Properties

Label 153.3.i.a.101.8
Level $153$
Weight $3$
Character 153.101
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.8
Character \(\chi\) \(=\) 153.101
Dual form 153.3.i.a.50.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44623 - 1.41233i) q^{2} +(0.529325 + 2.95293i) q^{3} +(1.98938 + 3.44570i) q^{4} +(-1.84354 - 3.19311i) q^{5} +(2.87567 - 7.97115i) q^{6} +(-1.20670 - 0.696687i) q^{7} +0.0600221i q^{8} +(-8.43963 + 3.12612i) q^{9} +10.4148i q^{10} +(9.91827 - 17.1789i) q^{11} +(-9.12189 + 7.69839i) q^{12} +(8.79901 + 15.2403i) q^{13} +(1.96791 + 3.40852i) q^{14} +(8.45321 - 7.13406i) q^{15} +(8.04227 - 13.9296i) q^{16} +(10.4620 - 13.3995i) q^{17} +(25.0604 + 4.27234i) q^{18} +17.1257 q^{19} +(7.33500 - 12.7046i) q^{20} +(1.41854 - 3.93207i) q^{21} +(-48.5248 + 28.0158i) q^{22} +(-8.76780 - 15.1863i) q^{23} +(-0.177241 + 0.0317712i) q^{24} +(5.70269 - 9.87734i) q^{25} -49.7086i q^{26} +(-13.6985 - 23.2669i) q^{27} -5.54389i q^{28} +(6.20471 - 10.7469i) q^{29} +(-30.7542 + 5.51282i) q^{30} +(29.8091 - 17.2103i) q^{31} +(-39.1386 + 22.5967i) q^{32} +(55.9783 + 20.1947i) q^{33} +(-44.5171 + 18.0024i) q^{34} +5.13750i q^{35} +(-27.5613 - 22.8614i) q^{36} -13.0363i q^{37} +(-41.8935 - 24.1872i) q^{38} +(-40.3461 + 34.0500i) q^{39} +(0.191657 - 0.110653i) q^{40} +(15.2683 + 26.4454i) q^{41} +(-9.02347 + 7.61532i) q^{42} +(-17.3388 + 30.0317i) q^{43} +78.9246 q^{44} +(25.5409 + 21.1855i) q^{45} +49.5322i q^{46} +(74.8051 + 43.1887i) q^{47} +(45.3902 + 16.3750i) q^{48} +(-23.5293 - 40.7539i) q^{49} +(-27.9002 + 16.1082i) q^{50} +(45.1056 + 23.8010i) q^{51} +(-35.0091 + 60.6375i) q^{52} -11.8546i q^{53} +(0.649177 + 76.2633i) q^{54} -73.1391 q^{55} +(0.0418166 - 0.0724285i) q^{56} +(9.06506 + 50.5710i) q^{57} +(-30.3564 + 17.5263i) q^{58} +(-77.9699 + 45.0160i) q^{59} +(41.3984 + 14.9349i) q^{60} +(-1.04031 - 0.600624i) q^{61} -97.2267 q^{62} +(12.3620 + 2.10750i) q^{63} +63.3182 q^{64} +(32.4427 - 56.1925i) q^{65} +(-108.414 - 128.461i) q^{66} +(29.0384 + 50.2960i) q^{67} +(66.9835 + 9.39240i) q^{68} +(40.2030 - 33.9292i) q^{69} +(7.25586 - 12.5675i) q^{70} -119.490 q^{71} +(-0.187636 - 0.506564i) q^{72} -108.335i q^{73} +(-18.4117 + 31.8899i) q^{74} +(32.1857 + 11.6113i) q^{75} +(34.0694 + 59.0100i) q^{76} +(-23.9367 + 13.8199i) q^{77} +(146.786 - 26.3120i) q^{78} +(-2.99178 - 1.72730i) q^{79} -59.3052 q^{80} +(61.4547 - 52.7667i) q^{81} -86.2557i q^{82} +(-37.0145 - 21.3704i) q^{83} +(16.3707 - 2.93452i) q^{84} +(-62.0733 - 8.70389i) q^{85} +(84.8297 - 48.9765i) q^{86} +(35.0191 + 12.6335i) q^{87} +(1.03112 + 0.595315i) q^{88} -43.3483i q^{89} +(-32.5580 - 87.8971i) q^{90} -24.5206i q^{91} +(34.8849 - 60.4224i) q^{92} +(66.5996 + 78.9144i) q^{93} +(-121.994 - 211.300i) q^{94} +(-31.5720 - 54.6843i) q^{95} +(-87.4436 - 103.613i) q^{96} +(42.1943 + 24.3609i) q^{97} +132.925i q^{98} +(-30.0030 + 175.990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.44623 1.41233i −1.22312 0.706167i −0.257536 0.966269i \(-0.582911\pi\)
−0.965581 + 0.260102i \(0.916244\pi\)
\(3\) 0.529325 + 2.95293i 0.176442 + 0.984311i
\(4\) 1.98938 + 3.44570i 0.497344 + 0.861425i
\(5\) −1.84354 3.19311i −0.368709 0.638623i 0.620655 0.784084i \(-0.286867\pi\)
−0.989364 + 0.145461i \(0.953533\pi\)
\(6\) 2.87567 7.97115i 0.479279 1.32853i
\(7\) −1.20670 0.696687i −0.172385 0.0995267i 0.411325 0.911489i \(-0.365066\pi\)
−0.583710 + 0.811962i \(0.698400\pi\)
\(8\) 0.0600221i 0.00750276i
\(9\) −8.43963 + 3.12612i −0.937737 + 0.347347i
\(10\) 10.4148i 1.04148i
\(11\) 9.91827 17.1789i 0.901661 1.56172i 0.0763223 0.997083i \(-0.475682\pi\)
0.825338 0.564639i \(-0.190984\pi\)
\(12\) −9.12189 + 7.69839i −0.760158 + 0.641532i
\(13\) 8.79901 + 15.2403i 0.676847 + 1.17233i 0.975925 + 0.218105i \(0.0699874\pi\)
−0.299079 + 0.954228i \(0.596679\pi\)
\(14\) 1.96791 + 3.40852i 0.140565 + 0.243466i
\(15\) 8.45321 7.13406i 0.563548 0.475604i
\(16\) 8.04227 13.9296i 0.502642 0.870602i
\(17\) 10.4620 13.3995i 0.615413 0.788205i
\(18\) 25.0604 + 4.27234i 1.39225 + 0.237352i
\(19\) 17.1257 0.901352 0.450676 0.892688i \(-0.351183\pi\)
0.450676 + 0.892688i \(0.351183\pi\)
\(20\) 7.33500 12.7046i 0.366750 0.635230i
\(21\) 1.41854 3.93207i 0.0675493 0.187242i
\(22\) −48.5248 + 28.0158i −2.20567 + 1.27345i
\(23\) −8.76780 15.1863i −0.381209 0.660273i 0.610027 0.792381i \(-0.291159\pi\)
−0.991235 + 0.132108i \(0.957825\pi\)
\(24\) −0.177241 + 0.0317712i −0.00738505 + 0.00132380i
\(25\) 5.70269 9.87734i 0.228107 0.395094i
\(26\) 49.7086i 1.91187i
\(27\) −13.6985 23.2669i −0.507353 0.861738i
\(28\) 5.54389i 0.197996i
\(29\) 6.20471 10.7469i 0.213956 0.370582i −0.738993 0.673713i \(-0.764699\pi\)
0.952949 + 0.303131i \(0.0980319\pi\)
\(30\) −30.7542 + 5.51282i −1.02514 + 0.183761i
\(31\) 29.8091 17.2103i 0.961584 0.555171i 0.0649238 0.997890i \(-0.479320\pi\)
0.896660 + 0.442719i \(0.145986\pi\)
\(32\) −39.1386 + 22.5967i −1.22308 + 0.706147i
\(33\) 55.9783 + 20.1947i 1.69631 + 0.611962i
\(34\) −44.5171 + 18.0024i −1.30933 + 0.529482i
\(35\) 5.13750i 0.146786i
\(36\) −27.5613 22.8614i −0.765591 0.635039i
\(37\) 13.0363i 0.352333i −0.984360 0.176167i \(-0.943630\pi\)
0.984360 0.176167i \(-0.0563698\pi\)
\(38\) −41.8935 24.1872i −1.10246 0.636505i
\(39\) −40.3461 + 34.0500i −1.03452 + 0.873076i
\(40\) 0.191657 0.110653i 0.00479143 0.00276633i
\(41\) 15.2683 + 26.4454i 0.372397 + 0.645011i 0.989934 0.141531i \(-0.0452026\pi\)
−0.617537 + 0.786542i \(0.711869\pi\)
\(42\) −9.02347 + 7.61532i −0.214845 + 0.181317i
\(43\) −17.3388 + 30.0317i −0.403229 + 0.698413i −0.994114 0.108343i \(-0.965445\pi\)
0.590885 + 0.806756i \(0.298779\pi\)
\(44\) 78.9246 1.79374
\(45\) 25.5409 + 21.1855i 0.567576 + 0.470790i
\(46\) 49.5322i 1.07679i
\(47\) 74.8051 + 43.1887i 1.59160 + 0.918909i 0.993033 + 0.117834i \(0.0375952\pi\)
0.598564 + 0.801075i \(0.295738\pi\)
\(48\) 45.3902 + 16.3750i 0.945630 + 0.341146i
\(49\) −23.5293 40.7539i −0.480189 0.831711i
\(50\) −27.9002 + 16.1082i −0.558004 + 0.322164i
\(51\) 45.1056 + 23.8010i 0.884423 + 0.466686i
\(52\) −35.0091 + 60.6375i −0.673251 + 1.16611i
\(53\) 11.8546i 0.223672i −0.993727 0.111836i \(-0.964327\pi\)
0.993727 0.111836i \(-0.0356731\pi\)
\(54\) 0.649177 + 76.2633i 0.0120218 + 1.41228i
\(55\) −73.1391 −1.32980
\(56\) 0.0418166 0.0724285i 0.000746725 0.00129337i
\(57\) 9.06506 + 50.5710i 0.159036 + 0.887211i
\(58\) −30.3564 + 17.5263i −0.523385 + 0.302177i
\(59\) −77.9699 + 45.0160i −1.32152 + 0.762982i −0.983972 0.178324i \(-0.942932\pi\)
−0.337553 + 0.941307i \(0.609599\pi\)
\(60\) 41.3984 + 14.9349i 0.689974 + 0.248915i
\(61\) −1.04031 0.600624i −0.0170543 0.00984629i 0.491449 0.870907i \(-0.336468\pi\)
−0.508503 + 0.861060i \(0.669801\pi\)
\(62\) −97.2267 −1.56817
\(63\) 12.3620 + 2.10750i 0.196222 + 0.0334523i
\(64\) 63.3182 0.989347
\(65\) 32.4427 56.1925i 0.499119 0.864499i
\(66\) −108.414 128.461i −1.64264 1.94638i
\(67\) 29.0384 + 50.2960i 0.433409 + 0.750687i 0.997164 0.0752549i \(-0.0239771\pi\)
−0.563755 + 0.825942i \(0.690644\pi\)
\(68\) 66.9835 + 9.39240i 0.985051 + 0.138124i
\(69\) 40.2030 33.9292i 0.582652 0.491727i
\(70\) 7.25586 12.5675i 0.103655 0.179536i
\(71\) −119.490 −1.68296 −0.841481 0.540287i \(-0.818316\pi\)
−0.841481 + 0.540287i \(0.818316\pi\)
\(72\) −0.187636 0.506564i −0.00260606 0.00703561i
\(73\) 108.335i 1.48404i −0.670377 0.742021i \(-0.733867\pi\)
0.670377 0.742021i \(-0.266133\pi\)
\(74\) −18.4117 + 31.8899i −0.248806 + 0.430945i
\(75\) 32.1857 + 11.6113i 0.429143 + 0.154818i
\(76\) 34.0694 + 59.0100i 0.448282 + 0.776447i
\(77\) −23.9367 + 13.8199i −0.310866 + 0.179479i
\(78\) 146.786 26.3120i 1.88187 0.337333i
\(79\) −2.99178 1.72730i −0.0378706 0.0218646i 0.480945 0.876751i \(-0.340294\pi\)
−0.518816 + 0.854886i \(0.673627\pi\)
\(80\) −59.3052 −0.741314
\(81\) 61.4547 52.7667i 0.758700 0.651440i
\(82\) 86.2557i 1.05190i
\(83\) −37.0145 21.3704i −0.445958 0.257474i 0.260163 0.965565i \(-0.416224\pi\)
−0.706122 + 0.708090i \(0.749557\pi\)
\(84\) 16.3707 2.93452i 0.194890 0.0349348i
\(85\) −62.0733 8.70389i −0.730274 0.102399i
\(86\) 84.8297 48.9765i 0.986392 0.569494i
\(87\) 35.0191 + 12.6335i 0.402519 + 0.145213i
\(88\) 1.03112 + 0.595315i 0.0117172 + 0.00676494i
\(89\) 43.3483i 0.487060i −0.969893 0.243530i \(-0.921695\pi\)
0.969893 0.243530i \(-0.0783054\pi\)
\(90\) −32.5580 87.8971i −0.361755 0.976634i
\(91\) 24.5206i 0.269457i
\(92\) 34.8849 60.4224i 0.379183 0.656765i
\(93\) 66.5996 + 78.9144i 0.716124 + 0.848542i
\(94\) −121.994 211.300i −1.29781 2.24787i
\(95\) −31.5720 54.6843i −0.332337 0.575624i
\(96\) −87.4436 103.613i −0.910871 1.07930i
\(97\) 42.1943 + 24.3609i 0.434993 + 0.251143i 0.701471 0.712698i \(-0.252527\pi\)
−0.266478 + 0.963841i \(0.585860\pi\)
\(98\) 132.925i 1.35637i
\(99\) −30.0030 + 175.990i −0.303061 + 1.77767i
\(100\) 45.3791 0.453791
\(101\) 49.3410 + 28.4870i 0.488524 + 0.282050i 0.723962 0.689840i \(-0.242319\pi\)
−0.235438 + 0.971889i \(0.575652\pi\)
\(102\) −76.7239 121.927i −0.752195 1.19536i
\(103\) 30.2358 + 52.3700i 0.293552 + 0.508446i 0.974647 0.223749i \(-0.0718294\pi\)
−0.681095 + 0.732195i \(0.738496\pi\)
\(104\) −0.914756 + 0.528135i −0.00879573 + 0.00507822i
\(105\) −15.1707 + 2.71941i −0.144483 + 0.0258991i
\(106\) −16.7427 + 28.9991i −0.157950 + 0.273577i
\(107\) 2.02648 0.0189390 0.00946952 0.999955i \(-0.496986\pi\)
0.00946952 + 0.999955i \(0.496986\pi\)
\(108\) 52.9193 93.4877i 0.489993 0.865627i
\(109\) 57.0549i 0.523440i −0.965144 0.261720i \(-0.915710\pi\)
0.965144 0.261720i \(-0.0842896\pi\)
\(110\) 178.915 + 103.297i 1.62650 + 0.939062i
\(111\) 38.4954 6.90046i 0.346806 0.0621663i
\(112\) −19.4092 + 11.2059i −0.173296 + 0.100053i
\(113\) 86.9813 + 150.656i 0.769746 + 1.33324i 0.937701 + 0.347445i \(0.112951\pi\)
−0.167954 + 0.985795i \(0.553716\pi\)
\(114\) 49.2479 136.511i 0.431999 1.19747i
\(115\) −32.3276 + 55.9931i −0.281110 + 0.486897i
\(116\) 49.3740 0.425638
\(117\) −121.904 101.116i −1.04191 0.864239i
\(118\) 254.310 2.15517
\(119\) −21.9597 + 8.88036i −0.184536 + 0.0746249i
\(120\) 0.428201 + 0.507379i 0.00356834 + 0.00422816i
\(121\) −136.244 235.982i −1.12598 1.95026i
\(122\) 1.69656 + 2.93853i 0.0139063 + 0.0240863i
\(123\) −70.0097 + 59.0845i −0.569185 + 0.480361i
\(124\) 118.603 + 68.4755i 0.956476 + 0.552222i
\(125\) −134.230 −1.07384
\(126\) −27.2639 22.6147i −0.216380 0.179482i
\(127\) 44.1786 0.347863 0.173932 0.984758i \(-0.444353\pi\)
0.173932 + 0.984758i \(0.444353\pi\)
\(128\) 1.66336 + 0.960340i 0.0129950 + 0.00750265i
\(129\) −97.8596 35.3039i −0.758602 0.273673i
\(130\) −158.725 + 91.6399i −1.22096 + 0.704923i
\(131\) −10.9841 19.0250i −0.0838479 0.145229i 0.821052 0.570854i \(-0.193388\pi\)
−0.904900 + 0.425625i \(0.860054\pi\)
\(132\) 41.7768 + 233.059i 0.316491 + 1.76560i
\(133\) −20.6655 11.9312i −0.155380 0.0897086i
\(134\) 164.048i 1.22424i
\(135\) −49.0400 + 86.6346i −0.363260 + 0.641738i
\(136\) 0.804264 + 0.627952i 0.00591371 + 0.00461730i
\(137\) −61.9886 35.7891i −0.452471 0.261234i 0.256402 0.966570i \(-0.417463\pi\)
−0.708873 + 0.705336i \(0.750796\pi\)
\(138\) −146.265 + 26.2187i −1.05989 + 0.189990i
\(139\) 167.030 96.4351i 1.20166 0.693778i 0.240734 0.970591i \(-0.422612\pi\)
0.960924 + 0.276813i \(0.0892784\pi\)
\(140\) −17.7023 + 10.2204i −0.126445 + 0.0730029i
\(141\) −87.9372 + 243.755i −0.623668 + 1.72876i
\(142\) 292.301 + 168.760i 2.05846 + 1.18845i
\(143\) 349.084 2.44114
\(144\) −24.3281 + 142.702i −0.168945 + 0.990986i
\(145\) −45.7546 −0.315549
\(146\) −153.005 + 265.013i −1.04798 + 1.81516i
\(147\) 107.889 91.0524i 0.733937 0.619404i
\(148\) 44.9193 25.9342i 0.303509 0.175231i
\(149\) 107.129 61.8512i 0.718989 0.415108i −0.0953916 0.995440i \(-0.530410\pi\)
0.814380 + 0.580331i \(0.197077\pi\)
\(150\) −62.3347 73.8610i −0.415565 0.492407i
\(151\) 36.8378 63.8049i 0.243959 0.422549i −0.717879 0.696167i \(-0.754887\pi\)
0.961838 + 0.273618i \(0.0882205\pi\)
\(152\) 1.02792i 0.00676263i
\(153\) −46.4072 + 145.792i −0.303315 + 0.952890i
\(154\) 78.0730 0.506968
\(155\) −109.909 63.4559i −0.709089 0.409393i
\(156\) −197.590 71.2825i −1.26660 0.456939i
\(157\) 3.12950 + 5.42045i 0.0199331 + 0.0345252i 0.875820 0.482638i \(-0.160321\pi\)
−0.855887 + 0.517163i \(0.826988\pi\)
\(158\) 4.87906 + 8.45078i 0.0308801 + 0.0534860i
\(159\) 35.0059 6.27494i 0.220163 0.0394650i
\(160\) 144.308 + 83.3161i 0.901923 + 0.520725i
\(161\) 24.4336i 0.151762i
\(162\) −224.857 + 42.2851i −1.38800 + 0.261019i
\(163\) 47.6644i 0.292420i −0.989254 0.146210i \(-0.953293\pi\)
0.989254 0.146210i \(-0.0467074\pi\)
\(164\) −60.7487 + 105.220i −0.370419 + 0.641584i
\(165\) −38.7144 215.975i −0.234632 1.30894i
\(166\) 60.3642 + 104.554i 0.363640 + 0.629842i
\(167\) 61.6977 + 106.864i 0.369447 + 0.639902i 0.989479 0.144675i \(-0.0462137\pi\)
−0.620032 + 0.784577i \(0.712880\pi\)
\(168\) 0.236011 + 0.0851434i 0.00140483 + 0.000506806i
\(169\) −70.3451 + 121.841i −0.416243 + 0.720954i
\(170\) 139.553 + 108.960i 0.820900 + 0.640941i
\(171\) −144.534 + 53.5370i −0.845231 + 0.313082i
\(172\) −137.974 −0.802173
\(173\) 63.7569 110.430i 0.368537 0.638325i −0.620800 0.783969i \(-0.713192\pi\)
0.989337 + 0.145644i \(0.0465254\pi\)
\(174\) −67.8222 80.3632i −0.389783 0.461858i
\(175\) −13.7628 + 7.94598i −0.0786448 + 0.0454056i
\(176\) −159.531 276.315i −0.906425 1.56997i
\(177\) −174.201 206.412i −0.984184 1.16617i
\(178\) −61.2223 + 106.040i −0.343946 + 0.595731i
\(179\) 176.481i 0.985925i −0.870050 0.492963i \(-0.835914\pi\)
0.870050 0.492963i \(-0.164086\pi\)
\(180\) −22.1886 + 130.152i −0.123270 + 0.723068i
\(181\) 184.304i 1.01825i 0.860692 + 0.509126i \(0.170031\pi\)
−0.860692 + 0.509126i \(0.829969\pi\)
\(182\) −34.6313 + 59.9832i −0.190282 + 0.329578i
\(183\) 1.22294 3.38989i 0.00668273 0.0185240i
\(184\) 0.911511 0.526261i 0.00495387 0.00286012i
\(185\) −41.6265 + 24.0331i −0.225008 + 0.129908i
\(186\) −51.4646 287.104i −0.276691 1.54357i
\(187\) −126.424 312.626i −0.676063 1.67180i
\(188\) 343.674i 1.82806i
\(189\) 0.320231 + 37.6197i 0.00169434 + 0.199046i
\(190\) 178.361i 0.938741i
\(191\) −43.0602 24.8608i −0.225446 0.130161i 0.383023 0.923739i \(-0.374883\pi\)
−0.608469 + 0.793577i \(0.708216\pi\)
\(192\) 33.5159 + 186.975i 0.174562 + 0.973826i
\(193\) 70.3903 40.6399i 0.364717 0.210569i −0.306431 0.951893i \(-0.599135\pi\)
0.671148 + 0.741324i \(0.265802\pi\)
\(194\) −68.8115 119.185i −0.354698 0.614356i
\(195\) 183.105 + 66.0571i 0.939002 + 0.338755i
\(196\) 93.6170 162.149i 0.477638 0.827293i
\(197\) −197.609 −1.00309 −0.501546 0.865131i \(-0.667235\pi\)
−0.501546 + 0.865131i \(0.667235\pi\)
\(198\) 321.951 388.138i 1.62601 1.96029i
\(199\) 356.582i 1.79187i 0.444187 + 0.895934i \(0.353493\pi\)
−0.444187 + 0.895934i \(0.646507\pi\)
\(200\) 0.592859 + 0.342287i 0.00296429 + 0.00171144i
\(201\) −133.150 + 112.372i −0.662438 + 0.559062i
\(202\) −80.4664 139.372i −0.398348 0.689960i
\(203\) −14.9744 + 8.64549i −0.0737656 + 0.0425886i
\(204\) 7.72091 + 202.769i 0.0378476 + 0.993967i
\(205\) 56.2955 97.5067i 0.274612 0.475642i
\(206\) 170.812i 0.829186i
\(207\) 121.471 + 100.757i 0.586817 + 0.486750i
\(208\) 283.056 1.36085
\(209\) 169.857 294.201i 0.812714 1.40766i
\(210\) 40.9518 + 14.7738i 0.195008 + 0.0703513i
\(211\) −152.648 + 88.1313i −0.723450 + 0.417684i −0.816021 0.578022i \(-0.803825\pi\)
0.0925713 + 0.995706i \(0.470491\pi\)
\(212\) 40.8474 23.5833i 0.192676 0.111242i
\(213\) −63.2492 352.847i −0.296945 1.65656i
\(214\) −4.95724 2.86206i −0.0231647 0.0133741i
\(215\) 127.860 0.594696
\(216\) 1.39653 0.822215i 0.00646541 0.00380655i
\(217\) −47.9608 −0.221017
\(218\) −80.5806 + 139.570i −0.369636 + 0.640228i
\(219\) 319.906 57.3445i 1.46076 0.261847i
\(220\) −145.501 252.015i −0.661368 1.14552i
\(221\) 296.268 + 41.5426i 1.34058 + 0.187976i
\(222\) −103.915 37.4883i −0.468084 0.168866i
\(223\) −124.855 + 216.256i −0.559889 + 0.969756i 0.437616 + 0.899162i \(0.355823\pi\)
−0.997505 + 0.0705940i \(0.977511\pi\)
\(224\) 62.9714 0.281122
\(225\) −17.2508 + 101.188i −0.0766701 + 0.449726i
\(226\) 491.387i 2.17428i
\(227\) −141.368 + 244.856i −0.622766 + 1.07866i 0.366202 + 0.930535i \(0.380658\pi\)
−0.988968 + 0.148128i \(0.952675\pi\)
\(228\) −156.219 + 131.840i −0.685170 + 0.578247i
\(229\) 160.551 + 278.083i 0.701096 + 1.21433i 0.968082 + 0.250634i \(0.0806390\pi\)
−0.266986 + 0.963700i \(0.586028\pi\)
\(230\) 158.162 91.3149i 0.687661 0.397021i
\(231\) −53.4794 63.3683i −0.231513 0.274322i
\(232\) 0.645050 + 0.372420i 0.00278039 + 0.00160526i
\(233\) −308.597 −1.32445 −0.662225 0.749305i \(-0.730388\pi\)
−0.662225 + 0.749305i \(0.730388\pi\)
\(234\) 155.395 + 419.522i 0.664082 + 1.79283i
\(235\) 318.481i 1.35524i
\(236\) −310.223 179.107i −1.31450 0.758929i
\(237\) 3.51699 9.74883i 0.0148396 0.0411343i
\(238\) 66.2607 + 9.29106i 0.278406 + 0.0390381i
\(239\) −345.060 + 199.221i −1.44377 + 0.833559i −0.998098 0.0616393i \(-0.980367\pi\)
−0.445668 + 0.895198i \(0.647034\pi\)
\(240\) −31.3917 175.124i −0.130799 0.729684i
\(241\) −257.575 148.711i −1.06878 0.617058i −0.140929 0.990020i \(-0.545009\pi\)
−0.927847 + 0.372962i \(0.878342\pi\)
\(242\) 769.688i 3.18053i
\(243\) 188.346 + 153.541i 0.775086 + 0.631856i
\(244\) 4.77947i 0.0195880i
\(245\) −86.7545 + 150.263i −0.354100 + 0.613319i
\(246\) 254.707 45.6573i 1.03540 0.185599i
\(247\) 150.689 + 261.001i 0.610077 + 1.05668i
\(248\) 1.03300 + 1.78920i 0.00416531 + 0.00721453i
\(249\) 43.5125 120.613i 0.174749 0.484391i
\(250\) 328.358 + 189.577i 1.31343 + 0.758310i
\(251\) 129.889i 0.517488i −0.965946 0.258744i \(-0.916691\pi\)
0.965946 0.258744i \(-0.0833085\pi\)
\(252\) 17.3309 + 46.7884i 0.0687734 + 0.185668i
\(253\) −347.845 −1.37488
\(254\) −108.071 62.3950i −0.425478 0.245650i
\(255\) −7.15493 187.905i −0.0280585 0.736884i
\(256\) −129.349 224.039i −0.505270 0.875153i
\(257\) 247.879 143.113i 0.964510 0.556860i 0.0669517 0.997756i \(-0.478673\pi\)
0.897558 + 0.440896i \(0.145339\pi\)
\(258\) 189.527 + 224.572i 0.734600 + 0.870434i
\(259\) −9.08225 + 15.7309i −0.0350666 + 0.0607371i
\(260\) 258.163 0.992935
\(261\) −18.7694 + 110.096i −0.0719134 + 0.421825i
\(262\) 62.0528i 0.236843i
\(263\) 392.362 + 226.530i 1.49187 + 0.861333i 0.999957 0.00931071i \(-0.00296373\pi\)
0.491915 + 0.870643i \(0.336297\pi\)
\(264\) −1.21213 + 3.35993i −0.00459140 + 0.0127270i
\(265\) −37.8531 + 21.8545i −0.142842 + 0.0824698i
\(266\) 33.7018 + 58.3733i 0.126699 + 0.219448i
\(267\) 128.005 22.9454i 0.479419 0.0859377i
\(268\) −115.537 + 200.115i −0.431107 + 0.746699i
\(269\) 492.362 1.83034 0.915171 0.403065i \(-0.132055\pi\)
0.915171 + 0.403065i \(0.132055\pi\)
\(270\) 242.320 142.668i 0.897483 0.528399i
\(271\) −368.404 −1.35943 −0.679713 0.733478i \(-0.737896\pi\)
−0.679713 + 0.733478i \(0.737896\pi\)
\(272\) −102.511 253.494i −0.376880 0.931965i
\(273\) 72.4078 12.9794i 0.265230 0.0475435i
\(274\) 101.092 + 175.097i 0.368950 + 0.639041i
\(275\) −113.122 195.932i −0.411351 0.712481i
\(276\) 196.889 + 71.0296i 0.713365 + 0.257354i
\(277\) 64.1297 + 37.0253i 0.231515 + 0.133665i 0.611271 0.791421i \(-0.290659\pi\)
−0.379756 + 0.925087i \(0.623992\pi\)
\(278\) −544.794 −1.95969
\(279\) −197.776 + 238.435i −0.708876 + 0.854607i
\(280\) −0.308363 −0.00110130
\(281\) 27.0876 + 15.6390i 0.0963971 + 0.0556549i 0.547424 0.836856i \(-0.315609\pi\)
−0.451027 + 0.892511i \(0.648942\pi\)
\(282\) 559.379 472.086i 1.98361 1.67406i
\(283\) −161.385 + 93.1759i −0.570267 + 0.329244i −0.757256 0.653118i \(-0.773460\pi\)
0.186989 + 0.982362i \(0.440127\pi\)
\(284\) −237.711 411.728i −0.837011 1.44974i
\(285\) 144.767 122.176i 0.507955 0.428687i
\(286\) −853.940 493.023i −2.98581 1.72386i
\(287\) 42.5489i 0.148254i
\(288\) 259.676 313.060i 0.901651 1.08701i
\(289\) −70.0920 280.371i −0.242533 0.970143i
\(290\) 111.927 + 64.6208i 0.385954 + 0.222831i
\(291\) −49.6016 + 137.492i −0.170452 + 0.472481i
\(292\) 373.290 215.519i 1.27839 0.738079i
\(293\) 226.180 130.585i 0.771945 0.445683i −0.0616231 0.998099i \(-0.519628\pi\)
0.833568 + 0.552417i \(0.186294\pi\)
\(294\) −392.518 + 70.3604i −1.33509 + 0.239321i
\(295\) 287.482 + 165.978i 0.974516 + 0.562637i
\(296\) 0.782468 0.00264347
\(297\) −535.567 + 4.55891i −1.80326 + 0.0153499i
\(298\) −349.418 −1.17254
\(299\) 154.296 267.248i 0.516040 0.893807i
\(300\) 24.0203 + 134.002i 0.0800677 + 0.446672i
\(301\) 41.8455 24.1595i 0.139022 0.0802641i
\(302\) −180.228 + 104.055i −0.596781 + 0.344551i
\(303\) −58.0028 + 160.779i −0.191429 + 0.530625i
\(304\) 137.729 238.554i 0.453057 0.784719i
\(305\) 4.42911i 0.0145217i
\(306\) 319.430 291.100i 1.04389 0.951306i
\(307\) 443.373 1.44421 0.722106 0.691783i \(-0.243174\pi\)
0.722106 + 0.691783i \(0.243174\pi\)
\(308\) −95.2382 54.9858i −0.309215 0.178525i
\(309\) −138.640 + 117.005i −0.448675 + 0.378657i
\(310\) 179.242 + 310.456i 0.578199 + 1.00147i
\(311\) 148.284 + 256.836i 0.476799 + 0.825840i 0.999647 0.0265862i \(-0.00846365\pi\)
−0.522848 + 0.852426i \(0.675130\pi\)
\(312\) −2.04375 2.42166i −0.00655048 0.00776173i
\(313\) −433.167 250.089i −1.38392 0.799006i −0.391298 0.920264i \(-0.627974\pi\)
−0.992621 + 0.121258i \(0.961307\pi\)
\(314\) 17.6796i 0.0563044i
\(315\) −16.0605 43.3586i −0.0509856 0.137646i
\(316\) 13.7450i 0.0434969i
\(317\) −189.329 + 327.928i −0.597254 + 1.03447i 0.395971 + 0.918263i \(0.370408\pi\)
−0.993225 + 0.116211i \(0.962925\pi\)
\(318\) −94.4949 34.0900i −0.297154 0.107201i
\(319\) −123.080 213.181i −0.385831 0.668278i
\(320\) −116.730 202.182i −0.364781 0.631820i
\(321\) 1.07267 + 5.98405i 0.00334164 + 0.0186419i
\(322\) 34.5085 59.7704i 0.107169 0.185622i
\(323\) 179.169 229.475i 0.554704 0.710450i
\(324\) 304.074 + 106.782i 0.938502 + 0.329573i
\(325\) 200.712 0.617575
\(326\) −67.3180 + 116.598i −0.206497 + 0.357663i
\(327\) 168.479 30.2006i 0.515227 0.0923566i
\(328\) −1.58731 + 0.916434i −0.00483936 + 0.00279401i
\(329\) −60.1781 104.231i −0.182912 0.316813i
\(330\) −210.324 + 583.003i −0.637346 + 1.76667i
\(331\) −82.0944 + 142.192i −0.248019 + 0.429582i −0.962976 0.269587i \(-0.913113\pi\)
0.714957 + 0.699169i \(0.246446\pi\)
\(332\) 170.055i 0.512213i
\(333\) 40.7532 + 110.022i 0.122382 + 0.330396i
\(334\) 348.551i 1.04357i
\(335\) 107.067 185.446i 0.319604 0.553570i
\(336\) −43.3640 51.3825i −0.129060 0.152924i
\(337\) 46.6553 26.9365i 0.138443 0.0799301i −0.429179 0.903220i \(-0.641197\pi\)
0.567622 + 0.823289i \(0.307864\pi\)
\(338\) 344.161 198.702i 1.01823 0.587875i
\(339\) −398.836 + 336.596i −1.17651 + 0.992909i
\(340\) −93.4960 231.201i −0.274988 0.680003i
\(341\) 682.785i 2.00230i
\(342\) 429.177 + 73.1668i 1.25490 + 0.213938i
\(343\) 133.845i 0.390220i
\(344\) −1.80257 1.04071i −0.00524002 0.00302533i
\(345\) −182.456 65.8228i −0.528857 0.190791i
\(346\) −311.929 + 180.092i −0.901528 + 0.520497i
\(347\) −66.4656 115.122i −0.191543 0.331763i 0.754218 0.656624i \(-0.228016\pi\)
−0.945762 + 0.324861i \(0.894683\pi\)
\(348\) 26.1349 + 145.798i 0.0751003 + 0.418960i
\(349\) 100.388 173.877i 0.287644 0.498214i −0.685603 0.727976i \(-0.740461\pi\)
0.973247 + 0.229762i \(0.0737947\pi\)
\(350\) 44.8895 0.128256
\(351\) 234.062 413.496i 0.666843 1.17805i
\(352\) 896.481i 2.54682i
\(353\) −351.282 202.813i −0.995133 0.574540i −0.0883284 0.996091i \(-0.528152\pi\)
−0.906805 + 0.421551i \(0.861486\pi\)
\(354\) 134.613 + 750.961i 0.380262 + 2.12136i
\(355\) 220.286 + 381.546i 0.620523 + 1.07478i
\(356\) 149.365 86.2361i 0.419566 0.242236i
\(357\) −37.8470 60.1451i −0.106014 0.168474i
\(358\) −249.250 + 431.713i −0.696228 + 1.20590i
\(359\) 485.639i 1.35276i 0.736555 + 0.676378i \(0.236451\pi\)
−0.736555 + 0.676378i \(0.763549\pi\)
\(360\) −1.27160 + 1.53302i −0.00353222 + 0.00425838i
\(361\) −67.7107 −0.187564
\(362\) 260.298 450.850i 0.719056 1.24544i
\(363\) 624.720 527.230i 1.72099 1.45243i
\(364\) 84.4907 48.7807i 0.232117 0.134013i
\(365\) −345.926 + 199.721i −0.947743 + 0.547180i
\(366\) −7.77926 + 6.56528i −0.0212548 + 0.0179379i
\(367\) −160.726 92.7954i −0.437946 0.252848i 0.264780 0.964309i \(-0.414701\pi\)
−0.702726 + 0.711460i \(0.748034\pi\)
\(368\) −282.052 −0.766446
\(369\) −211.530 175.459i −0.573253 0.475499i
\(370\) 135.771 0.366948
\(371\) −8.25895 + 14.3049i −0.0222613 + 0.0385578i
\(372\) −139.424 + 386.473i −0.374796 + 1.03890i
\(373\) 115.761 + 200.505i 0.310352 + 0.537546i 0.978439 0.206538i \(-0.0662197\pi\)
−0.668086 + 0.744084i \(0.732886\pi\)
\(374\) −132.271 + 943.309i −0.353665 + 2.52222i
\(375\) −71.0512 396.372i −0.189470 1.05699i
\(376\) −2.59228 + 4.48996i −0.00689435 + 0.0119414i
\(377\) 218.381 0.579261
\(378\) 52.3483 92.4790i 0.138488 0.244653i
\(379\) 384.647i 1.01490i 0.861681 + 0.507450i \(0.169412\pi\)
−0.861681 + 0.507450i \(0.830588\pi\)
\(380\) 125.617 217.575i 0.330571 0.572566i
\(381\) 23.3849 + 130.457i 0.0613776 + 0.342406i
\(382\) 70.2235 + 121.631i 0.183831 + 0.318405i
\(383\) −550.654 + 317.920i −1.43774 + 0.830079i −0.997692 0.0678966i \(-0.978371\pi\)
−0.440046 + 0.897975i \(0.645038\pi\)
\(384\) −1.95536 + 5.42011i −0.00509209 + 0.0141149i
\(385\) 88.2567 + 50.9551i 0.229238 + 0.132351i
\(386\) −229.588 −0.594788
\(387\) 52.4504 307.660i 0.135531 0.794988i
\(388\) 193.852i 0.499618i
\(389\) 98.7344 + 57.0043i 0.253816 + 0.146541i 0.621510 0.783406i \(-0.286519\pi\)
−0.367694 + 0.929947i \(0.619853\pi\)
\(390\) −354.624 420.197i −0.909292 1.07743i
\(391\) −295.217 41.3952i −0.755031 0.105870i
\(392\) 2.44613 1.41227i 0.00624013 0.00360274i
\(393\) 50.3654 42.5057i 0.128156 0.108157i
\(394\) 483.398 + 279.090i 1.22690 + 0.708350i
\(395\) 12.7375i 0.0322467i
\(396\) −666.095 + 246.728i −1.68206 + 0.623051i
\(397\) 319.137i 0.803871i 0.915668 + 0.401936i \(0.131662\pi\)
−0.915668 + 0.401936i \(0.868338\pi\)
\(398\) 503.613 872.283i 1.26536 2.19167i
\(399\) 24.2934 67.3394i 0.0608857 0.168771i
\(400\) −91.7251 158.873i −0.229313 0.397181i
\(401\) 387.164 + 670.588i 0.965496 + 1.67229i 0.708276 + 0.705936i \(0.249473\pi\)
0.257221 + 0.966353i \(0.417193\pi\)
\(402\) 484.422 86.8347i 1.20503 0.216007i
\(403\) 524.581 + 302.867i 1.30169 + 0.751531i
\(404\) 226.685i 0.561103i
\(405\) −281.784 98.9541i −0.695764 0.244331i
\(406\) 48.8413 0.120299
\(407\) −223.950 129.298i −0.550247 0.317685i
\(408\) −1.42858 + 2.70733i −0.00350143 + 0.00663561i
\(409\) 9.35760 + 16.2078i 0.0228792 + 0.0396280i 0.877238 0.480055i \(-0.159383\pi\)
−0.854359 + 0.519683i \(0.826050\pi\)
\(410\) −275.424 + 159.016i −0.671766 + 0.387844i
\(411\) 72.8707 201.992i 0.177301 0.491465i
\(412\) −120.301 + 208.367i −0.291992 + 0.505745i
\(413\) 125.448 0.303749
\(414\) −154.844 418.034i −0.374019 1.00974i
\(415\) 157.589i 0.379732i
\(416\) −688.763 397.657i −1.65568 0.955907i
\(417\) 373.180 + 442.184i 0.894916 + 1.06039i
\(418\) −831.021 + 479.790i −1.98809 + 1.14782i
\(419\) −289.963 502.231i −0.692036 1.19864i −0.971170 0.238390i \(-0.923380\pi\)
0.279133 0.960252i \(-0.409953\pi\)
\(420\) −39.5504 46.8637i −0.0941677 0.111580i
\(421\) 149.481 258.909i 0.355062 0.614985i −0.632067 0.774914i \(-0.717793\pi\)
0.987128 + 0.159929i \(0.0511266\pi\)
\(422\) 497.883 1.17982
\(423\) −766.340 130.647i −1.81168 0.308858i
\(424\) 0.711538 0.00167816
\(425\) −72.6896 179.750i −0.171034 0.422941i
\(426\) −343.615 + 952.475i −0.806608 + 2.23586i
\(427\) 0.836894 + 1.44954i 0.00195994 + 0.00339471i
\(428\) 4.03142 + 6.98263i 0.00941921 + 0.0163146i
\(429\) 184.779 + 1030.82i 0.430720 + 2.40285i
\(430\) −312.775 180.581i −0.727383 0.419955i
\(431\) −210.336 −0.488018 −0.244009 0.969773i \(-0.578463\pi\)
−0.244009 + 0.969773i \(0.578463\pi\)
\(432\) −434.267 + 3.69662i −1.00525 + 0.00855698i
\(433\) −530.660 −1.22554 −0.612771 0.790260i \(-0.709945\pi\)
−0.612771 + 0.790260i \(0.709945\pi\)
\(434\) 117.323 + 67.7366i 0.270330 + 0.156075i
\(435\) −24.2191 135.110i −0.0556761 0.310599i
\(436\) 196.594 113.504i 0.450904 0.260329i
\(437\) −150.155 260.075i −0.343603 0.595138i
\(438\) −863.555 311.536i −1.97159 0.711270i
\(439\) −231.727 133.788i −0.527853 0.304756i 0.212289 0.977207i \(-0.431908\pi\)
−0.740142 + 0.672451i \(0.765242\pi\)
\(440\) 4.38996i 0.00997718i
\(441\) 325.980 + 270.392i 0.739183 + 0.613134i
\(442\) −666.069 520.052i −1.50694 1.17659i
\(443\) 674.555 + 389.455i 1.52270 + 0.879130i 0.999640 + 0.0268335i \(0.00854238\pi\)
0.523058 + 0.852297i \(0.324791\pi\)
\(444\) 100.359 + 118.916i 0.226033 + 0.267829i
\(445\) −138.416 + 79.9146i −0.311048 + 0.179583i
\(446\) 610.850 352.674i 1.36962 0.790750i
\(447\) 239.349 + 283.606i 0.535455 + 0.634466i
\(448\) −76.4060 44.1130i −0.170549 0.0984665i
\(449\) 80.4398 0.179153 0.0895766 0.995980i \(-0.471449\pi\)
0.0895766 + 0.995980i \(0.471449\pi\)
\(450\) 185.111 223.167i 0.411358 0.495926i
\(451\) 605.739 1.34310
\(452\) −346.077 + 599.423i −0.765657 + 1.32616i
\(453\) 207.911 + 75.0060i 0.458964 + 0.165576i
\(454\) 691.638 399.318i 1.52343 0.879554i
\(455\) −78.2971 + 45.2049i −0.172082 + 0.0993514i
\(456\) −3.03538 + 0.544104i −0.00665653 + 0.00119321i
\(457\) 218.961 379.252i 0.479127 0.829872i −0.520587 0.853809i \(-0.674287\pi\)
0.999713 + 0.0239367i \(0.00762001\pi\)
\(458\) 907.007i 1.98036i
\(459\) −455.079 59.8658i −0.991458 0.130427i
\(460\) −257.247 −0.559233
\(461\) 657.551 + 379.637i 1.42636 + 0.823509i 0.996831 0.0795452i \(-0.0253468\pi\)
0.429527 + 0.903054i \(0.358680\pi\)
\(462\) 41.3260 + 230.544i 0.0894503 + 0.499014i
\(463\) 248.865 + 431.047i 0.537506 + 0.930987i 0.999038 + 0.0438634i \(0.0139666\pi\)
−0.461532 + 0.887124i \(0.652700\pi\)
\(464\) −99.8000 172.859i −0.215086 0.372540i
\(465\) 129.203 358.142i 0.277857 0.770198i
\(466\) 754.900 + 435.842i 1.61996 + 0.935283i
\(467\) 56.4240i 0.120822i 0.998174 + 0.0604112i \(0.0192412\pi\)
−0.998174 + 0.0604112i \(0.980759\pi\)
\(468\) 105.903 621.200i 0.226289 1.32735i
\(469\) 80.9228i 0.172543i
\(470\) −449.802 + 779.080i −0.957026 + 1.65762i
\(471\) −14.3497 + 12.1104i −0.0304665 + 0.0257121i
\(472\) −2.70195 4.67992i −0.00572447 0.00991508i
\(473\) 343.942 + 595.726i 0.727151 + 1.25946i
\(474\) −22.3720 + 18.8808i −0.0471983 + 0.0398328i
\(475\) 97.6624 169.156i 0.205605 0.356119i
\(476\) −74.2852 58.0003i −0.156061 0.121849i
\(477\) 37.0590 + 100.048i 0.0776918 + 0.209745i
\(478\) 1125.46 2.35453
\(479\) 149.317 258.625i 0.311727 0.539927i −0.667009 0.745049i \(-0.732426\pi\)
0.978736 + 0.205122i \(0.0657593\pi\)
\(480\) −169.641 + 470.232i −0.353419 + 0.979651i
\(481\) 198.678 114.707i 0.413052 0.238476i
\(482\) 420.059 + 727.563i 0.871492 + 1.50947i
\(483\) −72.1509 + 12.9333i −0.149381 + 0.0267771i
\(484\) 542.081 938.912i 1.12000 1.93990i
\(485\) 179.642i 0.370395i
\(486\) −243.887 641.604i −0.501826 1.32017i
\(487\) 768.554i 1.57814i 0.614303 + 0.789070i \(0.289437\pi\)
−0.614303 + 0.789070i \(0.710563\pi\)
\(488\) 0.0360507 0.0624416i 7.38744e−5 0.000127954i
\(489\) 140.750 25.2300i 0.287832 0.0515950i
\(490\) 424.443 245.053i 0.866211 0.500107i
\(491\) −49.6394 + 28.6593i −0.101099 + 0.0583693i −0.549697 0.835364i \(-0.685257\pi\)
0.448598 + 0.893734i \(0.351923\pi\)
\(492\) −342.863 123.691i −0.696876 0.251405i
\(493\) −79.0887 195.574i −0.160423 0.396702i
\(494\) 851.293i 1.72327i
\(495\) 617.267 228.642i 1.24700 0.461903i
\(496\) 553.639i 1.11621i
\(497\) 144.189 + 83.2474i 0.290118 + 0.167500i
\(498\) −276.788 + 233.594i −0.555800 + 0.469065i
\(499\) −187.998 + 108.541i −0.376750 + 0.217517i −0.676404 0.736531i \(-0.736462\pi\)
0.299653 + 0.954048i \(0.403129\pi\)
\(500\) −267.034 462.516i −0.534067 0.925031i
\(501\) −282.903 + 238.755i −0.564676 + 0.476557i
\(502\) −183.447 + 317.740i −0.365433 + 0.632948i
\(503\) −449.219 −0.893080 −0.446540 0.894764i \(-0.647344\pi\)
−0.446540 + 0.894764i \(0.647344\pi\)
\(504\) −0.126496 + 0.741994i −0.000250985 + 0.00147221i
\(505\) 210.068i 0.415977i
\(506\) 850.911 + 491.274i 1.68164 + 0.970897i
\(507\) −397.025 143.231i −0.783086 0.282506i
\(508\) 87.8879 + 152.226i 0.173008 + 0.299658i
\(509\) −114.228 + 65.9498i −0.224417 + 0.129567i −0.607994 0.793942i \(-0.708026\pi\)
0.383577 + 0.923509i \(0.374692\pi\)
\(510\) −247.883 + 469.766i −0.486044 + 0.921109i
\(511\) −75.4757 + 130.728i −0.147702 + 0.255827i
\(512\) 723.054i 1.41221i
\(513\) −234.597 398.462i −0.457304 0.776729i
\(514\) −808.494 −1.57294
\(515\) 111.482 193.093i 0.216470 0.374937i
\(516\) −73.0330 407.428i −0.141537 0.789588i
\(517\) 1483.87 856.715i 2.87016 1.65709i
\(518\) 44.4346 25.6543i 0.0857811 0.0495258i
\(519\) 359.841 + 129.816i 0.693336 + 0.250128i
\(520\) 3.37279 + 1.94728i 0.00648613 + 0.00374477i
\(521\) −736.381 −1.41340 −0.706700 0.707514i \(-0.749817\pi\)
−0.706700 + 0.707514i \(0.749817\pi\)
\(522\) 201.407 242.813i 0.385837 0.465159i
\(523\) 92.6839 0.177216 0.0886079 0.996067i \(-0.471758\pi\)
0.0886079 + 0.996067i \(0.471758\pi\)
\(524\) 43.7029 75.6957i 0.0834025 0.144457i
\(525\) −30.7490 36.4347i −0.0585694 0.0693995i
\(526\) −639.873 1108.29i −1.21649 2.10702i
\(527\) 81.2546 579.481i 0.154183 1.09958i
\(528\) 731.497 617.345i 1.38541 1.16921i
\(529\) 110.752 191.827i 0.209360 0.362622i
\(530\) 123.463 0.232950
\(531\) 517.312 623.662i 0.974222 1.17450i
\(532\) 94.9429i 0.178464i
\(533\) −268.691 + 465.387i −0.504112 + 0.873147i
\(534\) −345.536 124.656i −0.647071 0.233438i
\(535\) −3.73590 6.47077i −0.00698299 0.0120949i
\(536\) −3.01887 + 1.74295i −0.00563222 + 0.00325177i
\(537\) 521.136 93.4157i 0.970457 0.173958i
\(538\) −1204.43 695.380i −2.23872 1.29253i
\(539\) −933.478 −1.73187
\(540\) −396.076 + 3.37152i −0.733474 + 0.00624356i
\(541\) 875.030i 1.61743i −0.588200 0.808716i \(-0.700163\pi\)
0.588200 0.808716i \(-0.299837\pi\)
\(542\) 901.203 + 520.310i 1.66274 + 0.959982i
\(543\) −544.237 + 97.5566i −1.00228 + 0.179662i
\(544\) −106.685 + 760.845i −0.196113 + 1.39861i
\(545\) −182.183 + 105.183i −0.334280 + 0.192997i
\(546\) −195.458 70.5134i −0.357981 0.129145i
\(547\) −435.805 251.612i −0.796718 0.459985i 0.0456041 0.998960i \(-0.485479\pi\)
−0.842322 + 0.538974i \(0.818812\pi\)
\(548\) 284.792i 0.519693i
\(549\) 10.6575 + 1.81690i 0.0194125 + 0.00330947i
\(550\) 639.062i 1.16193i
\(551\) 106.260 184.048i 0.192849 0.334025i
\(552\) 2.03650 + 2.41307i 0.00368931 + 0.00437150i
\(553\) 2.40678 + 4.16867i 0.00435223 + 0.00753828i
\(554\) −104.584 181.145i −0.188780 0.326977i
\(555\) −93.0020 110.199i −0.167571 0.198557i
\(556\) 664.573 + 383.691i 1.19527 + 0.690092i
\(557\) 228.618i 0.410446i −0.978715 0.205223i \(-0.934208\pi\)
0.978715 0.205223i \(-0.0657919\pi\)
\(558\) 820.558 303.943i 1.47053 0.544700i
\(559\) −610.258 −1.09170
\(560\) 71.5634 + 41.3171i 0.127792 + 0.0737806i
\(561\) 856.245 538.802i 1.52628 0.960431i
\(562\) −44.1750 76.5134i −0.0786033 0.136145i
\(563\) 507.200 292.832i 0.900888 0.520128i 0.0233997 0.999726i \(-0.492551\pi\)
0.877488 + 0.479598i \(0.159218\pi\)
\(564\) −1014.85 + 181.916i −1.79938 + 0.322545i
\(565\) 320.708 555.482i 0.567624 0.983154i
\(566\) 526.382 0.930004
\(567\) −110.919 + 20.8587i −0.195625 + 0.0367878i
\(568\) 7.17205i 0.0126269i
\(569\) 205.791 + 118.814i 0.361672 + 0.208811i 0.669814 0.742529i \(-0.266374\pi\)
−0.308142 + 0.951340i \(0.599707\pi\)
\(570\) −526.687 + 94.4108i −0.924013 + 0.165633i
\(571\) 802.747 463.466i 1.40586 0.811675i 0.410876 0.911691i \(-0.365223\pi\)
0.994986 + 0.100016i \(0.0318896\pi\)
\(572\) 694.458 + 1202.84i 1.21409 + 2.10286i
\(573\) 50.6194 140.313i 0.0883411 0.244875i
\(574\) −60.0932 + 104.085i −0.104692 + 0.181332i
\(575\) −200.000 −0.347826
\(576\) −534.382 + 197.941i −0.927747 + 0.343647i
\(577\) −114.402 −0.198270 −0.0991352 0.995074i \(-0.531608\pi\)
−0.0991352 + 0.995074i \(0.531608\pi\)
\(578\) −224.516 + 784.847i −0.388437 + 1.35787i
\(579\) 157.266 + 186.346i 0.271617 + 0.321841i
\(580\) −91.0232 157.657i −0.156936 0.271822i
\(581\) 29.7769 + 51.5751i 0.0512511 + 0.0887696i
\(582\) 315.522 266.283i 0.542133 0.457531i
\(583\) −203.650 117.577i −0.349313 0.201676i
\(584\) 6.50249 0.0111344
\(585\) −98.1400 + 575.664i −0.167761 + 0.984040i
\(586\) −737.719 −1.25891
\(587\) −18.0108 10.3985i −0.0306828 0.0177147i 0.484580 0.874747i \(-0.338972\pi\)
−0.515263 + 0.857032i \(0.672306\pi\)
\(588\) 528.370 + 190.615i 0.898589 + 0.324175i
\(589\) 510.501 294.738i 0.866726 0.500404i
\(590\) −468.832 812.042i −0.794631 1.37634i
\(591\) −104.599 583.526i −0.176987 0.987354i
\(592\) −181.591 104.842i −0.306742 0.177098i
\(593\) 995.431i 1.67864i 0.543640 + 0.839318i \(0.317046\pi\)
−0.543640 + 0.839318i \(0.682954\pi\)
\(594\) 1316.56 + 745.247i 2.21643 + 1.25463i
\(595\) 68.8398 + 53.7486i 0.115697 + 0.0903338i
\(596\) 426.241 + 246.090i 0.715169 + 0.412903i
\(597\) −1052.96 + 188.748i −1.76376 + 0.316160i
\(598\) −754.888 + 435.835i −1.26235 + 0.728820i
\(599\) −508.130 + 293.369i −0.848297 + 0.489765i −0.860076 0.510166i \(-0.829584\pi\)
0.0117787 + 0.999931i \(0.496251\pi\)
\(600\) −0.696936 + 1.93185i −0.00116156 + 0.00321975i
\(601\) 325.334 + 187.832i 0.541321 + 0.312532i 0.745614 0.666378i \(-0.232156\pi\)
−0.204293 + 0.978910i \(0.565489\pi\)
\(602\) −136.485 −0.226719
\(603\) −402.305 333.702i −0.667173 0.553403i
\(604\) 293.137 0.485326
\(605\) −502.344 + 870.085i −0.830320 + 1.43816i
\(606\) 368.963 311.385i 0.608850 0.513836i
\(607\) −123.401 + 71.2454i −0.203296 + 0.117373i −0.598192 0.801353i \(-0.704114\pi\)
0.394896 + 0.918726i \(0.370781\pi\)
\(608\) −670.276 + 386.984i −1.10243 + 0.636487i
\(609\) −33.4559 39.6422i −0.0549358 0.0650939i
\(610\) 6.25538 10.8346i 0.0102547 0.0177617i
\(611\) 1520.07i 2.48784i
\(612\) −594.677 + 130.130i −0.971695 + 0.212631i
\(613\) −785.715 −1.28175 −0.640877 0.767644i \(-0.721429\pi\)
−0.640877 + 0.767644i \(0.721429\pi\)
\(614\) −1084.59 626.191i −1.76644 1.01985i
\(615\) 317.729 + 114.624i 0.516633 + 0.186381i
\(616\) −0.829497 1.43673i −0.00134659 0.00233235i
\(617\) −329.263 570.301i −0.533652 0.924313i −0.999227 0.0393043i \(-0.987486\pi\)
0.465575 0.885008i \(-0.345848\pi\)
\(618\) 504.397 90.4152i 0.816177 0.146303i
\(619\) 953.354 + 550.419i 1.54015 + 0.889207i 0.998828 + 0.0483917i \(0.0154096\pi\)
0.541323 + 0.840815i \(0.317924\pi\)
\(620\) 504.950i 0.814436i
\(621\) −233.232 + 412.029i −0.375574 + 0.663493i
\(622\) 837.709i 1.34680i
\(623\) −30.2002 + 52.3083i −0.0484755 + 0.0839620i
\(624\) 149.829 + 835.846i 0.240110 + 1.33950i
\(625\) 104.892 + 181.678i 0.167827 + 0.290684i
\(626\) 706.418 + 1223.55i 1.12846 + 1.95456i
\(627\) 958.666 + 345.849i 1.52897 + 0.551593i
\(628\) −12.4515 + 21.5666i −0.0198272 + 0.0343418i
\(629\) −174.680 136.387i −0.277711 0.216831i
\(630\) −21.9492 + 128.748i −0.0348399 + 0.204362i
\(631\) 479.339 0.759650 0.379825 0.925058i \(-0.375984\pi\)
0.379825 + 0.925058i \(0.375984\pi\)
\(632\) 0.103676 0.179573i 0.000164045 0.000284134i
\(633\) −341.046 404.109i −0.538778 0.638403i
\(634\) 926.288 534.793i 1.46102 0.843522i
\(635\) −81.4453 141.067i −0.128260 0.222153i
\(636\) 91.2614 + 108.136i 0.143493 + 0.170026i
\(637\) 414.068 717.187i 0.650029 1.12588i
\(638\) 695.320i 1.08984i
\(639\) 1008.45 373.541i 1.57817 0.584572i
\(640\) 7.08172i 0.0110652i
\(641\) 129.365 224.067i 0.201818 0.349558i −0.747297 0.664491i \(-0.768649\pi\)
0.949114 + 0.314932i \(0.101982\pi\)
\(642\) 5.82749 16.1534i 0.00907708 0.0251610i
\(643\) −794.502 + 458.706i −1.23562 + 0.713384i −0.968195 0.250195i \(-0.919505\pi\)
−0.267422 + 0.963579i \(0.586172\pi\)
\(644\) −84.1910 + 48.6077i −0.130731 + 0.0754778i
\(645\) 67.6794 + 377.561i 0.104929 + 0.585366i
\(646\) −762.386 + 308.303i −1.18016 + 0.477250i
\(647\) 194.253i 0.300236i −0.988668 0.150118i \(-0.952035\pi\)
0.988668 0.150118i \(-0.0479653\pi\)
\(648\) 3.16716 + 3.68864i 0.00488760 + 0.00569234i
\(649\) 1785.92i 2.75180i
\(650\) −490.988 283.472i −0.755367 0.436111i
\(651\) −25.3868 141.625i −0.0389967 0.217550i
\(652\) 164.237 94.8223i 0.251897 0.145433i
\(653\) −34.9563 60.5460i −0.0535318 0.0927198i 0.838018 0.545643i \(-0.183715\pi\)
−0.891550 + 0.452923i \(0.850381\pi\)
\(654\) −454.793 164.071i −0.695403 0.250874i
\(655\) −40.4993 + 70.1468i −0.0618310 + 0.107094i
\(656\) 491.167 0.748730
\(657\) 338.669 + 914.308i 0.515478 + 1.39164i
\(658\) 339.966i 0.516666i
\(659\) −207.820 119.985i −0.315356 0.182071i 0.333965 0.942586i \(-0.391613\pi\)
−0.649321 + 0.760515i \(0.724947\pi\)
\(660\) 667.167 563.053i 1.01086 0.853110i
\(661\) 88.4982 + 153.283i 0.133885 + 0.231896i 0.925171 0.379550i \(-0.123921\pi\)
−0.791286 + 0.611446i \(0.790588\pi\)
\(662\) 401.644 231.889i 0.606713 0.350286i
\(663\) 34.1496 + 896.849i 0.0515076 + 1.35271i
\(664\) 1.28269 2.22169i 0.00193177 0.00334592i
\(665\) 87.9832i 0.132306i
\(666\) 55.6957 326.696i 0.0836272 0.490535i
\(667\) −217.607 −0.326247
\(668\) −245.480 + 425.184i −0.367485 + 0.636502i
\(669\) −704.677 254.220i −1.05333 0.379999i
\(670\) −523.823 + 302.430i −0.781826 + 0.451387i
\(671\) −20.6362 + 11.9143i −0.0307543 + 0.0177560i
\(672\) 33.3323 + 185.950i 0.0496017 + 0.276712i
\(673\) −192.239 110.989i −0.285645 0.164917i 0.350331 0.936626i \(-0.386069\pi\)
−0.635976 + 0.771709i \(0.719402\pi\)
\(674\) −152.173 −0.225776
\(675\) −307.934 + 2.62123i −0.456198 + 0.00388330i
\(676\) −559.771 −0.828064
\(677\) 188.617 326.694i 0.278607 0.482561i −0.692432 0.721483i \(-0.743461\pi\)
0.971039 + 0.238922i \(0.0767940\pi\)
\(678\) 1451.03 260.103i 2.14017 0.383633i
\(679\) −33.9439 58.7925i −0.0499910 0.0865869i
\(680\) 0.522426 3.72577i 0.000768273 0.00547907i
\(681\) −797.874 287.841i −1.17162 0.422675i
\(682\) −964.321 + 1670.25i −1.41396 + 2.44905i
\(683\) −539.646 −0.790111 −0.395055 0.918657i \(-0.629275\pi\)
−0.395055 + 0.918657i \(0.629275\pi\)
\(684\) −472.006 391.517i −0.690067 0.572393i
\(685\) 263.915i 0.385278i
\(686\) 189.035 327.417i 0.275561 0.477285i
\(687\) −736.175 + 621.292i −1.07158 + 0.904356i
\(688\) 278.887 + 483.047i 0.405359 + 0.702103i
\(689\) 180.668 104.309i 0.262218 0.151392i
\(690\) 353.366 + 418.707i 0.512124 + 0.606821i
\(691\) −451.625 260.746i −0.653582 0.377346i 0.136245 0.990675i \(-0.456497\pi\)
−0.789827 + 0.613329i \(0.789830\pi\)
\(692\) 507.346 0.733159
\(693\) 158.814 191.464i 0.229169 0.276282i
\(694\) 375.486i 0.541047i
\(695\) −615.856 355.565i −0.886124 0.511604i
\(696\) −0.758289 + 2.10192i −0.00108950 + 0.00302000i
\(697\) 514.092 + 72.0859i 0.737578 + 0.103423i
\(698\) −491.144 + 283.562i −0.703645 + 0.406250i
\(699\) −163.348 911.266i −0.233688 1.30367i
\(700\) −54.7589 31.6151i −0.0782270 0.0451644i
\(701\) 795.541i 1.13487i 0.823420 + 0.567433i \(0.192063\pi\)
−0.823420 + 0.567433i \(0.807937\pi\)
\(702\) −1156.57 + 680.935i −1.64753 + 0.969993i
\(703\) 223.256i 0.317577i
\(704\) 628.007 1087.74i 0.892055 1.54509i
\(705\) 940.454 168.580i 1.33398 0.239121i
\(706\) 572.879 + 992.255i 0.811443 + 1.40546i
\(707\) −39.6931 68.7504i −0.0561430 0.0972425i
\(708\) 364.683 1010.87i 0.515089 1.42779i
\(709\) 524.674 + 302.920i 0.740019 + 0.427250i 0.822076 0.569377i \(-0.192816\pi\)
−0.0820571 + 0.996628i \(0.526149\pi\)
\(710\) 1244.47i 1.75277i
\(711\) 30.6493 + 5.22514i 0.0431073 + 0.00734900i
\(712\) 2.60186 0.00365429
\(713\) −522.720 301.793i −0.733128 0.423272i
\(714\) 7.63760 + 200.581i 0.0106969 + 0.280926i
\(715\) −643.551 1114.66i −0.900072 1.55897i
\(716\) 608.099 351.086i 0.849301 0.490344i
\(717\) −770.934 913.487i −1.07522 1.27404i
\(718\) 685.885 1187.99i 0.955272 1.65458i
\(719\) −85.3362 −0.118687 −0.0593437 0.998238i \(-0.518901\pi\)
−0.0593437 + 0.998238i \(0.518901\pi\)
\(720\) 500.514 185.395i 0.695158 0.257493i
\(721\) 84.2596i 0.116865i
\(722\) 165.636 + 95.6302i 0.229413 + 0.132452i
\(723\) 302.793 839.318i 0.418800 1.16088i
\(724\) −635.055 + 366.649i −0.877148 + 0.506422i
\(725\) −70.7670 122.572i −0.0976097 0.169065i
\(726\) −2272.84 + 407.415i −3.13063 + 0.561178i
\(727\) 227.901 394.736i 0.313482 0.542966i −0.665632 0.746280i \(-0.731838\pi\)
0.979114 + 0.203314i \(0.0651712\pi\)
\(728\) 1.47178 0.00202167
\(729\) −353.700 + 637.446i −0.485185 + 0.874412i
\(730\) 1128.29 1.54560
\(731\) 221.010 + 546.524i 0.302340 + 0.747639i
\(732\) 14.1134 2.52989i 0.0192807 0.00345614i
\(733\) −391.901 678.792i −0.534653 0.926046i −0.999180 0.0404872i \(-0.987109\pi\)
0.464527 0.885559i \(-0.346224\pi\)
\(734\) 262.116 + 453.999i 0.357107 + 0.618527i
\(735\) −489.638 176.642i −0.666175 0.240329i
\(736\) 686.319 + 396.247i 0.932499 + 0.538379i
\(737\) 1152.04 1.56315
\(738\) 269.646 + 727.966i 0.365374 + 0.986403i
\(739\) 153.070 0.207131 0.103565 0.994623i \(-0.466975\pi\)
0.103565 + 0.994623i \(0.466975\pi\)
\(740\) −165.621 95.6216i −0.223813 0.129218i
\(741\) −690.955 + 583.129i −0.932464 + 0.786949i
\(742\) 40.4067 23.3288i 0.0544564 0.0314404i
\(743\) −208.917 361.854i −0.281180 0.487018i 0.690496 0.723337i \(-0.257392\pi\)
−0.971676 + 0.236318i \(0.924059\pi\)
\(744\) −4.73661 + 3.99744i −0.00636641 + 0.00537291i
\(745\) −394.995 228.051i −0.530195 0.306108i
\(746\) 653.975i 0.876642i
\(747\) 379.195 + 64.6458i 0.507624 + 0.0865406i
\(748\) 825.711 1057.55i 1.10389 1.41384i
\(749\) −2.44534 1.41182i −0.00326481 0.00188494i
\(750\) −386.001 + 1069.97i −0.514669 + 1.42662i
\(751\) −298.480 + 172.328i −0.397444 + 0.229464i −0.685380 0.728185i \(-0.740364\pi\)
0.287937 + 0.957649i \(0.407031\pi\)
\(752\) 1203.21 694.671i 1.60001 0.923765i
\(753\) 383.555 68.7537i 0.509369 0.0913064i
\(754\) −534.212 308.427i −0.708504 0.409055i
\(755\) −271.648 −0.359799
\(756\) −128.989 + 75.9432i −0.170621 + 0.100454i
\(757\) −612.380 −0.808956 −0.404478 0.914548i \(-0.632547\pi\)
−0.404478 + 0.914548i \(0.632547\pi\)
\(758\) 543.250 940.936i 0.716688 1.24134i
\(759\) −184.123 1027.16i −0.242587 1.35331i
\(760\) 3.28226 1.89502i 0.00431877 0.00249344i
\(761\) 689.897 398.312i 0.906567 0.523407i 0.0272418 0.999629i \(-0.491328\pi\)
0.879325 + 0.476222i \(0.157994\pi\)
\(762\) 127.043 352.155i 0.166724 0.462145i
\(763\) −39.7494 + 68.8480i −0.0520962 + 0.0902333i
\(764\) 197.830i 0.258940i
\(765\) 551.085 120.591i 0.720372 0.157635i
\(766\) 1796.04 2.34470
\(767\) −1372.12 792.192i −1.78894 1.03284i
\(768\) 593.105 500.549i 0.772272 0.651756i
\(769\) −133.749 231.661i −0.173926 0.301249i 0.765863 0.643004i \(-0.222312\pi\)
−0.939789 + 0.341755i \(0.888979\pi\)
\(770\) −143.931 249.296i −0.186924 0.323761i
\(771\) 553.812 + 656.217i 0.718303 + 0.851124i
\(772\) 280.066 + 161.696i 0.362779 + 0.209451i
\(773\) 218.543i 0.282721i −0.989958 0.141361i \(-0.954852\pi\)
0.989958 0.141361i \(-0.0451477\pi\)
\(774\) −562.825 + 678.531i −0.727164 + 0.876656i
\(775\) 392.580i 0.506554i
\(776\) −1.46219 + 2.53259i −0.00188427 + 0.00326365i
\(777\) −51.2598 18.4925i −0.0659715 0.0237999i
\(778\) −161.018 278.892i −0.206964 0.358473i
\(779\) 261.480 + 452.896i 0.335661 + 0.581382i
\(780\) 136.652 + 762.338i 0.175195 + 0.977357i
\(781\) −1185.14 + 2052.72i −1.51746 + 2.62832i
\(782\) 663.706 + 518.207i 0.848729 + 0.662669i
\(783\) −335.042 + 2.85198i −0.427896 + 0.00364238i
\(784\) −756.915 −0.965452
\(785\) 11.5387 19.9857i 0.0146990 0.0254595i
\(786\) −183.238 + 32.8461i −0.233127 + 0.0417889i
\(787\) −1306.69 + 754.419i −1.66034 + 0.958601i −0.687795 + 0.725905i \(0.741421\pi\)
−0.972549 + 0.232696i \(0.925245\pi\)
\(788\) −393.119 680.901i −0.498881 0.864088i
\(789\) −461.242 + 1278.53i −0.584591 + 1.62044i
\(790\) 17.9895 31.1588i 0.0227716 0.0394415i
\(791\) 242.395i 0.306441i
\(792\) −10.5633 1.80084i −0.0133375 0.00227379i
\(793\) 21.1396i 0.0266577i
\(794\) 450.728 780.684i 0.567668 0.983229i
\(795\) −84.5715 100.210i −0.106379 0.126050i
\(796\) −1228.67 + 709.375i −1.54356 + 0.891175i
\(797\) 593.926 342.903i 0.745202 0.430243i −0.0787556 0.996894i \(-0.525095\pi\)
0.823958 + 0.566651i \(0.191761\pi\)
\(798\) −154.533 + 130.418i −0.193651 + 0.163431i
\(799\) 1361.32 550.507i 1.70378 0.688996i
\(800\) 515.448i 0.644310i
\(801\) 135.512 + 365.844i 0.169179 + 0.456734i
\(802\) 2187.22i 2.72721i
\(803\) −1861.08 1074.50i −2.31766 1.33810i
\(804\) −652.084 235.246i −0.811050 0.292595i
\(805\) 78.0194 45.0445i 0.0969185 0.0559559i
\(806\) −855.499 1481.77i −1.06141 1.83842i
\(807\) 260.620 + 1453.91i 0.322949 + 1.80163i
\(808\) −1.70985 + 2.96155i −0.00211615 + 0.00366528i
\(809\) 228.169 0.282039 0.141019 0.990007i \(-0.454962\pi\)
0.141019 + 0.990007i \(0.454962\pi\)
\(810\) 549.554 + 640.039i 0.678462 + 0.790171i
\(811\) 63.4735i 0.0782657i −0.999234 0.0391328i \(-0.987540\pi\)
0.999234 0.0391328i \(-0.0124595\pi\)
\(812\) −59.5795 34.3982i −0.0733738 0.0423624i
\(813\) −195.006 1087.87i −0.239859 1.33810i
\(814\) 365.224 + 632.586i 0.448678 + 0.777132i
\(815\) −152.198 + 87.8714i −0.186746 + 0.107818i
\(816\) 694.290 436.890i 0.850846 0.535404i
\(817\) −296.940 + 514.314i −0.363451 + 0.629516i
\(818\) 52.8643i 0.0646262i
\(819\) 76.6545 + 206.945i 0.0935953 + 0.252680i
\(820\) 447.972 0.546307
\(821\) −339.051 + 587.254i −0.412973 + 0.715291i −0.995213 0.0977260i \(-0.968843\pi\)
0.582240 + 0.813017i \(0.302176\pi\)
\(822\) −463.539 + 391.202i −0.563916 + 0.475915i
\(823\) 389.065 224.627i 0.472740 0.272936i −0.244646 0.969612i \(-0.578672\pi\)
0.717386 + 0.696676i \(0.245338\pi\)
\(824\) −3.14335 + 1.81482i −0.00381475 + 0.00220245i
\(825\) 518.697 437.752i 0.628723 0.530609i
\(826\) −306.876 177.175i −0.371520 0.214497i
\(827\) 1047.69 1.26686 0.633430 0.773800i \(-0.281647\pi\)
0.633430 + 0.773800i \(0.281647\pi\)
\(828\) −105.528 + 618.997i −0.127449 + 0.747581i
\(829\) 838.983 1.01204 0.506021 0.862521i \(-0.331116\pi\)
0.506021 + 0.862521i \(0.331116\pi\)
\(830\) 222.568 385.499i 0.268154 0.464457i
\(831\) −75.3878 + 208.969i −0.0907194 + 0.251467i
\(832\) 557.138 + 964.991i 0.669637 + 1.15984i
\(833\) −792.244 111.088i −0.951073 0.133359i
\(834\) −288.373 1608.74i −0.345771 1.92895i
\(835\) 227.485 394.016i 0.272437 0.471875i
\(836\) 1351.64 1.61679
\(837\) −808.772 457.810i −0.966275 0.546966i
\(838\) 1638.10i 1.95477i
\(839\) −21.6089 + 37.4278i −0.0257556 + 0.0446100i −0.878616 0.477529i \(-0.841532\pi\)
0.852860 + 0.522139i \(0.174866\pi\)
\(840\) −0.163224 0.910576i −0.000194315 0.00108402i
\(841\) 343.503 + 594.965i 0.408446 + 0.707449i
\(842\) −731.331 + 422.234i −0.868564 + 0.501465i
\(843\) −31.8428 + 88.2659i −0.0377732 + 0.104705i
\(844\) −607.348 350.652i −0.719607 0.415465i
\(845\) 518.737 0.613890
\(846\) 1690.13 + 1401.92i 1.99779 + 1.65712i
\(847\) 379.678i 0.448262i
\(848\) −165.130 95.3380i −0.194729 0.112427i
\(849\) −360.568 427.240i −0.424697 0.503227i
\(850\) −76.0513 + 542.373i −0.0894722 + 0.638086i
\(851\) −197.973 + 114.300i −0.232636 + 0.134313i
\(852\) 1089.98 919.883i 1.27932 1.07967i
\(853\) 1071.00 + 618.341i 1.25557 + 0.724902i 0.972209 0.234113i \(-0.0752185\pi\)
0.283357 + 0.959014i \(0.408552\pi\)
\(854\) 4.72790i 0.00553618i
\(855\) 437.406 + 362.817i 0.511585 + 0.424347i
\(856\) 0.121633i 0.000142095i
\(857\) −153.442 + 265.770i −0.179046 + 0.310117i −0.941554 0.336862i \(-0.890634\pi\)
0.762508 + 0.646979i \(0.223968\pi\)
\(858\) 1003.85 2782.60i 1.16999 3.24312i
\(859\) −37.9520 65.7347i −0.0441815 0.0765247i 0.843089 0.537774i \(-0.180735\pi\)
−0.887271 + 0.461249i \(0.847401\pi\)
\(860\) 254.361 + 440.566i 0.295769 + 0.512286i
\(861\) 125.644 22.5222i 0.145928 0.0261582i
\(862\) 514.531 + 297.065i 0.596904 + 0.344622i
\(863\) 264.341i 0.306305i −0.988203 0.153152i \(-0.951057\pi\)
0.988203 0.153152i \(-0.0489425\pi\)
\(864\) 1061.90 + 601.094i 1.22905 + 0.695711i
\(865\) −470.155 −0.543532
\(866\) 1298.12 + 749.469i 1.49898 + 0.865438i
\(867\) 790.816 355.385i 0.912130 0.409902i
\(868\) −95.4120 165.258i −0.109922 0.190390i
\(869\) −59.3465 + 34.2637i −0.0682929 + 0.0394289i
\(870\) −131.575 + 364.717i −0.151236 + 0.419215i
\(871\) −511.019 + 885.111i −0.586704 + 1.01620i
\(872\) 3.42455 0.00392724
\(873\) −432.260 73.6923i −0.495143 0.0844127i
\(874\) 848.274i 0.970565i
\(875\) 161.975 + 93.5162i 0.185114 + 0.106876i
\(876\) 834.005 + 988.221i 0.952061 + 1.12811i
\(877\) −483.379 + 279.079i −0.551173 + 0.318220i −0.749595 0.661897i \(-0.769752\pi\)
0.198422 + 0.980117i \(0.436418\pi\)
\(878\) 377.906 + 654.553i 0.430417 + 0.745504i
\(879\) 505.331 + 598.772i 0.574894 + 0.681197i
\(880\) −588.204 + 1018.80i −0.668414 + 1.15773i
\(881\) 615.701 0.698866 0.349433 0.936961i \(-0.386374\pi\)
0.349433 + 0.936961i \(0.386374\pi\)
\(882\) −415.539 1121.84i −0.471133 1.27192i
\(883\) 1536.97 1.74062 0.870311 0.492502i \(-0.163918\pi\)
0.870311 + 0.492502i \(0.163918\pi\)
\(884\) 446.245 + 1103.49i 0.504802 + 1.24830i
\(885\) −337.950 + 936.772i −0.381864 + 1.05850i
\(886\) −1100.08 1905.40i −1.24163 2.15056i
\(887\) −320.893 555.804i −0.361774 0.626611i 0.626479 0.779438i \(-0.284495\pi\)
−0.988253 + 0.152828i \(0.951162\pi\)
\(888\) 0.414180 + 2.31058i 0.000466419 + 0.00260200i
\(889\) −53.3103 30.7787i −0.0599666 0.0346217i
\(890\) 451.464 0.507263
\(891\) −296.951 1579.08i −0.333279 1.77226i
\(892\) −993.535 −1.11383
\(893\) 1281.09 + 739.637i 1.43459 + 0.828261i
\(894\) −184.956 1031.81i −0.206886 1.15415i
\(895\) −563.523 + 325.350i −0.629634 + 0.363520i
\(896\) −1.33811 2.31768i −0.00149343 0.00258670i
\(897\) 870.839 + 314.164i 0.970835 + 0.350239i
\(898\) −196.775 113.608i −0.219125 0.126512i
\(899\) 427.140i 0.475127i
\(900\) −382.983 + 141.861i −0.425537 + 0.157623i
\(901\) −158.846 124.023i −0.176299 0.137651i
\(902\) −1481.78 855.507i −1.64277 0.948455i
\(903\) 93.4912 + 110.779i 0.103534 + 0.122678i
\(904\) −9.04269 + 5.22080i −0.0100030 + 0.00577522i
\(905\) 588.503 339.772i 0.650279 0.375439i
\(906\) −402.665 477.122i −0.444443 0.526625i
\(907\) −1383.50 798.765i −1.52536 0.880667i −0.999548 0.0300668i \(-0.990428\pi\)
−0.525813 0.850600i \(-0.676239\pi\)
\(908\) −1124.94 −1.23892
\(909\) −505.473 86.1739i −0.556076 0.0948008i
\(910\) 255.378 0.280635
\(911\) −544.648 + 943.358i −0.597858 + 1.03552i 0.395279 + 0.918561i \(0.370648\pi\)
−0.993137 + 0.116959i \(0.962686\pi\)
\(912\) 777.339 + 280.433i 0.852345 + 0.307492i
\(913\) −734.240 + 423.914i −0.804206 + 0.464309i
\(914\) −1071.26 + 618.492i −1.17206 + 0.676687i
\(915\) −13.0789 + 2.34444i −0.0142938 + 0.00256223i
\(916\) −638.792 + 1106.42i −0.697372 + 1.20788i
\(917\) 30.6099i 0.0333805i
\(918\) 1028.68 + 789.170i 1.12057 + 0.859662i
\(919\) 1463.53 1.59253 0.796264 0.604949i \(-0.206807\pi\)
0.796264 + 0.604949i \(0.206807\pi\)
\(920\) −3.36082 1.94037i −0.00365307 0.00210910i
\(921\) 234.689 + 1309.25i 0.254819 + 1.42155i
\(922\) −1072.35 1857.36i −1.16307 2.01450i
\(923\) −1051.40 1821.07i −1.13911 1.97299i
\(924\) 111.957 310.337i 0.121166 0.335863i
\(925\) −128.764 74.3422i −0.139205 0.0803699i
\(926\) 1405.92i 1.51827i
\(927\) −418.894 347.462i −0.451881 0.374824i
\(928\) 560.824i 0.604336i
\(929\) 199.305 345.206i 0.214537 0.371589i −0.738592 0.674152i \(-0.764509\pi\)
0.953129 + 0.302564i \(0.0978425\pi\)
\(930\) −821.878 + 693.621i −0.883740 + 0.745829i
\(931\) −402.955 697.938i −0.432819 0.749665i
\(932\) −613.915 1063.33i −0.658707 1.14091i
\(933\) −679.930 + 573.824i −0.728756 + 0.615031i
\(934\) 79.6896 138.026i 0.0853207 0.147780i
\(935\) −765.183 + 980.025i −0.818377 + 1.04816i
\(936\) 6.06919 7.31690i 0.00648418 0.00781720i
\(937\) −125.284 −0.133707 −0.0668536 0.997763i \(-0.521296\pi\)
−0.0668536 + 0.997763i \(0.521296\pi\)
\(938\) −114.290 + 197.956i −0.121844 + 0.211041i
\(939\) 509.210 1411.49i 0.542289 1.50318i
\(940\) 1097.39 633.579i 1.16744 0.674020i
\(941\) 232.137 + 402.073i 0.246692 + 0.427282i 0.962606 0.270906i \(-0.0873232\pi\)
−0.715914 + 0.698188i \(0.753990\pi\)
\(942\) 52.2066 9.35825i 0.0554211 0.00993445i
\(943\) 267.738 463.736i 0.283922 0.491767i
\(944\) 1448.12i 1.53403i
\(945\) 119.534 70.3762i 0.126491 0.0744722i
\(946\) 1943.05i 2.05396i
\(947\) 411.814 713.284i 0.434862 0.753203i −0.562422 0.826850i \(-0.690130\pi\)
0.997284 + 0.0736468i \(0.0234638\pi\)
\(948\) 40.5881 7.27559i 0.0428145 0.00767467i
\(949\) 1651.06 953.241i 1.73979 1.00447i
\(950\) −477.810 + 275.864i −0.502958 + 0.290383i
\(951\) −1068.57 385.497i −1.12362 0.405359i
\(952\) −0.533018 1.31807i −0.000559892 0.00138453i
\(953\) 926.275i 0.971957i 0.873971 + 0.485978i \(0.161537\pi\)
−0.873971 + 0.485978i \(0.838463\pi\)
\(954\) 50.6470 297.082i 0.0530891 0.311406i
\(955\) 183.328i 0.191966i
\(956\) −1372.91 792.649i −1.43610 0.829131i
\(957\) 564.359 476.289i 0.589717 0.497689i
\(958\) −730.530 + 421.772i −0.762557 + 0.440263i
\(959\) 49.8676 + 86.3733i 0.0519996 + 0.0900660i
\(960\) 535.243 451.716i 0.557544 0.470537i
\(961\) 111.888 193.796i 0.116429 0.201661i
\(962\) −648.018 −0.673615
\(963\) −17.1027 + 6.33502i −0.0177598 + 0.00657842i
\(964\) 1183.37i 1.22756i
\(965\) −259.535 149.843i −0.268949 0.155278i
\(966\) 194.764 + 70.2632i 0.201619 + 0.0727363i
\(967\) 685.245 + 1186.88i 0.708630 + 1.22738i 0.965366 + 0.260901i \(0.0840196\pi\)
−0.256736 + 0.966482i \(0.582647\pi\)
\(968\) 14.1641 8.17765i 0.0146323 0.00844798i
\(969\) 772.464 + 407.608i 0.797177 + 0.420648i
\(970\) −253.714 + 439.446i −0.261561 + 0.453037i
\(971\) 182.369i 0.187815i 0.995581 + 0.0939076i \(0.0299358\pi\)
−0.995581 + 0.0939076i \(0.970064\pi\)
\(972\) −154.365 + 954.434i −0.158812 + 0.981928i
\(973\) −268.740 −0.276198
\(974\) 1085.46 1880.06i 1.11443 1.93025i
\(975\) 106.242 + 592.689i 0.108966 + 0.607886i
\(976\) −16.7329 + 9.66076i −0.0171444 + 0.00989832i
\(977\) 366.032 211.328i 0.374649 0.216303i −0.300839 0.953675i \(-0.597267\pi\)
0.675487 + 0.737372i \(0.263933\pi\)
\(978\) −379.940 137.067i −0.388487 0.140151i
\(979\) −744.679 429.940i −0.760652 0.439163i
\(980\) −690.349 −0.704437
\(981\) 178.361 + 481.522i 0.181815 + 0.490849i
\(982\) 161.906 0.164874
\(983\) −807.232 + 1398.17i −0.821192 + 1.42235i 0.0836025 + 0.996499i \(0.473357\pi\)
−0.904795 + 0.425848i \(0.859976\pi\)
\(984\) −3.54637 4.20213i −0.00360404 0.00427046i
\(985\) 364.301 + 630.988i 0.369849 + 0.640597i
\(986\) −82.7464 + 590.119i −0.0839213 + 0.598498i
\(987\) 275.935 232.874i 0.279569 0.235941i
\(988\) −599.554 + 1038.46i −0.606836 + 1.05107i
\(989\) 608.094 0.614857
\(990\) −1832.90 312.475i −1.85141 0.315632i
\(991\) 651.023i 0.656936i −0.944515 0.328468i \(-0.893468\pi\)
0.944515 0.328468i \(-0.106532\pi\)
\(992\) −777.792 + 1347.18i −0.784064 + 1.35804i
\(993\) −463.337 167.154i −0.466603 0.168332i
\(994\) −235.146 407.285i −0.236566 0.409744i
\(995\) 1138.61 657.375i 1.14433 0.660678i
\(996\) 502.160 90.0142i 0.504177 0.0903757i
\(997\) −1123.30 648.540i −1.12668 0.650491i −0.183585 0.983004i \(-0.558770\pi\)
−0.943099 + 0.332513i \(0.892104\pi\)
\(998\) 613.185 0.614413
\(999\) −303.316 + 178.579i −0.303619 + 0.178758i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.101.8 yes 68
3.2 odd 2 459.3.i.a.305.27 68
9.4 even 3 459.3.i.a.152.28 68
9.5 odd 6 inner 153.3.i.a.50.7 68
17.16 even 2 inner 153.3.i.a.101.7 yes 68
51.50 odd 2 459.3.i.a.305.28 68
153.50 odd 6 inner 153.3.i.a.50.8 yes 68
153.67 even 6 459.3.i.a.152.27 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.7 68 9.5 odd 6 inner
153.3.i.a.50.8 yes 68 153.50 odd 6 inner
153.3.i.a.101.7 yes 68 17.16 even 2 inner
153.3.i.a.101.8 yes 68 1.1 even 1 trivial
459.3.i.a.152.27 68 153.67 even 6
459.3.i.a.152.28 68 9.4 even 3
459.3.i.a.305.27 68 3.2 odd 2
459.3.i.a.305.28 68 51.50 odd 2