Newspace parameters
| Level: | \( N \) | \(=\) | \( 459 = 3^{3} \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 459.y (of order \(48\), degree \(16\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(3.66513345278\) |
| Analytic rank: | \(0\) |
| Dimension: | \(256\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{48})\) |
| Twist minimal: | no (minimal twist has level 153) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 44.1 | −0.343100 | − | 2.60610i | 0 | −4.74220 | + | 1.27067i | −1.80716 | − | 0.613447i | 0 | 1.25167 | + | 3.68730i | 2.92671 | + | 7.06570i | 0 | −0.978671 | + | 4.92011i | ||||||
| 44.2 | −0.322211 | − | 2.44744i | 0 | −3.95427 | + | 1.05954i | 1.16211 | + | 0.394485i | 0 | −0.737380 | − | 2.17225i | 1.97792 | + | 4.77513i | 0 | 0.591030 | − | 2.97131i | ||||||
| 44.3 | −0.286947 | − | 2.17958i | 0 | −2.73637 | + | 0.733209i | 2.65023 | + | 0.899631i | 0 | 0.480424 | + | 1.41528i | 0.700707 | + | 1.69166i | 0 | 1.20034 | − | 6.03453i | ||||||
| 44.4 | −0.208175 | − | 1.58125i | 0 | −0.525156 | + | 0.140715i | −2.62395 | − | 0.890712i | 0 | −0.361760 | − | 1.06571i | −0.888848 | − | 2.14587i | 0 | −0.862195 | + | 4.33455i | ||||||
| 44.5 | −0.202568 | − | 1.53866i | 0 | −0.394575 | + | 0.105726i | −0.711743 | − | 0.241604i | 0 | 0.882571 | + | 2.59997i | −0.945194 | − | 2.28190i | 0 | −0.227569 | + | 1.14407i | ||||||
| 44.6 | −0.163117 | − | 1.23899i | 0 | 0.423355 | − | 0.113438i | −0.805077 | − | 0.273287i | 0 | −1.30408 | − | 3.84170i | −1.16607 | − | 2.81515i | 0 | −0.207279 | + | 1.04206i | ||||||
| 44.7 | −0.148889 | − | 1.13093i | 0 | 0.675027 | − | 0.180873i | 2.45283 | + | 0.832623i | 0 | 0.510405 | + | 1.50361i | −1.17810 | − | 2.84418i | 0 | 0.576435 | − | 2.89793i | ||||||
| 44.8 | 0.0177816 | + | 0.135065i | 0 | 1.91393 | − | 0.512835i | 0.0115553 | + | 0.00392250i | 0 | −0.410532 | − | 1.20939i | 0.207565 | + | 0.501106i | 0 | −0.000324320 | 0.00163047i | |||||||
| 44.9 | 0.0252039 | + | 0.191443i | 0 | 1.89584 | − | 0.507988i | 2.71539 | + | 0.921751i | 0 | −0.832539 | − | 2.45258i | 0.292821 | + | 0.706933i | 0 | −0.108024 | + | 0.543074i | ||||||
| 44.10 | 0.0707100 | + | 0.537096i | 0 | 1.64838 | − | 0.441682i | 0.339563 | + | 0.115266i | 0 | 1.52158 | + | 4.48243i | 0.768405 | + | 1.85509i | 0 | −0.0378984 | + | 0.190528i | ||||||
| 44.11 | 0.116095 | + | 0.881827i | 0 | 1.16771 | − | 0.312887i | −3.62509 | − | 1.23055i | 0 | 0.512374 | + | 1.50940i | 1.09222 | + | 2.63686i | 0 | 0.664279 | − | 3.33956i | ||||||
| 44.12 | 0.134617 | + | 1.02252i | 0 | 0.904431 | − | 0.242342i | 2.75111 | + | 0.933877i | 0 | 0.386058 | + | 1.13729i | 1.15890 | + | 2.79784i | 0 | −0.584559 | + | 2.93878i | ||||||
| 44.13 | 0.223909 | + | 1.70076i | 0 | −0.910594 | + | 0.243993i | −2.45157 | − | 0.832196i | 0 | −1.60093 | − | 4.71620i | 0.694074 | + | 1.67564i | 0 | 0.866436 | − | 4.35587i | ||||||
| 44.14 | 0.254538 | + | 1.93341i | 0 | −1.74143 | + | 0.466616i | −0.119506 | − | 0.0405669i | 0 | 0.279445 | + | 0.823220i | 0.147116 | + | 0.355169i | 0 | 0.0480136 | − | 0.241380i | ||||||
| 44.15 | 0.306288 | + | 2.32649i | 0 | −3.38688 | + | 0.907511i | 4.08435 | + | 1.38645i | 0 | −0.552259 | − | 1.62690i | −1.35269 | − | 3.26568i | 0 | −1.97457 | + | 9.92685i | ||||||
| 44.16 | 0.352832 | + | 2.68002i | 0 | −5.12617 | + | 1.37355i | −0.805821 | − | 0.273539i | 0 | −0.655568 | − | 1.93124i | −3.42093 | − | 8.25886i | 0 | 0.448772 | − | 2.25613i | ||||||
| 62.1 | −1.45899 | − | 1.90139i | 0 | −0.969004 | + | 3.61637i | 0.502973 | + | 0.0329666i | 0 | 0.0485612 | + | 0.740900i | 3.86148 | − | 1.59948i | 0 | −0.671150 | − | 1.00445i | ||||||
| 62.2 | −1.34092 | − | 1.74752i | 0 | −0.738117 | + | 2.75469i | 1.77127 | + | 0.116095i | 0 | −0.295171 | − | 4.50344i | 1.73356 | − | 0.718065i | 0 | −2.17224 | − | 3.25099i | ||||||
| 62.3 | −1.13784 | − | 1.48286i | 0 | −0.386558 | + | 1.44266i | 1.43402 | + | 0.0939907i | 0 | 0.180003 | + | 2.74631i | −0.874557 | + | 0.362253i | 0 | −1.49231 | − | 2.23340i | ||||||
| 62.4 | −1.06529 | − | 1.38832i | 0 | −0.274934 | + | 1.02607i | −2.70285 | − | 0.177154i | 0 | 0.103700 | + | 1.58216i | −1.51606 | + | 0.627973i | 0 | 2.63338 | + | 3.94113i | ||||||
| See next 80 embeddings (of 256 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.d | odd | 6 | 1 | inner |
| 17.e | odd | 16 | 1 | inner |
| 153.s | even | 48 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 459.2.y.a | 256 | |
| 3.b | odd | 2 | 1 | 153.2.s.a | ✓ | 256 | |
| 9.c | even | 3 | 1 | 153.2.s.a | ✓ | 256 | |
| 9.d | odd | 6 | 1 | inner | 459.2.y.a | 256 | |
| 17.e | odd | 16 | 1 | inner | 459.2.y.a | 256 | |
| 51.i | even | 16 | 1 | 153.2.s.a | ✓ | 256 | |
| 153.s | even | 48 | 1 | inner | 459.2.y.a | 256 | |
| 153.t | odd | 48 | 1 | 153.2.s.a | ✓ | 256 | |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 153.2.s.a | ✓ | 256 | 3.b | odd | 2 | 1 | |
| 153.2.s.a | ✓ | 256 | 9.c | even | 3 | 1 | |
| 153.2.s.a | ✓ | 256 | 51.i | even | 16 | 1 | |
| 153.2.s.a | ✓ | 256 | 153.t | odd | 48 | 1 | |
| 459.2.y.a | 256 | 1.a | even | 1 | 1 | trivial | |
| 459.2.y.a | 256 | 9.d | odd | 6 | 1 | inner | |
| 459.2.y.a | 256 | 17.e | odd | 16 | 1 | inner | |
| 459.2.y.a | 256 | 153.s | even | 48 | 1 | inner | |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(459, [\chi])\).