0732408 0.135768i
\(859\) 598.778 1037.11i 0.697064 1.20735i −0.272416 0.962180i \(-0.587823\pi\)
0.969480 0.245171i \(-0.0788440\pi\)
\(860\) −369.730 + 640.392i −0.429919 + 0.744642i
\(861\) −588.891 955.168i −0.683961 1.10937i
\(862\) −49.3703 + 28.5039i −0.0572741 + 0.0330672i
\(863\) 20.1789i 0.0233823i −0.999932 0.0116912i \(-0.996279\pi\)
0.999932 0.0116912i \(-0.00372149\pi\)
\(864\) −167.577 + 358.802i −0.193954 + 0.415280i
\(865\) −228.988 −0.264725
\(866\) 743.857 429.466i 0.858958 0.495919i
\(867\) 726.120 473.750i 0.837509 0.546424i
\(868\) −356.939 + 618.236i −0.411220 + 0.712253i
\(869\) −345.091 199.238i −0.397113 0.229273i
\(870\) −666.770 + 1236.01i −0.766402 + 1.42070i
\(871\) −62.0280 107.436i −0.0712147 0.123348i
\(872\) −1469.34 −1.68503
\(873\) 4.94040 + 85.4169i 0.00565911 + 0.0978430i
\(874\) 69.2317i 0.0792125i
\(875\) 680.316 392.781i 0.777504 0.448892i
\(876\) −765.493 + 22.1191i −0.873851 + 0.0252501i
\(877\) −600.576 346.742i −0.684807 0.395373i 0.116857 0.993149i \(-0.462718\pi\)
−0.801664 + 0.597775i \(0.796051\pi\)
\(878\) 1226.66 2124.64i 1.39711 2.41986i
\(879\) −284.916 + 8.23270i −0.324136 + 0.00936599i
\(880\) 54.2728 + 94.0032i 0.0616736 + 0.106822i
\(881\) −1461.79 −1.65925 −0.829623 0.558325i \(-0.811444\pi\)
−0.829623 + 0.558325i \(0.811444\pi\)
\(882\) 262.276 + 131.853i 0.297366 + 0.149493i
\(883\) 1331.57 1.50801 0.754006 0.656868i \(-0.228119\pi\)
0.754006 + 0.656868i \(0.228119\pi\)
\(884\) 376.620 223.918i 0.426040 0.253301i
\(885\) −246.597 + 457.122i −0.278640 + 0.516522i
\(886\) −562.711 + 974.644i −0.635114 + 1.10005i
\(887\) −159.590 + 276.418i −0.179921 + 0.311632i −0.941853 0.336025i \(-0.890917\pi\)
0.761932 + 0.647657i \(0.224251\pi\)
\(888\) 548.151 337.952i 0.617287 0.380577i
\(889\) −349.544 + 201.809i −0.393188 + 0.227007i
\(890\) −621.109 −0.697876
\(891\) −120.748 + 279.306i −0.135520 + 0.313475i
\(892\) 3173.94 3.55823
\(893\) 691.972 399.510i 0.774885 0.447380i
\(894\) −1317.28 + 812.143i −1.47347 + 0.908437i
\(895\) 122.495 + 70.7224i 0.136866 + 0.0790194i
\(896\) 735.955 1274.71i 0.821378 1.42267i
\(897\) −10.3492 5.58295i −0.0115376 0.00622402i
\(898\) 670.670 387.211i 0.746848 0.431193i
\(899\) 685.780i 0.762825i
\(900\) 461.037 917.078i 0.512263 1.01898i
\(901\) 1515.20 19.3974i 1.68169 0.0215288i
\(902\) 655.431 378.413i 0.726642 0.419527i
\(903\) 604.893 17.4785i 0.669870 0.0193560i
\(904\) 1880.86 + 1085.91i 2.08059 + 1.20123i
\(905\) −430.379 248.479i −0.475557 0.274563i
\(906\) 1660.99 47.9947i 1.83333 0.0529743i
\(907\) −97.7878 + 56.4578i −0.107815 + 0.0622468i −0.552938 0.833223i \(-0.686493\pi\)
0.445123 + 0.895469i \(0.353160\pi\)
\(908\) −1438.41 −1.58416
\(909\) −24.0761 416.263i −0.0264863 0.457935i
\(910\) −228.465 −0.251061
\(911\) −0.456798 0.791197i −0.000501424 0.000868493i 0.865775 0.500434i \(-0.166826\pi\)
−0.866276 + 0.499566i \(0.833493\pi\)
\(912\) −447.040 241.158i −0.490175 0.264428i
\(913\) 320.223 + 184.881i 0.350738 + 0.202498i
\(914\) 1667.14 + 962.525i 1.82401 + 1.05309i
\(915\) 479.172 + 777.207i 0.523686 + 0.849407i
\(916\) −1408.81 2440.13i −1.53800 2.66390i
\(917\) 1366.43i 1.49011i
\(918\) −1259.36 + 904.899i −1.37185 + 0.985728i
\(919\) −211.594 −0.230244 −0.115122 0.993351i \(-0.536726\pi\)
−0.115122 + 0.993351i \(0.536726\pi\)
\(920\) 34.9368 20.1708i 0.0379748 0.0219247i
\(921\) 1202.97 741.669i 1.30616 0.805286i
\(922\) 104.986 181.841i 0.113868 0.197225i
\(923\) −212.038 + 367.260i −0.229727 + 0.397898i
\(924\) 248.854 461.305i 0.269322 0.499248i
\(925\) 247.869 143.107i 0.267966 0.154711i
\(926\) 1470.44i 1.58795i
\(927\) 240.084 + 365.351i 0.258990 + 0.394122i
\(928\) 655.285i 0.706126i
\(929\) −205.464 355.873i −0.221166 0.383071i 0.733996 0.679154i \(-0.237653\pi\)
−0.955162 + 0.296082i \(0.904320\pi\)
\(930\) −13.9358 482.286i −0.0149847 0.518587i
\(931\) 87.7225 151.940i 0.0942239 0.163201i
\(932\) −1187.67 + 2057.11i −1.27433 + 2.20720i
\(933\) 33.0672 + 1144.39i 0.0354419 + 1.22657i
\(934\) 107.787 + 186.693i 0.115404 + 0.199885i
\(935\) −2.53532 198.043i −0.00271157 0.211810i
\(936\) −301.614 + 198.201i −0.322238 + 0.211753i
\(937\) −1139.43 −1.21604 −0.608018 0.793923i \(-0.708035\pi\)
−0.608018 + 0.793923i \(0.708035\pi\)
\(938\) −378.152 654.979i −0.403147 0.698272i
\(939\) 17.1503 31.7919i 0.0182644 0.0338572i
\(940\) 875.569 + 505.510i 0.931457 + 0.537777i
\(941\) 201.972 349.826i 0.214636 0.371760i −0.738524 0.674227i \(-0.764477\pi\)
0.953160 + 0.302467i \(0.0978102\pi\)
\(942\) −720.886 1169.26i −0.765272 1.24125i
\(943\) −33.6194 58.2304i −0.0356515 0.0617502i
\(944\) 520.114i 0.550968i
\(945\) 523.268 45.4610i 0.553722 0.0481069i
\(946\) 408.150i 0.431448i
\(947\) −869.969 1506.83i −0.918658 1.59116i −0.801456 0.598054i \(-0.795941\pi\)
−0.117201 0.993108i \(-0.537392\pi\)
\(948\) 1238.23 + 2008.39i 1.30615 + 2.11855i
\(949\) 103.645 + 59.8396i 0.109215 + 0.0630554i
\(950\) −817.888 472.208i −0.860934 0.497061i
\(951\) −723.801 390.459i −0.761095 0.410577i
\(952\) 1057.37 628.655i 1.11068 0.660352i
\(953\) 1741.50i 1.82739i 0.406406 + 0.913693i \(0.366782\pi\)
−0.406406 + 0.913693i \(0.633218\pi\)
\(954\) −2705.84 + 156.502i −2.83631 + 0.164049i
\(955\) 711.815i 0.745356i
\(956\) −2034.08 + 1174.38i −2.12770 + 1.22843i
\(957\) 14.5432 + 503.308i 0.0151966 + 0.525922i
\(958\) 1873.41 + 1081.61i 1.95554 + 1.12903i
\(959\) 94.2565 163.257i 0.0982862 0.170237i
\(960\) 23.3307 + 807.426i 0.0243029 + 0.841069i
\(961\) −362.697 628.210i −0.377417 0.653705i
\(962\) −218.528 −0.227161
\(963\) 144.715 287.862i 0.150275 0.298922i
\(964\) 2940.88i 3.05071i
\(965\) −606.160 + 349.967i −0.628145 + 0.362660i
\(966\) −63.0938 34.0363i −0.0653145 0.0352343i
\(967\) −914.968 + 1584.77i −0.946192 + 1.63885i −0.192845 + 0.981229i \(0.561771\pi\)
−0.753347 + 0.657623i \(0.771562\pi\)
\(968\) −1067.86 616.527i −1.10316 0.636908i
\(969\) 496.457 + 782.636i 0.512340 + 0.807674i
\(970\) 49.8045 + 86.2640i 0.0513449 + 0.0889319i
\(971\) 799.025i 0.822889i −0.911435 0.411445i \(-0.865024\pi\)
0.911435 0.411445i \(-0.134976\pi\)
\(972\) 1414.43 1116.07i 1.45517 1.14822i
\(973\) −1180.44 −1.21319
\(974\) 237.640 + 411.605i 0.243984 + 0.422592i
\(975\) −136.544 + 84.1839i −0.140046 + 0.0863425i
\(976\) −791.819 457.157i −0.811290 0.468398i
\(977\) 51.3985 + 29.6749i 0.0526085 + 0.0303735i 0.526074 0.850439i \(-0.323664\pi\)
−0.473465 + 0.880813i \(0.656997\pi\)
\(978\) −243.968 131.610i −0.249456 0.134570i
\(979\) −192.854 + 111.344i −0.196990 + 0.113732i
\(980\) 221.995 0.226525
\(981\) −1024.19 514.886i −1.04403 0.524858i
\(982\) −569.022 −0.579452
\(983\) −586.501 1015.85i −0.596644 1.03342i −0.993313 0.115456i \(-0.963167\pi\)
0.396668 0.917962i \(-0.370166\pi\)
\(984\) −2062.82 + 59.6057i −2.09636 + 0.0605749i
\(985\) 33.0893 57.3123i 0.0335932 0.0581851i
\(986\) −1254.49 + 2238.53i −1.27230 + 2.27031i
\(987\) −23.8973 827.034i −0.0242121 0.837927i
\(988\) 234.193 + 405.635i 0.237038 + 0.410561i
\(989\) 36.2612 0.0366645
\(990\) 20.4555 + 353.664i 0.0206621 + 0.357237i
\(991\) 46.3789i 0.0468001i 0.999726 + 0.0234000i \(0.00744914\pi\)
−0.999726 + 0.0234000i \(0.992551\pi\)
\(992\) −112.564 194.967i −0.113472 0.196539i
\(993\) −301.935 162.880i −0.304063 0.164029i
\(994\) −1292.68 + 2238.99i −1.30049 + 2.25251i
\(995\) −608.078 351.074i −0.611133 0.352838i
\(996\) −1149.00 1863.66i −1.15362 1.87115i
\(997\) −1421.66 + 820.797i −1.42594 + 0.823267i −0.996797 0.0799703i \(-0.974517\pi\)
−0.429142 + 0.903237i \(0.641184\pi\)
\(998\) −394.758 −0.395549
\(999\) 500.509 43.4837i 0.501010 0.0435273i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.50.31 68
3.2 odd 2 459.3.i.a.152.4 68
9.2 odd 6 inner 153.3.i.a.101.32 yes 68
9.7 even 3 459.3.i.a.305.3 68
17.16 even 2 inner 153.3.i.a.50.32 yes 68
51.50 odd 2 459.3.i.a.152.3 68
153.16 even 6 459.3.i.a.305.4 68
153.101 odd 6 inner 153.3.i.a.101.31 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.31 68 1.1 even 1 trivial
153.3.i.a.50.32 yes 68 17.16 even 2 inner
153.3.i.a.101.31 yes 68 153.101 odd 6 inner
153.3.i.a.101.32 yes 68 9.2 odd 6 inner
459.3.i.a.152.3 68 51.50 odd 2
459.3.i.a.152.4 68 3.2 odd 2
459.3.i.a.305.3 68 9.7 even 3
459.3.i.a.305.4 68 153.16 even 6