Properties

Label 459.2.y.a.116.10
Level $459$
Weight $2$
Character 459.116
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(44,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([40, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.44"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 116.10
Character \(\chi\) \(=\) 459.116
Dual form 459.2.y.a.368.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.999782 + 0.131624i) q^{2} +(-0.949612 - 0.254448i) q^{4} +(-1.57233 + 3.18837i) q^{5} +(-0.0400335 + 0.0197423i) q^{7} +(-2.77921 - 1.15119i) q^{8} +(-1.99165 + 2.98072i) q^{10} +(-5.72491 - 1.94335i) q^{11} +(0.940868 - 3.51137i) q^{13} +(-0.0426233 + 0.0144687i) q^{14} +(-0.924284 - 0.533636i) q^{16} +(-3.77050 + 1.66834i) q^{17} +(-2.46918 + 1.02277i) q^{19} +(2.30438 - 2.62764i) q^{20} +(-5.46788 - 2.69646i) q^{22} +(4.75485 + 5.42187i) q^{23} +(-4.64968 - 6.05958i) q^{25} +(1.40284 - 3.38676i) q^{26} +(0.0430397 - 0.00856112i) q^{28} +(-0.00257534 - 0.0392922i) q^{29} +(1.33921 + 3.94517i) q^{31} +(3.91928 + 3.00737i) q^{32} +(-3.98927 + 1.17169i) q^{34} -0.158683i q^{35} +(-1.01343 + 5.09486i) q^{37} +(-2.60326 + 0.697541i) q^{38} +(8.04025 - 7.05111i) q^{40} +(-4.78533 - 0.313647i) q^{41} +(-0.651975 + 0.500278i) q^{43} +(4.94197 + 3.30212i) q^{44} +(4.04017 + 6.04654i) q^{46} +(0.435110 + 1.62385i) q^{47} +(-4.26012 + 5.55189i) q^{49} +(-3.85108 - 6.67026i) q^{50} +(-1.78692 + 3.09503i) q^{52} +(1.17550 + 2.83792i) q^{53} +(15.1976 - 15.1976i) q^{55} +(0.133989 - 0.00878208i) q^{56} +(0.00259700 - 0.0396226i) q^{58} +(-1.31603 - 9.99628i) q^{59} +(0.0408012 + 0.0827367i) q^{61} +(0.819636 + 4.12059i) q^{62} +(5.03194 + 5.03194i) q^{64} +(9.71618 + 8.52086i) q^{65} +(5.04699 - 2.91388i) q^{67} +(4.00501 - 0.624883i) q^{68} +(0.0208865 - 0.158648i) q^{70} +(5.65982 + 1.12581i) q^{71} +(-6.75916 + 4.51633i) q^{73} +(-1.68381 + 4.96035i) q^{74} +(2.60500 - 0.342955i) q^{76} +(0.267554 - 0.0352242i) q^{77} +(1.72936 - 5.09453i) q^{79} +(3.15471 - 2.10791i) q^{80} +(-4.74300 - 0.943442i) q^{82} +(0.760640 - 5.77763i) q^{83} +(0.609173 - 14.6449i) q^{85} +(-0.717681 + 0.414353i) q^{86} +(13.6736 + 11.9914i) q^{88} +(-12.7569 - 12.7569i) q^{89} +(0.0316563 + 0.159147i) q^{91} +(-3.13568 - 6.35853i) q^{92} +(0.221278 + 1.68077i) q^{94} +(0.621403 - 9.48077i) q^{95} +(-3.62426 + 0.237547i) q^{97} +(-4.98995 + 4.98995i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.999782 + 0.131624i 0.706953 + 0.0930721i 0.475425 0.879756i \(-0.342294\pi\)
0.231528 + 0.972828i \(0.425628\pi\)
\(3\) 0 0
\(4\) −0.949612 0.254448i −0.474806 0.127224i
\(5\) −1.57233 + 3.18837i −0.703167 + 1.42588i 0.192563 + 0.981285i \(0.438320\pi\)
−0.895730 + 0.444598i \(0.853347\pi\)
\(6\) 0 0
\(7\) −0.0400335 + 0.0197423i −0.0151312 + 0.00746190i −0.449839 0.893110i \(-0.648518\pi\)
0.434707 + 0.900572i \(0.356852\pi\)
\(8\) −2.77921 1.15119i −0.982600 0.407006i
\(9\) 0 0
\(10\) −1.99165 + 2.98072i −0.629816 + 0.942586i
\(11\) −5.72491 1.94335i −1.72613 0.585941i −0.730807 0.682584i \(-0.760856\pi\)
−0.995319 + 0.0966431i \(0.969189\pi\)
\(12\) 0 0
\(13\) 0.940868 3.51137i 0.260950 0.973878i −0.703733 0.710464i \(-0.748485\pi\)
0.964683 0.263414i \(-0.0848484\pi\)
\(14\) −0.0426233 + 0.0144687i −0.0113916 + 0.00386691i
\(15\) 0 0
\(16\) −0.924284 0.533636i −0.231071 0.133409i
\(17\) −3.77050 + 1.66834i −0.914479 + 0.404632i
\(18\) 0 0
\(19\) −2.46918 + 1.02277i −0.566468 + 0.234639i −0.647490 0.762074i \(-0.724181\pi\)
0.0810227 + 0.996712i \(0.474181\pi\)
\(20\) 2.30438 2.62764i 0.515275 0.587558i
\(21\) 0 0
\(22\) −5.46788 2.69646i −1.16575 0.574887i
\(23\) 4.75485 + 5.42187i 0.991455 + 1.13054i 0.991443 + 0.130537i \(0.0416702\pi\)
1.10977e−5 1.00000i \(0.499996\pi\)
\(24\) 0 0
\(25\) −4.64968 6.05958i −0.929935 1.21192i
\(26\) 1.40284 3.38676i 0.275120 0.664198i
\(27\) 0 0
\(28\) 0.0430397 0.00856112i 0.00813373 0.00161790i
\(29\) −0.00257534 0.0392922i −0.000478230 0.00729637i 0.997613 0.0690509i \(-0.0219971\pi\)
−0.998091 + 0.0617545i \(0.980330\pi\)
\(30\) 0 0
\(31\) 1.33921 + 3.94517i 0.240529 + 0.708574i 0.998420 + 0.0561934i \(0.0178963\pi\)
−0.757891 + 0.652381i \(0.773770\pi\)
\(32\) 3.91928 + 3.00737i 0.692838 + 0.531633i
\(33\) 0 0
\(34\) −3.98927 + 1.17169i −0.684154 + 0.200943i
\(35\) 0.158683i 0.0268223i
\(36\) 0 0
\(37\) −1.01343 + 5.09486i −0.166607 + 0.837589i 0.803574 + 0.595205i \(0.202929\pi\)
−0.970180 + 0.242384i \(0.922071\pi\)
\(38\) −2.60326 + 0.697541i −0.422304 + 0.113156i
\(39\) 0 0
\(40\) 8.04025 7.05111i 1.27127 1.11488i
\(41\) −4.78533 0.313647i −0.747343 0.0489834i −0.313027 0.949744i \(-0.601343\pi\)
−0.434316 + 0.900761i \(0.643010\pi\)
\(42\) 0 0
\(43\) −0.651975 + 0.500278i −0.0994252 + 0.0762916i −0.657278 0.753648i \(-0.728292\pi\)
0.557853 + 0.829940i \(0.311625\pi\)
\(44\) 4.94197 + 3.30212i 0.745030 + 0.497813i
\(45\) 0 0
\(46\) 4.04017 + 6.04654i 0.595690 + 0.891513i
\(47\) 0.435110 + 1.62385i 0.0634673 + 0.236863i 0.990372 0.138435i \(-0.0442071\pi\)
−0.926904 + 0.375298i \(0.877540\pi\)
\(48\) 0 0
\(49\) −4.26012 + 5.55189i −0.608588 + 0.793128i
\(50\) −3.85108 6.67026i −0.544625 0.943318i
\(51\) 0 0
\(52\) −1.78692 + 3.09503i −0.247801 + 0.429204i
\(53\) 1.17550 + 2.83792i 0.161468 + 0.389818i 0.983820 0.179161i \(-0.0573385\pi\)
−0.822352 + 0.568979i \(0.807338\pi\)
\(54\) 0 0
\(55\) 15.1976 15.1976i 2.04924 2.04924i
\(56\) 0.133989 0.00878208i 0.0179050 0.00117355i
\(57\) 0 0
\(58\) 0.00259700 0.0396226i 0.000341003 0.00520270i
\(59\) −1.31603 9.99628i −0.171333 1.30140i −0.833697 0.552222i \(-0.813780\pi\)
0.662364 0.749182i \(-0.269553\pi\)
\(60\) 0 0
\(61\) 0.0408012 + 0.0827367i 0.00522406 + 0.0105933i 0.899469 0.436984i \(-0.143953\pi\)
−0.894245 + 0.447578i \(0.852287\pi\)
\(62\) 0.819636 + 4.12059i 0.104094 + 0.523315i
\(63\) 0 0
\(64\) 5.03194 + 5.03194i 0.628992 + 0.628992i
\(65\) 9.71618 + 8.52086i 1.20514 + 1.05688i
\(66\) 0 0
\(67\) 5.04699 2.91388i 0.616588 0.355987i −0.158951 0.987286i \(-0.550811\pi\)
0.775539 + 0.631299i \(0.217478\pi\)
\(68\) 4.00501 0.624883i 0.485679 0.0757782i
\(69\) 0 0
\(70\) 0.0208865 0.158648i 0.00249641 0.0189621i
\(71\) 5.65982 + 1.12581i 0.671697 + 0.133609i 0.519144 0.854687i \(-0.326251\pi\)
0.152552 + 0.988295i \(0.451251\pi\)
\(72\) 0 0
\(73\) −6.75916 + 4.51633i −0.791100 + 0.528596i −0.884227 0.467058i \(-0.845314\pi\)
0.0931267 + 0.995654i \(0.470314\pi\)
\(74\) −1.68381 + 4.96035i −0.195739 + 0.576629i
\(75\) 0 0
\(76\) 2.60500 0.342955i 0.298814 0.0393396i
\(77\) 0.267554 0.0352242i 0.0304906 0.00401417i
\(78\) 0 0
\(79\) 1.72936 5.09453i 0.194568 0.573179i −0.805236 0.592954i \(-0.797962\pi\)
0.999804 + 0.0197748i \(0.00629493\pi\)
\(80\) 3.15471 2.10791i 0.352707 0.235671i
\(81\) 0 0
\(82\) −4.74300 0.943442i −0.523777 0.104186i
\(83\) 0.760640 5.77763i 0.0834911 0.634178i −0.897625 0.440759i \(-0.854709\pi\)
0.981116 0.193418i \(-0.0619575\pi\)
\(84\) 0 0
\(85\) 0.609173 14.6449i 0.0660740 1.58846i
\(86\) −0.717681 + 0.414353i −0.0773895 + 0.0446809i
\(87\) 0 0
\(88\) 13.6736 + 11.9914i 1.45761 + 1.27829i
\(89\) −12.7569 12.7569i −1.35223 1.35223i −0.883161 0.469070i \(-0.844589\pi\)
−0.469070 0.883161i \(-0.655411\pi\)
\(90\) 0 0
\(91\) 0.0316563 + 0.159147i 0.00331848 + 0.0166832i
\(92\) −3.13568 6.35853i −0.326917 0.662923i
\(93\) 0 0
\(94\) 0.221278 + 1.68077i 0.0228230 + 0.173358i
\(95\) 0.621403 9.48077i 0.0637546 0.972707i
\(96\) 0 0
\(97\) −3.62426 + 0.237547i −0.367988 + 0.0241192i −0.248276 0.968689i \(-0.579864\pi\)
−0.119712 + 0.992809i \(0.538197\pi\)
\(98\) −4.98995 + 4.98995i −0.504061 + 0.504061i
\(99\) 0 0
\(100\) 2.87354 + 6.93735i 0.287354 + 0.693735i
\(101\) −2.53423 + 4.38941i −0.252165 + 0.436763i −0.964122 0.265461i \(-0.914476\pi\)
0.711956 + 0.702224i \(0.247809\pi\)
\(102\) 0 0
\(103\) −0.363059 0.628837i −0.0357733 0.0619611i 0.847584 0.530661i \(-0.178056\pi\)
−0.883358 + 0.468699i \(0.844723\pi\)
\(104\) −6.65711 + 8.67571i −0.652783 + 0.850724i
\(105\) 0 0
\(106\) 0.801710 + 2.99202i 0.0778690 + 0.290611i
\(107\) −1.35228 2.02383i −0.130730 0.195651i 0.760330 0.649537i \(-0.225037\pi\)
−0.891060 + 0.453886i \(0.850037\pi\)
\(108\) 0 0
\(109\) −7.52425 5.02754i −0.720692 0.481551i 0.140339 0.990104i \(-0.455181\pi\)
−0.861031 + 0.508552i \(0.830181\pi\)
\(110\) 17.1946 13.1939i 1.63944 1.25799i
\(111\) 0 0
\(112\) 0.0475375 + 0.00311577i 0.00449187 + 0.000294413i
\(113\) 0.126876 0.111267i 0.0119355 0.0104671i −0.653357 0.757050i \(-0.726640\pi\)
0.665293 + 0.746583i \(0.268307\pi\)
\(114\) 0 0
\(115\) −24.7631 + 6.63526i −2.30917 + 0.618741i
\(116\) −0.00755223 + 0.0379676i −0.000701207 + 0.00352520i
\(117\) 0 0
\(118\) 10.1673i 0.935978i
\(119\) 0.118009 0.141228i 0.0108179 0.0129463i
\(120\) 0 0
\(121\) 20.2711 + 15.5546i 1.84283 + 1.41405i
\(122\) 0.0299022 + 0.0880891i 0.00270722 + 0.00797521i
\(123\) 0 0
\(124\) −0.267886 4.08714i −0.0240568 0.367036i
\(125\) 9.19761 1.82952i 0.822659 0.163637i
\(126\) 0 0
\(127\) −5.60153 + 13.5233i −0.497055 + 1.20000i 0.454007 + 0.890998i \(0.349994\pi\)
−0.951062 + 0.309000i \(0.900006\pi\)
\(128\) −1.64622 2.14540i −0.145507 0.189628i
\(129\) 0 0
\(130\) 8.59252 + 9.79789i 0.753614 + 0.859332i
\(131\) 14.9561 + 7.37552i 1.30672 + 0.644402i 0.956354 0.292211i \(-0.0943910\pi\)
0.350365 + 0.936613i \(0.386058\pi\)
\(132\) 0 0
\(133\) 0.0786579 0.0896921i 0.00682050 0.00777729i
\(134\) 5.42943 2.24894i 0.469031 0.194279i
\(135\) 0 0
\(136\) 12.3996 0.296129i 1.06325 0.0253929i
\(137\) 7.73940 + 4.46834i 0.661221 + 0.381756i 0.792742 0.609557i \(-0.208653\pi\)
−0.131521 + 0.991313i \(0.541986\pi\)
\(138\) 0 0
\(139\) −10.3891 + 3.52663i −0.881194 + 0.299125i −0.725122 0.688621i \(-0.758217\pi\)
−0.156072 + 0.987746i \(0.549883\pi\)
\(140\) −0.0403765 + 0.150687i −0.00341244 + 0.0127354i
\(141\) 0 0
\(142\) 5.51040 + 1.87053i 0.462422 + 0.156971i
\(143\) −12.2102 + 18.2738i −1.02107 + 1.52813i
\(144\) 0 0
\(145\) 0.129327 + 0.0535691i 0.0107400 + 0.00444867i
\(146\) −7.35214 + 3.62568i −0.608468 + 0.300063i
\(147\) 0 0
\(148\) 2.25874 4.58027i 0.185667 0.376496i
\(149\) −9.01133 2.41458i −0.738237 0.197810i −0.129942 0.991522i \(-0.541479\pi\)
−0.608294 + 0.793712i \(0.708146\pi\)
\(150\) 0 0
\(151\) 8.85413 + 1.16567i 0.720539 + 0.0948607i 0.481873 0.876241i \(-0.339957\pi\)
0.238666 + 0.971102i \(0.423290\pi\)
\(152\) 8.03975 0.652110
\(153\) 0 0
\(154\) 0.272132 0.0219291
\(155\) −14.6844 1.93323i −1.17948 0.155281i
\(156\) 0 0
\(157\) −9.89256 2.65070i −0.789512 0.211549i −0.158538 0.987353i \(-0.550678\pi\)
−0.630974 + 0.775804i \(0.717345\pi\)
\(158\) 2.39954 4.86579i 0.190897 0.387102i
\(159\) 0 0
\(160\) −15.7510 + 7.76754i −1.24523 + 0.614078i
\(161\) −0.297393 0.123184i −0.0234379 0.00970829i
\(162\) 0 0
\(163\) 1.34058 2.00633i 0.105003 0.157148i −0.775247 0.631658i \(-0.782375\pi\)
0.880250 + 0.474510i \(0.157375\pi\)
\(164\) 4.46440 + 1.51546i 0.348611 + 0.118337i
\(165\) 0 0
\(166\) 1.52095 5.67626i 0.118048 0.440563i
\(167\) 10.3361 3.50863i 0.799832 0.271506i 0.108549 0.994091i \(-0.465379\pi\)
0.691282 + 0.722585i \(0.257046\pi\)
\(168\) 0 0
\(169\) −0.186131 0.107463i −0.0143178 0.00826638i
\(170\) 2.53666 14.5615i 0.194553 1.11682i
\(171\) 0 0
\(172\) 0.746417 0.309176i 0.0569138 0.0235745i
\(173\) −0.692519 + 0.789666i −0.0526512 + 0.0600372i −0.777566 0.628801i \(-0.783546\pi\)
0.724915 + 0.688839i \(0.241879\pi\)
\(174\) 0 0
\(175\) 0.305773 + 0.150790i 0.0231143 + 0.0113987i
\(176\) 4.25441 + 4.85122i 0.320688 + 0.365675i
\(177\) 0 0
\(178\) −11.0750 14.4333i −0.830109 1.08182i
\(179\) 3.32973 8.03868i 0.248876 0.600839i −0.749233 0.662306i \(-0.769578\pi\)
0.998109 + 0.0614667i \(0.0195778\pi\)
\(180\) 0 0
\(181\) −11.3744 + 2.26251i −0.845453 + 0.168171i −0.598766 0.800924i \(-0.704342\pi\)
−0.246687 + 0.969095i \(0.579342\pi\)
\(182\) 0.0107019 + 0.163279i 0.000793276 + 0.0121031i
\(183\) 0 0
\(184\) −6.97315 20.5422i −0.514067 1.51439i
\(185\) −14.6508 11.2420i −1.07715 0.826527i
\(186\) 0 0
\(187\) 24.8279 2.22373i 1.81560 0.162616i
\(188\) 1.65274i 0.120539i
\(189\) 0 0
\(190\) 1.86916 9.39691i 0.135603 0.681724i
\(191\) −20.7138 + 5.55024i −1.49880 + 0.401602i −0.912697 0.408637i \(-0.866004\pi\)
−0.586100 + 0.810238i \(0.699338\pi\)
\(192\) 0 0
\(193\) −0.399786 + 0.350603i −0.0287772 + 0.0252369i −0.673614 0.739084i \(-0.735259\pi\)
0.644836 + 0.764321i \(0.276925\pi\)
\(194\) −3.65474 0.239544i −0.262395 0.0171983i
\(195\) 0 0
\(196\) 5.45813 4.18817i 0.389866 0.299155i
\(197\) 6.66381 + 4.45262i 0.474777 + 0.317236i 0.769834 0.638244i \(-0.220339\pi\)
−0.295057 + 0.955480i \(0.595339\pi\)
\(198\) 0 0
\(199\) 1.66134 + 2.48637i 0.117769 + 0.176254i 0.885671 0.464314i \(-0.153699\pi\)
−0.767902 + 0.640568i \(0.778699\pi\)
\(200\) 5.94673 + 22.1935i 0.420497 + 1.56932i
\(201\) 0 0
\(202\) −3.11143 + 4.05489i −0.218919 + 0.285301i
\(203\) 0.000878819 0.00152216i 6.16810e−5 0.000106835i
\(204\) 0 0
\(205\) 8.52414 14.7642i 0.595352 1.03118i
\(206\) −0.280210 0.676487i −0.0195232 0.0471331i
\(207\) 0 0
\(208\) −2.74342 + 2.74342i −0.190222 + 0.190222i
\(209\) 16.1234 1.05678i 1.11528 0.0730992i
\(210\) 0 0
\(211\) −0.791339 + 12.0735i −0.0544780 + 0.831174i 0.879960 + 0.475048i \(0.157569\pi\)
−0.934438 + 0.356126i \(0.884097\pi\)
\(212\) −0.394171 2.99402i −0.0270718 0.205630i
\(213\) 0 0
\(214\) −1.08560 2.20139i −0.0742103 0.150484i
\(215\) −0.569951 2.86534i −0.0388703 0.195414i
\(216\) 0 0
\(217\) −0.131500 0.131500i −0.00892680 0.00892680i
\(218\) −6.86086 6.01682i −0.464676 0.407510i
\(219\) 0 0
\(220\) −18.2988 + 10.5648i −1.23370 + 0.712279i
\(221\) 2.31062 + 14.8093i 0.155429 + 0.996180i
\(222\) 0 0
\(223\) 1.02008 7.74830i 0.0683098 0.518865i −0.922745 0.385411i \(-0.874060\pi\)
0.991055 0.133454i \(-0.0426069\pi\)
\(224\) −0.216275 0.0430198i −0.0144505 0.00287438i
\(225\) 0 0
\(226\) 0.141494 0.0945431i 0.00941203 0.00628892i
\(227\) 1.90304 5.60618i 0.126309 0.372095i −0.865319 0.501222i \(-0.832884\pi\)
0.991628 + 0.129127i \(0.0412174\pi\)
\(228\) 0 0
\(229\) −13.7620 + 1.81181i −0.909422 + 0.119728i −0.570700 0.821159i \(-0.693328\pi\)
−0.338722 + 0.940886i \(0.609995\pi\)
\(230\) −25.6311 + 3.37439i −1.69006 + 0.222501i
\(231\) 0 0
\(232\) −0.0380752 + 0.112166i −0.00249976 + 0.00736405i
\(233\) −12.5770 + 8.40367i −0.823946 + 0.550543i −0.894553 0.446961i \(-0.852506\pi\)
0.0706075 + 0.997504i \(0.477506\pi\)
\(234\) 0 0
\(235\) −5.86158 1.16594i −0.382367 0.0760576i
\(236\) −1.29381 + 9.82745i −0.0842197 + 0.639712i
\(237\) 0 0
\(238\) 0.136572 0.125664i 0.00885267 0.00814561i
\(239\) 4.27091 2.46581i 0.276262 0.159500i −0.355468 0.934689i \(-0.615678\pi\)
0.631730 + 0.775188i \(0.282345\pi\)
\(240\) 0 0
\(241\) 11.2735 + 9.88659i 0.726189 + 0.636851i 0.940453 0.339925i \(-0.110402\pi\)
−0.214263 + 0.976776i \(0.568735\pi\)
\(242\) 18.2194 + 18.2194i 1.17119 + 1.17119i
\(243\) 0 0
\(244\) −0.0176932 0.0889495i −0.00113269 0.00569441i
\(245\) −11.0032 22.3122i −0.702967 1.42548i
\(246\) 0 0
\(247\) 1.26814 + 9.63247i 0.0806897 + 0.612899i
\(248\) 0.819696 12.5061i 0.0520508 0.794141i
\(249\) 0 0
\(250\) 9.43641 0.618495i 0.596811 0.0391171i
\(251\) −2.57518 + 2.57518i −0.162544 + 0.162544i −0.783693 0.621149i \(-0.786666\pi\)
0.621149 + 0.783693i \(0.286666\pi\)
\(252\) 0 0
\(253\) −16.6845 40.2800i −1.04895 2.53238i
\(254\) −7.38030 + 12.7830i −0.463081 + 0.802080i
\(255\) 0 0
\(256\) −8.47971 14.6873i −0.529982 0.917956i
\(257\) −11.5866 + 15.0999i −0.722751 + 0.941907i −0.999821 0.0189424i \(-0.993970\pi\)
0.277070 + 0.960850i \(0.410637\pi\)
\(258\) 0 0
\(259\) −0.0600132 0.223972i −0.00372904 0.0139170i
\(260\) −7.05849 10.5638i −0.437749 0.655138i
\(261\) 0 0
\(262\) 13.9820 + 9.34249i 0.863812 + 0.577181i
\(263\) −9.93307 + 7.62191i −0.612499 + 0.469987i −0.867826 0.496867i \(-0.834484\pi\)
0.255327 + 0.966855i \(0.417817\pi\)
\(264\) 0 0
\(265\) −10.8966 0.714201i −0.669373 0.0438730i
\(266\) 0.0904464 0.0793193i 0.00554562 0.00486338i
\(267\) 0 0
\(268\) −5.53412 + 1.48286i −0.338050 + 0.0905802i
\(269\) −3.23153 + 16.2460i −0.197030 + 0.990536i 0.748036 + 0.663658i \(0.230997\pi\)
−0.945066 + 0.326879i \(0.894003\pi\)
\(270\) 0 0
\(271\) 21.3512i 1.29699i 0.761218 + 0.648496i \(0.224602\pi\)
−0.761218 + 0.648496i \(0.775398\pi\)
\(272\) 4.37530 + 0.470049i 0.265291 + 0.0285009i
\(273\) 0 0
\(274\) 7.14957 + 5.48606i 0.431921 + 0.331425i
\(275\) 14.8431 + 43.7265i 0.895075 + 2.63681i
\(276\) 0 0
\(277\) −2.06864 31.5613i −0.124292 1.89633i −0.373116 0.927785i \(-0.621711\pi\)
0.248824 0.968549i \(-0.419956\pi\)
\(278\) −10.8510 + 2.15841i −0.650803 + 0.129453i
\(279\) 0 0
\(280\) −0.182674 + 0.441014i −0.0109168 + 0.0263556i
\(281\) −1.63529 2.13116i −0.0975535 0.127134i 0.742026 0.670371i \(-0.233865\pi\)
−0.839579 + 0.543237i \(0.817198\pi\)
\(282\) 0 0
\(283\) 2.36408 + 2.69572i 0.140530 + 0.160244i 0.817823 0.575469i \(-0.195181\pi\)
−0.677293 + 0.735713i \(0.736847\pi\)
\(284\) −5.08817 2.50921i −0.301927 0.148894i
\(285\) 0 0
\(286\) −14.6128 + 16.6627i −0.864073 + 0.985286i
\(287\) 0.197765 0.0819171i 0.0116737 0.00483541i
\(288\) 0 0
\(289\) 11.4333 12.5810i 0.672545 0.740056i
\(290\) 0.122248 + 0.0705800i 0.00717866 + 0.00414460i
\(291\) 0 0
\(292\) 7.56775 2.56890i 0.442869 0.150334i
\(293\) 2.78802 10.4050i 0.162878 0.607868i −0.835423 0.549607i \(-0.814778\pi\)
0.998301 0.0582617i \(-0.0185558\pi\)
\(294\) 0 0
\(295\) 33.9411 + 11.5214i 1.97613 + 0.670804i
\(296\) 8.68167 12.9930i 0.504612 0.755205i
\(297\) 0 0
\(298\) −8.69155 3.60016i −0.503488 0.208551i
\(299\) 23.5118 11.5948i 1.35972 0.670542i
\(300\) 0 0
\(301\) 0.0162242 0.0328993i 0.000935145 0.00189629i
\(302\) 8.69877 + 2.33083i 0.500558 + 0.134124i
\(303\) 0 0
\(304\) 2.82800 + 0.372314i 0.162197 + 0.0213537i
\(305\) −0.327948 −0.0187783
\(306\) 0 0
\(307\) 1.09298 0.0623795 0.0311897 0.999513i \(-0.490070\pi\)
0.0311897 + 0.999513i \(0.490070\pi\)
\(308\) −0.263036 0.0346293i −0.0149878 0.00197319i
\(309\) 0 0
\(310\) −14.4267 3.86562i −0.819381 0.219552i
\(311\) 14.6585 29.7246i 0.831209 1.68553i 0.108797 0.994064i \(-0.465300\pi\)
0.722413 0.691462i \(-0.243033\pi\)
\(312\) 0 0
\(313\) −3.69317 + 1.82127i −0.208750 + 0.102944i −0.543659 0.839306i \(-0.682961\pi\)
0.334908 + 0.942251i \(0.391295\pi\)
\(314\) −9.54151 3.95222i −0.538459 0.223037i
\(315\) 0 0
\(316\) −2.93851 + 4.39779i −0.165304 + 0.247395i
\(317\) −19.5630 6.64074i −1.09877 0.372981i −0.287574 0.957759i \(-0.592849\pi\)
−0.811194 + 0.584777i \(0.801182\pi\)
\(318\) 0 0
\(319\) −0.0616147 + 0.229949i −0.00344976 + 0.0128747i
\(320\) −23.9555 + 8.13181i −1.33916 + 0.454582i
\(321\) 0 0
\(322\) −0.281115 0.162302i −0.0156659 0.00904471i
\(323\) 7.60369 7.97576i 0.423081 0.443783i
\(324\) 0 0
\(325\) −25.6521 + 10.6255i −1.42292 + 0.589394i
\(326\) 1.60437 1.82944i 0.0888580 0.101323i
\(327\) 0 0
\(328\) 12.9384 + 6.38050i 0.714402 + 0.352304i
\(329\) −0.0494776 0.0564184i −0.00272779 0.00311045i
\(330\) 0 0
\(331\) −8.78625 11.4505i −0.482936 0.629375i 0.486805 0.873511i \(-0.338162\pi\)
−0.969741 + 0.244136i \(0.921496\pi\)
\(332\) −2.19242 + 5.29297i −0.120325 + 0.290489i
\(333\) 0 0
\(334\) 10.7957 2.14739i 0.590713 0.117500i
\(335\) 1.35500 + 20.6733i 0.0740314 + 1.12950i
\(336\) 0 0
\(337\) 8.74316 + 25.7565i 0.476270 + 1.40305i 0.874171 + 0.485618i \(0.161405\pi\)
−0.397901 + 0.917428i \(0.630261\pi\)
\(338\) −0.171946 0.131939i −0.00935263 0.00717653i
\(339\) 0 0
\(340\) −4.30485 + 13.7520i −0.233463 + 0.745806i
\(341\) 25.1883i 1.36402i
\(342\) 0 0
\(343\) 0.121897 0.612820i 0.00658184 0.0330891i
\(344\) 2.38789 0.639833i 0.128746 0.0344975i
\(345\) 0 0
\(346\) −0.796307 + 0.698342i −0.0428097 + 0.0375431i
\(347\) 32.4168 + 2.12471i 1.74023 + 0.114060i 0.902131 0.431463i \(-0.142002\pi\)
0.838096 + 0.545523i \(0.183669\pi\)
\(348\) 0 0
\(349\) −21.9139 + 16.8152i −1.17303 + 0.900095i −0.996450 0.0841918i \(-0.973169\pi\)
−0.176577 + 0.984287i \(0.556502\pi\)
\(350\) 0.285859 + 0.191005i 0.0152798 + 0.0102096i
\(351\) 0 0
\(352\) −16.5932 24.8335i −0.884420 1.32363i
\(353\) −6.83386 25.5043i −0.363729 1.35746i −0.869135 0.494575i \(-0.835324\pi\)
0.505406 0.862882i \(-0.331343\pi\)
\(354\) 0 0
\(355\) −12.4886 + 16.2754i −0.662826 + 0.863811i
\(356\) 8.86816 + 15.3601i 0.470011 + 0.814084i
\(357\) 0 0
\(358\) 4.38709 7.59866i 0.231865 0.401602i
\(359\) −3.39378 8.19330i −0.179117 0.432426i 0.808665 0.588269i \(-0.200190\pi\)
−0.987782 + 0.155843i \(0.950190\pi\)
\(360\) 0 0
\(361\) −8.38425 + 8.38425i −0.441276 + 0.441276i
\(362\) −11.6697 + 0.764874i −0.613347 + 0.0402009i
\(363\) 0 0
\(364\) 0.0104334 0.159183i 0.000546859 0.00834345i
\(365\) −3.77209 28.6519i −0.197440 1.49971i
\(366\) 0 0
\(367\) 16.4128 + 33.2819i 0.856742 + 1.73730i 0.651590 + 0.758571i \(0.274102\pi\)
0.205152 + 0.978730i \(0.434231\pi\)
\(368\) −1.50153 7.54870i −0.0782727 0.393503i
\(369\) 0 0
\(370\) −13.1679 13.1679i −0.684568 0.684568i
\(371\) −0.103087 0.0904045i −0.00535199 0.00469357i
\(372\) 0 0
\(373\) 12.4589 7.19313i 0.645096 0.372446i −0.141479 0.989941i \(-0.545186\pi\)
0.786575 + 0.617495i \(0.211852\pi\)
\(374\) 25.1152 + 1.04470i 1.29868 + 0.0540200i
\(375\) 0 0
\(376\) 0.660095 5.01392i 0.0340418 0.258573i
\(377\) −0.140392 0.0279258i −0.00723057 0.00143825i
\(378\) 0 0
\(379\) 13.9109 9.29500i 0.714557 0.477452i −0.144387 0.989521i \(-0.546121\pi\)
0.858944 + 0.512069i \(0.171121\pi\)
\(380\) −3.00245 + 8.84494i −0.154023 + 0.453736i
\(381\) 0 0
\(382\) −21.4398 + 2.82261i −1.09696 + 0.144417i
\(383\) −36.2651 + 4.77439i −1.85306 + 0.243960i −0.972983 0.230876i \(-0.925841\pi\)
−0.880075 + 0.474835i \(0.842508\pi\)
\(384\) 0 0
\(385\) −0.308376 + 0.908446i −0.0157163 + 0.0462987i
\(386\) −0.445846 + 0.297905i −0.0226930 + 0.0151630i
\(387\) 0 0
\(388\) 3.50209 + 0.696608i 0.177791 + 0.0353649i
\(389\) 2.30488 17.5073i 0.116862 0.887655i −0.828124 0.560545i \(-0.810592\pi\)
0.944986 0.327110i \(-0.106075\pi\)
\(390\) 0 0
\(391\) −26.9737 12.5104i −1.36412 0.632679i
\(392\) 18.2310 10.5257i 0.920806 0.531628i
\(393\) 0 0
\(394\) 6.07629 + 5.32877i 0.306119 + 0.268459i
\(395\) 13.5241 + 13.5241i 0.680472 + 0.680472i
\(396\) 0 0
\(397\) −3.93979 19.8067i −0.197732 0.994068i −0.944382 0.328850i \(-0.893339\pi\)
0.746650 0.665217i \(-0.231661\pi\)
\(398\) 1.33371 + 2.70450i 0.0668530 + 0.135564i
\(399\) 0 0
\(400\) 1.06402 + 8.08200i 0.0532008 + 0.404100i
\(401\) −0.917905 + 14.0045i −0.0458380 + 0.699352i 0.911666 + 0.410932i \(0.134797\pi\)
−0.957504 + 0.288420i \(0.906870\pi\)
\(402\) 0 0
\(403\) 15.1130 0.990556i 0.752831 0.0493431i
\(404\) 3.52341 3.52341i 0.175296 0.175296i
\(405\) 0 0
\(406\) 0.000678275 0.00163750i 3.36622e−5 8.12678e-5i
\(407\) 15.7029 27.1982i 0.778362 1.34816i
\(408\) 0 0
\(409\) 2.43755 + 4.22196i 0.120529 + 0.208762i 0.919976 0.391974i \(-0.128208\pi\)
−0.799447 + 0.600736i \(0.794874\pi\)
\(410\) 10.4656 13.6390i 0.516860 0.673584i
\(411\) 0 0
\(412\) 0.184759 + 0.689531i 0.00910243 + 0.0339707i
\(413\) 0.250035 + 0.374204i 0.0123034 + 0.0184134i
\(414\) 0 0
\(415\) 17.2253 + 11.5096i 0.845555 + 0.564982i
\(416\) 14.2475 10.9325i 0.698541 0.536010i
\(417\) 0 0
\(418\) 16.2590 + 1.06567i 0.795253 + 0.0521236i
\(419\) −20.0238 + 17.5604i −0.978226 + 0.857881i −0.989859 0.142051i \(-0.954630\pi\)
0.0116336 + 0.999932i \(0.496297\pi\)
\(420\) 0 0
\(421\) 32.1037 8.60215i 1.56464 0.419243i 0.630509 0.776182i \(-0.282846\pi\)
0.934128 + 0.356939i \(0.116180\pi\)
\(422\) −2.38033 + 11.9667i −0.115872 + 0.582530i
\(423\) 0 0
\(424\) 9.24039i 0.448753i
\(425\) 27.6410 + 15.0904i 1.34079 + 0.731990i
\(426\) 0 0
\(427\) −0.00326683 0.00250673i −0.000158093 0.000121309i
\(428\) 0.769184 + 2.26594i 0.0371799 + 0.109529i
\(429\) 0 0
\(430\) −0.192680 2.93973i −0.00929187 0.141767i
\(431\) 19.7216 3.92286i 0.949955 0.188958i 0.304291 0.952579i \(-0.401581\pi\)
0.645664 + 0.763622i \(0.276581\pi\)
\(432\) 0 0
\(433\) 1.73656 4.19243i 0.0834538 0.201475i −0.876644 0.481139i \(-0.840223\pi\)
0.960098 + 0.279664i \(0.0902231\pi\)
\(434\) −0.114163 0.148780i −0.00547999 0.00714166i
\(435\) 0 0
\(436\) 5.86587 + 6.68874i 0.280924 + 0.320333i
\(437\) −17.2859 8.52444i −0.826895 0.407779i
\(438\) 0 0
\(439\) 1.17259 1.33709i 0.0559648 0.0638157i −0.723180 0.690660i \(-0.757320\pi\)
0.779145 + 0.626844i \(0.215654\pi\)
\(440\) −59.7325 + 24.7420i −2.84763 + 1.17953i
\(441\) 0 0
\(442\) 0.360864 + 15.1102i 0.0171646 + 0.718718i
\(443\) 26.7176 + 15.4254i 1.26939 + 0.732883i 0.974873 0.222763i \(-0.0715077\pi\)
0.294518 + 0.955646i \(0.404841\pi\)
\(444\) 0 0
\(445\) 60.7319 20.6157i 2.87897 0.977278i
\(446\) 2.03972 7.61235i 0.0965837 0.360455i
\(447\) 0 0
\(448\) −0.300788 0.102104i −0.0142109 0.00482395i
\(449\) −19.7458 + 29.5517i −0.931861 + 1.39463i −0.0130574 + 0.999915i \(0.504156\pi\)
−0.918804 + 0.394714i \(0.870844\pi\)
\(450\) 0 0
\(451\) 26.7861 + 11.0952i 1.26131 + 0.522450i
\(452\) −0.148795 + 0.0733774i −0.00699872 + 0.00345138i
\(453\) 0 0
\(454\) 2.64053 5.35447i 0.123926 0.251298i
\(455\) −0.557194 0.149300i −0.0261217 0.00699928i
\(456\) 0 0
\(457\) −6.03354 0.794331i −0.282237 0.0371572i −0.0119214 0.999929i \(-0.503795\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(458\) −13.9975 −0.654061
\(459\) 0 0
\(460\) 25.2037 1.17513
\(461\) 38.1625 + 5.02418i 1.77740 + 0.233999i 0.946564 0.322515i \(-0.104528\pi\)
0.830838 + 0.556514i \(0.187861\pi\)
\(462\) 0 0
\(463\) 18.8431 + 5.04899i 0.875712 + 0.234646i 0.668556 0.743662i \(-0.266913\pi\)
0.207156 + 0.978308i \(0.433579\pi\)
\(464\) −0.0185874 + 0.0376914i −0.000862896 + 0.00174978i
\(465\) 0 0
\(466\) −13.6804 + 6.74641i −0.633731 + 0.312522i
\(467\) −1.38122 0.572119i −0.0639152 0.0264745i 0.350497 0.936564i \(-0.386013\pi\)
−0.414412 + 0.910089i \(0.636013\pi\)
\(468\) 0 0
\(469\) −0.144522 + 0.216292i −0.00667340 + 0.00998744i
\(470\) −5.70684 1.93721i −0.263237 0.0893568i
\(471\) 0 0
\(472\) −7.85004 + 29.2968i −0.361328 + 1.34849i
\(473\) 4.70471 1.59703i 0.216323 0.0734317i
\(474\) 0 0
\(475\) 17.6784 + 10.2066i 0.811140 + 0.468312i
\(476\) −0.147998 + 0.104085i −0.00678348 + 0.00477071i
\(477\) 0 0
\(478\) 4.59454 1.90312i 0.210149 0.0870467i
\(479\) −1.82949 + 2.08614i −0.0835917 + 0.0953181i −0.792124 0.610361i \(-0.791024\pi\)
0.708532 + 0.705679i \(0.249358\pi\)
\(480\) 0 0
\(481\) 16.9364 + 8.35211i 0.772233 + 0.380823i
\(482\) 9.96972 + 11.3683i 0.454108 + 0.517811i
\(483\) 0 0
\(484\) −15.2919 19.9288i −0.695086 0.905854i
\(485\) 4.94115 11.9290i 0.224366 0.541667i
\(486\) 0 0
\(487\) −20.5857 + 4.09475i −0.932828 + 0.185551i −0.638033 0.770009i \(-0.720252\pi\)
−0.294795 + 0.955560i \(0.595252\pi\)
\(488\) −0.0181498 0.276913i −0.000821603 0.0125352i
\(489\) 0 0
\(490\) −8.06396 23.7557i −0.364293 1.07317i
\(491\) 18.9495 + 14.5405i 0.855180 + 0.656202i 0.940367 0.340163i \(-0.110482\pi\)
−0.0851870 + 0.996365i \(0.527149\pi\)
\(492\) 0 0
\(493\) 0.0752631 + 0.143854i 0.00338968 + 0.00647888i
\(494\) 9.79728i 0.440801i
\(495\) 0 0
\(496\) 0.867479 4.36111i 0.0389509 0.195820i
\(497\) −0.248808 + 0.0666679i −0.0111606 + 0.00299047i
\(498\) 0 0
\(499\) −1.64660 + 1.44403i −0.0737120 + 0.0646437i −0.695409 0.718614i \(-0.744777\pi\)
0.621697 + 0.783258i \(0.286443\pi\)
\(500\) −9.19968 0.602979i −0.411422 0.0269660i
\(501\) 0 0
\(502\) −2.91357 + 2.23566i −0.130039 + 0.0997825i
\(503\) 13.6455 + 9.11766i 0.608425 + 0.406536i 0.821262 0.570551i \(-0.193270\pi\)
−0.212837 + 0.977088i \(0.568270\pi\)
\(504\) 0 0
\(505\) −10.0104 14.9817i −0.445458 0.666675i
\(506\) −11.3791 42.4673i −0.505862 1.88790i
\(507\) 0 0
\(508\) 8.76025 11.4166i 0.388673 0.506529i
\(509\) −2.71304 4.69913i −0.120254 0.208285i 0.799614 0.600514i \(-0.205037\pi\)
−0.919868 + 0.392229i \(0.871704\pi\)
\(510\) 0 0
\(511\) 0.181430 0.314246i 0.00802598 0.0139014i
\(512\) −4.47495 10.8035i −0.197767 0.477451i
\(513\) 0 0
\(514\) −13.5716 + 13.5716i −0.598616 + 0.598616i
\(515\) 2.57581 0.168828i 0.113504 0.00743944i
\(516\) 0 0
\(517\) 0.664741 10.1420i 0.0292353 0.446044i
\(518\) −0.0305200 0.231823i −0.00134097 0.0101857i
\(519\) 0 0
\(520\) −17.1942 34.8664i −0.754016 1.52899i
\(521\) 5.58058 + 28.0555i 0.244490 + 1.22913i 0.886606 + 0.462525i \(0.153057\pi\)
−0.642116 + 0.766607i \(0.721943\pi\)
\(522\) 0 0
\(523\) 6.31889 + 6.31889i 0.276306 + 0.276306i 0.831632 0.555326i \(-0.187407\pi\)
−0.555326 + 0.831632i \(0.687407\pi\)
\(524\) −12.3258 10.8094i −0.538454 0.472212i
\(525\) 0 0
\(526\) −10.9341 + 6.31282i −0.476751 + 0.275252i
\(527\) −11.6314 12.6410i −0.506670 0.550651i
\(528\) 0 0
\(529\) −3.78594 + 28.7571i −0.164606 + 1.25031i
\(530\) −10.8002 2.14830i −0.469132 0.0933161i
\(531\) 0 0
\(532\) −0.0975164 + 0.0651584i −0.00422787 + 0.00282498i
\(533\) −5.60369 + 16.5079i −0.242723 + 0.715038i
\(534\) 0 0
\(535\) 8.57897 1.12944i 0.370901 0.0488301i
\(536\) −17.3811 + 2.28826i −0.750748 + 0.0988379i
\(537\) 0 0
\(538\) −5.36919 + 15.8171i −0.231482 + 0.681924i
\(539\) 35.1780 23.5052i 1.51523 1.01244i
\(540\) 0 0
\(541\) 24.1708 + 4.80786i 1.03918 + 0.206706i 0.685055 0.728491i \(-0.259778\pi\)
0.354127 + 0.935197i \(0.384778\pi\)
\(542\) −2.81033 + 21.3465i −0.120714 + 0.916912i
\(543\) 0 0
\(544\) −19.7950 4.80058i −0.848702 0.205823i
\(545\) 27.8603 16.0851i 1.19340 0.689011i
\(546\) 0 0
\(547\) −30.8714 27.0735i −1.31997 1.15758i −0.975799 0.218671i \(-0.929828\pi\)
−0.344168 0.938908i \(-0.611839\pi\)
\(548\) −6.21246 6.21246i −0.265383 0.265383i
\(549\) 0 0
\(550\) 9.08446 + 45.6707i 0.387363 + 1.94740i
\(551\) 0.0465457 + 0.0943853i 0.00198291 + 0.00402095i
\(552\) 0 0
\(553\) 0.0313456 + 0.238093i 0.00133295 + 0.0101248i
\(554\) 2.08603 31.8267i 0.0886270 1.35219i
\(555\) 0 0
\(556\) 10.7630 0.705443i 0.456452 0.0299174i
\(557\) 4.89600 4.89600i 0.207450 0.207450i −0.595733 0.803183i \(-0.703138\pi\)
0.803183 + 0.595733i \(0.203138\pi\)
\(558\) 0 0
\(559\) 1.14324 + 2.76002i 0.0483537 + 0.116736i
\(560\) −0.0846789 + 0.146668i −0.00357834 + 0.00619786i
\(561\) 0 0
\(562\) −1.35443 2.34594i −0.0571331 0.0989574i
\(563\) −16.1053 + 20.9888i −0.678757 + 0.884573i −0.998007 0.0630974i \(-0.979902\pi\)
0.319251 + 0.947670i \(0.396569\pi\)
\(564\) 0 0
\(565\) 0.155270 + 0.579477i 0.00653227 + 0.0243788i
\(566\) 2.00875 + 3.00630i 0.0844339 + 0.126364i
\(567\) 0 0
\(568\) −14.4338 9.64436i −0.605629 0.404668i
\(569\) −8.41736 + 6.45887i −0.352874 + 0.270770i −0.769953 0.638100i \(-0.779720\pi\)
0.417079 + 0.908870i \(0.363054\pi\)
\(570\) 0 0
\(571\) −31.1973 2.04478i −1.30557 0.0855713i −0.603316 0.797502i \(-0.706154\pi\)
−0.702250 + 0.711931i \(0.747821\pi\)
\(572\) 16.2447 14.2462i 0.679224 0.595664i
\(573\) 0 0
\(574\) 0.208505 0.0558686i 0.00870281 0.00233191i
\(575\) 10.7457 54.0223i 0.448127 2.25289i
\(576\) 0 0
\(577\) 2.52465i 0.105103i −0.998618 0.0525513i \(-0.983265\pi\)
0.998618 0.0525513i \(-0.0167353\pi\)
\(578\) 13.0867 11.0733i 0.544336 0.460589i
\(579\) 0 0
\(580\) −0.109180 0.0837769i −0.00453346 0.00347865i
\(581\) 0.0836129 + 0.246316i 0.00346885 + 0.0102189i
\(582\) 0 0
\(583\) −1.21460 18.5312i −0.0503036 0.767485i
\(584\) 23.9843 4.77077i 0.992476 0.197416i
\(585\) 0 0
\(586\) 4.15696 10.0358i 0.171723 0.414575i
\(587\) 13.5376 + 17.6425i 0.558756 + 0.728184i 0.984251 0.176776i \(-0.0565669\pi\)
−0.425496 + 0.904961i \(0.639900\pi\)
\(588\) 0 0
\(589\) −7.34172 8.37163i −0.302510 0.344947i
\(590\) 32.4172 + 15.9864i 1.33459 + 0.658149i
\(591\) 0 0
\(592\) 3.65549 4.16829i 0.150240 0.171316i
\(593\) 33.8563 14.0237i 1.39031 0.575885i 0.443092 0.896476i \(-0.353881\pi\)
0.947218 + 0.320591i \(0.103881\pi\)
\(594\) 0 0
\(595\) 0.264737 + 0.598314i 0.0108532 + 0.0245285i
\(596\) 7.94288 + 4.58582i 0.325353 + 0.187843i
\(597\) 0 0
\(598\) 25.0329 8.49751i 1.02367 0.347489i
\(599\) 4.68679 17.4913i 0.191497 0.714677i −0.801649 0.597795i \(-0.796044\pi\)
0.993146 0.116882i \(-0.0372898\pi\)
\(600\) 0 0
\(601\) −23.5054 7.97899i −0.958803 0.325470i −0.202200 0.979344i \(-0.564809\pi\)
−0.756603 + 0.653874i \(0.773143\pi\)
\(602\) 0.0205510 0.0307567i 0.000837595 0.00125355i
\(603\) 0 0
\(604\) −8.11138 3.35985i −0.330048 0.136710i
\(605\) −81.4668 + 40.1750i −3.31210 + 1.63334i
\(606\) 0 0
\(607\) 10.4101 21.1095i 0.422531 0.856808i −0.576675 0.816974i \(-0.695650\pi\)
0.999206 0.0398349i \(-0.0126832\pi\)
\(608\) −12.7532 3.41722i −0.517212 0.138586i
\(609\) 0 0
\(610\) −0.327877 0.0431658i −0.0132753 0.00174773i
\(611\) 6.11132 0.247238
\(612\) 0 0
\(613\) −17.8940 −0.722732 −0.361366 0.932424i \(-0.617689\pi\)
−0.361366 + 0.932424i \(0.617689\pi\)
\(614\) 1.09274 + 0.143862i 0.0440993 + 0.00580579i
\(615\) 0 0
\(616\) −0.784140 0.210110i −0.0315939 0.00846556i
\(617\) −12.7713 + 25.8976i −0.514153 + 1.04260i 0.472737 + 0.881203i \(0.343266\pi\)
−0.986890 + 0.161395i \(0.948401\pi\)
\(618\) 0 0
\(619\) −16.0085 + 7.89453i −0.643437 + 0.317308i −0.734572 0.678531i \(-0.762617\pi\)
0.0911354 + 0.995839i \(0.470950\pi\)
\(620\) 13.4525 + 5.57222i 0.540267 + 0.223786i
\(621\) 0 0
\(622\) 18.5678 27.7887i 0.744501 1.11422i
\(623\) 0.762555 + 0.258853i 0.0305511 + 0.0103707i
\(624\) 0 0
\(625\) 1.25571 4.68638i 0.0502284 0.187455i
\(626\) −3.93209 + 1.33476i −0.157158 + 0.0533479i
\(627\) 0 0
\(628\) 8.71963 + 5.03428i 0.347951 + 0.200890i
\(629\) −4.67883 20.9009i −0.186557 0.833373i
\(630\) 0 0
\(631\) −25.8159 + 10.6933i −1.02772 + 0.425694i −0.831888 0.554944i \(-0.812740\pi\)
−0.195829 + 0.980638i \(0.562740\pi\)
\(632\) −10.6710 + 12.1680i −0.424470 + 0.484015i
\(633\) 0 0
\(634\) −18.6847 9.21425i −0.742063 0.365945i
\(635\) −34.3098 39.1228i −1.36154 1.55254i
\(636\) 0 0
\(637\) 15.4865 + 20.1824i 0.613598 + 0.799657i
\(638\) −0.0918680 + 0.221789i −0.00363709 + 0.00878071i
\(639\) 0 0
\(640\) 9.42874 1.87549i 0.372704 0.0741354i
\(641\) 2.75382 + 42.0152i 0.108769 + 1.65950i 0.608675 + 0.793420i \(0.291701\pi\)
−0.499905 + 0.866080i \(0.666632\pi\)
\(642\) 0 0
\(643\) 7.44695 + 21.9380i 0.293679 + 0.865151i 0.989191 + 0.146636i \(0.0468445\pi\)
−0.695511 + 0.718515i \(0.744822\pi\)
\(644\) 0.251064 + 0.192648i 0.00989332 + 0.00759141i
\(645\) 0 0
\(646\) 8.65183 6.97320i 0.340402 0.274357i
\(647\) 19.0689i 0.749678i 0.927090 + 0.374839i \(0.122302\pi\)
−0.927090 + 0.374839i \(0.877698\pi\)
\(648\) 0 0
\(649\) −11.8920 + 59.7853i −0.466803 + 2.34678i
\(650\) −27.0451 + 7.24671i −1.06080 + 0.284239i
\(651\) 0 0
\(652\) −1.78354 + 1.56412i −0.0698488 + 0.0612558i
\(653\) −30.9295 2.02723i −1.21036 0.0793315i −0.553180 0.833062i \(-0.686586\pi\)
−0.657184 + 0.753730i \(0.728253\pi\)
\(654\) 0 0
\(655\) −47.0318 + 36.0888i −1.83768 + 1.41010i
\(656\) 4.25563 + 2.84352i 0.166154 + 0.111021i
\(657\) 0 0
\(658\) −0.0420408 0.0629185i −0.00163892 0.00245282i
\(659\) 5.39159 + 20.1217i 0.210026 + 0.783829i 0.987858 + 0.155357i \(0.0496528\pi\)
−0.777832 + 0.628472i \(0.783681\pi\)
\(660\) 0 0
\(661\) −11.3554 + 14.7986i −0.441673 + 0.575600i −0.960148 0.279493i \(-0.909834\pi\)
0.518474 + 0.855093i \(0.326500\pi\)
\(662\) −7.27718 12.6045i −0.282836 0.489886i
\(663\) 0 0
\(664\) −8.76512 + 15.1816i −0.340152 + 0.589161i
\(665\) 0.162296 + 0.391816i 0.00629355 + 0.0151940i
\(666\) 0 0
\(667\) 0.200792 0.200792i 0.00777468 0.00777468i
\(668\) −10.7081 + 0.701843i −0.414307 + 0.0271551i
\(669\) 0 0
\(670\) −1.36639 + 20.8471i −0.0527883 + 0.805394i
\(671\) −0.0727974 0.552951i −0.00281031 0.0213464i
\(672\) 0 0
\(673\) −14.9298 30.2746i −0.575500 1.16700i −0.968859 0.247614i \(-0.920354\pi\)
0.393359 0.919385i \(-0.371313\pi\)
\(674\) 5.35108 + 26.9017i 0.206116 + 1.03621i
\(675\) 0 0
\(676\) 0.149409 + 0.149409i 0.00574649 + 0.00574649i
\(677\) −33.4580 29.3419i −1.28590 1.12770i −0.984722 0.174132i \(-0.944288\pi\)
−0.301174 0.953569i \(-0.597379\pi\)
\(678\) 0 0
\(679\) 0.140402 0.0810611i 0.00538813 0.00311084i
\(680\) −18.5521 + 40.0001i −0.711439 + 1.53393i
\(681\) 0 0
\(682\) 3.31538 25.1828i 0.126953 0.964300i
\(683\) −30.5882 6.08436i −1.17042 0.232812i −0.428655 0.903468i \(-0.641013\pi\)
−0.741768 + 0.670656i \(0.766013\pi\)
\(684\) 0 0
\(685\) −26.4156 + 17.6504i −1.00929 + 0.674385i
\(686\) 0.202532 0.596641i 0.00773273 0.0227799i
\(687\) 0 0
\(688\) 0.869576 0.114482i 0.0331523 0.00436458i
\(689\) 11.0710 1.45752i 0.421770 0.0555271i
\(690\) 0 0
\(691\) −0.539407 + 1.58904i −0.0205200 + 0.0604500i −0.956708 0.291051i \(-0.905995\pi\)
0.936188 + 0.351501i \(0.114329\pi\)
\(692\) 0.858553 0.573667i 0.0326373 0.0218075i
\(693\) 0 0
\(694\) 32.1301 + 6.39107i 1.21964 + 0.242602i
\(695\) 5.09092 38.6694i 0.193110 1.46681i
\(696\) 0 0
\(697\) 18.5663 6.80096i 0.703250 0.257605i
\(698\) −24.1224 + 13.9271i −0.913048 + 0.527149i
\(699\) 0 0
\(700\) −0.251997 0.220996i −0.00952460 0.00835285i
\(701\) 31.7515 + 31.7515i 1.19924 + 1.19924i 0.974395 + 0.224844i \(0.0721874\pi\)
0.224844 + 0.974395i \(0.427813\pi\)
\(702\) 0 0
\(703\) −2.70851 13.6166i −0.102153 0.513560i
\(704\) −19.0286 38.5862i −0.717167 1.45427i
\(705\) 0 0
\(706\) −3.47539 26.3982i −0.130798 0.993511i
\(707\) 0.0147968 0.225755i 0.000556490 0.00849039i
\(708\) 0 0
\(709\) 29.9533 1.96325i 1.12492 0.0737312i 0.508438 0.861099i \(-0.330223\pi\)
0.616484 + 0.787368i \(0.288557\pi\)
\(710\) −14.6281 + 14.6281i −0.548983 + 0.548983i
\(711\) 0 0
\(712\) 20.7686 + 50.1398i 0.778335 + 1.87907i
\(713\) −15.0225 + 26.0197i −0.562596 + 0.974445i
\(714\) 0 0
\(715\) −39.0653 67.6631i −1.46096 2.53046i
\(716\) −5.20738 + 6.78639i −0.194609 + 0.253619i
\(717\) 0 0
\(718\) −2.31460 8.63821i −0.0863802 0.322375i
\(719\) 8.11589 + 12.1463i 0.302672 + 0.452980i 0.951363 0.308071i \(-0.0996835\pi\)
−0.648692 + 0.761051i \(0.724684\pi\)
\(720\) 0 0
\(721\) 0.0269492 + 0.0180069i 0.00100364 + 0.000670612i
\(722\) −9.48599 + 7.27886i −0.353032 + 0.270891i
\(723\) 0 0
\(724\) 11.3770 + 0.745685i 0.422821 + 0.0277132i
\(725\) −0.226119 + 0.198301i −0.00839786 + 0.00736473i
\(726\) 0 0
\(727\) −11.3208 + 3.03341i −0.419867 + 0.112503i −0.462566 0.886585i \(-0.653071\pi\)
0.0426988 + 0.999088i \(0.486404\pi\)
\(728\) 0.0952285 0.478746i 0.00352940 0.0177435i
\(729\) 0 0
\(730\) 29.1421i 1.07860i
\(731\) 1.62363 2.97401i 0.0600522 0.109998i
\(732\) 0 0
\(733\) −21.5440 16.5313i −0.795746 0.610597i 0.128799 0.991671i \(-0.458888\pi\)
−0.924545 + 0.381074i \(0.875554\pi\)
\(734\) 12.0286 + 35.4350i 0.443982 + 1.30793i
\(735\) 0 0
\(736\) 2.33003 + 35.5494i 0.0858861 + 1.31037i
\(737\) −34.5563 + 6.87367i −1.27290 + 0.253195i
\(738\) 0 0
\(739\) 15.1973 36.6896i 0.559044 1.34965i −0.351481 0.936195i \(-0.614322\pi\)
0.910524 0.413455i \(-0.135678\pi\)
\(740\) 11.0521 + 14.4034i 0.406284 + 0.529480i
\(741\) 0 0
\(742\) −0.0911647 0.103953i −0.00334676 0.00381625i
\(743\) 7.47802 + 3.68775i 0.274342 + 0.135290i 0.574256 0.818676i \(-0.305291\pi\)
−0.299914 + 0.953966i \(0.596958\pi\)
\(744\) 0 0
\(745\) 21.8673 24.9349i 0.801158 0.913545i
\(746\) 13.4029 5.55168i 0.490717 0.203262i
\(747\) 0 0
\(748\) −24.1427 4.20573i −0.882745 0.153777i
\(749\) 0.0940918 + 0.0543239i 0.00343804 + 0.00198495i
\(750\) 0 0
\(751\) −25.8590 + 8.77796i −0.943609 + 0.320312i −0.750504 0.660866i \(-0.770189\pi\)
−0.193105 + 0.981178i \(0.561856\pi\)
\(752\) 0.464380 1.73309i 0.0169342 0.0631993i
\(753\) 0 0
\(754\) −0.136686 0.0463986i −0.00497781 0.00168974i
\(755\) −17.6382 + 26.3974i −0.641920 + 0.960700i
\(756\) 0 0
\(757\) 19.8952 + 8.24087i 0.723104 + 0.299520i 0.713715 0.700436i \(-0.247011\pi\)
0.00938948 + 0.999956i \(0.497011\pi\)
\(758\) 15.1314 7.46196i 0.549596 0.271031i
\(759\) 0 0
\(760\) −12.6411 + 25.6337i −0.458543 + 0.929833i
\(761\) 13.0970 + 3.50934i 0.474767 + 0.127213i 0.488265 0.872695i \(-0.337630\pi\)
−0.0134978 + 0.999909i \(0.504297\pi\)
\(762\) 0 0
\(763\) 0.400477 + 0.0527238i 0.0144982 + 0.00190873i
\(764\) 21.0823 0.762731
\(765\) 0 0
\(766\) −36.8856 −1.33273
\(767\) −36.3388 4.78409i −1.31212 0.172744i
\(768\) 0 0
\(769\) 23.0034 + 6.16375i 0.829525 + 0.222271i 0.648507 0.761209i \(-0.275394\pi\)
0.181019 + 0.983480i \(0.442061\pi\)
\(770\) −0.427882 + 0.867659i −0.0154198 + 0.0312683i
\(771\) 0 0
\(772\) 0.468851 0.231212i 0.0168743 0.00832150i
\(773\) −34.8872 14.4507i −1.25480 0.519757i −0.346493 0.938053i \(-0.612628\pi\)
−0.908311 + 0.418296i \(0.862628\pi\)
\(774\) 0 0
\(775\) 17.6792 26.4588i 0.635056 0.950428i
\(776\) 10.3460 + 3.51201i 0.371401 + 0.126074i
\(777\) 0 0
\(778\) 4.60875 17.2001i 0.165232 0.616653i
\(779\) 12.1366 4.11982i 0.434839 0.147608i
\(780\) 0 0
\(781\) −30.2141 17.4441i −1.08115 0.624200i
\(782\) −25.3211 16.0581i −0.905481 0.574235i
\(783\) 0 0
\(784\) 6.90025 2.85818i 0.246437 0.102078i
\(785\) 24.0058 27.3734i 0.856804 0.976997i
\(786\) 0 0
\(787\) −30.8236 15.2005i −1.09874 0.541840i −0.199770 0.979843i \(-0.564019\pi\)
−0.898974 + 0.438003i \(0.855686\pi\)
\(788\) −5.19508 5.92385i −0.185067 0.211029i
\(789\) 0 0
\(790\) 11.7411 + 15.3013i 0.417729 + 0.544395i
\(791\) −0.00288261 + 0.00695924i −0.000102494 + 0.000247442i
\(792\) 0 0
\(793\) 0.328907 0.0654237i 0.0116798 0.00232327i
\(794\) −1.33190 20.3209i −0.0472675 0.721162i
\(795\) 0 0
\(796\) −0.944977 2.78381i −0.0334938 0.0986696i
\(797\) 14.2536 + 10.9372i 0.504888 + 0.387414i 0.829564 0.558411i \(-0.188589\pi\)
−0.324677 + 0.945825i \(0.605256\pi\)
\(798\) 0 0
\(799\) −4.34972 5.39682i −0.153882 0.190926i
\(800\) 37.7325i 1.33404i
\(801\) 0 0
\(802\) −2.76103 + 13.8807i −0.0974955 + 0.490143i
\(803\) 47.4724 12.7202i 1.67526 0.448886i
\(804\) 0 0
\(805\) 0.860358 0.754514i 0.0303236 0.0265931i
\(806\) 15.2401 + 0.998886i 0.536808 + 0.0351843i
\(807\) 0 0
\(808\) 12.0962 9.28174i 0.425543 0.326530i
\(809\) −33.5595 22.4237i −1.17989 0.788377i −0.198443 0.980112i \(-0.563588\pi\)
−0.981447 + 0.191735i \(0.938588\pi\)
\(810\) 0 0
\(811\) 27.5220 + 41.1896i 0.966429 + 1.44636i 0.893520 + 0.449024i \(0.148228\pi\)
0.0729089 + 0.997339i \(0.476772\pi\)
\(812\) −0.000447227 0.00166907i −1.56946e−5 5.85730e-5i
\(813\) 0 0
\(814\) 19.2794 25.1254i 0.675742 0.880644i
\(815\) 4.28907 + 7.42889i 0.150240 + 0.260223i
\(816\) 0 0
\(817\) 1.09817 1.90209i 0.0384202 0.0665457i
\(818\) 1.88131 + 4.54188i 0.0657784 + 0.158803i
\(819\) 0 0
\(820\) −11.8514 + 11.8514i −0.413867 + 0.413867i
\(821\) 20.4256 1.33876i 0.712858 0.0467232i 0.295341 0.955392i \(-0.404567\pi\)
0.417518 + 0.908669i \(0.362900\pi\)
\(822\) 0 0
\(823\) −0.282792 + 4.31457i −0.00985750 + 0.150396i 0.990093 + 0.140415i \(0.0448438\pi\)
−0.999950 + 0.00998101i \(0.996823\pi\)
\(824\) 0.285109 + 2.16562i 0.00993225 + 0.0754429i
\(825\) 0 0
\(826\) 0.200727 + 0.407033i 0.00698417 + 0.0141625i
\(827\) −10.3076 51.8200i −0.358432 1.80196i −0.566740 0.823896i \(-0.691796\pi\)
0.208308 0.978063i \(-0.433204\pi\)
\(828\) 0 0
\(829\) 28.8577 + 28.8577i 1.00227 + 1.00227i 0.999997 + 0.00227095i \(0.000722865\pi\)
0.00227095 + 0.999997i \(0.499277\pi\)
\(830\) 15.7066 + 13.7743i 0.545183 + 0.478113i
\(831\) 0 0
\(832\) 22.4034 12.9346i 0.776697 0.448426i
\(833\) 6.80030 28.0407i 0.235616 0.971553i
\(834\) 0 0
\(835\) −5.06494 + 38.4721i −0.175280 + 1.33138i
\(836\) −15.5799 3.09903i −0.538841 0.107182i
\(837\) 0 0
\(838\) −22.3308 + 14.9210i −0.771404 + 0.515436i
\(839\) −10.4629 + 30.8226i −0.361218 + 1.06411i 0.602712 + 0.797959i \(0.294087\pi\)
−0.963930 + 0.266155i \(0.914247\pi\)
\(840\) 0 0
\(841\) 28.7504 3.78506i 0.991392 0.130519i
\(842\) 33.2289 4.37467i 1.14514 0.150761i
\(843\) 0 0
\(844\) 3.82354 11.2638i 0.131612 0.387715i
\(845\) 0.635291 0.424488i 0.0218547 0.0146028i
\(846\) 0 0
\(847\) −1.11861 0.222505i −0.0384358 0.00764536i
\(848\) 0.427914 3.25033i 0.0146946 0.111617i
\(849\) 0 0
\(850\) 25.6488 + 18.7253i 0.879745 + 0.642272i
\(851\) −32.4423 + 18.7306i −1.11211 + 0.642076i
\(852\) 0 0
\(853\) −32.9932 28.9343i −1.12967 0.990690i −0.129666 0.991558i \(-0.541391\pi\)
−1.00000 0.000867572i \(0.999724\pi\)
\(854\) −0.00293617 0.00293617i −0.000100474 0.000100474i
\(855\) 0 0
\(856\) 1.42847 + 7.18139i 0.0488240 + 0.245455i
\(857\) −9.77087 19.8134i −0.333767 0.676812i 0.663696 0.748002i \(-0.268987\pi\)
−0.997463 + 0.0711905i \(0.977320\pi\)
\(858\) 0 0
\(859\) −1.01473 7.70767i −0.0346223 0.262982i −0.999998 0.00211809i \(-0.999326\pi\)
0.965375 0.260864i \(-0.0840075\pi\)
\(860\) −0.187846 + 2.86598i −0.00640551 + 0.0977292i
\(861\) 0 0
\(862\) 20.2336 1.32618i 0.689160 0.0451699i
\(863\) 0.406686 0.406686i 0.0138437 0.0138437i −0.700151 0.713995i \(-0.746884\pi\)
0.713995 + 0.700151i \(0.246884\pi\)
\(864\) 0 0
\(865\) −1.42888 3.44962i −0.0485834 0.117291i
\(866\) 2.28801 3.96294i 0.0777496 0.134666i
\(867\) 0 0
\(868\) 0.0914141 + 0.158334i 0.00310280 + 0.00537420i
\(869\) −19.8009 + 25.8050i −0.671698 + 0.875374i
\(870\) 0 0
\(871\) −5.48316 20.4634i −0.185790 0.693376i
\(872\) 15.1238 + 22.6344i 0.512158 + 0.766498i
\(873\) 0 0
\(874\) −16.1601 10.7978i −0.546622 0.365241i
\(875\) −0.332093 + 0.254824i −0.0112268 + 0.00861463i
\(876\) 0 0
\(877\) −33.3008 2.18265i −1.12449 0.0737028i −0.508211 0.861233i \(-0.669693\pi\)
−0.616276 + 0.787530i \(0.711360\pi\)
\(878\) 1.34833 1.18245i 0.0455039 0.0399059i
\(879\) 0 0
\(880\) −22.1568 + 5.93690i −0.746907 + 0.200133i
\(881\) −4.35402 + 21.8892i −0.146691 + 0.737465i 0.835487 + 0.549510i \(0.185186\pi\)
−0.982178 + 0.187954i \(0.939814\pi\)
\(882\) 0 0
\(883\) 11.7962i 0.396975i −0.980103 0.198487i \(-0.936397\pi\)
0.980103 0.198487i \(-0.0636029\pi\)
\(884\) 1.57399 14.6510i 0.0529392 0.492767i
\(885\) 0 0
\(886\) 24.6814 + 18.9387i 0.829188 + 0.636258i
\(887\) 7.08236 + 20.8640i 0.237802 + 0.700543i 0.998666 + 0.0516316i \(0.0164422\pi\)
−0.760864 + 0.648912i \(0.775224\pi\)
\(888\) 0 0
\(889\) −0.0427325 0.651972i −0.00143320 0.0218664i
\(890\) 63.4322 12.6174i 2.12625 0.422938i
\(891\) 0 0
\(892\) −2.94022 + 7.09832i −0.0984459 + 0.237669i
\(893\) −2.73518 3.56456i −0.0915294 0.119283i
\(894\) 0 0
\(895\) 20.3949 + 23.2559i 0.681725 + 0.777359i
\(896\) 0.108259 + 0.0533876i 0.00361669 + 0.00178355i
\(897\) 0 0
\(898\) −23.6312 + 26.9462i −0.788583 + 0.899207i
\(899\) 0.151566 0.0627805i 0.00505499 0.00209385i
\(900\) 0 0
\(901\) −9.16684 8.73921i −0.305392 0.291145i
\(902\) 25.3198 + 14.6184i 0.843058 + 0.486740i
\(903\) 0 0
\(904\) −0.480705 + 0.163177i −0.0159880 + 0.00542719i
\(905\) 10.6706 39.8232i 0.354703 1.32377i
\(906\) 0 0
\(907\) −39.4579 13.3942i −1.31018 0.444746i −0.422983 0.906138i \(-0.639017\pi\)
−0.887197 + 0.461391i \(0.847350\pi\)
\(908\) −3.23363 + 4.83947i −0.107312 + 0.160603i
\(909\) 0 0
\(910\) −0.537421 0.222607i −0.0178153 0.00737936i
\(911\) 3.79090 1.86946i 0.125598 0.0619381i −0.378404 0.925640i \(-0.623527\pi\)
0.504002 + 0.863702i \(0.331860\pi\)
\(912\) 0 0
\(913\) −15.5825 + 31.5983i −0.515707 + 1.04575i
\(914\) −5.92768 1.58832i −0.196070 0.0525368i
\(915\) 0 0
\(916\) 13.5296 + 1.78121i 0.447031 + 0.0588528i
\(917\) −0.744354 −0.0245807
\(918\) 0 0
\(919\) 46.8684 1.54604 0.773022 0.634379i \(-0.218744\pi\)
0.773022 + 0.634379i \(0.218744\pi\)
\(920\) 76.4603 + 10.0662i 2.52082 + 0.331873i
\(921\) 0 0
\(922\) 37.4928 + 10.0462i 1.23476 + 0.330853i
\(923\) 9.27826 18.8145i 0.305398 0.619285i
\(924\) 0 0
\(925\) 35.5848 17.5485i 1.17002 0.576990i
\(926\) 18.1744 + 7.52808i 0.597248 + 0.247388i
\(927\) 0 0
\(928\) 0.108073 0.161742i 0.00354766 0.00530944i
\(929\) 14.7967 + 5.02279i 0.485463 + 0.164792i 0.553431 0.832895i \(-0.313318\pi\)
−0.0679681 + 0.997687i \(0.521652\pi\)
\(930\) 0 0
\(931\) 4.84069 18.0657i 0.158647 0.592079i
\(932\) 14.0816 4.78004i 0.461257 0.156576i
\(933\) 0 0
\(934\) −1.30561 0.753796i −0.0427210 0.0246650i
\(935\) −31.9476 + 82.6571i −1.04480 + 2.70317i
\(936\) 0 0
\(937\) 39.6097 16.4069i 1.29399 0.535989i 0.373819 0.927502i \(-0.378048\pi\)
0.920173 + 0.391512i \(0.128048\pi\)
\(938\) −0.172960 + 0.197223i −0.00564733 + 0.00643954i
\(939\) 0 0
\(940\) 5.26956 + 2.59866i 0.171874 + 0.0847589i
\(941\) 16.4572 + 18.7658i 0.536488 + 0.611747i 0.955051 0.296440i \(-0.0957996\pi\)
−0.418564 + 0.908188i \(0.637466\pi\)
\(942\) 0 0
\(943\) −21.0530 27.4368i −0.685579 0.893464i
\(944\) −4.11798 + 9.94168i −0.134029 + 0.323574i
\(945\) 0 0
\(946\) 4.91389 0.977434i 0.159764 0.0317791i
\(947\) −3.01856 46.0544i −0.0980901 1.49657i −0.709193 0.705014i \(-0.750941\pi\)
0.611103 0.791551i \(-0.290726\pi\)
\(948\) 0 0
\(949\) 9.49900 + 27.9832i 0.308351 + 0.908372i
\(950\) 16.3311 + 12.5313i 0.529851 + 0.406569i
\(951\) 0 0
\(952\) −0.490552 + 0.256652i −0.0158989 + 0.00831812i
\(953\) 27.3799i 0.886922i −0.896294 0.443461i \(-0.853751\pi\)
0.896294 0.443461i \(-0.146249\pi\)
\(954\) 0 0
\(955\) 14.8727 74.7701i 0.481269 2.41950i
\(956\) −4.68313 + 1.25484i −0.151463 + 0.0405844i
\(957\) 0 0
\(958\) −2.10368 + 1.84488i −0.0679668 + 0.0596053i
\(959\) −0.398050 0.0260896i −0.0128537 0.000842477i
\(960\) 0 0
\(961\) 10.8230 8.30480i 0.349130 0.267897i
\(962\) 15.8334 + 10.5795i 0.510489 + 0.341098i
\(963\) 0 0
\(964\) −8.18982 12.2569i −0.263776 0.394769i
\(965\) −0.489256 1.82593i −0.0157497 0.0587787i
\(966\) 0 0
\(967\) 28.5153 37.1619i 0.916990 1.19504i −0.0634021 0.997988i \(-0.520195\pi\)
0.980392 0.197057i \(-0.0631383\pi\)
\(968\) −38.4316 66.5654i −1.23524 2.13949i
\(969\) 0 0
\(970\) 6.51021 11.2760i 0.209030 0.362051i
\(971\) −12.9063 31.1585i −0.414183 0.999925i −0.984002 0.178156i \(-0.942987\pi\)
0.569820 0.821770i \(-0.307013\pi\)
\(972\) 0 0
\(973\) 0.346289 0.346289i 0.0111015 0.0111015i
\(974\) −21.1202 + 1.38429i −0.676735 + 0.0443556i
\(975\) 0 0
\(976\) 0.00643933 0.0982452i 0.000206118 0.00314475i
\(977\) −0.315025 2.39285i −0.0100785 0.0765541i 0.985666 0.168706i \(-0.0539588\pi\)
−0.995745 + 0.0921518i \(0.970625\pi\)
\(978\) 0 0
\(979\) 48.2412 + 97.8234i 1.54179 + 3.12645i
\(980\) 4.77145 + 23.9877i 0.152418 + 0.766259i
\(981\) 0 0
\(982\) 17.0315 + 17.0315i 0.543497 + 0.543497i
\(983\) 26.6888 + 23.4054i 0.851240 + 0.746517i 0.969141 0.246508i \(-0.0792833\pi\)
−0.117901 + 0.993025i \(0.537617\pi\)
\(984\) 0 0
\(985\) −24.6743 + 14.2457i −0.786189 + 0.453906i
\(986\) 0.0563120 + 0.153729i 0.00179334 + 0.00489574i
\(987\) 0 0
\(988\) 1.24672 9.46978i 0.0396635 0.301274i
\(989\) −5.81248 1.15617i −0.184826 0.0367642i
\(990\) 0 0
\(991\) −6.75372 + 4.51269i −0.214539 + 0.143350i −0.658197 0.752846i \(-0.728681\pi\)
0.443658 + 0.896196i \(0.353681\pi\)
\(992\) −6.61587 + 19.4897i −0.210054 + 0.618800i
\(993\) 0 0
\(994\) −0.257529 + 0.0339043i −0.00816832 + 0.00107538i
\(995\) −10.5396 + 1.38757i −0.334129 + 0.0439890i
\(996\) 0 0
\(997\) −16.9384 + 49.8988i −0.536443 + 1.58031i 0.253632 + 0.967301i \(0.418375\pi\)
−0.790075 + 0.613010i \(0.789958\pi\)
\(998\) −1.83631 + 1.22698i −0.0581274 + 0.0388395i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.116.10 256
3.2 odd 2 153.2.s.a.65.7 yes 256
9.4 even 3 153.2.s.a.14.7 yes 256
9.5 odd 6 inner 459.2.y.a.422.10 256
17.11 odd 16 inner 459.2.y.a.62.10 256
51.11 even 16 153.2.s.a.11.7 256
153.113 even 48 inner 459.2.y.a.368.10 256
153.130 odd 48 153.2.s.a.113.7 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.7 256 51.11 even 16
153.2.s.a.14.7 yes 256 9.4 even 3
153.2.s.a.65.7 yes 256 3.2 odd 2
153.2.s.a.113.7 yes 256 153.130 odd 48
459.2.y.a.62.10 256 17.11 odd 16 inner
459.2.y.a.116.10 256 1.1 even 1 trivial
459.2.y.a.368.10 256 153.113 even 48 inner
459.2.y.a.422.10 256 9.5 odd 6 inner