Properties

Label 459.3.i.a.152.27
Level $459$
Weight $3$
Character 459.152
Analytic conductor $12.507$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,3,Mod(152,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.152"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 459.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5068441341\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.27
Character \(\chi\) \(=\) 459.152
Dual form 459.3.i.a.305.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44623 - 1.41233i) q^{2} +(1.98938 - 3.44570i) q^{4} +(1.84354 - 3.19311i) q^{5} +(-1.20670 + 0.696687i) q^{7} +0.0600221i q^{8} -10.4148i q^{10} +(-9.91827 - 17.1789i) q^{11} +(8.79901 - 15.2403i) q^{13} +(-1.96791 + 3.40852i) q^{14} +(8.04227 + 13.9296i) q^{16} +(-10.4620 - 13.3995i) q^{17} +17.1257 q^{19} +(-7.33500 - 12.7046i) q^{20} +(-48.5248 - 28.0158i) q^{22} +(8.76780 - 15.1863i) q^{23} +(5.70269 + 9.87734i) q^{25} -49.7086i q^{26} +5.54389i q^{28} +(-6.20471 - 10.7469i) q^{29} +(29.8091 + 17.2103i) q^{31} +(39.1386 + 22.5967i) q^{32} +(-44.5171 - 18.0024i) q^{34} +5.13750i q^{35} +13.0363i q^{37} +(41.8935 - 24.1872i) q^{38} +(0.191657 + 0.110653i) q^{40} +(-15.2683 + 26.4454i) q^{41} +(-17.3388 - 30.0317i) q^{43} -78.9246 q^{44} -49.5322i q^{46} +(-74.8051 + 43.1887i) q^{47} +(-23.5293 + 40.7539i) q^{49} +(27.9002 + 16.1082i) q^{50} +(-35.0091 - 60.6375i) q^{52} -11.8546i q^{53} -73.1391 q^{55} +(-0.0418166 - 0.0724285i) q^{56} +(-30.3564 - 17.5263i) q^{58} +(77.9699 + 45.0160i) q^{59} +(-1.04031 + 0.600624i) q^{61} +97.2267 q^{62} +63.3182 q^{64} +(-32.4427 - 56.1925i) q^{65} +(29.0384 - 50.2960i) q^{67} +(-66.9835 + 9.39240i) q^{68} +(7.25586 + 12.5675i) q^{70} +119.490 q^{71} +108.335i q^{73} +(18.4117 + 31.8899i) q^{74} +(34.0694 - 59.0100i) q^{76} +(23.9367 + 13.8199i) q^{77} +(-2.99178 + 1.72730i) q^{79} +59.3052 q^{80} +86.2557i q^{82} +(37.0145 - 21.3704i) q^{83} +(-62.0733 + 8.70389i) q^{85} +(-84.8297 - 48.9765i) q^{86} +(1.03112 - 0.595315i) q^{88} -43.3483i q^{89} +24.5206i q^{91} +(-34.8849 - 60.4224i) q^{92} +(-121.994 + 211.300i) q^{94} +(31.5720 - 54.6843i) q^{95} +(42.1943 - 24.3609i) q^{97} +132.925i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 62 q^{4} - 2 q^{13} - 106 q^{16} - 32 q^{19} - 132 q^{25} - 27 q^{34} + 102 q^{38} + 58 q^{43} + 312 q^{47} + 152 q^{49} + 90 q^{50} + 70 q^{52} + 92 q^{55} + 258 q^{59} - 16 q^{64} + 82 q^{67}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44623 1.41233i 1.22312 0.706167i 0.257536 0.966269i \(-0.417089\pi\)
0.965581 + 0.260102i \(0.0837561\pi\)
\(3\) 0 0
\(4\) 1.98938 3.44570i 0.497344 0.861425i
\(5\) 1.84354 3.19311i 0.368709 0.638623i −0.620655 0.784084i \(-0.713133\pi\)
0.989364 + 0.145461i \(0.0464666\pi\)
\(6\) 0 0
\(7\) −1.20670 + 0.696687i −0.172385 + 0.0995267i −0.583710 0.811962i \(-0.698400\pi\)
0.411325 + 0.911489i \(0.365066\pi\)
\(8\) 0.0600221i 0.00750276i
\(9\) 0 0
\(10\) 10.4148i 1.04148i
\(11\) −9.91827 17.1789i −0.901661 1.56172i −0.825338 0.564639i \(-0.809016\pi\)
−0.0763223 0.997083i \(-0.524318\pi\)
\(12\) 0 0
\(13\) 8.79901 15.2403i 0.676847 1.17233i −0.299079 0.954228i \(-0.596679\pi\)
0.975925 0.218105i \(-0.0699874\pi\)
\(14\) −1.96791 + 3.40852i −0.140565 + 0.243466i
\(15\) 0 0
\(16\) 8.04227 + 13.9296i 0.502642 + 0.870602i
\(17\) −10.4620 13.3995i −0.615413 0.788205i
\(18\) 0 0
\(19\) 17.1257 0.901352 0.450676 0.892688i \(-0.351183\pi\)
0.450676 + 0.892688i \(0.351183\pi\)
\(20\) −7.33500 12.7046i −0.366750 0.635230i
\(21\) 0 0
\(22\) −48.5248 28.0158i −2.20567 1.27345i
\(23\) 8.76780 15.1863i 0.381209 0.660273i −0.610027 0.792381i \(-0.708841\pi\)
0.991235 + 0.132108i \(0.0421747\pi\)
\(24\) 0 0
\(25\) 5.70269 + 9.87734i 0.228107 + 0.395094i
\(26\) 49.7086i 1.91187i
\(27\) 0 0
\(28\) 5.54389i 0.197996i
\(29\) −6.20471 10.7469i −0.213956 0.370582i 0.738993 0.673713i \(-0.235301\pi\)
−0.952949 + 0.303131i \(0.901968\pi\)
\(30\) 0 0
\(31\) 29.8091 + 17.2103i 0.961584 + 0.555171i 0.896660 0.442719i \(-0.145986\pi\)
0.0649238 + 0.997890i \(0.479320\pi\)
\(32\) 39.1386 + 22.5967i 1.22308 + 0.706147i
\(33\) 0 0
\(34\) −44.5171 18.0024i −1.30933 0.529482i
\(35\) 5.13750i 0.146786i
\(36\) 0 0
\(37\) 13.0363i 0.352333i 0.984360 + 0.176167i \(0.0563698\pi\)
−0.984360 + 0.176167i \(0.943630\pi\)
\(38\) 41.8935 24.1872i 1.10246 0.636505i
\(39\) 0 0
\(40\) 0.191657 + 0.110653i 0.00479143 + 0.00276633i
\(41\) −15.2683 + 26.4454i −0.372397 + 0.645011i −0.989934 0.141531i \(-0.954797\pi\)
0.617537 + 0.786542i \(0.288131\pi\)
\(42\) 0 0
\(43\) −17.3388 30.0317i −0.403229 0.698413i 0.590885 0.806756i \(-0.298779\pi\)
−0.994114 + 0.108343i \(0.965445\pi\)
\(44\) −78.9246 −1.79374
\(45\) 0 0
\(46\) 49.5322i 1.07679i
\(47\) −74.8051 + 43.1887i −1.59160 + 0.918909i −0.598564 + 0.801075i \(0.704262\pi\)
−0.993033 + 0.117834i \(0.962405\pi\)
\(48\) 0 0
\(49\) −23.5293 + 40.7539i −0.480189 + 0.831711i
\(50\) 27.9002 + 16.1082i 0.558004 + 0.322164i
\(51\) 0 0
\(52\) −35.0091 60.6375i −0.673251 1.16611i
\(53\) 11.8546i 0.223672i −0.993727 0.111836i \(-0.964327\pi\)
0.993727 0.111836i \(-0.0356731\pi\)
\(54\) 0 0
\(55\) −73.1391 −1.32980
\(56\) −0.0418166 0.0724285i −0.000746725 0.00129337i
\(57\) 0 0
\(58\) −30.3564 17.5263i −0.523385 0.302177i
\(59\) 77.9699 + 45.0160i 1.32152 + 0.762982i 0.983972 0.178324i \(-0.0570676\pi\)
0.337553 + 0.941307i \(0.390401\pi\)
\(60\) 0 0
\(61\) −1.04031 + 0.600624i −0.0170543 + 0.00984629i −0.508503 0.861060i \(-0.669801\pi\)
0.491449 + 0.870907i \(0.336468\pi\)
\(62\) 97.2267 1.56817
\(63\) 0 0
\(64\) 63.3182 0.989347
\(65\) −32.4427 56.1925i −0.499119 0.864499i
\(66\) 0 0
\(67\) 29.0384 50.2960i 0.433409 0.750687i −0.563755 0.825942i \(-0.690644\pi\)
0.997164 + 0.0752549i \(0.0239771\pi\)
\(68\) −66.9835 + 9.39240i −0.985051 + 0.138124i
\(69\) 0 0
\(70\) 7.25586 + 12.5675i 0.103655 + 0.179536i
\(71\) 119.490 1.68296 0.841481 0.540287i \(-0.181684\pi\)
0.841481 + 0.540287i \(0.181684\pi\)
\(72\) 0 0
\(73\) 108.335i 1.48404i 0.670377 + 0.742021i \(0.266133\pi\)
−0.670377 + 0.742021i \(0.733867\pi\)
\(74\) 18.4117 + 31.8899i 0.248806 + 0.430945i
\(75\) 0 0
\(76\) 34.0694 59.0100i 0.448282 0.776447i
\(77\) 23.9367 + 13.8199i 0.310866 + 0.179479i
\(78\) 0 0
\(79\) −2.99178 + 1.72730i −0.0378706 + 0.0218646i −0.518816 0.854886i \(-0.673627\pi\)
0.480945 + 0.876751i \(0.340294\pi\)
\(80\) 59.3052 0.741314
\(81\) 0 0
\(82\) 86.2557i 1.05190i
\(83\) 37.0145 21.3704i 0.445958 0.257474i −0.260163 0.965565i \(-0.583776\pi\)
0.706122 + 0.708090i \(0.250443\pi\)
\(84\) 0 0
\(85\) −62.0733 + 8.70389i −0.730274 + 0.102399i
\(86\) −84.8297 48.9765i −0.986392 0.569494i
\(87\) 0 0
\(88\) 1.03112 0.595315i 0.0117172 0.00676494i
\(89\) 43.3483i 0.487060i −0.969893 0.243530i \(-0.921695\pi\)
0.969893 0.243530i \(-0.0783054\pi\)
\(90\) 0 0
\(91\) 24.5206i 0.269457i
\(92\) −34.8849 60.4224i −0.379183 0.656765i
\(93\) 0 0
\(94\) −121.994 + 211.300i −1.29781 + 2.24787i
\(95\) 31.5720 54.6843i 0.332337 0.575624i
\(96\) 0 0
\(97\) 42.1943 24.3609i 0.434993 0.251143i −0.266478 0.963841i \(-0.585860\pi\)
0.701471 + 0.712698i \(0.252527\pi\)
\(98\) 132.925i 1.35637i
\(99\) 0 0
\(100\) 45.3791 0.453791
\(101\) −49.3410 + 28.4870i −0.488524 + 0.282050i −0.723962 0.689840i \(-0.757681\pi\)
0.235438 + 0.971889i \(0.424348\pi\)
\(102\) 0 0
\(103\) 30.2358 52.3700i 0.293552 0.508446i −0.681095 0.732195i \(-0.738496\pi\)
0.974647 + 0.223749i \(0.0718294\pi\)
\(104\) 0.914756 + 0.528135i 0.00879573 + 0.00507822i
\(105\) 0 0
\(106\) −16.7427 28.9991i −0.157950 0.273577i
\(107\) −2.02648 −0.0189390 −0.00946952 0.999955i \(-0.503014\pi\)
−0.00946952 + 0.999955i \(0.503014\pi\)
\(108\) 0 0
\(109\) 57.0549i 0.523440i 0.965144 + 0.261720i \(0.0842896\pi\)
−0.965144 + 0.261720i \(0.915710\pi\)
\(110\) −178.915 + 103.297i −1.62650 + 0.939062i
\(111\) 0 0
\(112\) −19.4092 11.2059i −0.173296 0.100053i
\(113\) −86.9813 + 150.656i −0.769746 + 1.33324i 0.167954 + 0.985795i \(0.446284\pi\)
−0.937701 + 0.347445i \(0.887049\pi\)
\(114\) 0 0
\(115\) −32.3276 55.9931i −0.281110 0.486897i
\(116\) −49.3740 −0.425638
\(117\) 0 0
\(118\) 254.310 2.15517
\(119\) 21.9597 + 8.88036i 0.184536 + 0.0746249i
\(120\) 0 0
\(121\) −136.244 + 235.982i −1.12598 + 1.95026i
\(122\) −1.69656 + 2.93853i −0.0139063 + 0.0240863i
\(123\) 0 0
\(124\) 118.603 68.4755i 0.956476 0.552222i
\(125\) 134.230 1.07384
\(126\) 0 0
\(127\) 44.1786 0.347863 0.173932 0.984758i \(-0.444353\pi\)
0.173932 + 0.984758i \(0.444353\pi\)
\(128\) −1.66336 + 0.960340i −0.0129950 + 0.00750265i
\(129\) 0 0
\(130\) −158.725 91.6399i −1.22096 0.704923i
\(131\) 10.9841 19.0250i 0.0838479 0.145229i −0.821052 0.570854i \(-0.806612\pi\)
0.904900 + 0.425625i \(0.139946\pi\)
\(132\) 0 0
\(133\) −20.6655 + 11.9312i −0.155380 + 0.0897086i
\(134\) 164.048i 1.22424i
\(135\) 0 0
\(136\) 0.804264 0.627952i 0.00591371 0.00461730i
\(137\) 61.9886 35.7891i 0.452471 0.261234i −0.256402 0.966570i \(-0.582537\pi\)
0.708873 + 0.705336i \(0.249204\pi\)
\(138\) 0 0
\(139\) 167.030 + 96.4351i 1.20166 + 0.693778i 0.960924 0.276813i \(-0.0892784\pi\)
0.240734 + 0.970591i \(0.422612\pi\)
\(140\) 17.7023 + 10.2204i 0.126445 + 0.0730029i
\(141\) 0 0
\(142\) 292.301 168.760i 2.05846 1.18845i
\(143\) −349.084 −2.44114
\(144\) 0 0
\(145\) −45.7546 −0.315549
\(146\) 153.005 + 265.013i 1.04798 + 1.81516i
\(147\) 0 0
\(148\) 44.9193 + 25.9342i 0.303509 + 0.175231i
\(149\) −107.129 61.8512i −0.718989 0.415108i 0.0953916 0.995440i \(-0.469590\pi\)
−0.814380 + 0.580331i \(0.802923\pi\)
\(150\) 0 0
\(151\) 36.8378 + 63.8049i 0.243959 + 0.422549i 0.961838 0.273618i \(-0.0882205\pi\)
−0.717879 + 0.696167i \(0.754887\pi\)
\(152\) 1.02792i 0.00676263i
\(153\) 0 0
\(154\) 78.0730 0.506968
\(155\) 109.909 63.4559i 0.709089 0.409393i
\(156\) 0 0
\(157\) 3.12950 5.42045i 0.0199331 0.0345252i −0.855887 0.517163i \(-0.826988\pi\)
0.875820 + 0.482638i \(0.160321\pi\)
\(158\) −4.87906 + 8.45078i −0.0308801 + 0.0534860i
\(159\) 0 0
\(160\) 144.308 83.3161i 0.901923 0.520725i
\(161\) 24.4336i 0.151762i
\(162\) 0 0
\(163\) 47.6644i 0.292420i 0.989254 + 0.146210i \(0.0467074\pi\)
−0.989254 + 0.146210i \(0.953293\pi\)
\(164\) 60.7487 + 105.220i 0.370419 + 0.641584i
\(165\) 0 0
\(166\) 60.3642 104.554i 0.363640 0.629842i
\(167\) −61.6977 + 106.864i −0.369447 + 0.639902i −0.989479 0.144675i \(-0.953786\pi\)
0.620032 + 0.784577i \(0.287120\pi\)
\(168\) 0 0
\(169\) −70.3451 121.841i −0.416243 0.720954i
\(170\) −139.553 + 108.960i −0.820900 + 0.640941i
\(171\) 0 0
\(172\) −137.974 −0.802173
\(173\) −63.7569 110.430i −0.368537 0.638325i 0.620800 0.783969i \(-0.286808\pi\)
−0.989337 + 0.145644i \(0.953475\pi\)
\(174\) 0 0
\(175\) −13.7628 7.94598i −0.0786448 0.0454056i
\(176\) 159.531 276.315i 0.906425 1.56997i
\(177\) 0 0
\(178\) −61.2223 106.040i −0.343946 0.595731i
\(179\) 176.481i 0.985925i −0.870050 0.492963i \(-0.835914\pi\)
0.870050 0.492963i \(-0.164086\pi\)
\(180\) 0 0
\(181\) 184.304i 1.01825i −0.860692 0.509126i \(-0.829969\pi\)
0.860692 0.509126i \(-0.170031\pi\)
\(182\) 34.6313 + 59.9832i 0.190282 + 0.329578i
\(183\) 0 0
\(184\) 0.911511 + 0.526261i 0.00495387 + 0.00286012i
\(185\) 41.6265 + 24.0331i 0.225008 + 0.129908i
\(186\) 0 0
\(187\) −126.424 + 312.626i −0.676063 + 1.67180i
\(188\) 343.674i 1.82806i
\(189\) 0 0
\(190\) 178.361i 0.938741i
\(191\) 43.0602 24.8608i 0.225446 0.130161i −0.383023 0.923739i \(-0.625117\pi\)
0.608469 + 0.793577i \(0.291784\pi\)
\(192\) 0 0
\(193\) 70.3903 + 40.6399i 0.364717 + 0.210569i 0.671148 0.741324i \(-0.265802\pi\)
−0.306431 + 0.951893i \(0.599135\pi\)
\(194\) 68.8115 119.185i 0.354698 0.614356i
\(195\) 0 0
\(196\) 93.6170 + 162.149i 0.477638 + 0.827293i
\(197\) 197.609 1.00309 0.501546 0.865131i \(-0.332765\pi\)
0.501546 + 0.865131i \(0.332765\pi\)
\(198\) 0 0
\(199\) 356.582i 1.79187i −0.444187 0.895934i \(-0.646507\pi\)
0.444187 0.895934i \(-0.353493\pi\)
\(200\) −0.592859 + 0.342287i −0.00296429 + 0.00171144i
\(201\) 0 0
\(202\) −80.4664 + 139.372i −0.398348 + 0.689960i
\(203\) 14.9744 + 8.64549i 0.0737656 + 0.0425886i
\(204\) 0 0
\(205\) 56.2955 + 97.5067i 0.274612 + 0.475642i
\(206\) 170.812i 0.829186i
\(207\) 0 0
\(208\) 283.056 1.36085
\(209\) −169.857 294.201i −0.812714 1.40766i
\(210\) 0 0
\(211\) −152.648 88.1313i −0.723450 0.417684i 0.0925713 0.995706i \(-0.470491\pi\)
−0.816021 + 0.578022i \(0.803825\pi\)
\(212\) −40.8474 23.5833i −0.192676 0.111242i
\(213\) 0 0
\(214\) −4.95724 + 2.86206i −0.0231647 + 0.0133741i
\(215\) −127.860 −0.594696
\(216\) 0 0
\(217\) −47.9608 −0.221017
\(218\) 80.5806 + 139.570i 0.369636 + 0.640228i
\(219\) 0 0
\(220\) −145.501 + 252.015i −0.661368 + 1.14552i
\(221\) −296.268 + 41.5426i −1.34058 + 0.187976i
\(222\) 0 0
\(223\) −124.855 216.256i −0.559889 0.969756i −0.997505 0.0705940i \(-0.977511\pi\)
0.437616 0.899162i \(-0.355823\pi\)
\(224\) −62.9714 −0.281122
\(225\) 0 0
\(226\) 491.387i 2.17428i
\(227\) 141.368 + 244.856i 0.622766 + 1.07866i 0.988968 + 0.148128i \(0.0473246\pi\)
−0.366202 + 0.930535i \(0.619342\pi\)
\(228\) 0 0
\(229\) 160.551 278.083i 0.701096 1.21433i −0.266986 0.963700i \(-0.586028\pi\)
0.968082 0.250634i \(-0.0806390\pi\)
\(230\) −158.162 91.3149i −0.687661 0.397021i
\(231\) 0 0
\(232\) 0.645050 0.372420i 0.00278039 0.00160526i
\(233\) 308.597 1.32445 0.662225 0.749305i \(-0.269612\pi\)
0.662225 + 0.749305i \(0.269612\pi\)
\(234\) 0 0
\(235\) 318.481i 1.35524i
\(236\) 310.223 179.107i 1.31450 0.758929i
\(237\) 0 0
\(238\) 66.2607 9.29106i 0.278406 0.0390381i
\(239\) 345.060 + 199.221i 1.44377 + 0.833559i 0.998098 0.0616393i \(-0.0196328\pi\)
0.445668 + 0.895198i \(0.352966\pi\)
\(240\) 0 0
\(241\) −257.575 + 148.711i −1.06878 + 0.617058i −0.927847 0.372962i \(-0.878342\pi\)
−0.140929 + 0.990020i \(0.545009\pi\)
\(242\) 769.688i 3.18053i
\(243\) 0 0
\(244\) 4.77947i 0.0195880i
\(245\) 86.7545 + 150.263i 0.354100 + 0.613319i
\(246\) 0 0
\(247\) 150.689 261.001i 0.610077 1.05668i
\(248\) −1.03300 + 1.78920i −0.00416531 + 0.00721453i
\(249\) 0 0
\(250\) 328.358 189.577i 1.31343 0.758310i
\(251\) 129.889i 0.517488i −0.965946 0.258744i \(-0.916691\pi\)
0.965946 0.258744i \(-0.0833085\pi\)
\(252\) 0 0
\(253\) −347.845 −1.37488
\(254\) 108.071 62.3950i 0.425478 0.245650i
\(255\) 0 0
\(256\) −129.349 + 224.039i −0.505270 + 0.875153i
\(257\) −247.879 143.113i −0.964510 0.556860i −0.0669517 0.997756i \(-0.521327\pi\)
−0.897558 + 0.440896i \(0.854661\pi\)
\(258\) 0 0
\(259\) −9.08225 15.7309i −0.0350666 0.0607371i
\(260\) −258.163 −0.992935
\(261\) 0 0
\(262\) 62.0528i 0.236843i
\(263\) −392.362 + 226.530i −1.49187 + 0.861333i −0.999957 0.00931071i \(-0.997036\pi\)
−0.491915 + 0.870643i \(0.663703\pi\)
\(264\) 0 0
\(265\) −37.8531 21.8545i −0.142842 0.0824698i
\(266\) −33.7018 + 58.3733i −0.126699 + 0.219448i
\(267\) 0 0
\(268\) −115.537 200.115i −0.431107 0.746699i
\(269\) −492.362 −1.83034 −0.915171 0.403065i \(-0.867945\pi\)
−0.915171 + 0.403065i \(0.867945\pi\)
\(270\) 0 0
\(271\) −368.404 −1.35943 −0.679713 0.733478i \(-0.737896\pi\)
−0.679713 + 0.733478i \(0.737896\pi\)
\(272\) 102.511 253.494i 0.376880 0.931965i
\(273\) 0 0
\(274\) 101.092 175.097i 0.368950 0.639041i
\(275\) 113.122 195.932i 0.411351 0.712481i
\(276\) 0 0
\(277\) 64.1297 37.0253i 0.231515 0.133665i −0.379756 0.925087i \(-0.623992\pi\)
0.611271 + 0.791421i \(0.290659\pi\)
\(278\) 544.794 1.95969
\(279\) 0 0
\(280\) −0.308363 −0.00110130
\(281\) −27.0876 + 15.6390i −0.0963971 + 0.0556549i −0.547424 0.836856i \(-0.684391\pi\)
0.451027 + 0.892511i \(0.351058\pi\)
\(282\) 0 0
\(283\) −161.385 93.1759i −0.570267 0.329244i 0.186989 0.982362i \(-0.440127\pi\)
−0.757256 + 0.653118i \(0.773460\pi\)
\(284\) 237.711 411.728i 0.837011 1.44974i
\(285\) 0 0
\(286\) −853.940 + 493.023i −2.98581 + 1.72386i
\(287\) 42.5489i 0.148254i
\(288\) 0 0
\(289\) −70.0920 + 280.371i −0.242533 + 0.970143i
\(290\) −111.927 + 64.6208i −0.385954 + 0.222831i
\(291\) 0 0
\(292\) 373.290 + 215.519i 1.27839 + 0.738079i
\(293\) −226.180 130.585i −0.771945 0.445683i 0.0616231 0.998099i \(-0.480372\pi\)
−0.833568 + 0.552417i \(0.813706\pi\)
\(294\) 0 0
\(295\) 287.482 165.978i 0.974516 0.562637i
\(296\) −0.782468 −0.00264347
\(297\) 0 0
\(298\) −349.418 −1.17254
\(299\) −154.296 267.248i −0.516040 0.893807i
\(300\) 0 0
\(301\) 41.8455 + 24.1595i 0.139022 + 0.0802641i
\(302\) 180.228 + 104.055i 0.596781 + 0.344551i
\(303\) 0 0
\(304\) 137.729 + 238.554i 0.453057 + 0.784719i
\(305\) 4.42911i 0.0145217i
\(306\) 0 0
\(307\) 443.373 1.44421 0.722106 0.691783i \(-0.243174\pi\)
0.722106 + 0.691783i \(0.243174\pi\)
\(308\) 95.2382 54.9858i 0.309215 0.178525i
\(309\) 0 0
\(310\) 179.242 310.456i 0.578199 1.00147i
\(311\) −148.284 + 256.836i −0.476799 + 0.825840i −0.999647 0.0265862i \(-0.991536\pi\)
0.522848 + 0.852426i \(0.324870\pi\)
\(312\) 0 0
\(313\) −433.167 + 250.089i −1.38392 + 0.799006i −0.992621 0.121258i \(-0.961307\pi\)
−0.391298 + 0.920264i \(0.627974\pi\)
\(314\) 17.6796i 0.0563044i
\(315\) 0 0
\(316\) 13.7450i 0.0434969i
\(317\) 189.329 + 327.928i 0.597254 + 1.03447i 0.993225 + 0.116211i \(0.0370748\pi\)
−0.395971 + 0.918263i \(0.629592\pi\)
\(318\) 0 0
\(319\) −123.080 + 213.181i −0.385831 + 0.668278i
\(320\) 116.730 202.182i 0.364781 0.631820i
\(321\) 0 0
\(322\) 34.5085 + 59.7704i 0.107169 + 0.185622i
\(323\) −179.169 229.475i −0.554704 0.710450i
\(324\) 0 0
\(325\) 200.712 0.617575
\(326\) 67.3180 + 116.598i 0.206497 + 0.357663i
\(327\) 0 0
\(328\) −1.58731 0.916434i −0.00483936 0.00279401i
\(329\) 60.1781 104.231i 0.182912 0.316813i
\(330\) 0 0
\(331\) −82.0944 142.192i −0.248019 0.429582i 0.714957 0.699169i \(-0.246446\pi\)
−0.962976 + 0.269587i \(0.913113\pi\)
\(332\) 170.055i 0.512213i
\(333\) 0 0
\(334\) 348.551i 1.04357i
\(335\) −107.067 185.446i −0.319604 0.553570i
\(336\) 0 0
\(337\) 46.6553 + 26.9365i 0.138443 + 0.0799301i 0.567622 0.823289i \(-0.307864\pi\)
−0.429179 + 0.903220i \(0.641197\pi\)
\(338\) −344.161 198.702i −1.01823 0.587875i
\(339\) 0 0
\(340\) −93.4960 + 231.201i −0.274988 + 0.680003i
\(341\) 682.785i 2.00230i
\(342\) 0 0
\(343\) 133.845i 0.390220i
\(344\) 1.80257 1.04071i 0.00524002 0.00302533i
\(345\) 0 0
\(346\) −311.929 180.092i −0.901528 0.520497i
\(347\) 66.4656 115.122i 0.191543 0.331763i −0.754218 0.656624i \(-0.771984\pi\)
0.945762 + 0.324861i \(0.105317\pi\)
\(348\) 0 0
\(349\) 100.388 + 173.877i 0.287644 + 0.498214i 0.973247 0.229762i \(-0.0737947\pi\)
−0.685603 + 0.727976i \(0.740461\pi\)
\(350\) −44.8895 −0.128256
\(351\) 0 0
\(352\) 896.481i 2.54682i
\(353\) 351.282 202.813i 0.995133 0.574540i 0.0883284 0.996091i \(-0.471848\pi\)
0.906805 + 0.421551i \(0.138514\pi\)
\(354\) 0 0
\(355\) 220.286 381.546i 0.620523 1.07478i
\(356\) −149.365 86.2361i −0.419566 0.242236i
\(357\) 0 0
\(358\) −249.250 431.713i −0.696228 1.20590i
\(359\) 485.639i 1.35276i 0.736555 + 0.676378i \(0.236451\pi\)
−0.736555 + 0.676378i \(0.763549\pi\)
\(360\) 0 0
\(361\) −67.7107 −0.187564
\(362\) −260.298 450.850i −0.719056 1.24544i
\(363\) 0 0
\(364\) 84.4907 + 48.7807i 0.232117 + 0.134013i
\(365\) 345.926 + 199.721i 0.947743 + 0.547180i
\(366\) 0 0
\(367\) −160.726 + 92.7954i −0.437946 + 0.252848i −0.702726 0.711460i \(-0.748034\pi\)
0.264780 + 0.964309i \(0.414701\pi\)
\(368\) 282.052 0.766446
\(369\) 0 0
\(370\) 135.771 0.366948
\(371\) 8.25895 + 14.3049i 0.0222613 + 0.0385578i
\(372\) 0 0
\(373\) 115.761 200.505i 0.310352 0.537546i −0.668086 0.744084i \(-0.732886\pi\)
0.978439 + 0.206538i \(0.0662197\pi\)
\(374\) 132.271 + 943.309i 0.353665 + 2.52222i
\(375\) 0 0
\(376\) −2.59228 4.48996i −0.00689435 0.0119414i
\(377\) −218.381 −0.579261
\(378\) 0 0
\(379\) 384.647i 1.01490i −0.861681 0.507450i \(-0.830588\pi\)
0.861681 0.507450i \(-0.169412\pi\)
\(380\) −125.617 217.575i −0.330571 0.572566i
\(381\) 0 0
\(382\) 70.2235 121.631i 0.183831 0.318405i
\(383\) 550.654 + 317.920i 1.43774 + 0.830079i 0.997692 0.0678966i \(-0.0216288\pi\)
0.440046 + 0.897975i \(0.354962\pi\)
\(384\) 0 0
\(385\) 88.2567 50.9551i 0.229238 0.132351i
\(386\) 229.588 0.594788
\(387\) 0 0
\(388\) 193.852i 0.499618i
\(389\) −98.7344 + 57.0043i −0.253816 + 0.146541i −0.621510 0.783406i \(-0.713481\pi\)
0.367694 + 0.929947i \(0.380147\pi\)
\(390\) 0 0
\(391\) −295.217 + 41.3952i −0.755031 + 0.105870i
\(392\) −2.44613 1.41227i −0.00624013 0.00360274i
\(393\) 0 0
\(394\) 483.398 279.090i 1.22690 0.708350i
\(395\) 12.7375i 0.0322467i
\(396\) 0 0
\(397\) 319.137i 0.803871i −0.915668 0.401936i \(-0.868338\pi\)
0.915668 0.401936i \(-0.131662\pi\)
\(398\) −503.613 872.283i −1.26536 2.19167i
\(399\) 0 0
\(400\) −91.7251 + 158.873i −0.229313 + 0.397181i
\(401\) −387.164 + 670.588i −0.965496 + 1.67229i −0.257221 + 0.966353i \(0.582807\pi\)
−0.708276 + 0.705936i \(0.750527\pi\)
\(402\) 0 0
\(403\) 524.581 302.867i 1.30169 0.751531i
\(404\) 226.685i 0.561103i
\(405\) 0 0
\(406\) 48.8413 0.120299
\(407\) 223.950 129.298i 0.550247 0.317685i
\(408\) 0 0
\(409\) 9.35760 16.2078i 0.0228792 0.0396280i −0.854359 0.519683i \(-0.826050\pi\)
0.877238 + 0.480055i \(0.159383\pi\)
\(410\) 275.424 + 159.016i 0.671766 + 0.387844i
\(411\) 0 0
\(412\) −120.301 208.367i −0.291992 0.505745i
\(413\) −125.448 −0.303749
\(414\) 0 0
\(415\) 157.589i 0.379732i
\(416\) 688.763 397.657i 1.65568 0.955907i
\(417\) 0 0
\(418\) −831.021 479.790i −1.98809 1.14782i
\(419\) 289.963 502.231i 0.692036 1.19864i −0.279133 0.960252i \(-0.590047\pi\)
0.971170 0.238390i \(-0.0766196\pi\)
\(420\) 0 0
\(421\) 149.481 + 258.909i 0.355062 + 0.614985i 0.987128 0.159929i \(-0.0511266\pi\)
−0.632067 + 0.774914i \(0.717793\pi\)
\(422\) −497.883 −1.17982
\(423\) 0 0
\(424\) 0.711538 0.00167816
\(425\) 72.6896 179.750i 0.171034 0.422941i
\(426\) 0 0
\(427\) 0.836894 1.44954i 0.00195994 0.00339471i
\(428\) −4.03142 + 6.98263i −0.00941921 + 0.0163146i
\(429\) 0 0
\(430\) −312.775 + 180.581i −0.727383 + 0.419955i
\(431\) 210.336 0.488018 0.244009 0.969773i \(-0.421537\pi\)
0.244009 + 0.969773i \(0.421537\pi\)
\(432\) 0 0
\(433\) −530.660 −1.22554 −0.612771 0.790260i \(-0.709945\pi\)
−0.612771 + 0.790260i \(0.709945\pi\)
\(434\) −117.323 + 67.7366i −0.270330 + 0.156075i
\(435\) 0 0
\(436\) 196.594 + 113.504i 0.450904 + 0.260329i
\(437\) 150.155 260.075i 0.343603 0.595138i
\(438\) 0 0
\(439\) −231.727 + 133.788i −0.527853 + 0.304756i −0.740142 0.672451i \(-0.765242\pi\)
0.212289 + 0.977207i \(0.431908\pi\)
\(440\) 4.38996i 0.00997718i
\(441\) 0 0
\(442\) −666.069 + 520.052i −1.50694 + 1.17659i
\(443\) −674.555 + 389.455i −1.52270 + 0.879130i −0.523058 + 0.852297i \(0.675209\pi\)
−0.999640 + 0.0268335i \(0.991458\pi\)
\(444\) 0 0
\(445\) −138.416 79.9146i −0.311048 0.179583i
\(446\) −610.850 352.674i −1.36962 0.790750i
\(447\) 0 0
\(448\) −76.4060 + 44.1130i −0.170549 + 0.0984665i
\(449\) −80.4398 −0.179153 −0.0895766 0.995980i \(-0.528551\pi\)
−0.0895766 + 0.995980i \(0.528551\pi\)
\(450\) 0 0
\(451\) 605.739 1.34310
\(452\) 346.077 + 599.423i 0.765657 + 1.32616i
\(453\) 0 0
\(454\) 691.638 + 399.318i 1.52343 + 0.879554i
\(455\) 78.2971 + 45.2049i 0.172082 + 0.0993514i
\(456\) 0 0
\(457\) 218.961 + 379.252i 0.479127 + 0.829872i 0.999713 0.0239367i \(-0.00762001\pi\)
−0.520587 + 0.853809i \(0.674287\pi\)
\(458\) 907.007i 1.98036i
\(459\) 0 0
\(460\) −257.247 −0.559233
\(461\) −657.551 + 379.637i −1.42636 + 0.823509i −0.996831 0.0795452i \(-0.974653\pi\)
−0.429527 + 0.903054i \(0.641320\pi\)
\(462\) 0 0
\(463\) 248.865 431.047i 0.537506 0.930987i −0.461532 0.887124i \(-0.652700\pi\)
0.999038 0.0438634i \(-0.0139666\pi\)
\(464\) 99.8000 172.859i 0.215086 0.372540i
\(465\) 0 0
\(466\) 754.900 435.842i 1.61996 0.935283i
\(467\) 56.4240i 0.120822i 0.998174 + 0.0604112i \(0.0192412\pi\)
−0.998174 + 0.0604112i \(0.980759\pi\)
\(468\) 0 0
\(469\) 80.9228i 0.172543i
\(470\) 449.802 + 779.080i 0.957026 + 1.65762i
\(471\) 0 0
\(472\) −2.70195 + 4.67992i −0.00572447 + 0.00991508i
\(473\) −343.942 + 595.726i −0.727151 + 1.25946i
\(474\) 0 0
\(475\) 97.6624 + 169.156i 0.205605 + 0.356119i
\(476\) 74.2852 58.0003i 0.156061 0.121849i
\(477\) 0 0
\(478\) 1125.46 2.35453
\(479\) −149.317 258.625i −0.311727 0.539927i 0.667009 0.745049i \(-0.267574\pi\)
−0.978736 + 0.205122i \(0.934241\pi\)
\(480\) 0 0
\(481\) 198.678 + 114.707i 0.413052 + 0.238476i
\(482\) −420.059 + 727.563i −0.871492 + 1.50947i
\(483\) 0 0
\(484\) 542.081 + 938.912i 1.12000 + 1.93990i
\(485\) 179.642i 0.370395i
\(486\) 0 0
\(487\) 768.554i 1.57814i −0.614303 0.789070i \(-0.710563\pi\)
0.614303 0.789070i \(-0.289437\pi\)
\(488\) −0.0360507 0.0624416i −7.38744e−5 0.000127954i
\(489\) 0 0
\(490\) 424.443 + 245.053i 0.866211 + 0.500107i
\(491\) 49.6394 + 28.6593i 0.101099 + 0.0583693i 0.549697 0.835364i \(-0.314743\pi\)
−0.448598 + 0.893734i \(0.648077\pi\)
\(492\) 0 0
\(493\) −79.0887 + 195.574i −0.160423 + 0.396702i
\(494\) 851.293i 1.72327i
\(495\) 0 0
\(496\) 553.639i 1.11621i
\(497\) −144.189 + 83.2474i −0.290118 + 0.167500i
\(498\) 0 0
\(499\) −187.998 108.541i −0.376750 0.217517i 0.299653 0.954048i \(-0.403129\pi\)
−0.676404 + 0.736531i \(0.736462\pi\)
\(500\) 267.034 462.516i 0.534067 0.925031i
\(501\) 0 0
\(502\) −183.447 317.740i −0.365433 0.632948i
\(503\) 449.219 0.893080 0.446540 0.894764i \(-0.352656\pi\)
0.446540 + 0.894764i \(0.352656\pi\)
\(504\) 0 0
\(505\) 210.068i 0.415977i
\(506\) −850.911 + 491.274i −1.68164 + 0.970897i
\(507\) 0 0
\(508\) 87.8879 152.226i 0.173008 0.299658i
\(509\) 114.228 + 65.9498i 0.224417 + 0.129567i 0.607994 0.793942i \(-0.291974\pi\)
−0.383577 + 0.923509i \(0.625308\pi\)
\(510\) 0 0
\(511\) −75.4757 130.728i −0.147702 0.255827i
\(512\) 723.054i 1.41221i
\(513\) 0 0
\(514\) −808.494 −1.57294
\(515\) −111.482 193.093i −0.216470 0.374937i
\(516\) 0 0
\(517\) 1483.87 + 856.715i 2.87016 + 1.65709i
\(518\) −44.4346 25.6543i −0.0857811 0.0495258i
\(519\) 0 0
\(520\) 3.37279 1.94728i 0.00648613 0.00374477i
\(521\) 736.381 1.41340 0.706700 0.707514i \(-0.250183\pi\)
0.706700 + 0.707514i \(0.250183\pi\)
\(522\) 0 0
\(523\) 92.6839 0.177216 0.0886079 0.996067i \(-0.471758\pi\)
0.0886079 + 0.996067i \(0.471758\pi\)
\(524\) −43.7029 75.6957i −0.0834025 0.144457i
\(525\) 0 0
\(526\) −639.873 + 1108.29i −1.21649 + 2.10702i
\(527\) −81.2546 579.481i −0.154183 1.09958i
\(528\) 0 0
\(529\) 110.752 + 191.827i 0.209360 + 0.362622i
\(530\) −123.463 −0.232950
\(531\) 0 0
\(532\) 94.9429i 0.178464i
\(533\) 268.691 + 465.387i 0.504112 + 0.873147i
\(534\) 0 0
\(535\) −3.73590 + 6.47077i −0.00698299 + 0.0120949i
\(536\) 3.01887 + 1.74295i 0.00563222 + 0.00325177i
\(537\) 0 0
\(538\) −1204.43 + 695.380i −2.23872 + 1.29253i
\(539\) 933.478 1.73187
\(540\) 0 0
\(541\) 875.030i 1.61743i 0.588200 + 0.808716i \(0.299837\pi\)
−0.588200 + 0.808716i \(0.700163\pi\)
\(542\) −901.203 + 520.310i −1.66274 + 0.959982i
\(543\) 0 0
\(544\) −106.685 760.845i −0.196113 1.39861i
\(545\) 182.183 + 105.183i 0.334280 + 0.192997i
\(546\) 0 0
\(547\) −435.805 + 251.612i −0.796718 + 0.459985i −0.842322 0.538974i \(-0.818812\pi\)
0.0456041 + 0.998960i \(0.485479\pi\)
\(548\) 284.792i 0.519693i
\(549\) 0 0
\(550\) 639.062i 1.16193i
\(551\) −106.260 184.048i −0.192849 0.334025i
\(552\) 0 0
\(553\) 2.40678 4.16867i 0.00435223 0.00753828i
\(554\) 104.584 181.145i 0.188780 0.326977i
\(555\) 0 0
\(556\) 664.573 383.691i 1.19527 0.690092i
\(557\) 228.618i 0.410446i −0.978715 0.205223i \(-0.934208\pi\)
0.978715 0.205223i \(-0.0657919\pi\)
\(558\) 0 0
\(559\) −610.258 −1.09170
\(560\) −71.5634 + 41.3171i −0.127792 + 0.0737806i
\(561\) 0 0
\(562\) −44.1750 + 76.5134i −0.0786033 + 0.136145i
\(563\) −507.200 292.832i −0.900888 0.520128i −0.0233997 0.999726i \(-0.507449\pi\)
−0.877488 + 0.479598i \(0.840782\pi\)
\(564\) 0 0
\(565\) 320.708 + 555.482i 0.567624 + 0.983154i
\(566\) −526.382 −0.930004
\(567\) 0 0
\(568\) 7.17205i 0.0126269i
\(569\) −205.791 + 118.814i −0.361672 + 0.208811i −0.669814 0.742529i \(-0.733626\pi\)
0.308142 + 0.951340i \(0.400293\pi\)
\(570\) 0 0
\(571\) 802.747 + 463.466i 1.40586 + 0.811675i 0.994986 0.100016i \(-0.0318896\pi\)
0.410876 + 0.911691i \(0.365223\pi\)
\(572\) −694.458 + 1202.84i −1.21409 + 2.10286i
\(573\) 0 0
\(574\) −60.0932 104.085i −0.104692 0.181332i
\(575\) 200.000 0.347826
\(576\) 0 0
\(577\) −114.402 −0.198270 −0.0991352 0.995074i \(-0.531608\pi\)
−0.0991352 + 0.995074i \(0.531608\pi\)
\(578\) 224.516 + 784.847i 0.388437 + 1.35787i
\(579\) 0 0
\(580\) −91.0232 + 157.657i −0.156936 + 0.271822i
\(581\) −29.7769 + 51.5751i −0.0512511 + 0.0887696i
\(582\) 0 0
\(583\) −203.650 + 117.577i −0.349313 + 0.201676i
\(584\) −6.50249 −0.0111344
\(585\) 0 0
\(586\) −737.719 −1.25891
\(587\) 18.0108 10.3985i 0.0306828 0.0177147i −0.484580 0.874747i \(-0.661028\pi\)
0.515263 + 0.857032i \(0.327694\pi\)
\(588\) 0 0
\(589\) 510.501 + 294.738i 0.866726 + 0.500404i
\(590\) 468.832 812.042i 0.794631 1.37634i
\(591\) 0 0
\(592\) −181.591 + 104.842i −0.306742 + 0.177098i
\(593\) 995.431i 1.67864i 0.543640 + 0.839318i \(0.317046\pi\)
−0.543640 + 0.839318i \(0.682954\pi\)
\(594\) 0 0
\(595\) 68.8398 53.7486i 0.115697 0.0903338i
\(596\) −426.241 + 246.090i −0.715169 + 0.412903i
\(597\) 0 0
\(598\) −754.888 435.835i −1.26235 0.728820i
\(599\) 508.130 + 293.369i 0.848297 + 0.489765i 0.860076 0.510166i \(-0.170416\pi\)
−0.0117787 + 0.999931i \(0.503749\pi\)
\(600\) 0 0
\(601\) 325.334 187.832i 0.541321 0.312532i −0.204293 0.978910i \(-0.565489\pi\)
0.745614 + 0.666378i \(0.232156\pi\)
\(602\) 136.485 0.226719
\(603\) 0 0
\(604\) 293.137 0.485326
\(605\) 502.344 + 870.085i 0.830320 + 1.43816i
\(606\) 0 0
\(607\) −123.401 71.2454i −0.203296 0.117373i 0.394896 0.918726i \(-0.370781\pi\)
−0.598192 + 0.801353i \(0.704114\pi\)
\(608\) 670.276 + 386.984i 1.10243 + 0.636487i
\(609\) 0 0
\(610\) 6.25538 + 10.8346i 0.0102547 + 0.0177617i
\(611\) 1520.07i 2.48784i
\(612\) 0 0
\(613\) −785.715 −1.28175 −0.640877 0.767644i \(-0.721429\pi\)
−0.640877 + 0.767644i \(0.721429\pi\)
\(614\) 1084.59 626.191i 1.76644 1.01985i
\(615\) 0 0
\(616\) −0.829497 + 1.43673i −0.00134659 + 0.00233235i
\(617\) 329.263 570.301i 0.533652 0.924313i −0.465575 0.885008i \(-0.654152\pi\)
0.999227 0.0393043i \(-0.0125142\pi\)
\(618\) 0 0
\(619\) 953.354 550.419i 1.54015 0.889207i 0.541323 0.840815i \(-0.317924\pi\)
0.998828 0.0483917i \(-0.0154096\pi\)
\(620\) 504.950i 0.814436i
\(621\) 0 0
\(622\) 837.709i 1.34680i
\(623\) 30.2002 + 52.3083i 0.0484755 + 0.0839620i
\(624\) 0 0
\(625\) 104.892 181.678i 0.167827 0.290684i
\(626\) −706.418 + 1223.55i −1.12846 + 1.95456i
\(627\) 0 0
\(628\) −12.4515 21.5666i −0.0198272 0.0343418i
\(629\) 174.680 136.387i 0.277711 0.216831i
\(630\) 0 0
\(631\) 479.339 0.759650 0.379825 0.925058i \(-0.375984\pi\)
0.379825 + 0.925058i \(0.375984\pi\)
\(632\) −0.103676 0.179573i −0.000164045 0.000284134i
\(633\) 0 0
\(634\) 926.288 + 534.793i 1.46102 + 0.843522i
\(635\) 81.4453 141.067i 0.128260 0.222153i
\(636\) 0 0
\(637\) 414.068 + 717.187i 0.650029 + 1.12588i
\(638\) 695.320i 1.08984i
\(639\) 0 0
\(640\) 7.08172i 0.0110652i
\(641\) −129.365 224.067i −0.201818 0.349558i 0.747297 0.664491i \(-0.231351\pi\)
−0.949114 + 0.314932i \(0.898018\pi\)
\(642\) 0 0
\(643\) −794.502 458.706i −1.23562 0.713384i −0.267422 0.963579i \(-0.586172\pi\)
−0.968195 + 0.250195i \(0.919505\pi\)
\(644\) 84.1910 + 48.6077i 0.130731 + 0.0754778i
\(645\) 0 0
\(646\) −762.386 308.303i −1.18016 0.477250i
\(647\) 194.253i 0.300236i −0.988668 0.150118i \(-0.952035\pi\)
0.988668 0.150118i \(-0.0479653\pi\)
\(648\) 0 0
\(649\) 1785.92i 2.75180i
\(650\) 490.988 283.472i 0.755367 0.436111i
\(651\) 0 0
\(652\) 164.237 + 94.8223i 0.251897 + 0.145433i
\(653\) 34.9563 60.5460i 0.0535318 0.0927198i −0.838018 0.545643i \(-0.816285\pi\)
0.891550 + 0.452923i \(0.149619\pi\)
\(654\) 0 0
\(655\) −40.4993 70.1468i −0.0618310 0.107094i
\(656\) −491.167 −0.748730
\(657\) 0 0
\(658\) 339.966i 0.516666i
\(659\) 207.820 119.985i 0.315356 0.182071i −0.333965 0.942586i \(-0.608387\pi\)
0.649321 + 0.760515i \(0.275053\pi\)
\(660\) 0 0
\(661\) 88.4982 153.283i 0.133885 0.231896i −0.791286 0.611446i \(-0.790588\pi\)
0.925171 + 0.379550i \(0.123921\pi\)
\(662\) −401.644 231.889i −0.606713 0.350286i
\(663\) 0 0
\(664\) 1.28269 + 2.22169i 0.00193177 + 0.00334592i
\(665\) 87.9832i 0.132306i
\(666\) 0 0
\(667\) −217.607 −0.326247
\(668\) 245.480 + 425.184i 0.367485 + 0.636502i
\(669\) 0 0
\(670\) −523.823 302.430i −0.781826 0.451387i
\(671\) 20.6362 + 11.9143i 0.0307543 + 0.0177560i
\(672\) 0 0
\(673\) −192.239 + 110.989i −0.285645 + 0.164917i −0.635976 0.771709i \(-0.719402\pi\)
0.350331 + 0.936626i \(0.386069\pi\)
\(674\) 152.173 0.225776
\(675\) 0 0
\(676\) −559.771 −0.828064
\(677\) −188.617 326.694i −0.278607 0.482561i 0.692432 0.721483i \(-0.256539\pi\)
−0.971039 + 0.238922i \(0.923206\pi\)
\(678\) 0 0
\(679\) −33.9439 + 58.7925i −0.0499910 + 0.0865869i
\(680\) −0.522426 3.72577i −0.000768273 0.00547907i
\(681\) 0 0
\(682\) −964.321 1670.25i −1.41396 2.44905i
\(683\) 539.646 0.790111 0.395055 0.918657i \(-0.370725\pi\)
0.395055 + 0.918657i \(0.370725\pi\)
\(684\) 0 0
\(685\) 263.915i 0.385278i
\(686\) −189.035 327.417i −0.275561 0.477285i
\(687\) 0 0
\(688\) 278.887 483.047i 0.405359 0.702103i
\(689\) −180.668 104.309i −0.262218 0.151392i
\(690\) 0 0
\(691\) −451.625 + 260.746i −0.653582 + 0.377346i −0.789827 0.613329i \(-0.789830\pi\)
0.136245 + 0.990675i \(0.456497\pi\)
\(692\) −507.346 −0.733159
\(693\) 0 0
\(694\) 375.486i 0.541047i
\(695\) 615.856 355.565i 0.886124 0.511604i
\(696\) 0 0
\(697\) 514.092 72.0859i 0.737578 0.103423i
\(698\) 491.144 + 283.562i 0.703645 + 0.406250i
\(699\) 0 0
\(700\) −54.7589 + 31.6151i −0.0782270 + 0.0451644i
\(701\) 795.541i 1.13487i 0.823420 + 0.567433i \(0.192063\pi\)
−0.823420 + 0.567433i \(0.807937\pi\)
\(702\) 0 0
\(703\) 223.256i 0.317577i
\(704\) −628.007 1087.74i −0.892055 1.54509i
\(705\) 0 0
\(706\) 572.879 992.255i 0.811443 1.40546i
\(707\) 39.6931 68.7504i 0.0561430 0.0972425i
\(708\) 0 0
\(709\) 524.674 302.920i 0.740019 0.427250i −0.0820571 0.996628i \(-0.526149\pi\)
0.822076 + 0.569377i \(0.192816\pi\)
\(710\) 1244.47i 1.75277i
\(711\) 0 0
\(712\) 2.60186 0.00365429
\(713\) 522.720 301.793i 0.733128 0.423272i
\(714\) 0 0
\(715\) −643.551 + 1114.66i −0.900072 + 1.55897i
\(716\) −608.099 351.086i −0.849301 0.490344i
\(717\) 0 0
\(718\) 685.885 + 1187.99i 0.955272 + 1.65458i
\(719\) 85.3362 0.118687 0.0593437 0.998238i \(-0.481099\pi\)
0.0593437 + 0.998238i \(0.481099\pi\)
\(720\) 0 0
\(721\) 84.2596i 0.116865i
\(722\) −165.636 + 95.6302i −0.229413 + 0.132452i
\(723\) 0 0
\(724\) −635.055 366.649i −0.877148 0.506422i
\(725\) 70.7670 122.572i 0.0976097 0.169065i
\(726\) 0 0
\(727\) 227.901 + 394.736i 0.313482 + 0.542966i 0.979114 0.203314i \(-0.0651712\pi\)
−0.665632 + 0.746280i \(0.731838\pi\)
\(728\) −1.47178 −0.00202167
\(729\) 0 0
\(730\) 1128.29 1.54560
\(731\) −221.010 + 546.524i −0.302340 + 0.747639i
\(732\) 0 0
\(733\) −391.901 + 678.792i −0.534653 + 0.926046i 0.464527 + 0.885559i \(0.346224\pi\)
−0.999180 + 0.0404872i \(0.987109\pi\)
\(734\) −262.116 + 453.999i −0.357107 + 0.618527i
\(735\) 0 0
\(736\) 686.319 396.247i 0.932499 0.538379i
\(737\) −1152.04 −1.56315
\(738\) 0 0
\(739\) 153.070 0.207131 0.103565 0.994623i \(-0.466975\pi\)
0.103565 + 0.994623i \(0.466975\pi\)
\(740\) 165.621 95.6216i 0.223813 0.129218i
\(741\) 0 0
\(742\) 40.4067 + 23.3288i 0.0544564 + 0.0314404i
\(743\) 208.917 361.854i 0.281180 0.487018i −0.690496 0.723337i \(-0.742608\pi\)
0.971676 + 0.236318i \(0.0759409\pi\)
\(744\) 0 0
\(745\) −394.995 + 228.051i −0.530195 + 0.306108i
\(746\) 653.975i 0.876642i
\(747\) 0 0
\(748\) 825.711 + 1057.55i 1.10389 + 1.41384i
\(749\) 2.44534 1.41182i 0.00326481 0.00188494i
\(750\) 0 0
\(751\) −298.480 172.328i −0.397444 0.229464i 0.287937 0.957649i \(-0.407031\pi\)
−0.685380 + 0.728185i \(0.740364\pi\)
\(752\) −1203.21 694.671i −1.60001 0.923765i
\(753\) 0 0
\(754\) −534.212 + 308.427i −0.708504 + 0.409055i
\(755\) 271.648 0.359799
\(756\) 0 0
\(757\) −612.380 −0.808956 −0.404478 0.914548i \(-0.632547\pi\)
−0.404478 + 0.914548i \(0.632547\pi\)
\(758\) −543.250 940.936i −0.716688 1.24134i
\(759\) 0 0
\(760\) 3.28226 + 1.89502i 0.00431877 + 0.00249344i
\(761\) −689.897 398.312i −0.906567 0.523407i −0.0272418 0.999629i \(-0.508672\pi\)
−0.879325 + 0.476222i \(0.842006\pi\)
\(762\) 0 0
\(763\) −39.7494 68.8480i −0.0520962 0.0902333i
\(764\) 197.830i 0.258940i
\(765\) 0 0
\(766\) 1796.04 2.34470
\(767\) 1372.12 792.192i 1.78894 1.03284i
\(768\) 0 0
\(769\) −133.749 + 231.661i −0.173926 + 0.301249i −0.939789 0.341755i \(-0.888979\pi\)
0.765863 + 0.643004i \(0.222312\pi\)
\(770\) 143.931 249.296i 0.186924 0.323761i
\(771\) 0 0
\(772\) 280.066 161.696i 0.362779 0.209451i
\(773\) 218.543i 0.282721i −0.989958 0.141361i \(-0.954852\pi\)
0.989958 0.141361i \(-0.0451477\pi\)
\(774\) 0 0
\(775\) 392.580i 0.506554i
\(776\) 1.46219 + 2.53259i 0.00188427 + 0.00326365i
\(777\) 0 0
\(778\) −161.018 + 278.892i −0.206964 + 0.358473i
\(779\) −261.480 + 452.896i −0.335661 + 0.581382i
\(780\) 0 0
\(781\) −1185.14 2052.72i −1.51746 2.62832i
\(782\) −663.706 + 518.207i −0.848729 + 0.662669i
\(783\) 0 0
\(784\) −756.915 −0.965452
\(785\) −11.5387 19.9857i −0.0146990 0.0254595i
\(786\) 0 0
\(787\) −1306.69 754.419i −1.66034 0.958601i −0.972549 0.232696i \(-0.925245\pi\)
−0.687795 0.725905i \(-0.741421\pi\)
\(788\) 393.119 680.901i 0.498881 0.864088i
\(789\) 0 0
\(790\) 17.9895 + 31.1588i 0.0227716 + 0.0394415i
\(791\) 242.395i 0.306441i
\(792\) 0 0
\(793\) 21.1396i 0.0266577i
\(794\) −450.728 780.684i −0.567668 0.983229i
\(795\) 0 0
\(796\) −1228.67 709.375i −1.54356 0.891175i
\(797\) −593.926 342.903i −0.745202 0.430243i 0.0787556 0.996894i \(-0.474905\pi\)
−0.823958 + 0.566651i \(0.808239\pi\)
\(798\) 0 0
\(799\) 1361.32 + 550.507i 1.70378 + 0.688996i
\(800\) 515.448i 0.644310i
\(801\) 0 0
\(802\) 2187.22i 2.72721i
\(803\) 1861.08 1074.50i 2.31766 1.33810i
\(804\) 0 0
\(805\) 78.0194 + 45.0445i 0.0969185 + 0.0559559i
\(806\) 855.499 1481.77i 1.06141 1.83842i
\(807\) 0 0
\(808\) −1.70985 2.96155i −0.00211615 0.00366528i
\(809\) −228.169 −0.282039 −0.141019 0.990007i \(-0.545038\pi\)
−0.141019 + 0.990007i \(0.545038\pi\)
\(810\) 0 0
\(811\) 63.4735i 0.0782657i 0.999234 + 0.0391328i \(0.0124595\pi\)
−0.999234 + 0.0391328i \(0.987540\pi\)
\(812\) 59.5795 34.3982i 0.0733738 0.0423624i
\(813\) 0 0
\(814\) 365.224 632.586i 0.448678 0.777132i
\(815\) 152.198 + 87.8714i 0.186746 + 0.107818i
\(816\) 0 0
\(817\) −296.940 514.314i −0.363451 0.629516i
\(818\) 52.8643i 0.0646262i
\(819\) 0 0
\(820\) 447.972 0.546307
\(821\) 339.051 + 587.254i 0.412973 + 0.715291i 0.995213 0.0977260i \(-0.0311569\pi\)
−0.582240 + 0.813017i \(0.697824\pi\)
\(822\) 0 0
\(823\) 389.065 + 224.627i 0.472740 + 0.272936i 0.717386 0.696676i \(-0.245338\pi\)
−0.244646 + 0.969612i \(0.578672\pi\)
\(824\) 3.14335 + 1.81482i 0.00381475 + 0.00220245i
\(825\) 0 0
\(826\) −306.876 + 177.175i −0.371520 + 0.214497i
\(827\) −1047.69 −1.26686 −0.633430 0.773800i \(-0.718353\pi\)
−0.633430 + 0.773800i \(0.718353\pi\)
\(828\) 0 0
\(829\) 838.983 1.01204 0.506021 0.862521i \(-0.331116\pi\)
0.506021 + 0.862521i \(0.331116\pi\)
\(830\) −222.568 385.499i −0.268154 0.464457i
\(831\) 0 0
\(832\) 557.138 964.991i 0.669637 1.15984i
\(833\) 792.244 111.088i 0.951073 0.133359i
\(834\) 0 0
\(835\) 227.485 + 394.016i 0.272437 + 0.471875i
\(836\) −1351.64 −1.61679
\(837\) 0 0
\(838\) 1638.10i 1.95477i
\(839\) 21.6089 + 37.4278i 0.0257556 + 0.0446100i 0.878616 0.477529i \(-0.158468\pi\)
−0.852860 + 0.522139i \(0.825134\pi\)
\(840\) 0 0
\(841\) 343.503 594.965i 0.408446 0.707449i
\(842\) 731.331 + 422.234i 0.868564 + 0.501465i
\(843\) 0 0
\(844\) −607.348 + 350.652i −0.719607 + 0.415465i
\(845\) −518.737 −0.613890
\(846\) 0 0
\(847\) 379.678i 0.448262i
\(848\) 165.130 95.3380i 0.194729 0.112427i
\(849\) 0 0
\(850\) −76.0513 542.373i −0.0894722 0.638086i
\(851\) 197.973 + 114.300i 0.232636 + 0.134313i
\(852\) 0 0
\(853\) 1071.00 618.341i 1.25557 0.724902i 0.283357 0.959014i \(-0.408552\pi\)
0.972209 + 0.234113i \(0.0752185\pi\)
\(854\) 4.72790i 0.00553618i
\(855\) 0 0
\(856\) 0.121633i 0.000142095i
\(857\) 153.442 + 265.770i 0.179046 + 0.310117i 0.941554 0.336862i \(-0.109366\pi\)
−0.762508 + 0.646979i \(0.776032\pi\)
\(858\) 0 0
\(859\) −37.9520 + 65.7347i −0.0441815 + 0.0765247i −0.887271 0.461249i \(-0.847401\pi\)
0.843089 + 0.537774i \(0.180735\pi\)
\(860\) −254.361 + 440.566i −0.295769 + 0.512286i
\(861\) 0 0
\(862\) 514.531 297.065i 0.596904 0.344622i
\(863\) 264.341i 0.306305i −0.988203 0.153152i \(-0.951057\pi\)
0.988203 0.153152i \(-0.0489425\pi\)
\(864\) 0 0
\(865\) −470.155 −0.543532
\(866\) −1298.12 + 749.469i −1.49898 + 0.865438i
\(867\) 0 0
\(868\) −95.4120 + 165.258i −0.109922 + 0.190390i
\(869\) 59.3465 + 34.2637i 0.0682929 + 0.0394289i
\(870\) 0 0
\(871\) −511.019 885.111i −0.586704 1.01620i
\(872\) −3.42455 −0.00392724
\(873\) 0 0
\(874\) 848.274i 0.970565i
\(875\) −161.975 + 93.5162i −0.185114 + 0.106876i
\(876\) 0 0
\(877\) −483.379 279.079i −0.551173 0.318220i 0.198422 0.980117i \(-0.436418\pi\)
−0.749595 + 0.661897i \(0.769752\pi\)
\(878\) −377.906 + 654.553i −0.430417 + 0.745504i
\(879\) 0 0
\(880\) −588.204 1018.80i −0.668414 1.15773i
\(881\) −615.701 −0.698866 −0.349433 0.936961i \(-0.613626\pi\)
−0.349433 + 0.936961i \(0.613626\pi\)
\(882\) 0 0
\(883\) 1536.97 1.74062 0.870311 0.492502i \(-0.163918\pi\)
0.870311 + 0.492502i \(0.163918\pi\)
\(884\) −446.245 + 1103.49i −0.504802 + 1.24830i
\(885\) 0 0
\(886\) −1100.08 + 1905.40i −1.24163 + 2.15056i
\(887\) 320.893 555.804i 0.361774 0.626611i −0.626479 0.779438i \(-0.715505\pi\)
0.988253 + 0.152828i \(0.0488379\pi\)
\(888\) 0 0
\(889\) −53.3103 + 30.7787i −0.0599666 + 0.0346217i
\(890\) −451.464 −0.507263
\(891\) 0 0
\(892\) −993.535 −1.11383
\(893\) −1281.09 + 739.637i −1.43459 + 0.828261i
\(894\) 0 0
\(895\) −563.523 325.350i −0.629634 0.363520i
\(896\) 1.33811 2.31768i 0.00149343 0.00258670i
\(897\) 0 0
\(898\) −196.775 + 113.608i −0.219125 + 0.126512i
\(899\) 427.140i 0.475127i
\(900\) 0 0
\(901\) −158.846 + 124.023i −0.176299 + 0.137651i
\(902\) 1481.78 855.507i 1.64277 0.948455i
\(903\) 0 0
\(904\) −9.04269 5.22080i −0.0100030 0.00577522i
\(905\) −588.503 339.772i −0.650279 0.375439i
\(906\) 0 0
\(907\) −1383.50 + 798.765i −1.52536 + 0.880667i −0.525813 + 0.850600i \(0.676239\pi\)
−0.999548 + 0.0300668i \(0.990428\pi\)
\(908\) 1124.94 1.23892
\(909\) 0 0
\(910\) 255.378 0.280635
\(911\) 544.648 + 943.358i 0.597858 + 1.03552i 0.993137 + 0.116959i \(0.0373145\pi\)
−0.395279 + 0.918561i \(0.629352\pi\)
\(912\) 0 0
\(913\) −734.240 423.914i −0.804206 0.464309i
\(914\) 1071.26 + 618.492i 1.17206 + 0.676687i
\(915\) 0 0
\(916\) −638.792 1106.42i −0.697372 1.20788i
\(917\) 30.6099i 0.0333805i
\(918\) 0 0
\(919\) 1463.53 1.59253 0.796264 0.604949i \(-0.206807\pi\)
0.796264 + 0.604949i \(0.206807\pi\)
\(920\) 3.36082 1.94037i 0.00365307 0.00210910i
\(921\) 0 0
\(922\) −1072.35 + 1857.36i −1.16307 + 2.01450i
\(923\) 1051.40 1821.07i 1.13911 1.97299i
\(924\) 0 0
\(925\) −128.764 + 74.3422i −0.139205 + 0.0803699i
\(926\) 1405.92i 1.51827i
\(927\) 0 0
\(928\) 560.824i 0.604336i
\(929\) −199.305 345.206i −0.214537 0.371589i 0.738592 0.674152i \(-0.235491\pi\)
−0.953129 + 0.302564i \(0.902158\pi\)
\(930\) 0 0
\(931\) −402.955 + 697.938i −0.432819 + 0.749665i
\(932\) 613.915 1063.33i 0.658707 1.14091i
\(933\) 0 0
\(934\) 79.6896 + 138.026i 0.0853207 + 0.147780i
\(935\) 765.183 + 980.025i 0.818377 + 1.04816i
\(936\) 0 0
\(937\) −125.284 −0.133707 −0.0668536 0.997763i \(-0.521296\pi\)
−0.0668536 + 0.997763i \(0.521296\pi\)
\(938\) 114.290 + 197.956i 0.121844 + 0.211041i
\(939\) 0 0
\(940\) 1097.39 + 633.579i 1.16744 + 0.674020i
\(941\) −232.137 + 402.073i −0.246692 + 0.427282i −0.962606 0.270906i \(-0.912677\pi\)
0.715914 + 0.698188i \(0.246010\pi\)
\(942\) 0 0
\(943\) 267.738 + 463.736i 0.283922 + 0.491767i
\(944\) 1448.12i 1.53403i
\(945\) 0 0
\(946\) 1943.05i 2.05396i
\(947\) −411.814 713.284i −0.434862 0.753203i 0.562422 0.826850i \(-0.309870\pi\)
−0.997284 + 0.0736468i \(0.976536\pi\)
\(948\) 0 0
\(949\) 1651.06 + 953.241i 1.73979 + 1.00447i
\(950\) 477.810 + 275.864i 0.502958 + 0.290383i
\(951\) 0 0
\(952\) −0.533018 + 1.31807i −0.000559892 + 0.00138453i
\(953\) 926.275i 0.971957i 0.873971 + 0.485978i \(0.161537\pi\)
−0.873971 + 0.485978i \(0.838463\pi\)
\(954\) 0 0
\(955\) 183.328i 0.191966i
\(956\) 1372.91 792.649i 1.43610 0.829131i
\(957\) 0 0
\(958\) −730.530 421.772i −0.762557 0.440263i
\(959\) −49.8676 + 86.3733i −0.0519996 + 0.0900660i
\(960\) 0 0
\(961\) 111.888 + 193.796i 0.116429 + 0.201661i
\(962\) 648.018 0.673615
\(963\) 0 0
\(964\) 1183.37i 1.22756i
\(965\) 259.535 149.843i 0.268949 0.155278i
\(966\) 0 0
\(967\) 685.245 1186.88i 0.708630 1.22738i −0.256736 0.966482i \(-0.582647\pi\)
0.965366 0.260901i \(-0.0840196\pi\)
\(968\) −14.1641 8.17765i −0.0146323 0.00844798i
\(969\) 0 0
\(970\) −253.714 439.446i −0.261561 0.453037i
\(971\) 182.369i 0.187815i 0.995581 + 0.0939076i \(0.0299358\pi\)
−0.995581 + 0.0939076i \(0.970064\pi\)
\(972\) 0 0
\(973\) −268.740 −0.276198
\(974\) −1085.46 1880.06i −1.11443 1.93025i
\(975\) 0 0
\(976\) −16.7329 9.66076i −0.0171444 0.00989832i
\(977\) −366.032 211.328i −0.374649 0.216303i 0.300839 0.953675i \(-0.402733\pi\)
−0.675487 + 0.737372i \(0.736067\pi\)
\(978\) 0 0
\(979\) −744.679 + 429.940i −0.760652 + 0.439163i
\(980\) 690.349 0.704437
\(981\) 0 0
\(982\) 161.906 0.164874
\(983\) 807.232 + 1398.17i 0.821192 + 1.42235i 0.904795 + 0.425848i \(0.140024\pi\)
−0.0836025 + 0.996499i \(0.526643\pi\)
\(984\) 0 0
\(985\) 364.301 630.988i 0.369849 0.640597i
\(986\) 82.7464 + 590.119i 0.0839213 + 0.598498i
\(987\) 0 0
\(988\) −599.554 1038.46i −0.606836 1.05107i
\(989\) −608.094 −0.614857
\(990\) 0 0
\(991\) 651.023i 0.656936i 0.944515 + 0.328468i \(0.106532\pi\)
−0.944515 + 0.328468i \(0.893468\pi\)
\(992\) 777.792 + 1347.18i 0.784064 + 1.35804i
\(993\) 0 0
\(994\) −235.146 + 407.285i −0.236566 + 0.409744i
\(995\) −1138.61 657.375i −1.14433 0.660678i
\(996\) 0 0
\(997\) −1123.30 + 648.540i −1.12668 + 0.650491i −0.943099 0.332513i \(-0.892104\pi\)
−0.183585 + 0.983004i \(0.558770\pi\)
\(998\) −613.185 −0.614413
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.3.i.a.152.27 68
3.2 odd 2 153.3.i.a.50.8 yes 68
9.2 odd 6 inner 459.3.i.a.305.28 68
9.7 even 3 153.3.i.a.101.7 yes 68
17.16 even 2 inner 459.3.i.a.152.28 68
51.50 odd 2 153.3.i.a.50.7 68
153.16 even 6 153.3.i.a.101.8 yes 68
153.101 odd 6 inner 459.3.i.a.305.27 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.7 68 51.50 odd 2
153.3.i.a.50.8 yes 68 3.2 odd 2
153.3.i.a.101.7 yes 68 9.7 even 3
153.3.i.a.101.8 yes 68 153.16 even 6
459.3.i.a.152.27 68 1.1 even 1 trivial
459.3.i.a.152.28 68 17.16 even 2 inner
459.3.i.a.305.27 68 153.101 odd 6 inner
459.3.i.a.305.28 68 9.2 odd 6 inner