Properties

Label 459.2.y.a.62.1
Level $459$
Weight $2$
Character 459.62
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 62.1
Character \(\chi\) \(=\) 459.62
Dual form 459.2.y.a.422.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45899 - 1.90139i) q^{2} +(-0.969004 + 3.61637i) q^{4} +(0.502973 + 0.0329666i) q^{5} +(0.0485612 + 0.740900i) q^{7} +(3.86148 - 1.59948i) q^{8} +(-0.671150 - 1.00445i) q^{10} +(-0.767594 - 0.673162i) q^{11} +(-5.20440 - 1.39452i) q^{13} +(1.33789 - 1.17330i) q^{14} +(-2.19038 - 1.26462i) q^{16} +(-3.71857 + 1.78107i) q^{17} +(-3.37354 - 1.39737i) q^{19} +(-0.606603 + 1.78699i) q^{20} +(-0.160033 + 2.44163i) q^{22} +(0.172029 + 0.506782i) q^{23} +(-4.70533 - 0.619468i) q^{25} +(4.94165 + 11.9302i) q^{26} +(-2.72643 - 0.542320i) q^{28} +(-5.67976 + 2.80095i) q^{29} +(-0.677946 - 0.773049i) q^{31} +(-0.299892 - 2.27790i) q^{32} +(8.81188 + 4.47190i) q^{34} +0.374254i q^{35} +(2.20919 + 11.1064i) q^{37} +(2.26502 + 8.45317i) q^{38} +(1.99495 - 0.677194i) q^{40} +(2.96507 - 6.01257i) q^{41} +(0.384182 - 2.91815i) q^{43} +(3.17821 - 2.12361i) q^{44} +(0.712603 - 1.06649i) q^{46} +(-11.4370 + 3.06452i) q^{47} +(6.39354 - 0.841725i) q^{49} +(5.68718 + 9.85048i) q^{50} +(10.0862 - 17.4698i) q^{52} +(3.30651 - 7.98262i) q^{53} +(-0.363887 - 0.363887i) q^{55} +(1.37257 + 2.78330i) q^{56} +(13.6124 + 6.71290i) q^{58} +(6.97647 + 5.35323i) q^{59} +(6.35837 - 0.416750i) q^{61} +(-0.480754 + 2.41691i) q^{62} +(-7.47053 + 7.47053i) q^{64} +(-2.57170 - 0.872975i) q^{65} +(-8.82398 + 5.09452i) q^{67} +(-2.83771 - 15.1736i) q^{68} +(0.711604 - 0.546033i) q^{70} +(-4.19907 + 0.835247i) q^{71} +(2.65455 + 1.77371i) q^{73} +(17.8943 - 20.4046i) q^{74} +(8.32238 - 10.8459i) q^{76} +(0.461470 - 0.601400i) q^{77} +(-6.82883 + 7.78679i) q^{79} +(-1.06001 - 0.708279i) q^{80} +(-15.7583 + 3.13452i) q^{82} +(-1.02986 + 0.790239i) q^{83} +(-1.92906 + 0.773243i) q^{85} +(-6.10907 + 3.52707i) q^{86} +(-4.04075 - 1.37165i) q^{88} +(-2.39586 + 2.39586i) q^{89} +(0.780465 - 3.92366i) q^{91} +(-1.99941 + 0.131048i) q^{92} +(22.5133 + 17.2750i) q^{94} +(-1.65074 - 0.814053i) q^{95} +(-7.04839 - 14.2927i) q^{97} +(-10.9286 - 10.9286i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45899 1.90139i −1.03166 1.34449i −0.937136 0.348965i \(-0.886533\pi\)
−0.0945260 0.995522i \(-0.530134\pi\)
\(3\) 0 0
\(4\) −0.969004 + 3.61637i −0.484502 + 1.80819i
\(5\) 0.502973 + 0.0329666i 0.224936 + 0.0147431i 0.177455 0.984129i \(-0.443214\pi\)
0.0474819 + 0.998872i \(0.484880\pi\)
\(6\) 0 0
\(7\) 0.0485612 + 0.740900i 0.0183544 + 0.280034i 0.997164 + 0.0752609i \(0.0239790\pi\)
−0.978809 + 0.204773i \(0.934354\pi\)
\(8\) 3.86148 1.59948i 1.36524 0.565500i
\(9\) 0 0
\(10\) −0.671150 1.00445i −0.212236 0.317634i
\(11\) −0.767594 0.673162i −0.231438 0.202966i 0.535770 0.844364i \(-0.320021\pi\)
−0.767208 + 0.641398i \(0.778355\pi\)
\(12\) 0 0
\(13\) −5.20440 1.39452i −1.44344 0.386769i −0.549704 0.835360i \(-0.685259\pi\)
−0.893737 + 0.448591i \(0.851926\pi\)
\(14\) 1.33789 1.17330i 0.357567 0.313578i
\(15\) 0 0
\(16\) −2.19038 1.26462i −0.547596 0.316155i
\(17\) −3.71857 + 1.78107i −0.901886 + 0.431973i
\(18\) 0 0
\(19\) −3.37354 1.39737i −0.773944 0.320578i −0.0394751 0.999221i \(-0.512569\pi\)
−0.734469 + 0.678643i \(0.762569\pi\)
\(20\) −0.606603 + 1.78699i −0.135641 + 0.399584i
\(21\) 0 0
\(22\) −0.160033 + 2.44163i −0.0341192 + 0.520558i
\(23\) 0.172029 + 0.506782i 0.0358706 + 0.105671i 0.963390 0.268103i \(-0.0863968\pi\)
−0.927520 + 0.373774i \(0.878063\pi\)
\(24\) 0 0
\(25\) −4.70533 0.619468i −0.941066 0.123894i
\(26\) 4.94165 + 11.9302i 0.969137 + 2.33970i
\(27\) 0 0
\(28\) −2.72643 0.542320i −0.515246 0.102489i
\(29\) −5.67976 + 2.80095i −1.05471 + 0.520123i −0.885106 0.465390i \(-0.845914\pi\)
−0.169600 + 0.985513i \(0.554247\pi\)
\(30\) 0 0
\(31\) −0.677946 0.773049i −0.121763 0.138844i 0.687747 0.725951i \(-0.258600\pi\)
−0.809509 + 0.587107i \(0.800267\pi\)
\(32\) −0.299892 2.27790i −0.0530139 0.402680i
\(33\) 0 0
\(34\) 8.81188 + 4.47190i 1.51122 + 0.766925i
\(35\) 0.374254i 0.0632604i
\(36\) 0 0
\(37\) 2.20919 + 11.1064i 0.363189 + 1.82587i 0.540045 + 0.841636i \(0.318407\pi\)
−0.176856 + 0.984237i \(0.556593\pi\)
\(38\) 2.26502 + 8.45317i 0.367435 + 1.37129i
\(39\) 0 0
\(40\) 1.99495 0.677194i 0.315429 0.107074i
\(41\) 2.96507 6.01257i 0.463067 0.939006i −0.532631 0.846347i \(-0.678797\pi\)
0.995698 0.0926589i \(-0.0295366\pi\)
\(42\) 0 0
\(43\) 0.384182 2.91815i 0.0585872 0.445014i −0.936860 0.349704i \(-0.886282\pi\)
0.995448 0.0953104i \(-0.0303844\pi\)
\(44\) 3.17821 2.12361i 0.479133 0.320146i
\(45\) 0 0
\(46\) 0.712603 1.06649i 0.105068 0.157245i
\(47\) −11.4370 + 3.06452i −1.66825 + 0.447007i −0.964639 0.263576i \(-0.915098\pi\)
−0.703614 + 0.710583i \(0.748431\pi\)
\(48\) 0 0
\(49\) 6.39354 0.841725i 0.913363 0.120246i
\(50\) 5.68718 + 9.85048i 0.804288 + 1.39307i
\(51\) 0 0
\(52\) 10.0862 17.4698i 1.39870 2.42262i
\(53\) 3.30651 7.98262i 0.454184 1.09650i −0.516532 0.856268i \(-0.672777\pi\)
0.970716 0.240230i \(-0.0772228\pi\)
\(54\) 0 0
\(55\) −0.363887 0.363887i −0.0490666 0.0490666i
\(56\) 1.37257 + 2.78330i 0.183417 + 0.371934i
\(57\) 0 0
\(58\) 13.6124 + 6.71290i 1.78740 + 0.881447i
\(59\) 6.97647 + 5.35323i 0.908259 + 0.696932i 0.953291 0.302054i \(-0.0976723\pi\)
−0.0450319 + 0.998986i \(0.514339\pi\)
\(60\) 0 0
\(61\) 6.35837 0.416750i 0.814106 0.0533593i 0.347339 0.937740i \(-0.387085\pi\)
0.466767 + 0.884380i \(0.345419\pi\)
\(62\) −0.480754 + 2.41691i −0.0610558 + 0.306948i
\(63\) 0 0
\(64\) −7.47053 + 7.47053i −0.933817 + 0.933817i
\(65\) −2.57170 0.872975i −0.318980 0.108279i
\(66\) 0 0
\(67\) −8.82398 + 5.09452i −1.07802 + 0.622395i −0.930362 0.366643i \(-0.880507\pi\)
−0.147659 + 0.989038i \(0.547174\pi\)
\(68\) −2.83771 15.1736i −0.344122 1.84007i
\(69\) 0 0
\(70\) 0.711604 0.546033i 0.0850529 0.0652634i
\(71\) −4.19907 + 0.835247i −0.498338 + 0.0991255i −0.437858 0.899044i \(-0.644263\pi\)
−0.0604793 + 0.998169i \(0.519263\pi\)
\(72\) 0 0
\(73\) 2.65455 + 1.77371i 0.310691 + 0.207597i 0.701133 0.713030i \(-0.252678\pi\)
−0.390442 + 0.920627i \(0.627678\pi\)
\(74\) 17.8943 20.4046i 2.08018 2.37199i
\(75\) 0 0
\(76\) 8.32238 10.8459i 0.954642 1.24411i
\(77\) 0.461470 0.601400i 0.0525894 0.0685359i
\(78\) 0 0
\(79\) −6.82883 + 7.78679i −0.768304 + 0.876083i −0.995203 0.0978357i \(-0.968808\pi\)
0.226899 + 0.973918i \(0.427141\pi\)
\(80\) −1.06001 0.708279i −0.118513 0.0791880i
\(81\) 0 0
\(82\) −15.7583 + 3.13452i −1.74021 + 0.346149i
\(83\) −1.02986 + 0.790239i −0.113042 + 0.0867400i −0.663735 0.747967i \(-0.731030\pi\)
0.550694 + 0.834707i \(0.314363\pi\)
\(84\) 0 0
\(85\) −1.92906 + 0.773243i −0.209236 + 0.0838699i
\(86\) −6.10907 + 3.52707i −0.658758 + 0.380334i
\(87\) 0 0
\(88\) −4.04075 1.37165i −0.430746 0.146218i
\(89\) −2.39586 + 2.39586i −0.253961 + 0.253961i −0.822592 0.568632i \(-0.807473\pi\)
0.568632 + 0.822592i \(0.307473\pi\)
\(90\) 0 0
\(91\) 0.780465 3.92366i 0.0818149 0.411311i
\(92\) −1.99941 + 0.131048i −0.208453 + 0.0136627i
\(93\) 0 0
\(94\) 22.5133 + 17.2750i 2.32207 + 1.78178i
\(95\) −1.65074 0.814053i −0.169362 0.0835200i
\(96\) 0 0
\(97\) −7.04839 14.2927i −0.715656 1.45121i −0.884972 0.465644i \(-0.845823\pi\)
0.169316 0.985562i \(-0.445844\pi\)
\(98\) −10.9286 10.9286i −1.10395 1.10395i
\(99\) 0 0
\(100\) 6.79971 16.4160i 0.679971 1.64160i
\(101\) 6.54019 11.3279i 0.650773 1.12717i −0.332163 0.943222i \(-0.607778\pi\)
0.982936 0.183949i \(-0.0588883\pi\)
\(102\) 0 0
\(103\) −3.23969 5.61131i −0.319216 0.552899i 0.661108 0.750290i \(-0.270086\pi\)
−0.980325 + 0.197391i \(0.936753\pi\)
\(104\) −22.3272 + 2.93943i −2.18936 + 0.288235i
\(105\) 0 0
\(106\) −20.0023 + 5.35959i −1.94279 + 0.520570i
\(107\) −8.20002 + 12.2722i −0.792726 + 1.18640i 0.186266 + 0.982499i \(0.440361\pi\)
−0.978992 + 0.203899i \(0.934639\pi\)
\(108\) 0 0
\(109\) 0.866335 0.578867i 0.0829798 0.0554454i −0.513388 0.858156i \(-0.671610\pi\)
0.596368 + 0.802711i \(0.296610\pi\)
\(110\) −0.160985 + 1.22280i −0.0153493 + 0.116589i
\(111\) 0 0
\(112\) 0.830589 1.68427i 0.0784832 0.159148i
\(113\) −4.50947 + 1.53076i −0.424215 + 0.144002i −0.525379 0.850868i \(-0.676077\pi\)
0.101164 + 0.994870i \(0.467743\pi\)
\(114\) 0 0
\(115\) 0.0698193 + 0.260569i 0.00651068 + 0.0242982i
\(116\) −4.62556 23.2543i −0.429473 2.15911i
\(117\) 0 0
\(118\) 21.0753i 1.94014i
\(119\) −1.50017 2.66860i −0.137521 0.244630i
\(120\) 0 0
\(121\) −1.29973 9.87246i −0.118158 0.897497i
\(122\) −10.0692 11.4817i −0.911623 1.03951i
\(123\) 0 0
\(124\) 3.45257 1.70262i 0.310050 0.152900i
\(125\) −4.81807 0.958374i −0.430941 0.0857195i
\(126\) 0 0
\(127\) −2.87472 6.94019i −0.255090 0.615843i 0.743510 0.668724i \(-0.233159\pi\)
−0.998601 + 0.0528818i \(0.983159\pi\)
\(128\) 20.5480 + 2.70520i 1.81621 + 0.239108i
\(129\) 0 0
\(130\) 2.09222 + 6.16348i 0.183500 + 0.540573i
\(131\) −0.287829 + 4.39143i −0.0251478 + 0.383681i 0.966671 + 0.256023i \(0.0824124\pi\)
−0.991818 + 0.127657i \(0.959254\pi\)
\(132\) 0 0
\(133\) 0.871486 2.56732i 0.0755675 0.222615i
\(134\) 22.5608 + 9.34498i 1.94895 + 0.807284i
\(135\) 0 0
\(136\) −11.5104 + 12.8253i −0.987009 + 1.09976i
\(137\) −5.46680 3.15626i −0.467060 0.269657i 0.247948 0.968773i \(-0.420244\pi\)
−0.715008 + 0.699116i \(0.753577\pi\)
\(138\) 0 0
\(139\) 11.3931 9.99145i 0.966347 0.847463i −0.0219884 0.999758i \(-0.507000\pi\)
0.988335 + 0.152295i \(0.0486664\pi\)
\(140\) −1.35344 0.362654i −0.114387 0.0306498i
\(141\) 0 0
\(142\) 7.71453 + 6.76546i 0.647389 + 0.567745i
\(143\) 3.05613 + 4.57383i 0.255567 + 0.382483i
\(144\) 0 0
\(145\) −2.94911 + 1.22156i −0.244910 + 0.101445i
\(146\) −0.500435 7.63516i −0.0414163 0.631890i
\(147\) 0 0
\(148\) −42.3054 2.77284i −3.47749 0.227926i
\(149\) 1.91554 7.14890i 0.156927 0.585661i −0.842005 0.539469i \(-0.818625\pi\)
0.998933 0.0461915i \(-0.0147085\pi\)
\(150\) 0 0
\(151\) −1.49586 1.94944i −0.121731 0.158643i 0.728512 0.685033i \(-0.240212\pi\)
−0.850244 + 0.526389i \(0.823545\pi\)
\(152\) −15.2619 −1.23790
\(153\) 0 0
\(154\) −1.81678 −0.146400
\(155\) −0.315504 0.411173i −0.0253419 0.0330262i
\(156\) 0 0
\(157\) −2.48072 + 9.25817i −0.197983 + 0.738883i 0.793491 + 0.608581i \(0.208261\pi\)
−0.991474 + 0.130301i \(0.958406\pi\)
\(158\) 24.7689 + 1.62344i 1.97051 + 0.129154i
\(159\) 0 0
\(160\) −0.0757428 1.15561i −0.00598799 0.0913591i
\(161\) −0.367121 + 0.152067i −0.0289332 + 0.0119845i
\(162\) 0 0
\(163\) 3.62885 + 5.43096i 0.284234 + 0.425386i 0.945922 0.324393i \(-0.105160\pi\)
−0.661689 + 0.749779i \(0.730160\pi\)
\(164\) 18.8705 + 16.5490i 1.47354 + 1.29226i
\(165\) 0 0
\(166\) 3.00511 + 0.805217i 0.233242 + 0.0624970i
\(167\) −3.06714 + 2.68981i −0.237343 + 0.208144i −0.769752 0.638343i \(-0.779620\pi\)
0.532409 + 0.846487i \(0.321287\pi\)
\(168\) 0 0
\(169\) 13.8828 + 8.01523i 1.06791 + 0.616556i
\(170\) 4.28471 + 2.53974i 0.328623 + 0.194790i
\(171\) 0 0
\(172\) 10.1809 + 4.21705i 0.776283 + 0.321547i
\(173\) 2.64623 7.79554i 0.201189 0.592684i −0.798771 0.601635i \(-0.794516\pi\)
0.999960 + 0.00895141i \(0.00284936\pi\)
\(174\) 0 0
\(175\) 0.230468 3.51626i 0.0174217 0.265804i
\(176\) 0.830032 + 2.44520i 0.0625660 + 0.184314i
\(177\) 0 0
\(178\) 8.05100 + 1.05993i 0.603448 + 0.0794455i
\(179\) 4.54443 + 10.9712i 0.339667 + 0.820028i 0.997748 + 0.0670807i \(0.0213685\pi\)
−0.658081 + 0.752947i \(0.728631\pi\)
\(180\) 0 0
\(181\) 17.5732 + 3.49554i 1.30621 + 0.259821i 0.798650 0.601796i \(-0.205548\pi\)
0.507559 + 0.861617i \(0.330548\pi\)
\(182\) −8.59911 + 4.24061i −0.637408 + 0.314335i
\(183\) 0 0
\(184\) 1.47487 + 1.68177i 0.108729 + 0.123982i
\(185\) 0.745025 + 5.65903i 0.0547753 + 0.416060i
\(186\) 0 0
\(187\) 4.05330 + 1.13606i 0.296407 + 0.0830771i
\(188\) 44.3299i 3.23309i
\(189\) 0 0
\(190\) 0.860573 + 4.32639i 0.0624325 + 0.313869i
\(191\) 5.55608 + 20.7356i 0.402024 + 1.50037i 0.809479 + 0.587148i \(0.199749\pi\)
−0.407456 + 0.913225i \(0.633584\pi\)
\(192\) 0 0
\(193\) 8.52695 2.89451i 0.613783 0.208351i 0.00280156 0.999996i \(-0.499108\pi\)
0.610982 + 0.791645i \(0.290775\pi\)
\(194\) −16.8925 + 34.2547i −1.21281 + 2.45934i
\(195\) 0 0
\(196\) −3.15137 + 23.9371i −0.225098 + 1.70979i
\(197\) 15.1511 10.1237i 1.07947 0.721281i 0.117130 0.993117i \(-0.462631\pi\)
0.962344 + 0.271836i \(0.0876307\pi\)
\(198\) 0 0
\(199\) 13.9975 20.9487i 0.992255 1.48501i 0.121929 0.992539i \(-0.461092\pi\)
0.870326 0.492476i \(-0.163908\pi\)
\(200\) −19.1603 + 5.13400i −1.35484 + 0.363029i
\(201\) 0 0
\(202\) −31.0809 + 4.09188i −2.18685 + 0.287904i
\(203\) −2.35104 4.07212i −0.165011 0.285807i
\(204\) 0 0
\(205\) 1.68957 2.92642i 0.118004 0.204390i
\(206\) −5.94263 + 14.3468i −0.414043 + 0.999587i
\(207\) 0 0
\(208\) 9.63611 + 9.63611i 0.668144 + 0.668144i
\(209\) 1.64886 + 3.34355i 0.114054 + 0.231278i
\(210\) 0 0
\(211\) −13.5539 6.68404i −0.933088 0.460148i −0.0888071 0.996049i \(-0.528305\pi\)
−0.844281 + 0.535901i \(0.819972\pi\)
\(212\) 25.6641 + 19.6928i 1.76262 + 1.35251i
\(213\) 0 0
\(214\) 35.2980 2.31355i 2.41292 0.158151i
\(215\) 0.289435 1.45509i 0.0197393 0.0992361i
\(216\) 0 0
\(217\) 0.539830 0.539830i 0.0366461 0.0366461i
\(218\) −2.36463 0.802683i −0.160153 0.0543645i
\(219\) 0 0
\(220\) 1.66856 0.963344i 0.112494 0.0649487i
\(221\) 21.8367 4.08380i 1.46889 0.274706i
\(222\) 0 0
\(223\) −12.2180 + 9.37523i −0.818180 + 0.627812i −0.930678 0.365840i \(-0.880782\pi\)
0.112497 + 0.993652i \(0.464115\pi\)
\(224\) 1.67314 0.332808i 0.111791 0.0222366i
\(225\) 0 0
\(226\) 9.48984 + 6.34091i 0.631255 + 0.421791i
\(227\) 11.7400 13.3870i 0.779214 0.888523i −0.216936 0.976186i \(-0.569606\pi\)
0.996150 + 0.0876626i \(0.0279397\pi\)
\(228\) 0 0
\(229\) 4.83506 6.30117i 0.319509 0.416393i −0.605793 0.795622i \(-0.707144\pi\)
0.925303 + 0.379229i \(0.123811\pi\)
\(230\) 0.393579 0.512922i 0.0259518 0.0338211i
\(231\) 0 0
\(232\) −17.4522 + 19.9004i −1.14579 + 1.30653i
\(233\) −15.3673 10.2681i −1.00675 0.672687i −0.0611841 0.998126i \(-0.519488\pi\)
−0.945563 + 0.325440i \(0.894488\pi\)
\(234\) 0 0
\(235\) −5.85351 + 1.16434i −0.381841 + 0.0759529i
\(236\) −26.1195 + 20.0422i −1.70024 + 1.30464i
\(237\) 0 0
\(238\) −2.88532 + 6.74588i −0.187027 + 0.437271i
\(239\) −14.9969 + 8.65844i −0.970067 + 0.560068i −0.899257 0.437422i \(-0.855892\pi\)
−0.0708101 + 0.997490i \(0.522558\pi\)
\(240\) 0 0
\(241\) −11.7751 3.99711i −0.758501 0.257476i −0.0847170 0.996405i \(-0.526999\pi\)
−0.673784 + 0.738929i \(0.735332\pi\)
\(242\) −16.8751 + 16.8751i −1.08477 + 1.08477i
\(243\) 0 0
\(244\) −4.65417 + 23.3981i −0.297953 + 1.49791i
\(245\) 3.24353 0.212592i 0.207221 0.0135820i
\(246\) 0 0
\(247\) 15.6086 + 11.9769i 0.993153 + 0.762073i
\(248\) −3.85435 1.90075i −0.244751 0.120698i
\(249\) 0 0
\(250\) 5.20727 + 10.5593i 0.329337 + 0.667829i
\(251\) 12.5986 + 12.5986i 0.795218 + 0.795218i 0.982337 0.187119i \(-0.0599151\pi\)
−0.187119 + 0.982337i \(0.559915\pi\)
\(252\) 0 0
\(253\) 0.209098 0.504807i 0.0131459 0.0317369i
\(254\) −9.00184 + 15.5916i −0.564826 + 0.978307i
\(255\) 0 0
\(256\) −14.2708 24.7178i −0.891925 1.54486i
\(257\) 11.1120 1.46292i 0.693147 0.0912545i 0.224282 0.974524i \(-0.427996\pi\)
0.468865 + 0.883270i \(0.344663\pi\)
\(258\) 0 0
\(259\) −8.12142 + 2.17613i −0.504640 + 0.135218i
\(260\) 5.64900 8.45432i 0.350336 0.524315i
\(261\) 0 0
\(262\) 8.76977 5.85977i 0.541798 0.362018i
\(263\) 2.18215 16.5751i 0.134557 1.02206i −0.782316 0.622882i \(-0.785962\pi\)
0.916873 0.399180i \(-0.130705\pi\)
\(264\) 0 0
\(265\) 1.92625 3.90604i 0.118328 0.239946i
\(266\) −6.15297 + 2.08865i −0.377263 + 0.128063i
\(267\) 0 0
\(268\) −9.87323 36.8474i −0.603104 2.25081i
\(269\) 1.87839 + 9.44333i 0.114528 + 0.575770i 0.994847 + 0.101388i \(0.0323284\pi\)
−0.880319 + 0.474382i \(0.842672\pi\)
\(270\) 0 0
\(271\) 21.5828i 1.31106i 0.755168 + 0.655531i \(0.227555\pi\)
−0.755168 + 0.655531i \(0.772445\pi\)
\(272\) 10.3975 + 0.801347i 0.630440 + 0.0485888i
\(273\) 0 0
\(274\) 1.97472 + 14.9995i 0.119297 + 0.906152i
\(275\) 3.19478 + 3.64295i 0.192652 + 0.219678i
\(276\) 0 0
\(277\) −23.0315 + 11.3579i −1.38383 + 0.682428i −0.973325 0.229432i \(-0.926313\pi\)
−0.410502 + 0.911860i \(0.634647\pi\)
\(278\) −35.6200 7.08526i −2.13635 0.424946i
\(279\) 0 0
\(280\) 0.598610 + 1.44517i 0.0357738 + 0.0863656i
\(281\) −11.5690 1.52308i −0.690147 0.0908595i −0.222708 0.974885i \(-0.571490\pi\)
−0.467439 + 0.884026i \(0.654823\pi\)
\(282\) 0 0
\(283\) 0.351485 + 1.03544i 0.0208936 + 0.0615506i 0.956877 0.290494i \(-0.0938197\pi\)
−0.935983 + 0.352045i \(0.885486\pi\)
\(284\) 1.04835 15.9948i 0.0622082 0.949114i
\(285\) 0 0
\(286\) 4.23777 12.4841i 0.250585 0.738199i
\(287\) 4.59870 + 1.90485i 0.271453 + 0.112439i
\(288\) 0 0
\(289\) 10.6556 13.2461i 0.626798 0.779182i
\(290\) 6.62538 + 3.82517i 0.389056 + 0.224622i
\(291\) 0 0
\(292\) −8.98667 + 7.88110i −0.525905 + 0.461206i
\(293\) −2.28133 0.611280i −0.133276 0.0357113i 0.191564 0.981480i \(-0.438644\pi\)
−0.324841 + 0.945769i \(0.605311\pi\)
\(294\) 0 0
\(295\) 3.33250 + 2.92252i 0.194026 + 0.170156i
\(296\) 26.2951 + 39.3534i 1.52837 + 2.28737i
\(297\) 0 0
\(298\) −16.3876 + 6.78798i −0.949310 + 0.393217i
\(299\) −0.188595 2.87740i −0.0109067 0.166404i
\(300\) 0 0
\(301\) 2.18072 + 0.142932i 0.125694 + 0.00823844i
\(302\) −1.52421 + 5.68844i −0.0877086 + 0.327333i
\(303\) 0 0
\(304\) 5.62222 + 7.32702i 0.322456 + 0.420233i
\(305\) 3.21183 0.183909
\(306\) 0 0
\(307\) −31.4910 −1.79729 −0.898644 0.438678i \(-0.855447\pi\)
−0.898644 + 0.438678i \(0.855447\pi\)
\(308\) 1.72772 + 2.25161i 0.0984460 + 0.128297i
\(309\) 0 0
\(310\) −0.321484 + 1.19979i −0.0182590 + 0.0681437i
\(311\) 11.2499 + 0.737360i 0.637926 + 0.0418119i 0.380935 0.924602i \(-0.375602\pi\)
0.256991 + 0.966414i \(0.417269\pi\)
\(312\) 0 0
\(313\) −0.550274 8.39557i −0.0311034 0.474545i −0.984791 0.173745i \(-0.944413\pi\)
0.953687 0.300800i \(-0.0972537\pi\)
\(314\) 21.2228 8.79076i 1.19767 0.496091i
\(315\) 0 0
\(316\) −21.5428 32.2411i −1.21188 1.81370i
\(317\) −0.973224 0.853495i −0.0546617 0.0479371i 0.631579 0.775311i \(-0.282407\pi\)
−0.686241 + 0.727374i \(0.740740\pi\)
\(318\) 0 0
\(319\) 6.24524 + 1.67341i 0.349667 + 0.0936929i
\(320\) −4.00376 + 3.51120i −0.223817 + 0.196282i
\(321\) 0 0
\(322\) 0.824764 + 0.476178i 0.0459623 + 0.0265364i
\(323\) 15.0336 0.812309i 0.836491 0.0451981i
\(324\) 0 0
\(325\) 23.6246 + 9.78561i 1.31045 + 0.542808i
\(326\) 5.03193 14.8236i 0.278693 0.821003i
\(327\) 0 0
\(328\) 1.83259 27.9600i 0.101188 1.54383i
\(329\) −2.82590 8.32483i −0.155797 0.458963i
\(330\) 0 0
\(331\) −6.58097 0.866401i −0.361723 0.0476217i −0.0525254 0.998620i \(-0.516727\pi\)
−0.309197 + 0.950998i \(0.600060\pi\)
\(332\) −1.85986 4.49010i −0.102073 0.246426i
\(333\) 0 0
\(334\) 9.58932 + 1.90744i 0.524705 + 0.104370i
\(335\) −4.60617 + 2.27151i −0.251662 + 0.124106i
\(336\) 0 0
\(337\) −4.97913 5.67761i −0.271230 0.309279i 0.600150 0.799888i \(-0.295108\pi\)
−0.871380 + 0.490609i \(0.836774\pi\)
\(338\) −5.01475 38.0908i −0.272766 2.07186i
\(339\) 0 0
\(340\) −0.927068 7.72547i −0.0502773 0.418973i
\(341\) 1.04976i 0.0568474i
\(342\) 0 0
\(343\) 1.94808 + 9.79366i 0.105186 + 0.528808i
\(344\) −3.18400 11.8829i −0.171670 0.640681i
\(345\) 0 0
\(346\) −18.6832 + 6.34209i −1.00442 + 0.340953i
\(347\) 12.1309 24.5991i 0.651223 1.32055i −0.281362 0.959602i \(-0.590786\pi\)
0.932586 0.360949i \(-0.117547\pi\)
\(348\) 0 0
\(349\) −1.41604 + 10.7559i −0.0757990 + 0.575751i 0.910832 + 0.412778i \(0.135442\pi\)
−0.986631 + 0.162972i \(0.947892\pi\)
\(350\) −7.02204 + 4.69198i −0.375344 + 0.250797i
\(351\) 0 0
\(352\) −1.30320 + 1.95038i −0.0694610 + 0.103956i
\(353\) 6.82053 1.82756i 0.363020 0.0972710i −0.0726982 0.997354i \(-0.523161\pi\)
0.435719 + 0.900083i \(0.356494\pi\)
\(354\) 0 0
\(355\) −2.13955 + 0.281678i −0.113556 + 0.0149499i
\(356\) −6.34272 10.9859i −0.336164 0.582253i
\(357\) 0 0
\(358\) 14.2303 24.6477i 0.752096 1.30267i
\(359\) 1.46983 3.54849i 0.0775748 0.187282i −0.880334 0.474354i \(-0.842682\pi\)
0.957909 + 0.287072i \(0.0926818\pi\)
\(360\) 0 0
\(361\) −4.00687 4.00687i −0.210888 0.210888i
\(362\) −18.9928 38.5136i −0.998239 2.02423i
\(363\) 0 0
\(364\) 13.4332 + 6.62450i 0.704088 + 0.347218i
\(365\) 1.27669 + 0.979641i 0.0668251 + 0.0512767i
\(366\) 0 0
\(367\) 14.8625 0.974142i 0.775818 0.0508498i 0.327650 0.944799i \(-0.393743\pi\)
0.448168 + 0.893949i \(0.352077\pi\)
\(368\) 0.264076 1.32760i 0.0137659 0.0692059i
\(369\) 0 0
\(370\) 9.67305 9.67305i 0.502878 0.502878i
\(371\) 6.07490 + 2.06215i 0.315393 + 0.107061i
\(372\) 0 0
\(373\) −3.87184 + 2.23541i −0.200476 + 0.115745i −0.596878 0.802332i \(-0.703592\pi\)
0.396401 + 0.918077i \(0.370259\pi\)
\(374\) −3.75363 9.36442i −0.194096 0.484223i
\(375\) 0 0
\(376\) −39.2619 + 30.1267i −2.02478 + 1.55367i
\(377\) 33.4657 6.65675i 1.72357 0.342840i
\(378\) 0 0
\(379\) −12.0411 8.04562i −0.618511 0.413276i 0.206457 0.978456i \(-0.433807\pi\)
−0.824968 + 0.565180i \(0.808807\pi\)
\(380\) 4.54349 5.18086i 0.233076 0.265772i
\(381\) 0 0
\(382\) 31.3202 40.8173i 1.60248 2.08839i
\(383\) −0.898203 + 1.17056i −0.0458961 + 0.0598129i −0.815737 0.578422i \(-0.803669\pi\)
0.769841 + 0.638235i \(0.220335\pi\)
\(384\) 0 0
\(385\) 0.251933 0.287275i 0.0128397 0.0146409i
\(386\) −17.9443 11.9900i −0.913342 0.610276i
\(387\) 0 0
\(388\) 58.5178 11.6399i 2.97079 0.590927i
\(389\) −30.2791 + 23.2340i −1.53521 + 1.17801i −0.613772 + 0.789484i \(0.710348\pi\)
−0.921438 + 0.388525i \(0.872985\pi\)
\(390\) 0 0
\(391\) −1.54232 1.57811i −0.0779985 0.0798085i
\(392\) 23.3422 13.4766i 1.17896 0.680672i
\(393\) 0 0
\(394\) −41.3544 14.0379i −2.08340 0.707221i
\(395\) −3.69142 + 3.69142i −0.185736 + 0.185736i
\(396\) 0 0
\(397\) −1.08068 + 5.43296i −0.0542379 + 0.272673i −0.998382 0.0568600i \(-0.981891\pi\)
0.944144 + 0.329533i \(0.106891\pi\)
\(398\) −60.2539 + 3.94925i −3.02026 + 0.197958i
\(399\) 0 0
\(400\) 9.52309 + 7.30732i 0.476154 + 0.365366i
\(401\) −18.3820 9.06500i −0.917953 0.452684i −0.0789918 0.996875i \(-0.525170\pi\)
−0.838961 + 0.544191i \(0.816837\pi\)
\(402\) 0 0
\(403\) 2.45027 + 4.96866i 0.122057 + 0.247507i
\(404\) 34.6286 + 34.6286i 1.72284 + 1.72284i
\(405\) 0 0
\(406\) −4.31256 + 10.4114i −0.214029 + 0.516711i
\(407\) 5.78061 10.0123i 0.286534 0.496292i
\(408\) 0 0
\(409\) 11.6707 + 20.2142i 0.577078 + 0.999528i 0.995812 + 0.0914193i \(0.0291404\pi\)
−0.418735 + 0.908109i \(0.637526\pi\)
\(410\) −8.02933 + 1.05708i −0.396540 + 0.0522055i
\(411\) 0 0
\(412\) 23.4319 6.27855i 1.15441 0.309322i
\(413\) −3.62743 + 5.42883i −0.178494 + 0.267135i
\(414\) 0 0
\(415\) −0.544044 + 0.363518i −0.0267060 + 0.0178444i
\(416\) −1.61581 + 12.2733i −0.0792218 + 0.601750i
\(417\) 0 0
\(418\) 3.95174 8.01333i 0.193286 0.391945i
\(419\) −32.7941 + 11.1321i −1.60210 + 0.543839i −0.972464 0.233053i \(-0.925128\pi\)
−0.629634 + 0.776892i \(0.716795\pi\)
\(420\) 0 0
\(421\) −0.782462 2.92019i −0.0381349 0.142321i 0.944234 0.329276i \(-0.106805\pi\)
−0.982368 + 0.186955i \(0.940138\pi\)
\(422\) 7.06601 + 35.5232i 0.343968 + 1.72924i
\(423\) 0 0
\(424\) 36.1134i 1.75382i
\(425\) 18.6004 6.07699i 0.902253 0.294777i
\(426\) 0 0
\(427\) 0.617540 + 4.69068i 0.0298849 + 0.226998i
\(428\) −36.4350 41.5462i −1.76115 2.00821i
\(429\) 0 0
\(430\) −3.18897 + 1.57263i −0.153786 + 0.0758389i
\(431\) −38.4058 7.63939i −1.84994 0.367977i −0.860098 0.510128i \(-0.829598\pi\)
−0.989845 + 0.142151i \(0.954598\pi\)
\(432\) 0 0
\(433\) 9.24045 + 22.3084i 0.444068 + 1.07207i 0.974508 + 0.224352i \(0.0720265\pi\)
−0.530441 + 0.847722i \(0.677973\pi\)
\(434\) −1.81404 0.238822i −0.0870765 0.0114638i
\(435\) 0 0
\(436\) 1.25392 + 3.69392i 0.0600517 + 0.176906i
\(437\) 0.127812 1.95004i 0.00611410 0.0932831i
\(438\) 0 0
\(439\) −12.2201 + 35.9991i −0.583231 + 1.71814i 0.106720 + 0.994289i \(0.465965\pi\)
−0.689952 + 0.723855i \(0.742368\pi\)
\(440\) −1.98717 0.823114i −0.0947347 0.0392404i
\(441\) 0 0
\(442\) −39.6244 35.5619i −1.88474 1.69151i
\(443\) 33.1913 + 19.1630i 1.57697 + 0.910462i 0.995280 + 0.0970494i \(0.0309405\pi\)
0.581687 + 0.813413i \(0.302393\pi\)
\(444\) 0 0
\(445\) −1.28404 + 1.12607i −0.0608692 + 0.0533808i
\(446\) 35.6520 + 9.55292i 1.68817 + 0.452344i
\(447\) 0 0
\(448\) −5.89770 5.17214i −0.278640 0.244361i
\(449\) −8.96395 13.4155i −0.423035 0.633116i 0.557334 0.830288i \(-0.311824\pi\)
−0.980369 + 0.197172i \(0.936824\pi\)
\(450\) 0 0
\(451\) −6.32341 + 2.61924i −0.297758 + 0.123335i
\(452\) −1.16610 17.7912i −0.0548487 0.836829i
\(453\) 0 0
\(454\) −42.5825 2.79100i −1.99849 0.130988i
\(455\) 0.521903 1.94777i 0.0244672 0.0913127i
\(456\) 0 0
\(457\) 11.9497 + 15.5731i 0.558983 + 0.728480i 0.984288 0.176569i \(-0.0565000\pi\)
−0.425306 + 0.905050i \(0.639833\pi\)
\(458\) −19.0353 −0.889461
\(459\) 0 0
\(460\) −1.00997 −0.0470901
\(461\) 8.16054 + 10.6350i 0.380074 + 0.495322i 0.943744 0.330678i \(-0.107277\pi\)
−0.563669 + 0.826000i \(0.690611\pi\)
\(462\) 0 0
\(463\) 0.244877 0.913894i 0.0113804 0.0424722i −0.960002 0.279993i \(-0.909668\pi\)
0.971383 + 0.237520i \(0.0763346\pi\)
\(464\) 15.9830 + 1.04758i 0.741992 + 0.0486327i
\(465\) 0 0
\(466\) 2.89705 + 44.2004i 0.134203 + 2.04754i
\(467\) −27.8933 + 11.5538i −1.29075 + 0.534644i −0.919208 0.393773i \(-0.871169\pi\)
−0.371538 + 0.928418i \(0.621169\pi\)
\(468\) 0 0
\(469\) −4.20304 6.29029i −0.194078 0.290459i
\(470\) 10.7541 + 9.43107i 0.496049 + 0.435023i
\(471\) 0 0
\(472\) 35.5018 + 9.51269i 1.63410 + 0.437857i
\(473\) −2.25928 + 1.98134i −0.103882 + 0.0911021i
\(474\) 0 0
\(475\) 15.0080 + 8.66488i 0.688614 + 0.397572i
\(476\) 11.1043 2.83931i 0.508966 0.130139i
\(477\) 0 0
\(478\) 38.3434 + 15.8823i 1.75379 + 0.726442i
\(479\) −6.91907 + 20.3829i −0.316140 + 0.931319i 0.666453 + 0.745547i \(0.267812\pi\)
−0.982593 + 0.185772i \(0.940521\pi\)
\(480\) 0 0
\(481\) 3.99046 60.8827i 0.181949 2.77601i
\(482\) 9.57968 + 28.2208i 0.436342 + 1.28542i
\(483\) 0 0
\(484\) 36.9620 + 4.86614i 1.68009 + 0.221188i
\(485\) −3.07397 7.42122i −0.139582 0.336980i
\(486\) 0 0
\(487\) −9.83269 1.95584i −0.445562 0.0886277i −0.0327900 0.999462i \(-0.510439\pi\)
−0.412772 + 0.910835i \(0.635439\pi\)
\(488\) 23.8861 11.7793i 1.08127 0.533226i
\(489\) 0 0
\(490\) −5.13650 5.85705i −0.232043 0.264595i
\(491\) −0.564476 4.28762i −0.0254744 0.193498i 0.973976 0.226652i \(-0.0727780\pi\)
−0.999450 + 0.0331544i \(0.989445\pi\)
\(492\) 0 0
\(493\) 16.1319 20.5316i 0.726545 0.924697i
\(494\) 47.1523i 2.12148i
\(495\) 0 0
\(496\) 0.507349 + 2.55062i 0.0227807 + 0.114526i
\(497\) −0.822746 3.07053i −0.0369052 0.137732i
\(498\) 0 0
\(499\) −22.1611 + 7.52269i −0.992069 + 0.336762i −0.769843 0.638233i \(-0.779665\pi\)
−0.222226 + 0.974995i \(0.571332\pi\)
\(500\) 8.13457 16.4953i 0.363789 0.737691i
\(501\) 0 0
\(502\) 5.57367 42.3362i 0.248765 1.88956i
\(503\) 9.17711 6.13195i 0.409187 0.273410i −0.333895 0.942610i \(-0.608363\pi\)
0.743082 + 0.669200i \(0.233363\pi\)
\(504\) 0 0
\(505\) 3.66298 5.48204i 0.163001 0.243948i
\(506\) −1.26491 + 0.338931i −0.0562320 + 0.0150673i
\(507\) 0 0
\(508\) 27.8839 3.67099i 1.23715 0.162874i
\(509\) 13.6706 + 23.6782i 0.605939 + 1.04952i 0.991902 + 0.127003i \(0.0405358\pi\)
−0.385963 + 0.922514i \(0.626131\pi\)
\(510\) 0 0
\(511\) −1.18523 + 2.05289i −0.0524317 + 0.0908144i
\(512\) −10.3147 + 24.9019i −0.455850 + 1.10052i
\(513\) 0 0
\(514\) −18.9939 18.9939i −0.837783 0.837783i
\(515\) −1.44449 2.92914i −0.0636520 0.129073i
\(516\) 0 0
\(517\) 10.8419 + 5.34662i 0.476825 + 0.235144i
\(518\) 15.9867 + 12.2671i 0.702417 + 0.538983i
\(519\) 0 0
\(520\) −11.3269 + 0.742402i −0.496716 + 0.0325565i
\(521\) 0.254038 1.27713i 0.0111296 0.0559523i −0.974821 0.222987i \(-0.928419\pi\)
0.985951 + 0.167035i \(0.0534192\pi\)
\(522\) 0 0
\(523\) −4.98904 + 4.98904i −0.218155 + 0.218155i −0.807721 0.589565i \(-0.799299\pi\)
0.589565 + 0.807721i \(0.299299\pi\)
\(524\) −15.6021 5.29621i −0.681582 0.231366i
\(525\) 0 0
\(526\) −34.6994 + 20.0337i −1.51297 + 0.873511i
\(527\) 3.89785 + 1.66717i 0.169793 + 0.0726230i
\(528\) 0 0
\(529\) 18.0199 13.8271i 0.783474 0.601180i
\(530\) −10.2373 + 2.03632i −0.444680 + 0.0884523i
\(531\) 0 0
\(532\) 8.43990 + 5.63936i 0.365916 + 0.244497i
\(533\) −23.8161 + 27.1570i −1.03159 + 1.17630i
\(534\) 0 0
\(535\) −4.52896 + 5.90226i −0.195804 + 0.255177i
\(536\) −25.9250 + 33.7861i −1.11979 + 1.45934i
\(537\) 0 0
\(538\) 15.2149 17.3493i 0.655961 0.747981i
\(539\) −5.47426 3.65778i −0.235793 0.157552i
\(540\) 0 0
\(541\) 40.2772 8.01163i 1.73165 0.344447i 0.774178 0.632968i \(-0.218163\pi\)
0.957474 + 0.288521i \(0.0931634\pi\)
\(542\) 41.0374 31.4891i 1.76271 1.35257i
\(543\) 0 0
\(544\) 5.17228 + 7.93643i 0.221760 + 0.340271i
\(545\) 0.454827 0.262594i 0.0194826 0.0112483i
\(546\) 0 0
\(547\) 34.7372 + 11.7917i 1.48526 + 0.504176i 0.942064 0.335433i \(-0.108883\pi\)
0.543191 + 0.839609i \(0.317216\pi\)
\(548\) 16.7116 16.7116i 0.713883 0.713883i
\(549\) 0 0
\(550\) 2.26552 11.3896i 0.0966022 0.485652i
\(551\) 23.0749 1.51241i 0.983023 0.0644307i
\(552\) 0 0
\(553\) −6.10085 4.68135i −0.259435 0.199071i
\(554\) 55.1984 + 27.2209i 2.34516 + 1.15650i
\(555\) 0 0
\(556\) 25.0929 + 50.8833i 1.06417 + 2.15793i
\(557\) −4.48661 4.48661i −0.190104 0.190104i 0.605637 0.795741i \(-0.292918\pi\)
−0.795741 + 0.605637i \(0.792918\pi\)
\(558\) 0 0
\(559\) −6.06884 + 14.6515i −0.256685 + 0.619692i
\(560\) 0.473288 0.819760i 0.0200001 0.0346412i
\(561\) 0 0
\(562\) 13.9830 + 24.2193i 0.589838 + 1.02163i
\(563\) −18.8368 + 2.47992i −0.793878 + 0.104516i −0.516547 0.856259i \(-0.672783\pi\)
−0.277330 + 0.960775i \(0.589450\pi\)
\(564\) 0 0
\(565\) −2.31861 + 0.621268i −0.0975445 + 0.0261370i
\(566\) 1.45597 2.17901i 0.0611989 0.0915906i
\(567\) 0 0
\(568\) −14.8786 + 9.94159i −0.624294 + 0.417140i
\(569\) 2.50333 19.0147i 0.104945 0.797138i −0.855330 0.518084i \(-0.826646\pi\)
0.960275 0.279055i \(-0.0900210\pi\)
\(570\) 0 0
\(571\) −12.4378 + 25.2214i −0.520507 + 1.05548i 0.464915 + 0.885355i \(0.346085\pi\)
−0.985422 + 0.170128i \(0.945582\pi\)
\(572\) −19.5021 + 6.62006i −0.815422 + 0.276799i
\(573\) 0 0
\(574\) −3.08760 11.5231i −0.128874 0.480965i
\(575\) −0.495519 2.49114i −0.0206646 0.103888i
\(576\) 0 0
\(577\) 44.0005i 1.83176i 0.401449 + 0.915881i \(0.368507\pi\)
−0.401449 + 0.915881i \(0.631493\pi\)
\(578\) −40.7324 0.934513i −1.69424 0.0388706i
\(579\) 0 0
\(580\) −1.55992 11.8488i −0.0647722 0.491993i
\(581\) −0.635500 0.724648i −0.0263650 0.0300635i
\(582\) 0 0
\(583\) −7.91166 + 3.90160i −0.327667 + 0.161588i
\(584\) 13.0875 + 2.60326i 0.541564 + 0.107724i
\(585\) 0 0
\(586\) 2.16615 + 5.22955i 0.0894828 + 0.216031i
\(587\) −10.6266 1.39901i −0.438605 0.0577434i −0.0920095 0.995758i \(-0.529329\pi\)
−0.346596 + 0.938015i \(0.612662\pi\)
\(588\) 0 0
\(589\) 1.20685 + 3.55525i 0.0497272 + 0.146492i
\(590\) 0.694782 10.6003i 0.0286037 0.436408i
\(591\) 0 0
\(592\) 9.20632 27.1210i 0.378378 1.11466i
\(593\) −17.9488 7.43464i −0.737069 0.305304i −0.0176157 0.999845i \(-0.505608\pi\)
−0.719453 + 0.694541i \(0.755608\pi\)
\(594\) 0 0
\(595\) −0.666573 1.39169i −0.0273268 0.0570537i
\(596\) 23.9969 + 13.8546i 0.982953 + 0.567508i
\(597\) 0 0
\(598\) −5.19590 + 4.55668i −0.212476 + 0.186337i
\(599\) −15.6130 4.18348i −0.637929 0.170932i −0.0746637 0.997209i \(-0.523788\pi\)
−0.563265 + 0.826276i \(0.690455\pi\)
\(600\) 0 0
\(601\) −13.0141 11.4131i −0.530858 0.465550i 0.351460 0.936203i \(-0.385685\pi\)
−0.882319 + 0.470653i \(0.844019\pi\)
\(602\) −2.90987 4.35493i −0.118598 0.177494i
\(603\) 0 0
\(604\) 8.49941 3.52057i 0.345836 0.143250i
\(605\) −0.328270 5.00843i −0.0133461 0.203622i
\(606\) 0 0
\(607\) −5.60520 0.367384i −0.227508 0.0149117i −0.0487772 0.998810i \(-0.515532\pi\)
−0.178731 + 0.983898i \(0.557199\pi\)
\(608\) −2.17137 + 8.10367i −0.0880607 + 0.328647i
\(609\) 0 0
\(610\) −4.68603 6.10695i −0.189732 0.247263i
\(611\) 63.7961 2.58091
\(612\) 0 0
\(613\) −24.3856 −0.984927 −0.492463 0.870333i \(-0.663903\pi\)
−0.492463 + 0.870333i \(0.663903\pi\)
\(614\) 45.9451 + 59.8768i 1.85419 + 2.41643i
\(615\) 0 0
\(616\) 0.820033 3.06040i 0.0330401 0.123307i
\(617\) −18.3824 1.20485i −0.740047 0.0485053i −0.309283 0.950970i \(-0.600089\pi\)
−0.430764 + 0.902465i \(0.641756\pi\)
\(618\) 0 0
\(619\) −0.609409 9.29778i −0.0244942 0.373709i −0.992455 0.122608i \(-0.960874\pi\)
0.967961 0.251101i \(-0.0807926\pi\)
\(620\) 1.79268 0.742552i 0.0719957 0.0298216i
\(621\) 0 0
\(622\) −15.0115 22.4664i −0.601908 0.900819i
\(623\) −1.89144 1.65875i −0.0757789 0.0664563i
\(624\) 0 0
\(625\) 20.5293 + 5.50082i 0.821173 + 0.220033i
\(626\) −15.1604 + 13.2953i −0.605932 + 0.531388i
\(627\) 0 0
\(628\) −31.0772 17.9424i −1.24011 0.715981i
\(629\) −27.9962 37.3651i −1.11628 1.48984i
\(630\) 0 0
\(631\) −5.45994 2.26158i −0.217357 0.0900321i 0.271348 0.962481i \(-0.412531\pi\)
−0.488705 + 0.872449i \(0.662531\pi\)
\(632\) −13.9146 + 40.9911i −0.553493 + 1.63054i
\(633\) 0 0
\(634\) −0.202904 + 3.09572i −0.00805836 + 0.122947i
\(635\) −1.21711 3.58550i −0.0482997 0.142286i
\(636\) 0 0
\(637\) −34.4483 4.53521i −1.36489 0.179692i
\(638\) −5.92994 14.3161i −0.234769 0.566782i
\(639\) 0 0
\(640\) 10.2459 + 2.03804i 0.405006 + 0.0805607i
\(641\) 14.0975 6.95213i 0.556819 0.274593i −0.142030 0.989862i \(-0.545363\pi\)
0.698849 + 0.715270i \(0.253696\pi\)
\(642\) 0 0
\(643\) −21.2118 24.1874i −0.836512 0.953859i 0.162951 0.986634i \(-0.447899\pi\)
−0.999463 + 0.0327755i \(0.989565\pi\)
\(644\) −0.194188 1.47500i −0.00765206 0.0581232i
\(645\) 0 0
\(646\) −23.4784 27.3996i −0.923743 1.07802i
\(647\) 22.2315i 0.874010i 0.899459 + 0.437005i \(0.143961\pi\)
−0.899459 + 0.437005i \(0.856039\pi\)
\(648\) 0 0
\(649\) −1.75150 8.80540i −0.0687525 0.345642i
\(650\) −15.8617 59.1967i −0.622147 2.32188i
\(651\) 0 0
\(652\) −23.1568 + 7.86066i −0.906889 + 0.307847i
\(653\) 1.60076 3.24603i 0.0626428 0.127027i −0.863300 0.504692i \(-0.831606\pi\)
0.925942 + 0.377665i \(0.123273\pi\)
\(654\) 0 0
\(655\) −0.289541 + 2.19928i −0.0113133 + 0.0859331i
\(656\) −14.0983 + 9.42016i −0.550445 + 0.367795i
\(657\) 0 0
\(658\) −11.7058 + 17.5190i −0.456340 + 0.682961i
\(659\) 6.95540 1.86369i 0.270944 0.0725992i −0.120789 0.992678i \(-0.538542\pi\)
0.391733 + 0.920079i \(0.371876\pi\)
\(660\) 0 0
\(661\) 24.8952 3.27751i 0.968310 0.127480i 0.370250 0.928932i \(-0.379272\pi\)
0.598060 + 0.801452i \(0.295939\pi\)
\(662\) 7.95420 + 13.7771i 0.309149 + 0.535461i
\(663\) 0 0
\(664\) −2.71281 + 4.69873i −0.105277 + 0.182346i
\(665\) 0.522970 1.26256i 0.0202799 0.0489600i
\(666\) 0 0
\(667\) −2.39656 2.39656i −0.0927951 0.0927951i
\(668\) −6.75529 13.6984i −0.261370 0.530006i
\(669\) 0 0
\(670\) 11.0394 + 5.44403i 0.426489 + 0.210321i
\(671\) −5.16119 3.96032i −0.199246 0.152886i
\(672\) 0 0
\(673\) −31.5469 + 2.06770i −1.21605 + 0.0797038i −0.659882 0.751369i \(-0.729394\pi\)
−0.556163 + 0.831073i \(0.687727\pi\)
\(674\) −3.53086 + 17.7508i −0.136004 + 0.683737i
\(675\) 0 0
\(676\) −42.4386 + 42.4386i −1.63225 + 1.63225i
\(677\) 38.8925 + 13.2022i 1.49476 + 0.507402i 0.944760 0.327763i \(-0.106295\pi\)
0.549999 + 0.835165i \(0.314628\pi\)
\(678\) 0 0
\(679\) 10.2472 5.91623i 0.393252 0.227044i
\(680\) −6.21223 + 6.07134i −0.238228 + 0.232825i
\(681\) 0 0
\(682\) 1.99600 1.53158i 0.0764307 0.0586473i
\(683\) −37.3073 + 7.42089i −1.42753 + 0.283953i −0.847565 0.530692i \(-0.821932\pi\)
−0.579961 + 0.814644i \(0.696932\pi\)
\(684\) 0 0
\(685\) −2.64560 1.76774i −0.101083 0.0675417i
\(686\) 15.7794 17.9929i 0.602459 0.686973i
\(687\) 0 0
\(688\) −4.53186 + 5.90603i −0.172775 + 0.225165i
\(689\) −28.3403 + 36.9338i −1.07968 + 1.40707i
\(690\) 0 0
\(691\) −0.695421 + 0.792975i −0.0264550 + 0.0301662i −0.764916 0.644130i \(-0.777220\pi\)
0.738461 + 0.674296i \(0.235553\pi\)
\(692\) 25.6274 + 17.1237i 0.974207 + 0.650944i
\(693\) 0 0
\(694\) −64.4715 + 12.8242i −2.44731 + 0.486799i
\(695\) 6.05979 4.64984i 0.229861 0.176378i
\(696\) 0 0
\(697\) −0.317018 + 27.6392i −0.0120079 + 1.04691i
\(698\) 22.5172 13.0003i 0.852289 0.492069i
\(699\) 0 0
\(700\) 12.4928 + 4.24073i 0.472183 + 0.160285i
\(701\) 13.4241 13.4241i 0.507022 0.507022i −0.406589 0.913611i \(-0.633282\pi\)
0.913611 + 0.406589i \(0.133282\pi\)
\(702\) 0 0
\(703\) 8.06685 40.5548i 0.304247 1.52955i
\(704\) 10.7632 0.705458i 0.405654 0.0265880i
\(705\) 0 0
\(706\) −13.4260 10.3021i −0.505294 0.387726i
\(707\) 8.71047 + 4.29553i 0.327591 + 0.161550i
\(708\) 0 0
\(709\) −8.05113 16.3261i −0.302367 0.613139i 0.691666 0.722217i \(-0.256877\pi\)
−0.994033 + 0.109078i \(0.965210\pi\)
\(710\) 3.65717 + 3.65717i 0.137251 + 0.137251i
\(711\) 0 0
\(712\) −5.41943 + 13.0837i −0.203102 + 0.490331i
\(713\) 0.275141 0.476558i 0.0103041 0.0178472i
\(714\) 0 0
\(715\) 1.38637 + 2.40126i 0.0518473 + 0.0898021i
\(716\) −44.0796 + 5.80319i −1.64733 + 0.216876i
\(717\) 0 0
\(718\) −8.89154 + 2.38248i −0.331829 + 0.0889134i
\(719\) 13.0787 19.5737i 0.487754 0.729976i −0.503201 0.864170i \(-0.667844\pi\)
0.990955 + 0.134193i \(0.0428444\pi\)
\(720\) 0 0
\(721\) 4.00010 2.67278i 0.148971 0.0995395i
\(722\) −1.77265 + 13.4646i −0.0659713 + 0.501101i
\(723\) 0 0
\(724\) −29.6697 + 60.1642i −1.10267 + 2.23599i
\(725\) 28.4603 9.66095i 1.05699 0.358799i
\(726\) 0 0
\(727\) 1.11206 + 4.15025i 0.0412439 + 0.153924i 0.983477 0.181034i \(-0.0579444\pi\)
−0.942233 + 0.334958i \(0.891278\pi\)
\(728\) −3.26206 16.3995i −0.120900 0.607804i
\(729\) 0 0
\(730\) 3.85678i 0.142746i
\(731\) 3.76883 + 11.5356i 0.139395 + 0.426660i
\(732\) 0 0
\(733\) 1.40148 + 10.6453i 0.0517647 + 0.393192i 0.997640 + 0.0686615i \(0.0218729\pi\)
−0.945875 + 0.324530i \(0.894794\pi\)
\(734\) −23.5365 26.8383i −0.868749 0.990618i
\(735\) 0 0
\(736\) 1.10281 0.543847i 0.0406502 0.0200464i
\(737\) 10.2027 + 2.02944i 0.375820 + 0.0747553i
\(738\) 0 0
\(739\) 6.20725 + 14.9856i 0.228337 + 0.551255i 0.995975 0.0896286i \(-0.0285680\pi\)
−0.767638 + 0.640884i \(0.778568\pi\)
\(740\) −21.1871 2.78933i −0.778853 0.102538i
\(741\) 0 0
\(742\) −4.94226 14.5594i −0.181436 0.534493i
\(743\) 1.12085 17.1009i 0.0411201 0.627372i −0.926712 0.375773i \(-0.877377\pi\)
0.967832 0.251598i \(-0.0809562\pi\)
\(744\) 0 0
\(745\) 1.19914 3.53256i 0.0439332 0.129423i
\(746\) 9.89937 + 4.10045i 0.362442 + 0.150128i
\(747\) 0 0
\(748\) −8.03609 + 13.5574i −0.293829 + 0.495708i
\(749\) −9.49068 5.47945i −0.346782 0.200215i
\(750\) 0 0
\(751\) −5.01816 + 4.40081i −0.183115 + 0.160588i −0.745996 0.665950i \(-0.768026\pi\)
0.562881 + 0.826538i \(0.309693\pi\)
\(752\) 28.9268 + 7.75091i 1.05485 + 0.282647i
\(753\) 0 0
\(754\) −61.4833 53.9194i −2.23909 1.96363i
\(755\) −0.688111 1.02983i −0.0250429 0.0374794i
\(756\) 0 0
\(757\) 9.34496 3.87081i 0.339648 0.140687i −0.206339 0.978481i \(-0.566155\pi\)
0.545987 + 0.837794i \(0.316155\pi\)
\(758\) 2.26999 + 34.6334i 0.0824499 + 1.25794i
\(759\) 0 0
\(760\) −7.67633 0.503134i −0.278450 0.0182506i
\(761\) 3.16811 11.8235i 0.114844 0.428603i −0.884431 0.466670i \(-0.845454\pi\)
0.999275 + 0.0380675i \(0.0121202\pi\)
\(762\) 0 0
\(763\) 0.470953 + 0.613757i 0.0170496 + 0.0222195i
\(764\) −80.3714 −2.90774
\(765\) 0 0
\(766\) 3.53617 0.127767
\(767\) −28.8432 37.5892i −1.04147 1.35727i
\(768\) 0 0
\(769\) 5.80750 21.6739i 0.209424 0.781581i −0.778631 0.627482i \(-0.784086\pi\)
0.988055 0.154099i \(-0.0492476\pi\)
\(770\) −0.913791 0.0598930i −0.0329307 0.00215839i
\(771\) 0 0
\(772\) 2.20498 + 33.6414i 0.0793588 + 1.21078i
\(773\) 29.2000 12.0950i 1.05025 0.435029i 0.210270 0.977643i \(-0.432566\pi\)
0.839982 + 0.542615i \(0.182566\pi\)
\(774\) 0 0
\(775\) 2.71108 + 4.05742i 0.0973848 + 0.145747i
\(776\) −50.0781 43.9173i −1.79770 1.57654i
\(777\) 0 0
\(778\) 88.3537 + 23.6743i 3.16763 + 0.848765i
\(779\) −18.4046 + 16.1404i −0.659412 + 0.578289i
\(780\) 0 0
\(781\) 3.78544 + 2.18552i 0.135454 + 0.0782041i
\(782\) −0.750379 + 5.23500i −0.0268335 + 0.187203i
\(783\) 0 0
\(784\) −15.0688 6.24169i −0.538170 0.222917i
\(785\) −1.55295 + 4.57483i −0.0554270 + 0.163283i
\(786\) 0 0
\(787\) −1.88137 + 28.7041i −0.0670635 + 1.02319i 0.823202 + 0.567749i \(0.192186\pi\)
−0.890265 + 0.455443i \(0.849481\pi\)
\(788\) 21.9294 + 64.6020i 0.781204 + 2.30135i
\(789\) 0 0
\(790\) 12.4046 + 1.63310i 0.441336 + 0.0581030i
\(791\) −1.35312 3.26673i −0.0481115 0.116152i
\(792\) 0 0
\(793\) −33.6727 6.69791i −1.19575 0.237850i
\(794\) 11.9069 5.87183i 0.422560 0.208384i
\(795\) 0 0
\(796\) 62.1947 + 70.9195i 2.20443 + 2.51368i
\(797\) 3.32560 + 25.2604i 0.117799 + 0.894770i 0.943665 + 0.330903i \(0.107353\pi\)
−0.825866 + 0.563866i \(0.809313\pi\)
\(798\) 0 0
\(799\) 37.0710 31.7657i 1.31148 1.12379i
\(800\) 10.9041i 0.385517i
\(801\) 0 0
\(802\) 9.58303 + 48.1771i 0.338389 + 1.70119i
\(803\) −0.843619 3.14843i −0.0297707 0.111106i
\(804\) 0 0
\(805\) −0.189665 + 0.0643827i −0.00668482 + 0.00226919i
\(806\) 5.87246 11.9082i 0.206848 0.419447i
\(807\) 0 0
\(808\) 7.13602 54.2034i 0.251044 1.90687i
\(809\) −1.47986 + 0.988813i −0.0520292 + 0.0347648i −0.581313 0.813680i \(-0.697461\pi\)
0.529284 + 0.848445i \(0.322461\pi\)
\(810\) 0 0
\(811\) 27.6326 41.3552i 0.970314 1.45218i 0.0800181 0.996793i \(-0.474502\pi\)
0.890295 0.455383i \(-0.150498\pi\)
\(812\) 17.0045 4.55634i 0.596740 0.159896i
\(813\) 0 0
\(814\) −27.4712 + 3.61665i −0.962865 + 0.126764i
\(815\) 1.64618 + 2.85126i 0.0576630 + 0.0998752i
\(816\) 0 0
\(817\) −5.37378 + 9.30767i −0.188005 + 0.325634i
\(818\) 21.4077 51.6828i 0.748504 1.80705i
\(819\) 0 0
\(820\) 8.94581 + 8.94581i 0.312401 + 0.312401i
\(821\) 16.3205 + 33.0947i 0.569589 + 1.15501i 0.970992 + 0.239111i \(0.0768558\pi\)
−0.401404 + 0.915901i \(0.631477\pi\)
\(822\) 0 0
\(823\) 9.90115 + 4.88271i 0.345132 + 0.170200i 0.606591 0.795014i \(-0.292537\pi\)
−0.261458 + 0.965215i \(0.584203\pi\)
\(824\) −21.4852 16.4861i −0.748471 0.574322i
\(825\) 0 0
\(826\) 15.6147 1.02344i 0.543305 0.0356101i
\(827\) 4.01743 20.1970i 0.139700 0.702318i −0.845916 0.533316i \(-0.820946\pi\)
0.985616 0.169002i \(-0.0540543\pi\)
\(828\) 0 0
\(829\) −10.5506 + 10.5506i −0.366437 + 0.366437i −0.866176 0.499739i \(-0.833429\pi\)
0.499739 + 0.866176i \(0.333429\pi\)
\(830\) 1.48494 + 0.504071i 0.0515432 + 0.0174966i
\(831\) 0 0
\(832\) 49.2974 28.4619i 1.70908 0.986738i
\(833\) −22.2757 + 14.5174i −0.771806 + 0.502997i
\(834\) 0 0
\(835\) −1.63137 + 1.25179i −0.0564557 + 0.0433200i
\(836\) −13.6893 + 2.72297i −0.473454 + 0.0941758i
\(837\) 0 0
\(838\) 69.0128 + 46.1129i 2.38401 + 1.59294i
\(839\) −14.6052 + 16.6541i −0.504228 + 0.574962i −0.946821 0.321761i \(-0.895725\pi\)
0.442593 + 0.896723i \(0.354059\pi\)
\(840\) 0 0
\(841\) 6.76031 8.81021i 0.233114 0.303800i
\(842\) −4.41082 + 5.74829i −0.152007 + 0.198099i
\(843\) 0 0
\(844\) 37.3058 42.5391i 1.28412 1.46425i
\(845\) 6.71844 + 4.48912i 0.231121 + 0.154430i
\(846\) 0 0
\(847\) 7.25139 1.44239i 0.249161 0.0495612i
\(848\) −17.3375 + 13.3035i −0.595372 + 0.456845i
\(849\) 0 0
\(850\) −38.6926 26.5004i −1.32714 0.908958i
\(851\) −5.24846 + 3.03020i −0.179915 + 0.103874i
\(852\) 0 0
\(853\) −25.7146 8.72894i −0.880452 0.298873i −0.155635 0.987815i \(-0.549742\pi\)
−0.724817 + 0.688941i \(0.758076\pi\)
\(854\) 8.01784 8.01784i 0.274365 0.274365i
\(855\) 0 0
\(856\) −12.0351 + 60.5046i −0.411351 + 2.06800i
\(857\) −33.3011 + 2.18267i −1.13754 + 0.0745585i −0.622510 0.782612i \(-0.713887\pi\)
−0.515033 + 0.857170i \(0.672220\pi\)
\(858\) 0 0
\(859\) −11.1148 8.52870i −0.379233 0.290995i 0.401502 0.915858i \(-0.368488\pi\)
−0.780735 + 0.624863i \(0.785155\pi\)
\(860\) 4.98168 + 2.45669i 0.169874 + 0.0837725i
\(861\) 0 0
\(862\) 41.5082 + 84.1703i 1.41378 + 2.86685i
\(863\) 4.06464 + 4.06464i 0.138362 + 0.138362i 0.772895 0.634533i \(-0.218808\pi\)
−0.634533 + 0.772895i \(0.718808\pi\)
\(864\) 0 0
\(865\) 1.58798 3.83371i 0.0539928 0.130350i
\(866\) 28.9353 50.1175i 0.983263 1.70306i
\(867\) 0 0
\(868\) 1.42913 + 2.47533i 0.0485078 + 0.0840181i
\(869\) 10.4835 1.38018i 0.355630 0.0468196i
\(870\) 0 0
\(871\) 53.0279 14.2088i 1.79678 0.481446i
\(872\) 2.41945 3.62096i 0.0819329 0.122621i
\(873\) 0 0
\(874\) −3.89427 + 2.60207i −0.131726 + 0.0880163i
\(875\) 0.476088 3.61625i 0.0160947 0.122251i
\(876\) 0 0
\(877\) −2.88801 + 5.85631i −0.0975213 + 0.197754i −0.940166 0.340716i \(-0.889331\pi\)
0.842645 + 0.538469i \(0.180997\pi\)
\(878\) 86.2774 29.2872i 2.91172 0.988396i
\(879\) 0 0
\(880\) 0.336874 + 1.25723i 0.0113560 + 0.0423813i
\(881\) 5.82712 + 29.2949i 0.196321 + 0.986971i 0.945752 + 0.324889i \(0.105327\pi\)
−0.749431 + 0.662082i \(0.769673\pi\)
\(882\) 0 0
\(883\) 49.5960i 1.66904i −0.550978 0.834520i \(-0.685745\pi\)
0.550978 0.834520i \(-0.314255\pi\)
\(884\) −6.39127 + 82.9268i −0.214962 + 2.78913i
\(885\) 0 0
\(886\) −11.9894 91.0683i −0.402791 3.05950i
\(887\) 10.0838 + 11.4984i 0.338583 + 0.386079i 0.895926 0.444202i \(-0.146513\pi\)
−0.557344 + 0.830282i \(0.688180\pi\)
\(888\) 0 0
\(889\) 5.00239 2.46691i 0.167775 0.0827374i
\(890\) 4.01450 + 0.798533i 0.134566 + 0.0267669i
\(891\) 0 0
\(892\) −22.0650 53.2696i −0.738791 1.78360i
\(893\) 42.8653 + 5.64333i 1.43443 + 0.188847i
\(894\) 0 0
\(895\) 1.92404 + 5.66805i 0.0643137 + 0.189462i
\(896\) −1.00645 + 15.3554i −0.0336230 + 0.512988i
\(897\) 0 0
\(898\) −12.4298 + 36.6170i −0.414788 + 1.22193i
\(899\) 6.01584 + 2.49184i 0.200640 + 0.0831077i
\(900\) 0 0
\(901\) 1.92212 + 35.5731i 0.0640351 + 1.18511i
\(902\) 14.2060 + 8.20183i 0.473008 + 0.273091i
\(903\) 0 0
\(904\) −14.9648 + 13.1238i −0.497722 + 0.436490i
\(905\) 8.72364 + 2.33749i 0.289983 + 0.0777008i
\(906\) 0 0
\(907\) −0.239945 0.210426i −0.00796724 0.00698708i 0.655353 0.755323i \(-0.272520\pi\)
−0.663320 + 0.748336i \(0.730853\pi\)
\(908\) 37.0361 + 55.4284i 1.22909 + 1.83946i
\(909\) 0 0
\(910\) −4.46492 + 1.84943i −0.148011 + 0.0613080i
\(911\) 1.06415 + 16.2358i 0.0352569 + 0.537916i 0.978557 + 0.205975i \(0.0660367\pi\)
−0.943300 + 0.331941i \(0.892297\pi\)
\(912\) 0 0
\(913\) 1.32247 + 0.0866795i 0.0437675 + 0.00286867i
\(914\) 12.1762 45.4421i 0.402752 1.50309i
\(915\) 0 0
\(916\) 18.1022 + 23.5912i 0.598113 + 0.779476i
\(917\) −3.26759 −0.107905
\(918\) 0 0
\(919\) −32.6543 −1.07716 −0.538582 0.842573i \(-0.681040\pi\)
−0.538582 + 0.842573i \(0.681040\pi\)
\(920\) 0.686380 + 0.894508i 0.0226293 + 0.0294910i
\(921\) 0 0
\(922\) 8.31521 31.0328i 0.273847 1.02201i
\(923\) 23.0184 + 1.50871i 0.757660 + 0.0496597i
\(924\) 0 0
\(925\) −3.51494 53.6276i −0.115570 1.76326i
\(926\) −2.09494 + 0.867754i −0.0688441 + 0.0285162i
\(927\) 0 0
\(928\) 8.08361 + 12.0980i 0.265357 + 0.397136i
\(929\) −10.6468 9.33703i −0.349312 0.306338i 0.466652 0.884441i \(-0.345460\pi\)
−0.815964 + 0.578103i \(0.803793\pi\)
\(930\) 0 0
\(931\) −22.7451 6.09453i −0.745440 0.199740i
\(932\) 52.0244 45.6241i 1.70411 1.49447i
\(933\) 0 0
\(934\) 62.6642 + 36.1792i 2.05044 + 1.18382i
\(935\) 2.00125 + 0.705032i 0.0654479 + 0.0230570i
\(936\) 0 0
\(937\) −25.9564 10.7515i −0.847959 0.351236i −0.0839723 0.996468i \(-0.526761\pi\)
−0.763987 + 0.645232i \(0.776761\pi\)
\(938\) −5.82812 + 17.1691i −0.190295 + 0.560591i
\(939\) 0 0
\(940\) 1.46141 22.2967i 0.0476658 0.727239i
\(941\) −1.79655 5.29248i −0.0585660 0.172530i 0.913710 0.406368i \(-0.133205\pi\)
−0.972276 + 0.233838i \(0.924871\pi\)
\(942\) 0 0
\(943\) 3.55715 + 0.468307i 0.115837 + 0.0152502i
\(944\) −8.51135 20.5482i −0.277021 0.668787i
\(945\) 0 0
\(946\) 7.06358 + 1.40503i 0.229657 + 0.0456816i
\(947\) 25.5947 12.6219i 0.831717 0.410158i 0.0239887 0.999712i \(-0.492363\pi\)
0.807728 + 0.589555i \(0.200697\pi\)
\(948\) 0 0
\(949\) −11.3419 12.9329i −0.368172 0.419820i
\(950\) −5.42120 41.1781i −0.175887 1.33599i
\(951\) 0 0
\(952\) −10.0613 7.90525i −0.326087 0.256210i
\(953\) 37.4674i 1.21369i 0.794821 + 0.606844i \(0.207565\pi\)
−0.794821 + 0.606844i \(0.792435\pi\)
\(954\) 0 0
\(955\) 2.11098 + 10.6126i 0.0683096 + 0.343416i
\(956\) −16.7801 62.6243i −0.542709 2.02542i
\(957\) 0 0
\(958\) 48.8508 16.5826i 1.57830 0.535760i
\(959\) 2.07300 4.20362i 0.0669406 0.135742i
\(960\) 0 0
\(961\) 3.90832 29.6866i 0.126075 0.957633i
\(962\) −121.584 + 81.2398i −3.92002 + 2.61927i
\(963\) 0 0
\(964\) 25.8651 38.7099i 0.833060 1.24676i
\(965\) 4.38425 1.17476i 0.141134 0.0378167i
\(966\) 0 0
\(967\) 4.60784 0.606634i 0.148178 0.0195080i −0.0560721 0.998427i \(-0.517858\pi\)
0.204250 + 0.978919i \(0.434524\pi\)
\(968\) −20.8097 36.0434i −0.668848 1.15848i
\(969\) 0 0
\(970\) −9.62576 + 16.6723i −0.309065 + 0.535316i
\(971\) 17.1196 41.3304i 0.549394 1.32636i −0.368536 0.929614i \(-0.620141\pi\)
0.917930 0.396742i \(-0.129859\pi\)
\(972\) 0 0
\(973\) 7.95592 + 7.95592i 0.255055 + 0.255055i
\(974\) 10.6270 + 21.5494i 0.340510 + 0.690486i
\(975\) 0 0
\(976\) −14.4543 7.12808i −0.462671 0.228164i
\(977\) −23.5464 18.0678i −0.753317 0.578040i 0.159120 0.987259i \(-0.449134\pi\)
−0.912436 + 0.409219i \(0.865801\pi\)
\(978\) 0 0
\(979\) 3.45185 0.226246i 0.110322 0.00723086i
\(980\) −2.37418 + 11.9358i −0.0758404 + 0.381276i
\(981\) 0 0
\(982\) −7.32889 + 7.32889i −0.233874 + 0.233874i
\(983\) −27.3926 9.29854i −0.873688 0.296577i −0.151653 0.988434i \(-0.548460\pi\)
−0.722035 + 0.691857i \(0.756793\pi\)
\(984\) 0 0
\(985\) 7.95436 4.59245i 0.253447 0.146328i
\(986\) −62.5749 0.717727i −1.99279 0.0228571i
\(987\) 0 0
\(988\) −58.4378 + 44.8409i −1.85915 + 1.42658i
\(989\) 1.54496 0.307311i 0.0491268 0.00977193i
\(990\) 0 0
\(991\) −15.8269 10.5752i −0.502759 0.335933i 0.278191 0.960526i \(-0.410265\pi\)
−0.780951 + 0.624593i \(0.785265\pi\)
\(992\) −1.55762 + 1.77613i −0.0494545 + 0.0563921i
\(993\) 0 0
\(994\) −4.63790 + 6.04424i −0.147105 + 0.191711i
\(995\) 7.73097 10.0752i 0.245088 0.319405i
\(996\) 0 0
\(997\) −21.1273 + 24.0911i −0.669108 + 0.762972i −0.982421 0.186678i \(-0.940228\pi\)
0.313313 + 0.949650i \(0.398561\pi\)
\(998\) 46.6365 + 31.1615i 1.47625 + 0.986400i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.62.1 256
3.2 odd 2 153.2.s.a.11.16 256
9.4 even 3 153.2.s.a.113.16 yes 256
9.5 odd 6 inner 459.2.y.a.368.1 256
17.14 odd 16 inner 459.2.y.a.116.1 256
51.14 even 16 153.2.s.a.65.16 yes 256
153.14 even 48 inner 459.2.y.a.422.1 256
153.31 odd 48 153.2.s.a.14.16 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.16 256 3.2 odd 2
153.2.s.a.14.16 yes 256 153.31 odd 48
153.2.s.a.65.16 yes 256 51.14 even 16
153.2.s.a.113.16 yes 256 9.4 even 3
459.2.y.a.62.1 256 1.1 even 1 trivial
459.2.y.a.116.1 256 17.14 odd 16 inner
459.2.y.a.368.1 256 9.5 odd 6 inner
459.2.y.a.422.1 256 153.14 even 48 inner