Properties

Label 459.2.y.a.422.1
Level $459$
Weight $2$
Character 459.422
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 422.1
Character \(\chi\) \(=\) 459.422
Dual form 459.2.y.a.62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45899 + 1.90139i) q^{2} +(-0.969004 - 3.61637i) q^{4} +(0.502973 - 0.0329666i) q^{5} +(0.0485612 - 0.740900i) q^{7} +(3.86148 + 1.59948i) q^{8} +(-0.671150 + 1.00445i) q^{10} +(-0.767594 + 0.673162i) q^{11} +(-5.20440 + 1.39452i) q^{13} +(1.33789 + 1.17330i) q^{14} +(-2.19038 + 1.26462i) q^{16} +(-3.71857 - 1.78107i) q^{17} +(-3.37354 + 1.39737i) q^{19} +(-0.606603 - 1.78699i) q^{20} +(-0.160033 - 2.44163i) q^{22} +(0.172029 - 0.506782i) q^{23} +(-4.70533 + 0.619468i) q^{25} +(4.94165 - 11.9302i) q^{26} +(-2.72643 + 0.542320i) q^{28} +(-5.67976 - 2.80095i) q^{29} +(-0.677946 + 0.773049i) q^{31} +(-0.299892 + 2.27790i) q^{32} +(8.81188 - 4.47190i) q^{34} -0.374254i q^{35} +(2.20919 - 11.1064i) q^{37} +(2.26502 - 8.45317i) q^{38} +(1.99495 + 0.677194i) q^{40} +(2.96507 + 6.01257i) q^{41} +(0.384182 + 2.91815i) q^{43} +(3.17821 + 2.12361i) q^{44} +(0.712603 + 1.06649i) q^{46} +(-11.4370 - 3.06452i) q^{47} +(6.39354 + 0.841725i) q^{49} +(5.68718 - 9.85048i) q^{50} +(10.0862 + 17.4698i) q^{52} +(3.30651 + 7.98262i) q^{53} +(-0.363887 + 0.363887i) q^{55} +(1.37257 - 2.78330i) q^{56} +(13.6124 - 6.71290i) q^{58} +(6.97647 - 5.35323i) q^{59} +(6.35837 + 0.416750i) q^{61} +(-0.480754 - 2.41691i) q^{62} +(-7.47053 - 7.47053i) q^{64} +(-2.57170 + 0.872975i) q^{65} +(-8.82398 - 5.09452i) q^{67} +(-2.83771 + 15.1736i) q^{68} +(0.711604 + 0.546033i) q^{70} +(-4.19907 - 0.835247i) q^{71} +(2.65455 - 1.77371i) q^{73} +(17.8943 + 20.4046i) q^{74} +(8.32238 + 10.8459i) q^{76} +(0.461470 + 0.601400i) q^{77} +(-6.82883 - 7.78679i) q^{79} +(-1.06001 + 0.708279i) q^{80} +(-15.7583 - 3.13452i) q^{82} +(-1.02986 - 0.790239i) q^{83} +(-1.92906 - 0.773243i) q^{85} +(-6.10907 - 3.52707i) q^{86} +(-4.04075 + 1.37165i) q^{88} +(-2.39586 - 2.39586i) q^{89} +(0.780465 + 3.92366i) q^{91} +(-1.99941 - 0.131048i) q^{92} +(22.5133 - 17.2750i) q^{94} +(-1.65074 + 0.814053i) q^{95} +(-7.04839 + 14.2927i) q^{97} +(-10.9286 + 10.9286i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45899 + 1.90139i −1.03166 + 1.34449i −0.0945260 + 0.995522i \(0.530134\pi\)
−0.937136 + 0.348965i \(0.886533\pi\)
\(3\) 0 0
\(4\) −0.969004 3.61637i −0.484502 1.80819i
\(5\) 0.502973 0.0329666i 0.224936 0.0147431i 0.0474819 0.998872i \(-0.484880\pi\)
0.177455 + 0.984129i \(0.443214\pi\)
\(6\) 0 0
\(7\) 0.0485612 0.740900i 0.0183544 0.280034i −0.978809 0.204773i \(-0.934354\pi\)
0.997164 0.0752609i \(-0.0239790\pi\)
\(8\) 3.86148 + 1.59948i 1.36524 + 0.565500i
\(9\) 0 0
\(10\) −0.671150 + 1.00445i −0.212236 + 0.317634i
\(11\) −0.767594 + 0.673162i −0.231438 + 0.202966i −0.767208 0.641398i \(-0.778355\pi\)
0.535770 + 0.844364i \(0.320021\pi\)
\(12\) 0 0
\(13\) −5.20440 + 1.39452i −1.44344 + 0.386769i −0.893737 0.448591i \(-0.851926\pi\)
−0.549704 + 0.835360i \(0.685259\pi\)
\(14\) 1.33789 + 1.17330i 0.357567 + 0.313578i
\(15\) 0 0
\(16\) −2.19038 + 1.26462i −0.547596 + 0.316155i
\(17\) −3.71857 1.78107i −0.901886 0.431973i
\(18\) 0 0
\(19\) −3.37354 + 1.39737i −0.773944 + 0.320578i −0.734469 0.678643i \(-0.762569\pi\)
−0.0394751 + 0.999221i \(0.512569\pi\)
\(20\) −0.606603 1.78699i −0.135641 0.399584i
\(21\) 0 0
\(22\) −0.160033 2.44163i −0.0341192 0.520558i
\(23\) 0.172029 0.506782i 0.0358706 0.105671i −0.927520 0.373774i \(-0.878063\pi\)
0.963390 + 0.268103i \(0.0863968\pi\)
\(24\) 0 0
\(25\) −4.70533 + 0.619468i −0.941066 + 0.123894i
\(26\) 4.94165 11.9302i 0.969137 2.33970i
\(27\) 0 0
\(28\) −2.72643 + 0.542320i −0.515246 + 0.102489i
\(29\) −5.67976 2.80095i −1.05471 0.520123i −0.169600 0.985513i \(-0.554247\pi\)
−0.885106 + 0.465390i \(0.845914\pi\)
\(30\) 0 0
\(31\) −0.677946 + 0.773049i −0.121763 + 0.138844i −0.809509 0.587107i \(-0.800267\pi\)
0.687747 + 0.725951i \(0.258600\pi\)
\(32\) −0.299892 + 2.27790i −0.0530139 + 0.402680i
\(33\) 0 0
\(34\) 8.81188 4.47190i 1.51122 0.766925i
\(35\) 0.374254i 0.0632604i
\(36\) 0 0
\(37\) 2.20919 11.1064i 0.363189 1.82587i −0.176856 0.984237i \(-0.556593\pi\)
0.540045 0.841636i \(-0.318407\pi\)
\(38\) 2.26502 8.45317i 0.367435 1.37129i
\(39\) 0 0
\(40\) 1.99495 + 0.677194i 0.315429 + 0.107074i
\(41\) 2.96507 + 6.01257i 0.463067 + 0.939006i 0.995698 + 0.0926589i \(0.0295366\pi\)
−0.532631 + 0.846347i \(0.678797\pi\)
\(42\) 0 0
\(43\) 0.384182 + 2.91815i 0.0585872 + 0.445014i 0.995448 + 0.0953104i \(0.0303844\pi\)
−0.936860 + 0.349704i \(0.886282\pi\)
\(44\) 3.17821 + 2.12361i 0.479133 + 0.320146i
\(45\) 0 0
\(46\) 0.712603 + 1.06649i 0.105068 + 0.157245i
\(47\) −11.4370 3.06452i −1.66825 0.447007i −0.703614 0.710583i \(-0.748431\pi\)
−0.964639 + 0.263576i \(0.915098\pi\)
\(48\) 0 0
\(49\) 6.39354 + 0.841725i 0.913363 + 0.120246i
\(50\) 5.68718 9.85048i 0.804288 1.39307i
\(51\) 0 0
\(52\) 10.0862 + 17.4698i 1.39870 + 2.42262i
\(53\) 3.30651 + 7.98262i 0.454184 + 1.09650i 0.970716 + 0.240230i \(0.0772228\pi\)
−0.516532 + 0.856268i \(0.672777\pi\)
\(54\) 0 0
\(55\) −0.363887 + 0.363887i −0.0490666 + 0.0490666i
\(56\) 1.37257 2.78330i 0.183417 0.371934i
\(57\) 0 0
\(58\) 13.6124 6.71290i 1.78740 0.881447i
\(59\) 6.97647 5.35323i 0.908259 0.696932i −0.0450319 0.998986i \(-0.514339\pi\)
0.953291 + 0.302054i \(0.0976723\pi\)
\(60\) 0 0
\(61\) 6.35837 + 0.416750i 0.814106 + 0.0533593i 0.466767 0.884380i \(-0.345419\pi\)
0.347339 + 0.937740i \(0.387085\pi\)
\(62\) −0.480754 2.41691i −0.0610558 0.306948i
\(63\) 0 0
\(64\) −7.47053 7.47053i −0.933817 0.933817i
\(65\) −2.57170 + 0.872975i −0.318980 + 0.108279i
\(66\) 0 0
\(67\) −8.82398 5.09452i −1.07802 0.622395i −0.147659 0.989038i \(-0.547174\pi\)
−0.930362 + 0.366643i \(0.880507\pi\)
\(68\) −2.83771 + 15.1736i −0.344122 + 1.84007i
\(69\) 0 0
\(70\) 0.711604 + 0.546033i 0.0850529 + 0.0652634i
\(71\) −4.19907 0.835247i −0.498338 0.0991255i −0.0604793 0.998169i \(-0.519263\pi\)
−0.437858 + 0.899044i \(0.644263\pi\)
\(72\) 0 0
\(73\) 2.65455 1.77371i 0.310691 0.207597i −0.390442 0.920627i \(-0.627678\pi\)
0.701133 + 0.713030i \(0.252678\pi\)
\(74\) 17.8943 + 20.4046i 2.08018 + 2.37199i
\(75\) 0 0
\(76\) 8.32238 + 10.8459i 0.954642 + 1.24411i
\(77\) 0.461470 + 0.601400i 0.0525894 + 0.0685359i
\(78\) 0 0
\(79\) −6.82883 7.78679i −0.768304 0.876083i 0.226899 0.973918i \(-0.427141\pi\)
−0.995203 + 0.0978357i \(0.968808\pi\)
\(80\) −1.06001 + 0.708279i −0.118513 + 0.0791880i
\(81\) 0 0
\(82\) −15.7583 3.13452i −1.74021 0.346149i
\(83\) −1.02986 0.790239i −0.113042 0.0867400i 0.550694 0.834707i \(-0.314363\pi\)
−0.663735 + 0.747967i \(0.731030\pi\)
\(84\) 0 0
\(85\) −1.92906 0.773243i −0.209236 0.0838699i
\(86\) −6.10907 3.52707i −0.658758 0.380334i
\(87\) 0 0
\(88\) −4.04075 + 1.37165i −0.430746 + 0.146218i
\(89\) −2.39586 2.39586i −0.253961 0.253961i 0.568632 0.822592i \(-0.307473\pi\)
−0.822592 + 0.568632i \(0.807473\pi\)
\(90\) 0 0
\(91\) 0.780465 + 3.92366i 0.0818149 + 0.411311i
\(92\) −1.99941 0.131048i −0.208453 0.0136627i
\(93\) 0 0
\(94\) 22.5133 17.2750i 2.32207 1.78178i
\(95\) −1.65074 + 0.814053i −0.169362 + 0.0835200i
\(96\) 0 0
\(97\) −7.04839 + 14.2927i −0.715656 + 1.45121i 0.169316 + 0.985562i \(0.445844\pi\)
−0.884972 + 0.465644i \(0.845823\pi\)
\(98\) −10.9286 + 10.9286i −1.10395 + 1.10395i
\(99\) 0 0
\(100\) 6.79971 + 16.4160i 0.679971 + 1.64160i
\(101\) 6.54019 + 11.3279i 0.650773 + 1.12717i 0.982936 + 0.183949i \(0.0588883\pi\)
−0.332163 + 0.943222i \(0.607778\pi\)
\(102\) 0 0
\(103\) −3.23969 + 5.61131i −0.319216 + 0.552899i −0.980325 0.197391i \(-0.936753\pi\)
0.661108 + 0.750290i \(0.270086\pi\)
\(104\) −22.3272 2.93943i −2.18936 0.288235i
\(105\) 0 0
\(106\) −20.0023 5.35959i −1.94279 0.520570i
\(107\) −8.20002 12.2722i −0.792726 1.18640i −0.978992 0.203899i \(-0.934639\pi\)
0.186266 0.982499i \(-0.440361\pi\)
\(108\) 0 0
\(109\) 0.866335 + 0.578867i 0.0829798 + 0.0554454i 0.596368 0.802711i \(-0.296610\pi\)
−0.513388 + 0.858156i \(0.671610\pi\)
\(110\) −0.160985 1.22280i −0.0153493 0.116589i
\(111\) 0 0
\(112\) 0.830589 + 1.68427i 0.0784832 + 0.159148i
\(113\) −4.50947 1.53076i −0.424215 0.144002i 0.101164 0.994870i \(-0.467743\pi\)
−0.525379 + 0.850868i \(0.676077\pi\)
\(114\) 0 0
\(115\) 0.0698193 0.260569i 0.00651068 0.0242982i
\(116\) −4.62556 + 23.2543i −0.429473 + 2.15911i
\(117\) 0 0
\(118\) 21.0753i 1.94014i
\(119\) −1.50017 + 2.66860i −0.137521 + 0.244630i
\(120\) 0 0
\(121\) −1.29973 + 9.87246i −0.118158 + 0.897497i
\(122\) −10.0692 + 11.4817i −0.911623 + 1.03951i
\(123\) 0 0
\(124\) 3.45257 + 1.70262i 0.310050 + 0.152900i
\(125\) −4.81807 + 0.958374i −0.430941 + 0.0857195i
\(126\) 0 0
\(127\) −2.87472 + 6.94019i −0.255090 + 0.615843i −0.998601 0.0528818i \(-0.983159\pi\)
0.743510 + 0.668724i \(0.233159\pi\)
\(128\) 20.5480 2.70520i 1.81621 0.239108i
\(129\) 0 0
\(130\) 2.09222 6.16348i 0.183500 0.540573i
\(131\) −0.287829 4.39143i −0.0251478 0.383681i −0.991818 0.127657i \(-0.959254\pi\)
0.966671 0.256023i \(-0.0824124\pi\)
\(132\) 0 0
\(133\) 0.871486 + 2.56732i 0.0755675 + 0.222615i
\(134\) 22.5608 9.34498i 1.94895 0.807284i
\(135\) 0 0
\(136\) −11.5104 12.8253i −0.987009 1.09976i
\(137\) −5.46680 + 3.15626i −0.467060 + 0.269657i −0.715008 0.699116i \(-0.753577\pi\)
0.247948 + 0.968773i \(0.420244\pi\)
\(138\) 0 0
\(139\) 11.3931 + 9.99145i 0.966347 + 0.847463i 0.988335 0.152295i \(-0.0486664\pi\)
−0.0219884 + 0.999758i \(0.507000\pi\)
\(140\) −1.35344 + 0.362654i −0.114387 + 0.0306498i
\(141\) 0 0
\(142\) 7.71453 6.76546i 0.647389 0.567745i
\(143\) 3.05613 4.57383i 0.255567 0.382483i
\(144\) 0 0
\(145\) −2.94911 1.22156i −0.244910 0.101445i
\(146\) −0.500435 + 7.63516i −0.0414163 + 0.631890i
\(147\) 0 0
\(148\) −42.3054 + 2.77284i −3.47749 + 0.227926i
\(149\) 1.91554 + 7.14890i 0.156927 + 0.585661i 0.998933 + 0.0461915i \(0.0147085\pi\)
−0.842005 + 0.539469i \(0.818625\pi\)
\(150\) 0 0
\(151\) −1.49586 + 1.94944i −0.121731 + 0.158643i −0.850244 0.526389i \(-0.823545\pi\)
0.728512 + 0.685033i \(0.240212\pi\)
\(152\) −15.2619 −1.23790
\(153\) 0 0
\(154\) −1.81678 −0.146400
\(155\) −0.315504 + 0.411173i −0.0253419 + 0.0330262i
\(156\) 0 0
\(157\) −2.48072 9.25817i −0.197983 0.738883i −0.991474 0.130301i \(-0.958406\pi\)
0.793491 0.608581i \(-0.208261\pi\)
\(158\) 24.7689 1.62344i 1.97051 0.129154i
\(159\) 0 0
\(160\) −0.0757428 + 1.15561i −0.00598799 + 0.0913591i
\(161\) −0.367121 0.152067i −0.0289332 0.0119845i
\(162\) 0 0
\(163\) 3.62885 5.43096i 0.284234 0.425386i −0.661689 0.749779i \(-0.730160\pi\)
0.945922 + 0.324393i \(0.105160\pi\)
\(164\) 18.8705 16.5490i 1.47354 1.29226i
\(165\) 0 0
\(166\) 3.00511 0.805217i 0.233242 0.0624970i
\(167\) −3.06714 2.68981i −0.237343 0.208144i 0.532409 0.846487i \(-0.321287\pi\)
−0.769752 + 0.638343i \(0.779620\pi\)
\(168\) 0 0
\(169\) 13.8828 8.01523i 1.06791 0.616556i
\(170\) 4.28471 2.53974i 0.328623 0.194790i
\(171\) 0 0
\(172\) 10.1809 4.21705i 0.776283 0.321547i
\(173\) 2.64623 + 7.79554i 0.201189 + 0.592684i 0.999960 0.00895141i \(-0.00284936\pi\)
−0.798771 + 0.601635i \(0.794516\pi\)
\(174\) 0 0
\(175\) 0.230468 + 3.51626i 0.0174217 + 0.265804i
\(176\) 0.830032 2.44520i 0.0625660 0.184314i
\(177\) 0 0
\(178\) 8.05100 1.05993i 0.603448 0.0794455i
\(179\) 4.54443 10.9712i 0.339667 0.820028i −0.658081 0.752947i \(-0.728631\pi\)
0.997748 0.0670807i \(-0.0213685\pi\)
\(180\) 0 0
\(181\) 17.5732 3.49554i 1.30621 0.259821i 0.507559 0.861617i \(-0.330548\pi\)
0.798650 + 0.601796i \(0.205548\pi\)
\(182\) −8.59911 4.24061i −0.637408 0.314335i
\(183\) 0 0
\(184\) 1.47487 1.68177i 0.108729 0.123982i
\(185\) 0.745025 5.65903i 0.0547753 0.416060i
\(186\) 0 0
\(187\) 4.05330 1.13606i 0.296407 0.0830771i
\(188\) 44.3299i 3.23309i
\(189\) 0 0
\(190\) 0.860573 4.32639i 0.0624325 0.313869i
\(191\) 5.55608 20.7356i 0.402024 1.50037i −0.407456 0.913225i \(-0.633584\pi\)
0.809479 0.587148i \(-0.199749\pi\)
\(192\) 0 0
\(193\) 8.52695 + 2.89451i 0.613783 + 0.208351i 0.610982 0.791645i \(-0.290775\pi\)
0.00280156 + 0.999996i \(0.499108\pi\)
\(194\) −16.8925 34.2547i −1.21281 2.45934i
\(195\) 0 0
\(196\) −3.15137 23.9371i −0.225098 1.70979i
\(197\) 15.1511 + 10.1237i 1.07947 + 0.721281i 0.962344 0.271836i \(-0.0876307\pi\)
0.117130 + 0.993117i \(0.462631\pi\)
\(198\) 0 0
\(199\) 13.9975 + 20.9487i 0.992255 + 1.48501i 0.870326 + 0.492476i \(0.163908\pi\)
0.121929 + 0.992539i \(0.461092\pi\)
\(200\) −19.1603 5.13400i −1.35484 0.363029i
\(201\) 0 0
\(202\) −31.0809 4.09188i −2.18685 0.287904i
\(203\) −2.35104 + 4.07212i −0.165011 + 0.285807i
\(204\) 0 0
\(205\) 1.68957 + 2.92642i 0.118004 + 0.204390i
\(206\) −5.94263 14.3468i −0.414043 0.999587i
\(207\) 0 0
\(208\) 9.63611 9.63611i 0.668144 0.668144i
\(209\) 1.64886 3.34355i 0.114054 0.231278i
\(210\) 0 0
\(211\) −13.5539 + 6.68404i −0.933088 + 0.460148i −0.844281 0.535901i \(-0.819972\pi\)
−0.0888071 + 0.996049i \(0.528305\pi\)
\(212\) 25.6641 19.6928i 1.76262 1.35251i
\(213\) 0 0
\(214\) 35.2980 + 2.31355i 2.41292 + 0.158151i
\(215\) 0.289435 + 1.45509i 0.0197393 + 0.0992361i
\(216\) 0 0
\(217\) 0.539830 + 0.539830i 0.0366461 + 0.0366461i
\(218\) −2.36463 + 0.802683i −0.160153 + 0.0543645i
\(219\) 0 0
\(220\) 1.66856 + 0.963344i 0.112494 + 0.0649487i
\(221\) 21.8367 + 4.08380i 1.46889 + 0.274706i
\(222\) 0 0
\(223\) −12.2180 9.37523i −0.818180 0.627812i 0.112497 0.993652i \(-0.464115\pi\)
−0.930678 + 0.365840i \(0.880782\pi\)
\(224\) 1.67314 + 0.332808i 0.111791 + 0.0222366i
\(225\) 0 0
\(226\) 9.48984 6.34091i 0.631255 0.421791i
\(227\) 11.7400 + 13.3870i 0.779214 + 0.888523i 0.996150 0.0876626i \(-0.0279397\pi\)
−0.216936 + 0.976186i \(0.569606\pi\)
\(228\) 0 0
\(229\) 4.83506 + 6.30117i 0.319509 + 0.416393i 0.925303 0.379229i \(-0.123811\pi\)
−0.605793 + 0.795622i \(0.707144\pi\)
\(230\) 0.393579 + 0.512922i 0.0259518 + 0.0338211i
\(231\) 0 0
\(232\) −17.4522 19.9004i −1.14579 1.30653i
\(233\) −15.3673 + 10.2681i −1.00675 + 0.672687i −0.945563 0.325440i \(-0.894488\pi\)
−0.0611841 + 0.998126i \(0.519488\pi\)
\(234\) 0 0
\(235\) −5.85351 1.16434i −0.381841 0.0759529i
\(236\) −26.1195 20.0422i −1.70024 1.30464i
\(237\) 0 0
\(238\) −2.88532 6.74588i −0.187027 0.437271i
\(239\) −14.9969 8.65844i −0.970067 0.560068i −0.0708101 0.997490i \(-0.522558\pi\)
−0.899257 + 0.437422i \(0.855892\pi\)
\(240\) 0 0
\(241\) −11.7751 + 3.99711i −0.758501 + 0.257476i −0.673784 0.738929i \(-0.735332\pi\)
−0.0847170 + 0.996405i \(0.526999\pi\)
\(242\) −16.8751 16.8751i −1.08477 1.08477i
\(243\) 0 0
\(244\) −4.65417 23.3981i −0.297953 1.49791i
\(245\) 3.24353 + 0.212592i 0.207221 + 0.0135820i
\(246\) 0 0
\(247\) 15.6086 11.9769i 0.993153 0.762073i
\(248\) −3.85435 + 1.90075i −0.244751 + 0.120698i
\(249\) 0 0
\(250\) 5.20727 10.5593i 0.329337 0.667829i
\(251\) 12.5986 12.5986i 0.795218 0.795218i −0.187119 0.982337i \(-0.559915\pi\)
0.982337 + 0.187119i \(0.0599151\pi\)
\(252\) 0 0
\(253\) 0.209098 + 0.504807i 0.0131459 + 0.0317369i
\(254\) −9.00184 15.5916i −0.564826 0.978307i
\(255\) 0 0
\(256\) −14.2708 + 24.7178i −0.891925 + 1.54486i
\(257\) 11.1120 + 1.46292i 0.693147 + 0.0912545i 0.468865 0.883270i \(-0.344663\pi\)
0.224282 + 0.974524i \(0.427996\pi\)
\(258\) 0 0
\(259\) −8.12142 2.17613i −0.504640 0.135218i
\(260\) 5.64900 + 8.45432i 0.350336 + 0.524315i
\(261\) 0 0
\(262\) 8.76977 + 5.85977i 0.541798 + 0.362018i
\(263\) 2.18215 + 16.5751i 0.134557 + 1.02206i 0.916873 + 0.399180i \(0.130705\pi\)
−0.782316 + 0.622882i \(0.785962\pi\)
\(264\) 0 0
\(265\) 1.92625 + 3.90604i 0.118328 + 0.239946i
\(266\) −6.15297 2.08865i −0.377263 0.128063i
\(267\) 0 0
\(268\) −9.87323 + 36.8474i −0.603104 + 2.25081i
\(269\) 1.87839 9.44333i 0.114528 0.575770i −0.880319 0.474382i \(-0.842672\pi\)
0.994847 0.101388i \(-0.0323284\pi\)
\(270\) 0 0
\(271\) 21.5828i 1.31106i −0.755168 0.655531i \(-0.772445\pi\)
0.755168 0.655531i \(-0.227555\pi\)
\(272\) 10.3975 0.801347i 0.630440 0.0485888i
\(273\) 0 0
\(274\) 1.97472 14.9995i 0.119297 0.906152i
\(275\) 3.19478 3.64295i 0.192652 0.219678i
\(276\) 0 0
\(277\) −23.0315 11.3579i −1.38383 0.682428i −0.410502 0.911860i \(-0.634647\pi\)
−0.973325 + 0.229432i \(0.926313\pi\)
\(278\) −35.6200 + 7.08526i −2.13635 + 0.424946i
\(279\) 0 0
\(280\) 0.598610 1.44517i 0.0357738 0.0863656i
\(281\) −11.5690 + 1.52308i −0.690147 + 0.0908595i −0.467439 0.884026i \(-0.654823\pi\)
−0.222708 + 0.974885i \(0.571490\pi\)
\(282\) 0 0
\(283\) 0.351485 1.03544i 0.0208936 0.0615506i −0.935983 0.352045i \(-0.885486\pi\)
0.956877 + 0.290494i \(0.0938197\pi\)
\(284\) 1.04835 + 15.9948i 0.0622082 + 0.949114i
\(285\) 0 0
\(286\) 4.23777 + 12.4841i 0.250585 + 0.738199i
\(287\) 4.59870 1.90485i 0.271453 0.112439i
\(288\) 0 0
\(289\) 10.6556 + 13.2461i 0.626798 + 0.779182i
\(290\) 6.62538 3.82517i 0.389056 0.224622i
\(291\) 0 0
\(292\) −8.98667 7.88110i −0.525905 0.461206i
\(293\) −2.28133 + 0.611280i −0.133276 + 0.0357113i −0.324841 0.945769i \(-0.605311\pi\)
0.191564 + 0.981480i \(0.438644\pi\)
\(294\) 0 0
\(295\) 3.33250 2.92252i 0.194026 0.170156i
\(296\) 26.2951 39.3534i 1.52837 2.28737i
\(297\) 0 0
\(298\) −16.3876 6.78798i −0.949310 0.393217i
\(299\) −0.188595 + 2.87740i −0.0109067 + 0.166404i
\(300\) 0 0
\(301\) 2.18072 0.142932i 0.125694 0.00823844i
\(302\) −1.52421 5.68844i −0.0877086 0.327333i
\(303\) 0 0
\(304\) 5.62222 7.32702i 0.322456 0.420233i
\(305\) 3.21183 0.183909
\(306\) 0 0
\(307\) −31.4910 −1.79729 −0.898644 0.438678i \(-0.855447\pi\)
−0.898644 + 0.438678i \(0.855447\pi\)
\(308\) 1.72772 2.25161i 0.0984460 0.128297i
\(309\) 0 0
\(310\) −0.321484 1.19979i −0.0182590 0.0681437i
\(311\) 11.2499 0.737360i 0.637926 0.0418119i 0.256991 0.966414i \(-0.417269\pi\)
0.380935 + 0.924602i \(0.375602\pi\)
\(312\) 0 0
\(313\) −0.550274 + 8.39557i −0.0311034 + 0.474545i 0.953687 + 0.300800i \(0.0972537\pi\)
−0.984791 + 0.173745i \(0.944413\pi\)
\(314\) 21.2228 + 8.79076i 1.19767 + 0.496091i
\(315\) 0 0
\(316\) −21.5428 + 32.2411i −1.21188 + 1.81370i
\(317\) −0.973224 + 0.853495i −0.0546617 + 0.0479371i −0.686241 0.727374i \(-0.740740\pi\)
0.631579 + 0.775311i \(0.282407\pi\)
\(318\) 0 0
\(319\) 6.24524 1.67341i 0.349667 0.0936929i
\(320\) −4.00376 3.51120i −0.223817 0.196282i
\(321\) 0 0
\(322\) 0.824764 0.476178i 0.0459623 0.0265364i
\(323\) 15.0336 + 0.812309i 0.836491 + 0.0451981i
\(324\) 0 0
\(325\) 23.6246 9.78561i 1.31045 0.542808i
\(326\) 5.03193 + 14.8236i 0.278693 + 0.821003i
\(327\) 0 0
\(328\) 1.83259 + 27.9600i 0.101188 + 1.54383i
\(329\) −2.82590 + 8.32483i −0.155797 + 0.458963i
\(330\) 0 0
\(331\) −6.58097 + 0.866401i −0.361723 + 0.0476217i −0.309197 0.950998i \(-0.600060\pi\)
−0.0525254 + 0.998620i \(0.516727\pi\)
\(332\) −1.85986 + 4.49010i −0.102073 + 0.246426i
\(333\) 0 0
\(334\) 9.58932 1.90744i 0.524705 0.104370i
\(335\) −4.60617 2.27151i −0.251662 0.124106i
\(336\) 0 0
\(337\) −4.97913 + 5.67761i −0.271230 + 0.309279i −0.871380 0.490609i \(-0.836774\pi\)
0.600150 + 0.799888i \(0.295108\pi\)
\(338\) −5.01475 + 38.0908i −0.272766 + 2.07186i
\(339\) 0 0
\(340\) −0.927068 + 7.72547i −0.0502773 + 0.418973i
\(341\) 1.04976i 0.0568474i
\(342\) 0 0
\(343\) 1.94808 9.79366i 0.105186 0.528808i
\(344\) −3.18400 + 11.8829i −0.171670 + 0.640681i
\(345\) 0 0
\(346\) −18.6832 6.34209i −1.00442 0.340953i
\(347\) 12.1309 + 24.5991i 0.651223 + 1.32055i 0.932586 + 0.360949i \(0.117547\pi\)
−0.281362 + 0.959602i \(0.590786\pi\)
\(348\) 0 0
\(349\) −1.41604 10.7559i −0.0757990 0.575751i −0.986631 0.162972i \(-0.947892\pi\)
0.910832 0.412778i \(-0.135442\pi\)
\(350\) −7.02204 4.69198i −0.375344 0.250797i
\(351\) 0 0
\(352\) −1.30320 1.95038i −0.0694610 0.103956i
\(353\) 6.82053 + 1.82756i 0.363020 + 0.0972710i 0.435719 0.900083i \(-0.356494\pi\)
−0.0726982 + 0.997354i \(0.523161\pi\)
\(354\) 0 0
\(355\) −2.13955 0.281678i −0.113556 0.0149499i
\(356\) −6.34272 + 10.9859i −0.336164 + 0.582253i
\(357\) 0 0
\(358\) 14.2303 + 24.6477i 0.752096 + 1.30267i
\(359\) 1.46983 + 3.54849i 0.0775748 + 0.187282i 0.957909 0.287072i \(-0.0926818\pi\)
−0.880334 + 0.474354i \(0.842682\pi\)
\(360\) 0 0
\(361\) −4.00687 + 4.00687i −0.210888 + 0.210888i
\(362\) −18.9928 + 38.5136i −0.998239 + 2.02423i
\(363\) 0 0
\(364\) 13.4332 6.62450i 0.704088 0.347218i
\(365\) 1.27669 0.979641i 0.0668251 0.0512767i
\(366\) 0 0
\(367\) 14.8625 + 0.974142i 0.775818 + 0.0508498i 0.448168 0.893949i \(-0.352077\pi\)
0.327650 + 0.944799i \(0.393743\pi\)
\(368\) 0.264076 + 1.32760i 0.0137659 + 0.0692059i
\(369\) 0 0
\(370\) 9.67305 + 9.67305i 0.502878 + 0.502878i
\(371\) 6.07490 2.06215i 0.315393 0.107061i
\(372\) 0 0
\(373\) −3.87184 2.23541i −0.200476 0.115745i 0.396401 0.918077i \(-0.370259\pi\)
−0.596878 + 0.802332i \(0.703592\pi\)
\(374\) −3.75363 + 9.36442i −0.194096 + 0.484223i
\(375\) 0 0
\(376\) −39.2619 30.1267i −2.02478 1.55367i
\(377\) 33.4657 + 6.65675i 1.72357 + 0.342840i
\(378\) 0 0
\(379\) −12.0411 + 8.04562i −0.618511 + 0.413276i −0.824968 0.565180i \(-0.808807\pi\)
0.206457 + 0.978456i \(0.433807\pi\)
\(380\) 4.54349 + 5.18086i 0.233076 + 0.265772i
\(381\) 0 0
\(382\) 31.3202 + 40.8173i 1.60248 + 2.08839i
\(383\) −0.898203 1.17056i −0.0458961 0.0598129i 0.769841 0.638235i \(-0.220335\pi\)
−0.815737 + 0.578422i \(0.803669\pi\)
\(384\) 0 0
\(385\) 0.251933 + 0.287275i 0.0128397 + 0.0146409i
\(386\) −17.9443 + 11.9900i −0.913342 + 0.610276i
\(387\) 0 0
\(388\) 58.5178 + 11.6399i 2.97079 + 0.590927i
\(389\) −30.2791 23.2340i −1.53521 1.17801i −0.921438 0.388525i \(-0.872985\pi\)
−0.613772 0.789484i \(-0.710348\pi\)
\(390\) 0 0
\(391\) −1.54232 + 1.57811i −0.0779985 + 0.0798085i
\(392\) 23.3422 + 13.4766i 1.17896 + 0.680672i
\(393\) 0 0
\(394\) −41.3544 + 14.0379i −2.08340 + 0.707221i
\(395\) −3.69142 3.69142i −0.185736 0.185736i
\(396\) 0 0
\(397\) −1.08068 5.43296i −0.0542379 0.272673i 0.944144 0.329533i \(-0.106891\pi\)
−0.998382 + 0.0568600i \(0.981891\pi\)
\(398\) −60.2539 3.94925i −3.02026 0.197958i
\(399\) 0 0
\(400\) 9.52309 7.30732i 0.476154 0.365366i
\(401\) −18.3820 + 9.06500i −0.917953 + 0.452684i −0.838961 0.544191i \(-0.816837\pi\)
−0.0789918 + 0.996875i \(0.525170\pi\)
\(402\) 0 0
\(403\) 2.45027 4.96866i 0.122057 0.247507i
\(404\) 34.6286 34.6286i 1.72284 1.72284i
\(405\) 0 0
\(406\) −4.31256 10.4114i −0.214029 0.516711i
\(407\) 5.78061 + 10.0123i 0.286534 + 0.496292i
\(408\) 0 0
\(409\) 11.6707 20.2142i 0.577078 0.999528i −0.418735 0.908109i \(-0.637526\pi\)
0.995812 0.0914193i \(-0.0291404\pi\)
\(410\) −8.02933 1.05708i −0.396540 0.0522055i
\(411\) 0 0
\(412\) 23.4319 + 6.27855i 1.15441 + 0.309322i
\(413\) −3.62743 5.42883i −0.178494 0.267135i
\(414\) 0 0
\(415\) −0.544044 0.363518i −0.0267060 0.0178444i
\(416\) −1.61581 12.2733i −0.0792218 0.601750i
\(417\) 0 0
\(418\) 3.95174 + 8.01333i 0.193286 + 0.391945i
\(419\) −32.7941 11.1321i −1.60210 0.543839i −0.629634 0.776892i \(-0.716795\pi\)
−0.972464 + 0.233053i \(0.925128\pi\)
\(420\) 0 0
\(421\) −0.782462 + 2.92019i −0.0381349 + 0.142321i −0.982368 0.186955i \(-0.940138\pi\)
0.944234 + 0.329276i \(0.106805\pi\)
\(422\) 7.06601 35.5232i 0.343968 1.72924i
\(423\) 0 0
\(424\) 36.1134i 1.75382i
\(425\) 18.6004 + 6.07699i 0.902253 + 0.294777i
\(426\) 0 0
\(427\) 0.617540 4.69068i 0.0298849 0.226998i
\(428\) −36.4350 + 41.5462i −1.76115 + 2.00821i
\(429\) 0 0
\(430\) −3.18897 1.57263i −0.153786 0.0758389i
\(431\) −38.4058 + 7.63939i −1.84994 + 0.367977i −0.989845 0.142151i \(-0.954598\pi\)
−0.860098 + 0.510128i \(0.829598\pi\)
\(432\) 0 0
\(433\) 9.24045 22.3084i 0.444068 1.07207i −0.530441 0.847722i \(-0.677973\pi\)
0.974508 0.224352i \(-0.0720265\pi\)
\(434\) −1.81404 + 0.238822i −0.0870765 + 0.0114638i
\(435\) 0 0
\(436\) 1.25392 3.69392i 0.0600517 0.176906i
\(437\) 0.127812 + 1.95004i 0.00611410 + 0.0932831i
\(438\) 0 0
\(439\) −12.2201 35.9991i −0.583231 1.71814i −0.689952 0.723855i \(-0.742368\pi\)
0.106720 0.994289i \(-0.465965\pi\)
\(440\) −1.98717 + 0.823114i −0.0947347 + 0.0392404i
\(441\) 0 0
\(442\) −39.6244 + 35.5619i −1.88474 + 1.69151i
\(443\) 33.1913 19.1630i 1.57697 0.910462i 0.581687 0.813413i \(-0.302393\pi\)
0.995280 0.0970494i \(-0.0309405\pi\)
\(444\) 0 0
\(445\) −1.28404 1.12607i −0.0608692 0.0533808i
\(446\) 35.6520 9.55292i 1.68817 0.452344i
\(447\) 0 0
\(448\) −5.89770 + 5.17214i −0.278640 + 0.244361i
\(449\) −8.96395 + 13.4155i −0.423035 + 0.633116i −0.980369 0.197172i \(-0.936824\pi\)
0.557334 + 0.830288i \(0.311824\pi\)
\(450\) 0 0
\(451\) −6.32341 2.61924i −0.297758 0.123335i
\(452\) −1.16610 + 17.7912i −0.0548487 + 0.836829i
\(453\) 0 0
\(454\) −42.5825 + 2.79100i −1.99849 + 0.130988i
\(455\) 0.521903 + 1.94777i 0.0244672 + 0.0913127i
\(456\) 0 0
\(457\) 11.9497 15.5731i 0.558983 0.728480i −0.425306 0.905050i \(-0.639833\pi\)
0.984288 + 0.176569i \(0.0565000\pi\)
\(458\) −19.0353 −0.889461
\(459\) 0 0
\(460\) −1.00997 −0.0470901
\(461\) 8.16054 10.6350i 0.380074 0.495322i −0.563669 0.826000i \(-0.690611\pi\)
0.943744 + 0.330678i \(0.107277\pi\)
\(462\) 0 0
\(463\) 0.244877 + 0.913894i 0.0113804 + 0.0424722i 0.971383 0.237520i \(-0.0763346\pi\)
−0.960002 + 0.279993i \(0.909668\pi\)
\(464\) 15.9830 1.04758i 0.741992 0.0486327i
\(465\) 0 0
\(466\) 2.89705 44.2004i 0.134203 2.04754i
\(467\) −27.8933 11.5538i −1.29075 0.534644i −0.371538 0.928418i \(-0.621169\pi\)
−0.919208 + 0.393773i \(0.871169\pi\)
\(468\) 0 0
\(469\) −4.20304 + 6.29029i −0.194078 + 0.290459i
\(470\) 10.7541 9.43107i 0.496049 0.435023i
\(471\) 0 0
\(472\) 35.5018 9.51269i 1.63410 0.437857i
\(473\) −2.25928 1.98134i −0.103882 0.0911021i
\(474\) 0 0
\(475\) 15.0080 8.66488i 0.688614 0.397572i
\(476\) 11.1043 + 2.83931i 0.508966 + 0.130139i
\(477\) 0 0
\(478\) 38.3434 15.8823i 1.75379 0.726442i
\(479\) −6.91907 20.3829i −0.316140 0.931319i −0.982593 0.185772i \(-0.940521\pi\)
0.666453 0.745547i \(-0.267812\pi\)
\(480\) 0 0
\(481\) 3.99046 + 60.8827i 0.181949 + 2.77601i
\(482\) 9.57968 28.2208i 0.436342 1.28542i
\(483\) 0 0
\(484\) 36.9620 4.86614i 1.68009 0.221188i
\(485\) −3.07397 + 7.42122i −0.139582 + 0.336980i
\(486\) 0 0
\(487\) −9.83269 + 1.95584i −0.445562 + 0.0886277i −0.412772 0.910835i \(-0.635439\pi\)
−0.0327900 + 0.999462i \(0.510439\pi\)
\(488\) 23.8861 + 11.7793i 1.08127 + 0.533226i
\(489\) 0 0
\(490\) −5.13650 + 5.85705i −0.232043 + 0.264595i
\(491\) −0.564476 + 4.28762i −0.0254744 + 0.193498i −0.999450 0.0331544i \(-0.989445\pi\)
0.973976 + 0.226652i \(0.0727780\pi\)
\(492\) 0 0
\(493\) 16.1319 + 20.5316i 0.726545 + 0.924697i
\(494\) 47.1523i 2.12148i
\(495\) 0 0
\(496\) 0.507349 2.55062i 0.0227807 0.114526i
\(497\) −0.822746 + 3.07053i −0.0369052 + 0.137732i
\(498\) 0 0
\(499\) −22.1611 7.52269i −0.992069 0.336762i −0.222226 0.974995i \(-0.571332\pi\)
−0.769843 + 0.638233i \(0.779665\pi\)
\(500\) 8.13457 + 16.4953i 0.363789 + 0.737691i
\(501\) 0 0
\(502\) 5.57367 + 42.3362i 0.248765 + 1.88956i
\(503\) 9.17711 + 6.13195i 0.409187 + 0.273410i 0.743082 0.669200i \(-0.233363\pi\)
−0.333895 + 0.942610i \(0.608363\pi\)
\(504\) 0 0
\(505\) 3.66298 + 5.48204i 0.163001 + 0.243948i
\(506\) −1.26491 0.338931i −0.0562320 0.0150673i
\(507\) 0 0
\(508\) 27.8839 + 3.67099i 1.23715 + 0.162874i
\(509\) 13.6706 23.6782i 0.605939 1.04952i −0.385963 0.922514i \(-0.626131\pi\)
0.991902 0.127003i \(-0.0405358\pi\)
\(510\) 0 0
\(511\) −1.18523 2.05289i −0.0524317 0.0908144i
\(512\) −10.3147 24.9019i −0.455850 1.10052i
\(513\) 0 0
\(514\) −18.9939 + 18.9939i −0.837783 + 0.837783i
\(515\) −1.44449 + 2.92914i −0.0636520 + 0.129073i
\(516\) 0 0
\(517\) 10.8419 5.34662i 0.476825 0.235144i
\(518\) 15.9867 12.2671i 0.702417 0.538983i
\(519\) 0 0
\(520\) −11.3269 0.742402i −0.496716 0.0325565i
\(521\) 0.254038 + 1.27713i 0.0111296 + 0.0559523i 0.985951 0.167035i \(-0.0534192\pi\)
−0.974821 + 0.222987i \(0.928419\pi\)
\(522\) 0 0
\(523\) −4.98904 4.98904i −0.218155 0.218155i 0.589565 0.807721i \(-0.299299\pi\)
−0.807721 + 0.589565i \(0.799299\pi\)
\(524\) −15.6021 + 5.29621i −0.681582 + 0.231366i
\(525\) 0 0
\(526\) −34.6994 20.0337i −1.51297 0.873511i
\(527\) 3.89785 1.66717i 0.169793 0.0726230i
\(528\) 0 0
\(529\) 18.0199 + 13.8271i 0.783474 + 0.601180i
\(530\) −10.2373 2.03632i −0.444680 0.0884523i
\(531\) 0 0
\(532\) 8.43990 5.63936i 0.365916 0.244497i
\(533\) −23.8161 27.1570i −1.03159 1.17630i
\(534\) 0 0
\(535\) −4.52896 5.90226i −0.195804 0.255177i
\(536\) −25.9250 33.7861i −1.11979 1.45934i
\(537\) 0 0
\(538\) 15.2149 + 17.3493i 0.655961 + 0.747981i
\(539\) −5.47426 + 3.65778i −0.235793 + 0.157552i
\(540\) 0 0
\(541\) 40.2772 + 8.01163i 1.73165 + 0.344447i 0.957474 0.288521i \(-0.0931634\pi\)
0.774178 + 0.632968i \(0.218163\pi\)
\(542\) 41.0374 + 31.4891i 1.76271 + 1.35257i
\(543\) 0 0
\(544\) 5.17228 7.93643i 0.221760 0.340271i
\(545\) 0.454827 + 0.262594i 0.0194826 + 0.0112483i
\(546\) 0 0
\(547\) 34.7372 11.7917i 1.48526 0.504176i 0.543191 0.839609i \(-0.317216\pi\)
0.942064 + 0.335433i \(0.108883\pi\)
\(548\) 16.7116 + 16.7116i 0.713883 + 0.713883i
\(549\) 0 0
\(550\) 2.26552 + 11.3896i 0.0966022 + 0.485652i
\(551\) 23.0749 + 1.51241i 0.983023 + 0.0644307i
\(552\) 0 0
\(553\) −6.10085 + 4.68135i −0.259435 + 0.199071i
\(554\) 55.1984 27.2209i 2.34516 1.15650i
\(555\) 0 0
\(556\) 25.0929 50.8833i 1.06417 2.15793i
\(557\) −4.48661 + 4.48661i −0.190104 + 0.190104i −0.795741 0.605637i \(-0.792918\pi\)
0.605637 + 0.795741i \(0.292918\pi\)
\(558\) 0 0
\(559\) −6.06884 14.6515i −0.256685 0.619692i
\(560\) 0.473288 + 0.819760i 0.0200001 + 0.0346412i
\(561\) 0 0
\(562\) 13.9830 24.2193i 0.589838 1.02163i
\(563\) −18.8368 2.47992i −0.793878 0.104516i −0.277330 0.960775i \(-0.589450\pi\)
−0.516547 + 0.856259i \(0.672783\pi\)
\(564\) 0 0
\(565\) −2.31861 0.621268i −0.0975445 0.0261370i
\(566\) 1.45597 + 2.17901i 0.0611989 + 0.0915906i
\(567\) 0 0
\(568\) −14.8786 9.94159i −0.624294 0.417140i
\(569\) 2.50333 + 19.0147i 0.104945 + 0.797138i 0.960275 + 0.279055i \(0.0900210\pi\)
−0.855330 + 0.518084i \(0.826646\pi\)
\(570\) 0 0
\(571\) −12.4378 25.2214i −0.520507 1.05548i −0.985422 0.170128i \(-0.945582\pi\)
0.464915 0.885355i \(-0.346085\pi\)
\(572\) −19.5021 6.62006i −0.815422 0.276799i
\(573\) 0 0
\(574\) −3.08760 + 11.5231i −0.128874 + 0.480965i
\(575\) −0.495519 + 2.49114i −0.0206646 + 0.103888i
\(576\) 0 0
\(577\) 44.0005i 1.83176i −0.401449 0.915881i \(-0.631493\pi\)
0.401449 0.915881i \(-0.368507\pi\)
\(578\) −40.7324 + 0.934513i −1.69424 + 0.0388706i
\(579\) 0 0
\(580\) −1.55992 + 11.8488i −0.0647722 + 0.491993i
\(581\) −0.635500 + 0.724648i −0.0263650 + 0.0300635i
\(582\) 0 0
\(583\) −7.91166 3.90160i −0.327667 0.161588i
\(584\) 13.0875 2.60326i 0.541564 0.107724i
\(585\) 0 0
\(586\) 2.16615 5.22955i 0.0894828 0.216031i
\(587\) −10.6266 + 1.39901i −0.438605 + 0.0577434i −0.346596 0.938015i \(-0.612662\pi\)
−0.0920095 + 0.995758i \(0.529329\pi\)
\(588\) 0 0
\(589\) 1.20685 3.55525i 0.0497272 0.146492i
\(590\) 0.694782 + 10.6003i 0.0286037 + 0.436408i
\(591\) 0 0
\(592\) 9.20632 + 27.1210i 0.378378 + 1.11466i
\(593\) −17.9488 + 7.43464i −0.737069 + 0.305304i −0.719453 0.694541i \(-0.755608\pi\)
−0.0176157 + 0.999845i \(0.505608\pi\)
\(594\) 0 0
\(595\) −0.666573 + 1.39169i −0.0273268 + 0.0570537i
\(596\) 23.9969 13.8546i 0.982953 0.567508i
\(597\) 0 0
\(598\) −5.19590 4.55668i −0.212476 0.186337i
\(599\) −15.6130 + 4.18348i −0.637929 + 0.170932i −0.563265 0.826276i \(-0.690455\pi\)
−0.0746637 + 0.997209i \(0.523788\pi\)
\(600\) 0 0
\(601\) −13.0141 + 11.4131i −0.530858 + 0.465550i −0.882319 0.470653i \(-0.844019\pi\)
0.351460 + 0.936203i \(0.385685\pi\)
\(602\) −2.90987 + 4.35493i −0.118598 + 0.177494i
\(603\) 0 0
\(604\) 8.49941 + 3.52057i 0.345836 + 0.143250i
\(605\) −0.328270 + 5.00843i −0.0133461 + 0.203622i
\(606\) 0 0
\(607\) −5.60520 + 0.367384i −0.227508 + 0.0149117i −0.178731 0.983898i \(-0.557199\pi\)
−0.0487772 + 0.998810i \(0.515532\pi\)
\(608\) −2.17137 8.10367i −0.0880607 0.328647i
\(609\) 0 0
\(610\) −4.68603 + 6.10695i −0.189732 + 0.247263i
\(611\) 63.7961 2.58091
\(612\) 0 0
\(613\) −24.3856 −0.984927 −0.492463 0.870333i \(-0.663903\pi\)
−0.492463 + 0.870333i \(0.663903\pi\)
\(614\) 45.9451 59.8768i 1.85419 2.41643i
\(615\) 0 0
\(616\) 0.820033 + 3.06040i 0.0330401 + 0.123307i
\(617\) −18.3824 + 1.20485i −0.740047 + 0.0485053i −0.430764 0.902465i \(-0.641756\pi\)
−0.309283 + 0.950970i \(0.600089\pi\)
\(618\) 0 0
\(619\) −0.609409 + 9.29778i −0.0244942 + 0.373709i 0.967961 + 0.251101i \(0.0807926\pi\)
−0.992455 + 0.122608i \(0.960874\pi\)
\(620\) 1.79268 + 0.742552i 0.0719957 + 0.0298216i
\(621\) 0 0
\(622\) −15.0115 + 22.4664i −0.601908 + 0.900819i
\(623\) −1.89144 + 1.65875i −0.0757789 + 0.0664563i
\(624\) 0 0
\(625\) 20.5293 5.50082i 0.821173 0.220033i
\(626\) −15.1604 13.2953i −0.605932 0.531388i
\(627\) 0 0
\(628\) −31.0772 + 17.9424i −1.24011 + 0.715981i
\(629\) −27.9962 + 37.3651i −1.11628 + 1.48984i
\(630\) 0 0
\(631\) −5.45994 + 2.26158i −0.217357 + 0.0900321i −0.488705 0.872449i \(-0.662531\pi\)
0.271348 + 0.962481i \(0.412531\pi\)
\(632\) −13.9146 40.9911i −0.553493 1.63054i
\(633\) 0 0
\(634\) −0.202904 3.09572i −0.00805836 0.122947i
\(635\) −1.21711 + 3.58550i −0.0482997 + 0.142286i
\(636\) 0 0
\(637\) −34.4483 + 4.53521i −1.36489 + 0.179692i
\(638\) −5.92994 + 14.3161i −0.234769 + 0.566782i
\(639\) 0 0
\(640\) 10.2459 2.03804i 0.405006 0.0805607i
\(641\) 14.0975 + 6.95213i 0.556819 + 0.274593i 0.698849 0.715270i \(-0.253696\pi\)
−0.142030 + 0.989862i \(0.545363\pi\)
\(642\) 0 0
\(643\) −21.2118 + 24.1874i −0.836512 + 0.953859i −0.999463 0.0327755i \(-0.989565\pi\)
0.162951 + 0.986634i \(0.447899\pi\)
\(644\) −0.194188 + 1.47500i −0.00765206 + 0.0581232i
\(645\) 0 0
\(646\) −23.4784 + 27.3996i −0.923743 + 1.07802i
\(647\) 22.2315i 0.874010i −0.899459 0.437005i \(-0.856039\pi\)
0.899459 0.437005i \(-0.143961\pi\)
\(648\) 0 0
\(649\) −1.75150 + 8.80540i −0.0687525 + 0.345642i
\(650\) −15.8617 + 59.1967i −0.622147 + 2.32188i
\(651\) 0 0
\(652\) −23.1568 7.86066i −0.906889 0.307847i
\(653\) 1.60076 + 3.24603i 0.0626428 + 0.127027i 0.925942 0.377665i \(-0.123273\pi\)
−0.863300 + 0.504692i \(0.831606\pi\)
\(654\) 0 0
\(655\) −0.289541 2.19928i −0.0113133 0.0859331i
\(656\) −14.0983 9.42016i −0.550445 0.367795i
\(657\) 0 0
\(658\) −11.7058 17.5190i −0.456340 0.682961i
\(659\) 6.95540 + 1.86369i 0.270944 + 0.0725992i 0.391733 0.920079i \(-0.371876\pi\)
−0.120789 + 0.992678i \(0.538542\pi\)
\(660\) 0 0
\(661\) 24.8952 + 3.27751i 0.968310 + 0.127480i 0.598060 0.801452i \(-0.295939\pi\)
0.370250 + 0.928932i \(0.379272\pi\)
\(662\) 7.95420 13.7771i 0.309149 0.535461i
\(663\) 0 0
\(664\) −2.71281 4.69873i −0.105277 0.182346i
\(665\) 0.522970 + 1.26256i 0.0202799 + 0.0489600i
\(666\) 0 0
\(667\) −2.39656 + 2.39656i −0.0927951 + 0.0927951i
\(668\) −6.75529 + 13.6984i −0.261370 + 0.530006i
\(669\) 0 0
\(670\) 11.0394 5.44403i 0.426489 0.210321i
\(671\) −5.16119 + 3.96032i −0.199246 + 0.152886i
\(672\) 0 0
\(673\) −31.5469 2.06770i −1.21605 0.0797038i −0.556163 0.831073i \(-0.687727\pi\)
−0.659882 + 0.751369i \(0.729394\pi\)
\(674\) −3.53086 17.7508i −0.136004 0.683737i
\(675\) 0 0
\(676\) −42.4386 42.4386i −1.63225 1.63225i
\(677\) 38.8925 13.2022i 1.49476 0.507402i 0.549999 0.835165i \(-0.314628\pi\)
0.944760 + 0.327763i \(0.106295\pi\)
\(678\) 0 0
\(679\) 10.2472 + 5.91623i 0.393252 + 0.227044i
\(680\) −6.21223 6.07134i −0.238228 0.232825i
\(681\) 0 0
\(682\) 1.99600 + 1.53158i 0.0764307 + 0.0586473i
\(683\) −37.3073 7.42089i −1.42753 0.283953i −0.579961 0.814644i \(-0.696932\pi\)
−0.847565 + 0.530692i \(0.821932\pi\)
\(684\) 0 0
\(685\) −2.64560 + 1.76774i −0.101083 + 0.0675417i
\(686\) 15.7794 + 17.9929i 0.602459 + 0.686973i
\(687\) 0 0
\(688\) −4.53186 5.90603i −0.172775 0.225165i
\(689\) −28.3403 36.9338i −1.07968 1.40707i
\(690\) 0 0
\(691\) −0.695421 0.792975i −0.0264550 0.0301662i 0.738461 0.674296i \(-0.235553\pi\)
−0.764916 + 0.644130i \(0.777220\pi\)
\(692\) 25.6274 17.1237i 0.974207 0.650944i
\(693\) 0 0
\(694\) −64.4715 12.8242i −2.44731 0.486799i
\(695\) 6.05979 + 4.64984i 0.229861 + 0.176378i
\(696\) 0 0
\(697\) −0.317018 27.6392i −0.0120079 1.04691i
\(698\) 22.5172 + 13.0003i 0.852289 + 0.492069i
\(699\) 0 0
\(700\) 12.4928 4.24073i 0.472183 0.160285i
\(701\) 13.4241 + 13.4241i 0.507022 + 0.507022i 0.913611 0.406589i \(-0.133282\pi\)
−0.406589 + 0.913611i \(0.633282\pi\)
\(702\) 0 0
\(703\) 8.06685 + 40.5548i 0.304247 + 1.52955i
\(704\) 10.7632 + 0.705458i 0.405654 + 0.0265880i
\(705\) 0 0
\(706\) −13.4260 + 10.3021i −0.505294 + 0.387726i
\(707\) 8.71047 4.29553i 0.327591 0.161550i
\(708\) 0 0
\(709\) −8.05113 + 16.3261i −0.302367 + 0.613139i −0.994033 0.109078i \(-0.965210\pi\)
0.691666 + 0.722217i \(0.256877\pi\)
\(710\) 3.65717 3.65717i 0.137251 0.137251i
\(711\) 0 0
\(712\) −5.41943 13.0837i −0.203102 0.490331i
\(713\) 0.275141 + 0.476558i 0.0103041 + 0.0178472i
\(714\) 0 0
\(715\) 1.38637 2.40126i 0.0518473 0.0898021i
\(716\) −44.0796 5.80319i −1.64733 0.216876i
\(717\) 0 0
\(718\) −8.89154 2.38248i −0.331829 0.0889134i
\(719\) 13.0787 + 19.5737i 0.487754 + 0.729976i 0.990955 0.134193i \(-0.0428444\pi\)
−0.503201 + 0.864170i \(0.667844\pi\)
\(720\) 0 0
\(721\) 4.00010 + 2.67278i 0.148971 + 0.0995395i
\(722\) −1.77265 13.4646i −0.0659713 0.501101i
\(723\) 0 0
\(724\) −29.6697 60.1642i −1.10267 2.23599i
\(725\) 28.4603 + 9.66095i 1.05699 + 0.358799i
\(726\) 0 0
\(727\) 1.11206 4.15025i 0.0412439 0.153924i −0.942233 0.334958i \(-0.891278\pi\)
0.983477 + 0.181034i \(0.0579444\pi\)
\(728\) −3.26206 + 16.3995i −0.120900 + 0.607804i
\(729\) 0 0
\(730\) 3.85678i 0.142746i
\(731\) 3.76883 11.5356i 0.139395 0.426660i
\(732\) 0 0
\(733\) 1.40148 10.6453i 0.0517647 0.393192i −0.945875 0.324530i \(-0.894794\pi\)
0.997640 0.0686615i \(-0.0218729\pi\)
\(734\) −23.5365 + 26.8383i −0.868749 + 0.990618i
\(735\) 0 0
\(736\) 1.10281 + 0.543847i 0.0406502 + 0.0200464i
\(737\) 10.2027 2.02944i 0.375820 0.0747553i
\(738\) 0 0
\(739\) 6.20725 14.9856i 0.228337 0.551255i −0.767638 0.640884i \(-0.778568\pi\)
0.995975 + 0.0896286i \(0.0285680\pi\)
\(740\) −21.1871 + 2.78933i −0.778853 + 0.102538i
\(741\) 0 0
\(742\) −4.94226 + 14.5594i −0.181436 + 0.534493i
\(743\) 1.12085 + 17.1009i 0.0411201 + 0.627372i 0.967832 + 0.251598i \(0.0809562\pi\)
−0.926712 + 0.375773i \(0.877377\pi\)
\(744\) 0 0
\(745\) 1.19914 + 3.53256i 0.0439332 + 0.129423i
\(746\) 9.89937 4.10045i 0.362442 0.150128i
\(747\) 0 0
\(748\) −8.03609 13.5574i −0.293829 0.495708i
\(749\) −9.49068 + 5.47945i −0.346782 + 0.200215i
\(750\) 0 0
\(751\) −5.01816 4.40081i −0.183115 0.160588i 0.562881 0.826538i \(-0.309693\pi\)
−0.745996 + 0.665950i \(0.768026\pi\)
\(752\) 28.9268 7.75091i 1.05485 0.282647i
\(753\) 0 0
\(754\) −61.4833 + 53.9194i −2.23909 + 1.96363i
\(755\) −0.688111 + 1.02983i −0.0250429 + 0.0374794i
\(756\) 0 0
\(757\) 9.34496 + 3.87081i 0.339648 + 0.140687i 0.545987 0.837794i \(-0.316155\pi\)
−0.206339 + 0.978481i \(0.566155\pi\)
\(758\) 2.26999 34.6334i 0.0824499 1.25794i
\(759\) 0 0
\(760\) −7.67633 + 0.503134i −0.278450 + 0.0182506i
\(761\) 3.16811 + 11.8235i 0.114844 + 0.428603i 0.999275 0.0380675i \(-0.0121202\pi\)
−0.884431 + 0.466670i \(0.845454\pi\)
\(762\) 0 0
\(763\) 0.470953 0.613757i 0.0170496 0.0222195i
\(764\) −80.3714 −2.90774
\(765\) 0 0
\(766\) 3.53617 0.127767
\(767\) −28.8432 + 37.5892i −1.04147 + 1.35727i
\(768\) 0 0
\(769\) 5.80750 + 21.6739i 0.209424 + 0.781581i 0.988055 + 0.154099i \(0.0492476\pi\)
−0.778631 + 0.627482i \(0.784086\pi\)
\(770\) −0.913791 + 0.0598930i −0.0329307 + 0.00215839i
\(771\) 0 0
\(772\) 2.20498 33.6414i 0.0793588 1.21078i
\(773\) 29.2000 + 12.0950i 1.05025 + 0.435029i 0.839982 0.542615i \(-0.182566\pi\)
0.210270 + 0.977643i \(0.432566\pi\)
\(774\) 0 0
\(775\) 2.71108 4.05742i 0.0973848 0.145747i
\(776\) −50.0781 + 43.9173i −1.79770 + 1.57654i
\(777\) 0 0
\(778\) 88.3537 23.6743i 3.16763 0.848765i
\(779\) −18.4046 16.1404i −0.659412 0.578289i
\(780\) 0 0
\(781\) 3.78544 2.18552i 0.135454 0.0782041i
\(782\) −0.750379 5.23500i −0.0268335 0.187203i
\(783\) 0 0
\(784\) −15.0688 + 6.24169i −0.538170 + 0.222917i
\(785\) −1.55295 4.57483i −0.0554270 0.163283i
\(786\) 0 0
\(787\) −1.88137 28.7041i −0.0670635 1.02319i −0.890265 0.455443i \(-0.849481\pi\)
0.823202 0.567749i \(-0.192186\pi\)
\(788\) 21.9294 64.6020i 0.781204 2.30135i
\(789\) 0 0
\(790\) 12.4046 1.63310i 0.441336 0.0581030i
\(791\) −1.35312 + 3.26673i −0.0481115 + 0.116152i
\(792\) 0 0
\(793\) −33.6727 + 6.69791i −1.19575 + 0.237850i
\(794\) 11.9069 + 5.87183i 0.422560 + 0.208384i
\(795\) 0 0
\(796\) 62.1947 70.9195i 2.20443 2.51368i
\(797\) 3.32560 25.2604i 0.117799 0.894770i −0.825866 0.563866i \(-0.809313\pi\)
0.943665 0.330903i \(-0.107353\pi\)
\(798\) 0 0
\(799\) 37.0710 + 31.7657i 1.31148 + 1.12379i
\(800\) 10.9041i 0.385517i
\(801\) 0 0
\(802\) 9.58303 48.1771i 0.338389 1.70119i
\(803\) −0.843619 + 3.14843i −0.0297707 + 0.111106i
\(804\) 0 0
\(805\) −0.189665 0.0643827i −0.00668482 0.00226919i
\(806\) 5.87246 + 11.9082i 0.206848 + 0.419447i
\(807\) 0 0
\(808\) 7.13602 + 54.2034i 0.251044 + 1.90687i
\(809\) −1.47986 0.988813i −0.0520292 0.0347648i 0.529284 0.848445i \(-0.322461\pi\)
−0.581313 + 0.813680i \(0.697461\pi\)
\(810\) 0 0
\(811\) 27.6326 + 41.3552i 0.970314 + 1.45218i 0.890295 + 0.455383i \(0.150498\pi\)
0.0800181 + 0.996793i \(0.474502\pi\)
\(812\) 17.0045 + 4.55634i 0.596740 + 0.159896i
\(813\) 0 0
\(814\) −27.4712 3.61665i −0.962865 0.126764i
\(815\) 1.64618 2.85126i 0.0576630 0.0998752i
\(816\) 0 0
\(817\) −5.37378 9.30767i −0.188005 0.325634i
\(818\) 21.4077 + 51.6828i 0.748504 + 1.80705i
\(819\) 0 0
\(820\) 8.94581 8.94581i 0.312401 0.312401i
\(821\) 16.3205 33.0947i 0.569589 1.15501i −0.401404 0.915901i \(-0.631477\pi\)
0.970992 0.239111i \(-0.0768558\pi\)
\(822\) 0 0
\(823\) 9.90115 4.88271i 0.345132 0.170200i −0.261458 0.965215i \(-0.584203\pi\)
0.606591 + 0.795014i \(0.292537\pi\)
\(824\) −21.4852 + 16.4861i −0.748471 + 0.574322i
\(825\) 0 0
\(826\) 15.6147 + 1.02344i 0.543305 + 0.0356101i
\(827\) 4.01743 + 20.1970i 0.139700 + 0.702318i 0.985616 + 0.169002i \(0.0540543\pi\)
−0.845916 + 0.533316i \(0.820946\pi\)
\(828\) 0 0
\(829\) −10.5506 10.5506i −0.366437 0.366437i 0.499739 0.866176i \(-0.333429\pi\)
−0.866176 + 0.499739i \(0.833429\pi\)
\(830\) 1.48494 0.504071i 0.0515432 0.0174966i
\(831\) 0 0
\(832\) 49.2974 + 28.4619i 1.70908 + 0.986738i
\(833\) −22.2757 14.5174i −0.771806 0.502997i
\(834\) 0 0
\(835\) −1.63137 1.25179i −0.0564557 0.0433200i
\(836\) −13.6893 2.72297i −0.473454 0.0941758i
\(837\) 0 0
\(838\) 69.0128 46.1129i 2.38401 1.59294i
\(839\) −14.6052 16.6541i −0.504228 0.574962i 0.442593 0.896723i \(-0.354059\pi\)
−0.946821 + 0.321761i \(0.895725\pi\)
\(840\) 0 0
\(841\) 6.76031 + 8.81021i 0.233114 + 0.303800i
\(842\) −4.41082 5.74829i −0.152007 0.198099i
\(843\) 0 0
\(844\) 37.3058 + 42.5391i 1.28412 + 1.46425i
\(845\) 6.71844 4.48912i 0.231121 0.154430i
\(846\) 0 0
\(847\) 7.25139 + 1.44239i 0.249161 + 0.0495612i
\(848\) −17.3375 13.3035i −0.595372 0.456845i
\(849\) 0 0
\(850\) −38.6926 + 26.5004i −1.32714 + 0.908958i
\(851\) −5.24846 3.03020i −0.179915 0.103874i
\(852\) 0 0
\(853\) −25.7146 + 8.72894i −0.880452 + 0.298873i −0.724817 0.688941i \(-0.758076\pi\)
−0.155635 + 0.987815i \(0.549742\pi\)
\(854\) 8.01784 + 8.01784i 0.274365 + 0.274365i
\(855\) 0 0
\(856\) −12.0351 60.5046i −0.411351 2.06800i
\(857\) −33.3011 2.18267i −1.13754 0.0745585i −0.515033 0.857170i \(-0.672220\pi\)
−0.622510 + 0.782612i \(0.713887\pi\)
\(858\) 0 0
\(859\) −11.1148 + 8.52870i −0.379233 + 0.290995i −0.780735 0.624863i \(-0.785155\pi\)
0.401502 + 0.915858i \(0.368488\pi\)
\(860\) 4.98168 2.45669i 0.169874 0.0837725i
\(861\) 0 0
\(862\) 41.5082 84.1703i 1.41378 2.86685i
\(863\) 4.06464 4.06464i 0.138362 0.138362i −0.634533 0.772895i \(-0.718808\pi\)
0.772895 + 0.634533i \(0.218808\pi\)
\(864\) 0 0
\(865\) 1.58798 + 3.83371i 0.0539928 + 0.130350i
\(866\) 28.9353 + 50.1175i 0.983263 + 1.70306i
\(867\) 0 0
\(868\) 1.42913 2.47533i 0.0485078 0.0840181i
\(869\) 10.4835 + 1.38018i 0.355630 + 0.0468196i
\(870\) 0 0
\(871\) 53.0279 + 14.2088i 1.79678 + 0.481446i
\(872\) 2.41945 + 3.62096i 0.0819329 + 0.122621i
\(873\) 0 0
\(874\) −3.89427 2.60207i −0.131726 0.0880163i
\(875\) 0.476088 + 3.61625i 0.0160947 + 0.122251i
\(876\) 0 0
\(877\) −2.88801 5.85631i −0.0975213 0.197754i 0.842645 0.538469i \(-0.180997\pi\)
−0.940166 + 0.340716i \(0.889331\pi\)
\(878\) 86.2774 + 29.2872i 2.91172 + 0.988396i
\(879\) 0 0
\(880\) 0.336874 1.25723i 0.0113560 0.0423813i
\(881\) 5.82712 29.2949i 0.196321 0.986971i −0.749431 0.662082i \(-0.769673\pi\)
0.945752 0.324889i \(-0.105327\pi\)
\(882\) 0 0
\(883\) 49.5960i 1.66904i 0.550978 + 0.834520i \(0.314255\pi\)
−0.550978 + 0.834520i \(0.685745\pi\)
\(884\) −6.39127 82.9268i −0.214962 2.78913i
\(885\) 0 0
\(886\) −11.9894 + 91.0683i −0.402791 + 3.05950i
\(887\) 10.0838 11.4984i 0.338583 0.386079i −0.557344 0.830282i \(-0.688180\pi\)
0.895926 + 0.444202i \(0.146513\pi\)
\(888\) 0 0
\(889\) 5.00239 + 2.46691i 0.167775 + 0.0827374i
\(890\) 4.01450 0.798533i 0.134566 0.0267669i
\(891\) 0 0
\(892\) −22.0650 + 53.2696i −0.738791 + 1.78360i
\(893\) 42.8653 5.64333i 1.43443 0.188847i
\(894\) 0 0
\(895\) 1.92404 5.66805i 0.0643137 0.189462i
\(896\) −1.00645 15.3554i −0.0336230 0.512988i
\(897\) 0 0
\(898\) −12.4298 36.6170i −0.414788 1.22193i
\(899\) 6.01584 2.49184i 0.200640 0.0831077i
\(900\) 0 0
\(901\) 1.92212 35.5731i 0.0640351 1.18511i
\(902\) 14.2060 8.20183i 0.473008 0.273091i
\(903\) 0 0
\(904\) −14.9648 13.1238i −0.497722 0.436490i
\(905\) 8.72364 2.33749i 0.289983 0.0777008i
\(906\) 0 0
\(907\) −0.239945 + 0.210426i −0.00796724 + 0.00698708i −0.663320 0.748336i \(-0.730853\pi\)
0.655353 + 0.755323i \(0.272520\pi\)
\(908\) 37.0361 55.4284i 1.22909 1.83946i
\(909\) 0 0
\(910\) −4.46492 1.84943i −0.148011 0.0613080i
\(911\) 1.06415 16.2358i 0.0352569 0.537916i −0.943300 0.331941i \(-0.892297\pi\)
0.978557 0.205975i \(-0.0660367\pi\)
\(912\) 0 0
\(913\) 1.32247 0.0866795i 0.0437675 0.00286867i
\(914\) 12.1762 + 45.4421i 0.402752 + 1.50309i
\(915\) 0 0
\(916\) 18.1022 23.5912i 0.598113 0.779476i
\(917\) −3.26759 −0.107905
\(918\) 0 0
\(919\) −32.6543 −1.07716 −0.538582 0.842573i \(-0.681040\pi\)
−0.538582 + 0.842573i \(0.681040\pi\)
\(920\) 0.686380 0.894508i 0.0226293 0.0294910i
\(921\) 0 0
\(922\) 8.31521 + 31.0328i 0.273847 + 1.02201i
\(923\) 23.0184 1.50871i 0.757660 0.0496597i
\(924\) 0 0
\(925\) −3.51494 + 53.6276i −0.115570 + 1.76326i
\(926\) −2.09494 0.867754i −0.0688441 0.0285162i
\(927\) 0 0
\(928\) 8.08361 12.0980i 0.265357 0.397136i
\(929\) −10.6468 + 9.33703i −0.349312 + 0.306338i −0.815964 0.578103i \(-0.803793\pi\)
0.466652 + 0.884441i \(0.345460\pi\)
\(930\) 0 0
\(931\) −22.7451 + 6.09453i −0.745440 + 0.199740i
\(932\) 52.0244 + 45.6241i 1.70411 + 1.49447i
\(933\) 0 0
\(934\) 62.6642 36.1792i 2.05044 1.18382i
\(935\) 2.00125 0.705032i 0.0654479 0.0230570i
\(936\) 0 0
\(937\) −25.9564 + 10.7515i −0.847959 + 0.351236i −0.763987 0.645232i \(-0.776761\pi\)
−0.0839723 + 0.996468i \(0.526761\pi\)
\(938\) −5.82812 17.1691i −0.190295 0.560591i
\(939\) 0 0
\(940\) 1.46141 + 22.2967i 0.0476658 + 0.727239i
\(941\) −1.79655 + 5.29248i −0.0585660 + 0.172530i −0.972276 0.233838i \(-0.924871\pi\)
0.913710 + 0.406368i \(0.133205\pi\)
\(942\) 0 0
\(943\) 3.55715 0.468307i 0.115837 0.0152502i
\(944\) −8.51135 + 20.5482i −0.277021 + 0.668787i
\(945\) 0 0
\(946\) 7.06358 1.40503i 0.229657 0.0456816i
\(947\) 25.5947 + 12.6219i 0.831717 + 0.410158i 0.807728 0.589555i \(-0.200697\pi\)
0.0239887 + 0.999712i \(0.492363\pi\)
\(948\) 0 0
\(949\) −11.3419 + 12.9329i −0.368172 + 0.419820i
\(950\) −5.42120 + 41.1781i −0.175887 + 1.33599i
\(951\) 0 0
\(952\) −10.0613 + 7.90525i −0.326087 + 0.256210i
\(953\) 37.4674i 1.21369i −0.794821 0.606844i \(-0.792435\pi\)
0.794821 0.606844i \(-0.207565\pi\)
\(954\) 0 0
\(955\) 2.11098 10.6126i 0.0683096 0.343416i
\(956\) −16.7801 + 62.6243i −0.542709 + 2.02542i
\(957\) 0 0
\(958\) 48.8508 + 16.5826i 1.57830 + 0.535760i
\(959\) 2.07300 + 4.20362i 0.0669406 + 0.135742i
\(960\) 0 0
\(961\) 3.90832 + 29.6866i 0.126075 + 0.957633i
\(962\) −121.584 81.2398i −3.92002 2.61927i
\(963\) 0 0
\(964\) 25.8651 + 38.7099i 0.833060 + 1.24676i
\(965\) 4.38425 + 1.17476i 0.141134 + 0.0378167i
\(966\) 0 0
\(967\) 4.60784 + 0.606634i 0.148178 + 0.0195080i 0.204250 0.978919i \(-0.434524\pi\)
−0.0560721 + 0.998427i \(0.517858\pi\)
\(968\) −20.8097 + 36.0434i −0.668848 + 1.15848i
\(969\) 0 0
\(970\) −9.62576 16.6723i −0.309065 0.535316i
\(971\) 17.1196 + 41.3304i 0.549394 + 1.32636i 0.917930 + 0.396742i \(0.129859\pi\)
−0.368536 + 0.929614i \(0.620141\pi\)
\(972\) 0 0
\(973\) 7.95592 7.95592i 0.255055 0.255055i
\(974\) 10.6270 21.5494i 0.340510 0.690486i
\(975\) 0 0
\(976\) −14.4543 + 7.12808i −0.462671 + 0.228164i
\(977\) −23.5464 + 18.0678i −0.753317 + 0.578040i −0.912436 0.409219i \(-0.865801\pi\)
0.159120 + 0.987259i \(0.449134\pi\)
\(978\) 0 0
\(979\) 3.45185 + 0.226246i 0.110322 + 0.00723086i
\(980\) −2.37418 11.9358i −0.0758404 0.381276i
\(981\) 0 0
\(982\) −7.32889 7.32889i −0.233874 0.233874i
\(983\) −27.3926 + 9.29854i −0.873688 + 0.296577i −0.722035 0.691857i \(-0.756793\pi\)
−0.151653 + 0.988434i \(0.548460\pi\)
\(984\) 0 0
\(985\) 7.95436 + 4.59245i 0.253447 + 0.146328i
\(986\) −62.5749 + 0.717727i −1.99279 + 0.0228571i
\(987\) 0 0
\(988\) −58.4378 44.8409i −1.85915 1.42658i
\(989\) 1.54496 + 0.307311i 0.0491268 + 0.00977193i
\(990\) 0 0
\(991\) −15.8269 + 10.5752i −0.502759 + 0.335933i −0.780951 0.624593i \(-0.785265\pi\)
0.278191 + 0.960526i \(0.410265\pi\)
\(992\) −1.55762 1.77613i −0.0494545 0.0563921i
\(993\) 0 0
\(994\) −4.63790 6.04424i −0.147105 0.191711i
\(995\) 7.73097 + 10.0752i 0.245088 + 0.319405i
\(996\) 0 0
\(997\) −21.1273 24.0911i −0.669108 0.762972i 0.313313 0.949650i \(-0.398561\pi\)
−0.982421 + 0.186678i \(0.940228\pi\)
\(998\) 46.6365 31.1615i 1.47625 0.986400i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.422.1 256
3.2 odd 2 153.2.s.a.14.16 yes 256
9.2 odd 6 inner 459.2.y.a.116.1 256
9.7 even 3 153.2.s.a.65.16 yes 256
17.11 odd 16 inner 459.2.y.a.368.1 256
51.11 even 16 153.2.s.a.113.16 yes 256
153.11 even 48 inner 459.2.y.a.62.1 256
153.79 odd 48 153.2.s.a.11.16 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.16 256 153.79 odd 48
153.2.s.a.14.16 yes 256 3.2 odd 2
153.2.s.a.65.16 yes 256 9.7 even 3
153.2.s.a.113.16 yes 256 51.11 even 16
459.2.y.a.62.1 256 153.11 even 48 inner
459.2.y.a.116.1 256 9.2 odd 6 inner
459.2.y.a.368.1 256 17.11 odd 16 inner
459.2.y.a.422.1 256 1.1 even 1 trivial